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Abstract Many predator species feed on prey that fluctuates in abundance from

year to year. Birds of prey can face large fluctuations in food abundance i.e. small

mammals, especially voles. These annual changes in prey abundance strongly affect

the reproductive success and mortality of the individual predators and thus can be

expected to influence their population dynamics and persistence. The barn owl, for

example, shows large fluctuations in breeding success that correlate with the

dynamics in voles, their main prey species. Analysis of the impact of fluctuations in

vole abundance (their amplitude, peaks and lows, cycle length and regularity) with a

simple predator prey model parameterized with literature data indicates population

persistence is especially affected by years with low vole abundance. In these years

the population can decline to low owl numbers such that the ensuing peak vole years

cannot be exploited. This result is independent of the length and regularity of vole

fluctuations. The relevance of this result for conservation of the barn owl and other

birds of prey that show a numerical response to fluctuating prey species is discussed.
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1 Introduction

The current rate of species extinction by far exceeds historical rates (Pimm et al.

1995), and suggests that we are at the brink of a major biodiversity crisis (Thomas
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et al. 2004). Conservation actions to abate this decline should be guided by insight

in which factors have the largest impact on improving population performance

(Caswell 2001). Apart from overkill, impact of introduced species and chains of

extinction, reductions in habitat quality and size are the main factors that endanger

populations (Diamond 1989). These reductions are most apparent in small

populations due to demographic stochasticity (Shaffer 1981; Lande 1993). Model

studies have revealed that the impact of demographic stochasticity on the likelihood

of extinction is countered more effectively by improvement of habitat quality than

by that of habitat size (Klok and De Roos 1998). Also Hanski (2005) argues that

time to extinction is increased more by increases in habitat quality than size;

however, in practice it may be more feasible to increase habitat size. Improvement

of habitat quality is not easy to realize since it depends on the specific requirements

of the species under consideration and thus needs thorough ecological knowledge

(e.g. conservation of the spotted owl; Carey et al. 1990; Solis and Gutierrez 1990;

Miller et al. 1997). Food abundance is an important habitat quality factor which has

a strong influence on the population dynamics of species. Food abundance may also

modify the impact of other habitat quality factors such as effects of xenobiotics

which become more apparent under low food abundance (Kooijman 2000).

Loss of suitable hunting habitat and consequently a reduction in food availability

is suggested as an important cause of the population decline in the barn owl Tyto
alba in Western Europe in the last century (De Bruijn 1994; Toms 1994). Western

Europe is inhabited by the subspecies Tyto alba alba, and Tyto alba guttata (alba in

Great Britain and southern Europe, guttata in central Europe). The species prefers

open habitat with hedgerows and woodland edges (Glutz von Blotzheim and Bauer

1980; Cramp 1985; De Bruijn 1994; Del Hoyo et al. 1999). In the 1960s the Barn

owl showed a rapid decline in range and numbers in Western Europe (Glutz von

Blotzheim and Bauer 1980; Cramp 1985; Del Hoyo et al. 1999). This decline was

attributed to intensification of agriculture and urbanization leading to loss of habitat,

nesting facilities, and food supply. In addition, severe winters, pesticide use,

hunting, and road traffic kills reduced barn owl populations (Sharrock and Sharrock

1976; Cramp 1985; Cayford 1990; De Bruijn 1994; Snow and Perrins 1998). To

abate the decline conservation actions were directed at an increase in the number of

nesting sites by protection of existing sites and placement of nest-boxes, and habitat

protection and re-establishment (Taylor et al. 1992; De Bruijn 1994; Taylor 1994;

Del Hoyo et al. 1999). These actions halted the population decline (Toms et al.

2001). Nowadays road traffic kills seem the most important cause of death detected

in barn owls, road traffic kills increased from 6% in the period 1910–1954 to 50% in

the period 1991–1996 in Britain (Newton et al. 1997).

