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Abstract Sigmoid functions have been applied in many areas to model self

limited population growth. The most popular functions; General Logistic (GL),

General von Bertalanffy (GV), and Gompertz (G), comprise a family of functions

called Theta Logistic (HL). Previously, we introduced a simple model of tumor cell

population dynamics which provided a unifying foundation for these functions. In

the model the total population (N) is divided into reproducing (P) and non-repro-

ducing/quiescent (Q) sub-populations. The modes of the rate of change of ratio P/N
was shown to produce GL, GV or G growth. We now generalize the population

dynamics model and extend the possible modes of the P/N rate of change. We

produce a new family of sigmoid growth functions, Trans-General Logistic (TGL),

Trans-General von Bertalanffy (TGV) and Trans-Gompertz (TG)), which as a group

we have named Trans-Theta Logistic (T HL) since they exist when the HL are

translated from a two parameter into a three parameter phase space. Additionally,

the model produces a new trigonometric based sigmoid (TS). The HL sigmoids have

an inflection point size fixed by a single parameter and an inflection age fixed by

both of the defining parameters. T HL and TS sigmoids have an inflection point size

defined by two parameters in bounding relationships and inflection point age defined

by three parameters (two bounded). While the Theta Logistic sigmoids provided

flexibility in defining the inflection point size, the Trans-Theta Logistic sigmoids

provide flexibility in defining the inflection point size and age. By matching the

slopes at the inflection points we compare the range of values of inflection point age

for T HL versus HL for model growth curves.
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1 Introduction

The sigmoid functions: Gompertz (G), General Logistic (GL) and General von

Bertalanffy (GV) and their associate differential equations have been used over the

years to model self limited population growth in such diverse fields as sociology,

fish growth and tumor growth (Fokas 2007; Katsanevakis 2006; Bajzer et al. 2008).

All three can be represented by the ODE designated the Theta Logistic equation:

_N

N
¼ R

h
1� N

N1

� �h
" #

Nð0Þ ¼ N0 ¼ 1: ð1Þ

N is the total population as function of time (t) non-dimensionalized and

normalized to unity at t = 0. N can be viewed as the multiplication factor of the

initial population size. N1 ¼ lim
t!1

NðtÞ is the population maximum, or carrying

capacity, and R [ 0 is the growth rate parameter. Equation 1 takes the form of the

Gompertz ODE, Eq. 2, in the limit h ? 0?.

_N

N
¼ �RG ln

N

N1

� �
ð2Þ

h determines the sigmoid classification, see Fig. 1, and also determines the

population total at the inflection point (NI) relevant to N?.

NI ¼
N1

1þ hð Þ1=h
; h[ � 1 ð3Þ

As examples, for logistic growth: h = 1, NI ¼ N1
2

and for Gompertz: NI ¼ N1
e .

Equation 1 has the solutions (implicit solutions provided for subsequent analysis):

NðtÞ ¼ N1
1

1þ N1f gh�1
� �

exp �Rtf g

2
4

3
5

1=h

; h 6¼ 0; h[ � 1

Gompertz 
Lim +→ 0θ

         O
  General Von Bertalanffy General Logistic 

            0                                     -1 

θ

Fig. 1 Schematic for Theta-Logistic classification: h [ 0) General Logistic, h\0) General von

Bertalanffy and h! 0þ ) Gompertz. h[ -1 is required for an inflection point. Note the x axis runs
from left to right, ? ? -1, to facilitate comparison with Fig. 3
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t ¼ � 1

R
ln

1� N=N1
� �h

1� 1=N1

� �h

8><
>:

9>=
>;

1=N1
� �h
N=N1

� �h

�������

�������
ð4Þ

Equation 2 has the solutions ( lim
h!0þ

):

N tð Þ ¼ exp ln N1ð Þ 1� exp �RGtf gð Þf g;

t ¼ � 1

RG
ln

N=N1
� �

ln N=N1
�� ��

1=N1

� �
ln 1=N1

��� ���

������
������

8<
:

9=
; ð5Þ

While these ODEs and functions have been developed considering the total

population (N) growth, insight can be gained by considering the sub-populations: P
the reproducing population and Q the quiescent or non-reproducing population,

where P and Q have been non-dimensionalized,

N ¼ Pþ Q; P0 þ Q0 ¼ 1 ð6Þ
In Kozusko and Bourdeau (2007), we presented a PQ model applied to tumor

growth that produces Eqs. 1 and 2 as a result of the equation for the decay rate,
d P=Nð Þ

dt , of the reproduction ratio: P=N. Here we will generalize the model to include

populations where the new members are themselves reproducers (as in cancer

modeling) or where new members are non-reproducers (at least initially) as in

animal reproduction. We will extend the decay rate equation and produce a new

family of sigmoids of which the Theta Logistic functions are a subclass, and also

produce a unique new ‘‘trigonometric’’ sigmoid function.