Barn owl populations show distinct fluctuations in the number of breeding pairs

which are correlated with changes in the density of voles, its major prey species

(Altwegg et al. 2003; Schönfeld and Girbig 1975; Kaus 1977; De Bruijn 1994;

Taylor 1994). Also the demographic processes annual adult and juvenile mortality

and fecundity are strongly correlated with vole abundance (Taylor 1994), which

obviously influence the long term population growth rate as illustrated by (Hone and

Sibly 2002) who showed that this rate was significantly positively related to vole

abundance. However, since voles can show large fluctuations in abundance over the
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years the fluctuations (e.g. their amplitude) may also influence the population

viability.

In this paper the impact of fluctuations in vole abundance (their amplitude, peaks

and lows, cycle length and regularity) on the population persistence of the barn owl

was analyzed with a simple predator prey model parameterized with literature data.

Starting with the mathematically simplest case of regular cycles, the influence of the

amplitude, peaks and lows and length of the cycle was studied. Since in the range of

the barn owl irregularly fluctuating vole populations seem more prevalent than

cyclic the influence of randomly fluctuations in vole abundance has been analyzed.

2 Methods

2.1 Life History of The Barn Owl

The life history of the barn owl was divided into three distinct stages: juvenile,

breeder and floater. Juveniles are fledged young and breeders are adult birds that

occupy a breeding site which they defend. Although barn owls are not considered

territorial since home-ranges of individuals may overlap, breeding barn owls do

defend the direct surroundings of their nest sites (Taylor 1994). For simplicity the

defended breeding site is described as a breeding territory in this study. Floaters are

non-breeding adults that do not occupy a breeding territory. Figure 1 shows a flow

diagram of the barn owl life cycle in which survival is implicit. Individuals in the

juvenile stage, that survive their first winter, can become breeders if they succeed in

occupying a breeding territory. If they fail, they become floaters. Breeders that

survived the winter and retain their breeding territories, stay in the breeder stage. If

they lose their breeding territory they become floaters. Individuals in the floater

stage can remain in that stage the subsequent year, or move to the breeder stage

when they succeed in occupying a breeding territory.

Survival and reproduction in barn owls is strongly linked to vole abundance

(Taylor 1994). Survival is depressed in winter resulting from low densities of voles;

in case of snow cover also availability of voles may decrease (De Bruijn 1994). In

Western Europe the breeding season starts around April, May (Snow and Perrins

1998; Del Hoyo et al. 1999). Depending on vole abundance one to two broods are

raised each year (Snow and Perrins 1998). Two broods are very uncommon in the

settlement

settlementreproduction

floaterbreederjuvenile

Fig. 1 The life cycle graph of the barn owl
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UK (Taylor 1994) but prevalent in the rest of Europe. In central Europe up to 64%

of the pairs raise a second brood in years of high vole abundance (Schönfeld and

Girbig 1975). Also the number of barn owls that start to breed and occupy and

defend a nest-site varies with vole abundance (Schönfeld and Girbig 1975; Kaus

1977; De Bruijn 1994; Taylor 1994), therefore we assumed that the number of

available breeding territories also depends on vole abundance.

2.2 Food Relations

Barn owls mainly prey on small mammals, their most important prey species are

voles, shrews, and mice. Birds, amphibians, fish, and insects have a minor share in

the diet (Schönfeld and Girbig 1975; De Bruijn 1994; Taylor 1994; Del Hoyo et al.

1999). Pellet analyses have indicated that vole species, Microtus agrestis in Great

Britain, Microtus arvalis in continental Europe, make up large quantities of the diet

(De Bruijn 1994; Taylor 1994). Vole densities can show strong changes in

abundance over the years. Within the range of the barn owl in Europe most irregular

vole fluctuations have a mean periodicity of 3–4 years (Krebs and Myers 1974;

Hansson and Henttonen 1988; Mackin-Rogalska and Nabagło 1990; Jędrzejewski

and Jędrzejewska 1996).

2.3 Model Formulation

2.3.1 Predator–Prey Relation

The numerical effect of barn owl predation on voles seems negligible. In Great

Britain, predation by barn owls is only 1% of the total predation on the field vole,

Microtus agrestis (Dyczkowski and Yalden 1998). Because of this small effect the

vole dynamics is described by an autonomous function, independent of owl density.

Figure 2 displays three empirical vole time series from Western Europe, based on

spring density estimates reported in literature. The general pattern emerging from

these data is a peak year followed by a sequence of years with low vole abundance.

This pattern can be summarized by the mean and amplitude of the vole abundance:

meanðpeak; low; nÞ ¼ peak

n
þ ðn� 1Þ � low

n
ð1aÞ

amplitudeðpeak; low; nÞ ¼ peak � low ð1bÞ

where1
n equals the frequency of peak years.

2.3.2 The Barn Owl Population Model

A discrete time model with a time step of one year is used to analyze the barn owl

population dynamics. The model calculates the number of barn owls each year in

spring, just before the onset of breeding. At this time of the year the owl population

consists of breeders and floaters only, since juveniles born the preceding year have

already matured. Only female barn owls are modeled, assuming a 1:1 sex ratio and
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mortality independent of sex. The population model is based on Fig. 1. Survival,

reproduction and the number of available breeding sites are modeled as functions of

the vole density. The model assumptions are (1) all vacant breeding territories will

become occupied if there are sufficient adult birds, (2) the number of breeding

territories is only limited by vole abundance, implying that the number of nest sites

is not limiting, and (3) the barn owl population is closed (immigration and

emigration do not play a role). The year-to-year dynamics of the total number of

adult female birds (Ut) is given by Eq. (2).

Utþ1 ¼ SðvtÞ BðvtÞ þ z � Ut � BðvtÞ þ FðvtÞ � BðvtÞ½ �f g if Ut � BðvtÞ ð2aÞ
Utþ1 ¼ SðvtÞ � Ut 1þ z � FðvtÞf g otherwise ð2bÞ

where mt equals the vole abundance in year t, B(mt) the number of available breeding

territories, F(mt) the number of female fledglings produced per breeding female and

S(mt) the survival of breeders. The factor z symbolizes an amplified mortality risk for

juveniles and floaters compared to breeders.

2.4 Parameterization and Model Analysis

Although the population dynamics of the barn owl are closely related to those of the

voles (Schönfeld and Girbig 1975; Kaus 1977; De Bruijn 1994; Taylor 1994; Snow

and Perrins 1998; Altwegg et al. 2003), quantitative data relating survival and

reproduction in the barn owl to vole density are scarce in literature. An exception is

a study on an isolated barn owl population in Scotland (Taylor 1994). The number

of nest sites (natural sites and nest boxes) in this population exceeded the number of

owl pairs in all years of the study, implying that nesting facilities were not limiting.
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Fig. 2 Fluctuating vole abundance (index) in Western Europe based on spring census. Solid line: vole
index in southern Finland (618 NL) over period 1977–1995 (Brommer et al. 1998), dashed line: vole
index in Scotland (548 NL) over period 1979–1988 (Taylor 1994) and dotted line: vole index in Sweden
(528 NL) over period 1973–1983 (Lindström 1994)
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This study was used to parameterize the functions S(mt), B(mt), F(mt) (see Eq. 2).

Empirical data on mortality were fitted with an exponential function (Fig. 3a). The

exponential function in Fig. 3a indicates that at high vole densities owl survival is

approximately 70%, which is in agreement with other empirical data (Altwegg et al.

2003; De Bruijn 1994; Taylor 1994). Data on the number of breeding pairs were

fitted by a saturating response curve (Fig. 3b). This relationship implies that the total

number of breeding pairs cannot increase perpetually. Data on the number of

fledglings produced are also fitted by a saturating response curve (Fig. 3c). The

functions S(mt), B(mt), F(mt) were fitted to the data by least squares estimation. The

factor z was varied from 1, 0.75 to 0.5, which implies that survival in juveniles and

floaters can be up to a factor 2 lower than in adults. This corresponds to literature on

mean yearly survival which equaled 0.294 and 0.570 in juveniles and adults

respectively in a Swiss barn owl population (Altwegg et al. 2003, 2006). Data on

floater survival, however, was virtually absent in literature. Since floaters usually

occupy habitat of lesser quality compared to breeders, we assumed their survival to

be lower than that of breeders, but higher than that of inexperienced juvenile birds.

As a conservative estimate we set the unknown floater survival equal to juvenile

survival.

The numerical software package for dynamical system analysis CONTENT 1.5

(Kuznetsov 1995) was used to analyze the model (Eq. 2) by equilibrium analysis.