2 The Model

Figure 2 presents a block diagram of a PQ subpopulation model where the new

members are reproducers, such as in modeling cancer cell growth. P members can

reproduce, while Q members cannot reproduce without first transitioning to P status.

b[ 0 is the reproduction rate parameter, lQ [ 0 and lQ [ 0 are the Q and P death

rate parameters, respectively, and NW P=N

� �
represents the net transition rate

between the two compartments. If the net transition rate is from Q to P, NW P=N

� �

is negative. The form of the transition rate function W P=N

� �
can be considered to

define the sigmoid form of the population growth as discussed in Kozusko and

Bourdeau (2007) and Kozusko, et al. (2007) but will remain in the background for

the present development. See ‘‘Appendix A’’ for the model where the new members

initially join the Q subpopulation.

Rate balance analysis of Fig. 2 produces the population rate equations:
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_P tð Þ ¼ b� lPð ÞP� NW P=N

� �
ð7Þ

_Q tð Þ ¼ NW P=N

� �
� lQQ ð8Þ

N ¼ Pþ Q; Pð0Þ þ Qð0Þ ¼ P0 þ Q0 ¼ 1 ð9Þ
Where N(0) has been normalized to 1. Adding Eqs. 7 and 8 and substituting from

Eq. 9 produces

_N ¼ mP� lQN )
_N

N
¼ m P=N �

lQ

m

n o
ð10Þ

Where m = b - lP ? lQ [ 0 is required for _N [ 0. As t ? ?, _N ? 0 and we

define
lQ

m ¼ P=N

� �
1

and rewrite Eq. 10 as

_N

N
¼ m P=N

� �
� P=N

� �
1

n o
ð11Þ

By differentiating and equating Eqs. 1 and 11 and using the substitutions provided

by Eqs. 1 and 11, we produce a rate equation for P=N (See ‘‘Appendix B’’ for details):

d

dt
P=N � P=N

� �
1

� �n o
¼ �R P=N

� �
� P=N

� �
1

n o
þ mh P=N

� �
� P=N

� �
1

n o2

ð12Þ
Equation 12 can be interpreted as approximating the rate of change of the net

reproduction ratio P=N

� �
� P=N

� �
1

n o
as a second order expansion in

P=N

� �
� P=N

� �
1

n o
. Conversely, we can see that assuming a second order

approximation for the rate equation

d

dt
P=N

� �
� P=N

� �
1

n o
¼ �a1

P=N

� �
� P=N

� �
1

n o
� a2

P=N

� �
� P=N

� �
1

n o2

ð13Þ

combined with the model Eq. 11 yields Eq. 1 with a1 = R and a2 = -mh. Phase

diagram analysis of Eq. 13 reveals the requirement that a1 [ 0 for _N [ 0 in Eq. 11

and that h ¼ a2

m [ � 1 is necessary to insure an inflection point for N. The solution

to Eq. 13 is logistic decay with or without an inflection point (Lotka 1925).

3 The Expanded Model

It is interesting to see that Eq. 1 is derived through the model via Eq. 13 which uses a

standard modeling approximation. Extending the model, we propose the following:

          P           Q 

N
PNΨ

Pμ
Qμ

βFig. 2 Block diagram for the
subpopulation growth model.
See text for descriptions
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d

dt
P=N

� �
� P=N

� �
1

n o
¼ �a1

P=N

� �
� P=N

� �
1

n o

� a2
P=N

� �
� P=N

� �
1

n o2

�a3
P=N

� �
� P=N

� �
1

n o3

ð14Þ
Again, phase diagram analysis of Eq. 14 requires a1 [ 0. Inflection point

requirements will be discussed later. Differentiating Eq. 11, using Eqs. 11 and 14,

and the chain rule for d
dt

_N
	
N

� �
¼ _N d

dN
_N
	
N

� �
yields (See ‘‘Appendix B’’ for details):