Model output was only generated for the range of measurement data on vole

abundance to which the functions S(mt), B(mt), F(mt) where fitted (interpolation).

3 Results

3.1 Periodic Vole Fluctuations (3-Year Cycle) with Equal Survival in all Stages;

Influence of Amplitude

Figure 4 depicts simulation results of two owl populations in response to vole cycles

with a periodicity of 3 years. The two simulated populations started with 20 adult
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Fig. 3 Breeder survival (a), available breeding territories (b) and reproduction (c) in the barn owl as
function of vole density. Symbols in figures empirical data (Taylor 1994). Solid lines in (a): exponential
curve, (b) and (c): saturating response curve. S(mt), B(mt), F(mt): equations of curves fitted to breeder
survival, available breeding territories and reproduction data, respectively
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females. The mean vole abundance of 10 for both populations and the amplitude of

vole abundance (difference between peaks and lows) equaled 6 in the left panels and

18 in the right. Figure 4a and b shows that owl density peaked with a time delay of

one year compared to the voles. In case of the low amplitude of six the barn owl

population sustains (Fig. 4a) and reached stable dynamics after 12 years (Fig. 4a)

whereas with the high amplitude of 18 (Fig. 4b) the population went extinct for the

given parameter values within 110 years (result not shown). The composition of the

owl populations in breeders and floaters is given in Fig. 4c and d. In the low

amplitude case the number of breeders peaked in vole peak years and floaters

responded with a time delay of 1 year (Fig. 4c), whereas with the high vole

amplitude breeders peaked with a time delay of 1 year and floaters were absent from

year 5 onwards (Fig. 4d). Why floaters disappeared in vole peak years in Fig. 4c and

are absent from the population in Fig. 4d is explained by Fig. 4e and f which shows

the number of breeders and available breeding territories. The number of breeding

territories fluctuated in synchrony with voles (see Eq. 3b). Figure 4e indicates that in
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(solid line) and vole abundance
(dotted line) (a, b), the number of
floaters (solid line) and breeders
(dotted line) (c, d), and the number
of available breeding territories
(solid line) and breeders (dotted
line) (e, f) as a function of a three-
year vole cycle. Left panels (a, c, e)
vole cycle: mean = 10, low = 8, and
peak = 14, right panels (b, d, f)
mean = 10, low = 4, and peak = 22,
respectively. Survival in all stages
equivalent (z = 1), populations starts
in year one with 20 barn owls
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the years with low vole density all available breeding territories were occupied

whereas in good years with high vole abundance some remained vacant. In the high

amplitude case (Fig. 4f) breeding territories outnumbered owls in all years of the

cycle with the exception of the first 3 years after a peak in vole abundance (years 1,

4 and 7). Under the vole abundance regime given in the left panels of Fig. 4, the owl

population reached its maximum density in the years after voles peaked, resulting

from the high number of owls born in peak years. In the year following a peak year

the number of floaters peaked since there were more owls than available breeding

territories (see Fig. 4e). In the subsequent bad vole year of the cycle, the total

number of owls decreased resulting from low reproduction and survival, and

reached a minimum in the ensuing peak vole year. In the peak vole years the

available breeding territories outnumber the owls (see Fig. 4e) leading to settlement

by all owls and therefore floaters were absent in these years. The owl population

living under the vole abundance regime given in the right panels of Fig. 4 also

reached its minimum in a good year and its maximum in the ensuing bad year.

However, under this vole abundance regime, the number of owls was lower than the

number of available breeding territories in all years of the cycle (Fig. 4f) resulting in

the absence of floaters. As in the case of the persisting barn owl population (left

panels Fig. 4), also for the population that goes extinct (right panels Fig. 4) the good

vole years were important to increase the number of birds in the population.

However, in the last population the bad years decreased the number of barn owls to

such low levels where production of juveniles in the good years could not

compensate for the loss.