N
d

dN
_N
	
N

� �
¼ � 1

m2
a1m2 þ a2m

_N
	
N

� �
þ a3

_N
	
N

� �2

 �

ð15Þ

3.1 Trans-Theta Logistic ODEs

Solutions to Eq. 15, which depend on the values of the zeros of the polynomial in
_N
	
N

� �
and c2 ¼ a2

2 � 4a1a3, are as follows:

3.1.1 Trans-General Logistic/Trans-General von Bertalanffy ODE (c2 [ 0)

_N

N
¼ RTL

hT

1� N=N1
� �hT

1� j N=N1

� �hT

2
64

3
75;

RTL ¼ c
a2j j � c

2a3

����
����[ 0; j ¼ a2j j � c

a2j j þ c
; �1� j\1; hT ¼ �

c
m

ð16Þ

For hT\0; j\NhT
1 is required to ensure _N [ 0.

3.1.2 Trans-Gompertz ODE (c2 = 0, j = 1, a3 [ 0)

_N

N
¼ � RTG lnðN=N1Þ

1þ jTG lnðN=N1Þ
;

RTG ¼ a1; jTG ¼
a2

2m
ð17Þ

jTG\ 1
ln N1j j is required for _N [ 0.

3.1.3 Trigonometric Sigmoid ODE (c2 \ 0, a3 [ 0)

_N

N
¼ �RTS

Tan jTS1 ln N=N1
�� ��� 


1þ jTS2Tan jTS1 ln N=N1

��� ���n o
8<
:

9=
;;

RTS ¼ �
mD
2a3

1þ a2

D

� �2

 �

; jTS1 ¼
D

2m
; jTS2 ¼

a2

D
; D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1a3 � a2

2

q
ð18Þ

jTS2\ 1

Tan jTS1 ln N1j jð Þ is required to ensure _N [ 0.
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jTS1\ p
2 ln N1j j keeps the argument jTS1 ln N=N1

��� ��� confined to the primary tangent

branch.

3.2 Trans-Theta Logistic ODEs solution phase space

Figure 3 presents a schematic of the a3=m versus a2=m solution space of Eq. 15 for an

assumed value of a1 [ 0, but does not attempt to depict the complicated inflection

point requirements which are presented later. When a3 = 0, Fig. 3 collapses to a line

diagram equivalent to Fig. 1, where h ¼ �a2=m. The parabola a3 ¼ a2
2

4a1
corresponds

to c = 0 and represents the Trans-Gompertz solution separating the Trans-Theta

Logistic and Trigonometric Solution subspaces. (See discussion around Eq. 13).

Equation 16 collapses to Eq. 1 as a3 ! 0) c! a2j j ) j! 0 and Eq. 17

collapses to Eq. 2 as a2 ? 0 along curve a3 ¼ a2
2

4a1
.

3.3 Trans-Theta Logistic implicit solutions

Equations 16, 17 and 18 have implicit solutions for t ¼ 0) N ¼ 1. The solution for

Eqs. 16 and 17 can be seen to collapse to Eqs. 4 and 5 when j ? 0 and jTG ? 0.

3.3.1 Trans-General Logistic/Trans-General von Bertalanffy implicit solution

t ¼ � 1

RTL
ln

1� N=N1
� �hT

1� 1=N1

� �hT

8><
>:

9>=
>;

1�j

1=N1
� �hT

N=N1

� �hT

�������

�������
ð19Þ
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Trans-Gompertz→
κ=1
θ=γ=0
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κ=1
θ=γ=0

Trig Sigmoid Trig Sigmoid

Trans-VB
0<κ<1
θ = -γ /m

Trans-VB
-1<κ<0
θ = -γ /m

Trans-Log
0<κ<1
θ = γ/m

Trans-Log
-1<κ<0
θ = γ /m

G-LOG
κ=0
θ = -α2 /m

GVB 
κ=0  
θ = -α2/m

κ=-1, θ = ± γ /m → Gompertz
κ=0
θ=0

α2/m

α
3
/m

Fig. 3 Schematic of the a3=m vs a2=m solution space for Eq. 15. The parabola a3 ¼ a2
2

4a1
corresponds to

c = 0
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3.3.2 Trans-Gompertz implicit solution

t ¼ � 1

RTG
ln

N=N1
� �jTG ln N=N1

�� ��
1=N1

� �jTG

ln 1=N1

��� ���

�������

�������

8><
>:

9>=
>; ð20Þ

3.3.3 Trigonometric Sigmoid implicit solution

t ¼ 1

jTS1RTS
ln

sin jTS1 ln N=N1
�� ��� �

sin jTS1 ln 1=N1

��� ���� �
������

������þ jTS1jTS2 ln
N=N1
1=N1

�����
�����

8<
:

9=
; ð21Þ

3.4 Trans-Theta Logistic inflection points

Inflection point requirements ( €N ¼ 0 at N = NI) for XI ¼ NI

N1
, 0 \ XI \ 1 are as follows:

3.4.1 Trans-General Logistic/Trans-General von Bertalanffy

For a given value of XI, j and hT must satisfy

j ¼ 1þ hTð ÞXhT
I � 1

X2hT
I � 1� hTð Þ

; �1� j\1 ð22Þ

3.4.2 Trans-Gompertz

For a given value of XI

jTG ¼ �
1þ ln XIj j

ln XIj j½ �2
ð23Þ

3.4.3 Trigonometric Sigmoid

For given value of XI, jTS1 and jTS2 must satisfy

jTS1 þ jTS2ð ÞTan2 jTS1 ln XIj j½ � þ Tan jTS1 ln XIj j½ � þ jTS1 ¼ 0 ð24Þ

4 Analysis

Trans-Logistic, Trans-Gompertz and Trigonometric sigmoids comprise a new

family of sigmoid growth functions. In this section we will explore their

significance versus the traditional Theta Logistic sigmoids.

Theta Logistic (HL), Eq. 1, can be seen to be a special case of Trans-Theta

Logistic THLð Þ Eq. 16, with j = 0 (a3 = 0). HL has an inflection point ratio,

XI ¼ N
N1

, fixed by the singular value h (Eq. 3), and an inflection point age fixed by h

and R(Eq. 4). For THL, the inflection point ratio can vary with the values of j and

hT (Eq. 22) and the inflection point age varies with j, hT and RTL (Eq. 19). The
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Theta Logistic sigmoid has the advantage over the Gompertz sigmoid of being able

to vary the inflection point ratio. The Trans-Theta Logistic sigmoids provide the

additional advantage of being able to vary the growth age, hence the growth age at

the inflection point (within bounded limits).

4.1 Comparing Logistics and Trans-logistic inflection point ratios and ages

when R = RTG and h = hT

Examining Eqs. 3 and 22, we observe that HL and THL can have the same inflection

point ratio, XI, only when they have different h values for any non-zero value of j. For a

simple comparison, consider the case where Eqs. 1 and 16 have the same h value and

R = RTG, they will then differ only by the term 1� j N=N1

� �hT

in the denominator of

Eq. 16. For j\ 0, the THL growth rate is slower; the inflection is reached in a longer

time period and is at smaller ratio as compared to HL. For j[ 0, the THL growth rate

is faster; the inflection is reached in a shorter time period and is at greater ratio as

compared to HL. Figure 4 shows the comparisons for h = 1 (XI = 0.5 for HL). The

difference in the inflection point ages is slight while those of the inflection point value

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0.9

1

(a) 

κ

T T θ
L/ 

T θL

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0.5

1

1.5

(b) 

κ

X
I T θ

L/ 
X

I θL

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

1

2

3(c) 

κ

dN
/d

t 
ra

tio

Fig. 4 Comparison of the growth characteristics of THL and HL, Eqs. 16 and 1, for the case R = RTL

and h = hT = 1; a the ratio of the inflection point ages, b ratio of the inflection point size and c ratio of

growth rates, _NTHL= _NHL at the respective inflection point
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and growth rate are more significant as j varies from j = 0. Figure 5 shows the

comparison for R = RTL and h ¼ hT ¼ 1=4.

4.2 Comparing Gompertz and Trans-Gompertz inflection point ratios and ages

when RG = RTG

The Gompertz (Eq. 2) with an inflection point ratio XI ¼ 1=e is a special case of

Trans-Gompertz (Eq. 17) with jTG = 0 (a2 = a3 = 0). jTG [ 0 tends to increase

the growth rate in Eq. 17 and produces XI\1=e in Eq. 22, while a decreased rate and

XI [ 1=e occur for jTG \ 0. In Fig. 6 we compare ages, XI ratios and growth rates
dN
dt

� �
of inflection points for the case where RG = RTG. The variation in the inflection

point age is significant. For example, with jTG = 0.1165 the inflection point ratio is

only 1.1 (0.368 for Gompertz and 0.405 for Trans-Gompertz), the ratio of growth

rates at the respective inflection points is 0.900 while the inflection point age ratio is

1.73.