3.2 Periodic Vole Fluctuations (3-Year Cycle) Influence of Peaks and Lows,

Variation in Survival of Juveniles and Floaters

Figure 5 depicts the influence of low (x-axis) and peak (y-axis) vole abundance on

the population persistence for three different values of mortality in floaters and

juveniles (z). The graphs in Fig. 5 indicate that an increase in the value of the vole

index in low years can bring the population from extinction to persistence

irrespective of the peak vole index, whereas an increase in the good years does have

that effect only for a small range of values. This implies that the persistence of the

population is more sensitive to changes in the low years than to changes in the

peaks. This result remains unchanged for lower survival values of floaters and

juveniles (z = 0.75 and 0.5), however, with this lower survival populations can only

sustain with higher vole abundance (lines in graph shifted to the right).

3.3 Variation in Cycle Length

Figure 6a presents the region where barn owls can persist as a function of the vole

index in low and peak years for a 3-, 4-, and 5-year cycle, which consist of a single

peak year followed by a sequence of years with low vole abundance, and survival in

juveniles and floaters reduced by 25% (z = 0.75). Similar to Fig. 5, Fig. 6a indicates

that, also with increased cycle length, the persistence of the owl population is more

sensitive to changes in the value of the vole index in bad years than in good ones.
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Moreover, Fig. 6a shows that with longer cycle length the region where barn owls

can persist shrank, implying that population survival becomes even more sensitive

to the years of low vole abundance. However, the comparison of the three cycles

given in Fig. 6a poses some methodological difficulties since the peak and low vole

values lead, for different cycle lengths, to unequal mean vole densities (see Eq. 1a).

To achieve a more precise comparison of the cycles, the mean and low vole

abundance was fixed whereas the peaks were varied as is shown in Fig. 6b. This

figure depicts the regions where the population can persist for the different vole

cycles where the low and mean vole densities are comparable for all cycles.
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Fig. 5 Parameter space of combinations of low and peak vole abundance indicating regions where the
population persists. Periodic fluctuations in vole abundance with a period of 3 years for three values of
survival of juveniles and floaters reduced by 0% (z = 1), 25% (z = 0.75) and 50% (z = 0.5) compared to
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Figure 6b indicates that also in terms of scaled mean vole densities the region where

the population can persist decreases when the cycle length increases. Moreover

Fig. 6b confirms the large influence of the low vole years.

3.4 Non-Periodic Vole Fluctuations

The main result of the analyses with periodic fluctuating voles is that vole

abundance especially in low years has a drastic effect on the population persistence

and density in the barn owl. However, in the distribution area of the barn owl non-

periodic vole fluctuations are more prevalent than periodic (Hansson and Henttonen

1988). Other authors, however, document cycles with a period of 3–4 years in

Europe (Mackin-Rogalska and Nabagło 1990; Jędrzejewski and Jędrzejewska

1996). To assess the influence of non-periodic vole fluctuations the model was re-

analyzed with random fluctuations in vole abundance. Figure 7 shows the regions

where barn owl populations become extinct or persist as a function of the vole index

in low (x-axis) and peak (y-axis) years with random vole fluctuations and owl

survival equal in all stages. For each combination of low and peak vole abundance

the number of simulated owl populations out of 100 that persist for a period of

100 years was calculated. In these simulations the sequence of vole peaks and lows

was chosen randomly and peak vole years were encountered with a probability of

one third. The contours in Fig. 7 connect low and peak vole values where an

equivalent number of simulated owl populations persisted over 100 years. Figure 7

indicates that again low vole years have a high impact on the survival of the owl

population. As in case of periodic vole fluctuations the persistence of the owl

population turns out to be especially sensitive to changes in years with bad food

conditions whereas changes in years with peak vole numbers have virtually no

effect.
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4 Discussion

4.1 Model Results

In this paper we demonstrate that the persistence of a barn owl population that preys

on fluctuating voles is more sensitive to years with low vole abundance than to those

with high. Although years with peak vole abundance are important to increase the

number of owls in the population, the years with low vole abundance determine to

what extent the owl population can benefit from the years that voles peak. This

result is irrespective of cycle length and regularity of the fluctuations in vole

abundance.

The impact of fluctuations in prey abundance on owl persistence is analyzed with

a deterministic model assuming a closed population. Stochastic events, e.g. a

sequence of years with no reproduction, however, can bring populations to

extinction, especially when small (Shaffer 1981; Lande 1993; Lande et al. 2003).