The Trigonometric Sigmoid has no daughters; as such the above analysis is not

possible.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
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(a)

κ
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L/ 
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1.5(b) 

κ

X
I T θ

L/ 
X

I θL
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1

2

3(c) 

κ

dN
/d

t 
ra

tio

Fig. 5 Comparison of the growth characteristics of THL and HL, Eqs. 16 and 1, for the case R = RTL

and h ¼ hT ¼ 1=4; a the ratio of the inflection point ages, b ratio of the inflection point size and c ratio of

growth rates, _NTHL= _NHL at the respective inflection point
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4.3 Comparing Theta Logistics and Trans-Theta Logistic inflection

point ages when inflection point ratio and dN
dt

� �
at the inflection

point are matched

Another way to compare the sigmoids is to match them at their inflection points.

That is, we require that the THL=TS have the same inflection point ratio and the

same dN
dt

� �
at the inflection point as does a selected HL sigmoid. We can then

compare the growth ages at the matched inflection points.

Equation (22) shows that the Trans-Theta Logistic inflection point ratio is

determined by pair values of j and hT. In Fig. 7, we make the comparison between

HL with h = 1, and THL (Eq. 16). By taking the ratio of the inflection point ages,

the respective R values are removed from the analysis. Figure 7 should be

interpreted as follows: For any given HL sigmoid, we can meet the matching

requirements with an infinite number of THL sigmoids within the given age ratio

span. As an example, if the HL sigmoid used has an inflection point age of 10 years,

there is a matching THL with hT = 2 and j = -0.99, with an inflection point age

of 13 years.

Figure 8 shows THL matched to Gompertz. Figure 9 shows the comparison of

the growth curves of the Gompertz function and its matching THL (hT = -5,

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
0

5

(a) 
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/ 

T G
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X
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/X
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1
(c) 

κTG

dN
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t 
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tio

Fig. 6 Comparison of the growth characteristics of Trans-Gompertz and Gompertz, Eqs. 17 and 2, for
the case R = RTG: a the ratio of the inflection point ages, b ratio of the inflection point size and c ratio of

growth rates, _NTG= _NG at the respective inflection point
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Fig. 7 Comparison of the growth characteristics of Trans-Theta Logistic and Theta Logistic (h = 1),

Eqs. 16 and 1, for the case _NTHL ¼ _NHL and XI ¼ NTHL

N1 ¼
NHL

N1
at the inflection point : a the ratio of the

inflection point ages vs. j, b ratio of the inflection point ages vs. hT. hT [ 0 represented by ‘‘?’’ and
hT \ 0 values by ‘‘o’’ on both graphs
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Fig. 8 Comparison of inflection point ages for Trans-Theta Logistic matched to Gompertz at the
inflection point: a ratio of inflection point ages vs. j and b ratio of inflection point ages vs. hT

Trans-Theta Logistics 283

123



j = -0.03). The Gompertz curves have been shifted horizontally to show the

matching; the units of time are the Gompertz inflection point age. Notice that the

THL starts in negative time.

4.4 Comparing Trans-Gompertz and Theta Logistic inflection

point ages when inflection point ratio and dN
dt

� �
at the inflection

point are matched

The Trans-Gompertz sigmoid can only achieve an inflection point ratio XI ¼ 1=e in

the case it is identically the Gompertz function and the above matching would be an

identity. We can match the Trans-Gompertz to the Theta-Logistic sigmoid, where

the value of jTG is uniquely determined by Eq. 23 and only one Trans-Gompertz

will match to any given Theta-Logistic. The growth curves for the match with

h ¼ �1=4 are shown in Fig. 10. The Trans-Gompertz curve has been shifted to show

the matching overlap. The horizontal axis is in units of Theta Logistic inflection
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Fig. 9 Comparison of Trans-Theta Logistic (hT = -5) (solid line) and Gompertz (o) growths vs. time in
units of Gompertz inflection point age where the curves have the same inflection point ratio and the same
growth rate at the inflection points
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point age for a universal comparison. The inflection point age of the Trans-

Gompertz is 3.7 times that of any Theta-Logistic curve it matches.

4.5 Comparing Trigonometric sigmoid and Theta Logistic inflection

point ages when inflection point ratio and dN
dt

� �
at the inflection

point are matched

Finally, we do the matching of the Trigonometric sigmoid with an inflection point

determined by the paired values of jTS1 and jTS2. Figure 11 shows the matching to

Theta-Logistic (h = 1) and Fig. 12 shows the matching to Gompertz.
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Fig. 10 Comparison of Theta Logistic h ¼ �1=4

� �
(solid line) and Trans-Gompertz (o) growth vs. time

in units of Theta Logistic inflection point age where the curves have the same inflection point ratio and
the same growth rate at the inflection point
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5 Discussion

We have derived the Trans-Theta Logistic/Trigonometric sigmoid equations in

terms of the primary parameters: a1, a2, a3 and m, while we conducted our analysis

in the secondary defined parameters R’s and j’s. It is not necessary to consider the

primary parameters unless analyzing the subpopulation (P and Q) profiles, which is

beyond the present scope. While we have conducted our matching at the inflection

point for universal analysis, the matching can be accomplished at any level of the

growth curves.

From the above analysis, we have shown that Trans-Theta Logistic/Trigonometric

provide for additional shaping of a sigmoid profile around an inflection point defined

by its growth rate and relative size, as well as a varying growth age.

There are differences to be considered when fitting Trans-Theta Logistic/

Trigonometric sigmoids to growth data versus fitting Theta Logistic sigmoids. T HL
has one additional parameter, therefore would require at least one more data point

and may require several additional data points to obtain an equivalent goodness of

fit. Since T HL has only implicit solutions for N(t), the data fitting would use N data

points as the independent variables. A true comparison of the T HL versus HL
solutions of the data fit would necessitate fitting HL similarly using N as the

independent variable.

6 Conclusion

The popular sigmoid modeling Theta-Logistic equations have been derived using

our population growth model (Fig. 2) and a standard modeling approximation

(Eq. 13). By extending the model (Eq. 14), we have produced a new family of

sigmoid growth equations (Eqs. 16, 17 and 18) to which the Theta-Logistic

equations belong. The Trans-Theta Logistic equation provides flexibility in the

growth age of a sigmoid growth curve over the fixed points of the Theta-Logistic

equations. However, once _N is defined at the inflection point (or at any point) of the

growth curve, the age at the inflection point (or any point) and the growth profile are

completely defined and may be different from those of Theta-Logistic. The Trans-

Logistic, Trans-Gompertz and Trigonometric sigmoids provide alternative growth

profiles even when matched at the inflection point.
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Appendix

Appendix A. Alternate PQ Model

Figure 13 presents the block diagram for the alternate PQ model where the new

members produced by the P population initially join the Q non reproducing
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population. This model could be applied to any population where new members,

such as human and animal populations, must mature before being capable of

reproducing. Additionally, when the reproducers age, they again become members

of the Q population.

Rate analysis of Fig. 13, produces the following rate equations:

_P tð Þ ¼ NW P=N

� �
� lPP ð25Þ

_Q tð Þ ¼ bP� NW P=N

� �
� lQQ ð26Þ

Adding Eqs. 25 and 26 yields

_N ¼ mP� lQN )
_N

N
¼ m P=N �

lQ

m

n o
ð27Þ

where m = b - lP ? lQ [ 0 and the analysis follows as from Eq. 10. We should

note that the form of W P=N

� �
here will be different than that in Fig. 2.

Appendix B. Derivations of Equations 12 and 15

Differentiating Eq. 1 and using Eq. 1 for the value of N=N1

� �h
yields

d

dt
_N
	
N

� �
¼ �R N=N1

� �h _N
	
N

� �
¼ �R 1� h

R
_N
	
N

� �
 �
_N
	
N

� �
ð28Þ

Using the value of
_N
	
N

� �
from Eq. 11 produces Eq. 12.

We derive Eq. 15, by first differentiating Eq. 11.

d

dt
_N
	
N

� �
¼ m

d

dt
P=N

� �
� P=N

� �
1

n o
ð29Þ

Using Eq. 14 for the right side of Eq. 29 and substituting for

P=N

� �
� P=N

� �
1

n o
from Eq. 11 produces

d

dt
_N
	
N

� �
¼ � 1

m2
a1m2 _N

	
N

� �
þ a2m

_N
	
N

� �2

þa3
_N
	
N

� �3

 �

ð30Þ

The chain rule provides the substitution d
dt

_N
	
N

� �
¼ N

_N
	
N

� �
d

dN
_N
	
N

� �
that

transforms Eq. 30 to Eq. 15.

          P           Q 

N
PNΨ

Pμ Qμ

β

Fig. 13 Block diagram for the subpopulation growth model where new members join the Quiescent
subpopulation
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