The low vole years reduce the number of barn owls in the population to levels where

stochastic events may cause extinction, such that inclusion of stochastic events is

expected to make the population even more sensitive to the years with low vole

abundance. Under the condition that the population is closed, and due to low

reproduction and survival in the bad vole years, the number of owls can decrease to

levels too small to exploit vole abundance in the ensuing peak years. If the

population is not closed, immigrants could fill up vacant breeding territories in peak

years and hence increase in this way the exploitation of food. This will make

population survival less sensitive to the lows. However, in Western Europe years of

high vole abundance were often followed by massive emigration of mainly juvenile

barn owls over large areas (Sauter 1956; Honer 1963) which suggests synchrony in

vole abundance over these areas.

The model is parameterized with data from a barn owl population at the edge of

the species geographical range (Shawyer 1987). More in the center of its range the

number of fledglings produced is usually higher, resulting from second broods

(Schönfeld and Girbig 1975; Cramp 1985). However, it is not clear whether this

higher reproductive output and survival result from elevated vole densities or from

other factors since data on these life history processes are not collected together

with data on vole densities. If the conservative assumption is made that in the center

of the species range barn owls have a higher reproductive output and survival for

given vole densities, it can be assumed that owl densities in both peak and low vole

years will increase. Thus, compared to the edge of the species range, in the center

barn owl populations can be expected to sustain at lower vole abundance in both

peak and low years. This implies that the curves in Figs. 6 and 7 move in the

direction of the origin. However, the shape of the curves will not change and so the

main result will hold that especially the low vole years have a major impact on the

persistence of the barn owl population.

The functions describing the relations between the number of fledglings produced

F(mt) and the number of available breeding territories B(mt) were fitted by saturating

response curves. To assess the influence of these non-linear relations on the main

result, the functions F(mt) and B(mt) were also fitted with linear relations
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B(mt) = 0.794 mt + 11.27 (R2 = 0.72) and F(mt) = 0.039 mt + 0.91 (R2 = 0.60). With

linear relations the owl population can increase infinitely but its persistence remains

more sensitive to the low than the peak vole years (results not shown).

Furthermore, we assumed equal survival rates for adults irrespective of sex. A

recent study on a Swiss barn owl population (Altwegg et al. 2007) indicates that

survival in males tend to be higher than in females respectively 0.720 (±0.097) for

males and 0.658 (±0.108) for females. With higher survival rates for males, and

under the assumption that reproduction is not biased to one of the sexes, male

floaters are expected to outnumber female floaters. This may reduce the stabilizing

effect of floaters making the population viability more sensitive to the years with

low vole abundance.

4.2 Implications for Conservation of The Barn Owl

Conservation of the barn owl in The Netherlands and Great Britain has been

directed at increasing the number of nesting sites, and decreasing its mortality by

putting a ban on hunting and deliberate killing. Further actions are directed at

protecting and restoring the preferred habitat of the barn owl, mosaic-like

landscapes with rough grasslands and hedges (Del Hoyo et al. 1999; Toms et al.

2001). The actions to improve barn owl habitat have the ultimate aim to increase the

prey abundance. In this paper it is indicated that in regions where barn owls depend

on fluctuating voles, the prey abundance in the low prey years restricts the

persistence of the barn owl populations. Therefore, conservation actions should aim

to increase the prey abundance in such a way that especially in low vole years the

number of voles is increased. This may be achieved by improvement of prey habitat,

specifically mosaic-like landscapes which reduce the amplitude of vole variation

(Delattre et al. 1999) or supplementary feeding in low prey years.

4.3 Implications for Conservation of Predators Showing a Numerical Response

to Fluctuating Prey

Predators that show a numerical response (Solomon 1949) on fluctuating prey are

faced with the problem how to track changes in their food abundance. This study

shows that if the level of the main prey species in some years is too low, decreased

survival and reproduction lead to such a decline in the number of resident predators

that the population cannot benefit optimally from the good years and ultimately

cannot maintain itself. Therefore, the food level in the bad compared with the good

vole years has a much higher impact on the persistence of the population. This result

holds for the barn owl, a resident species that responds numerically to changes in

vole density with a time delay of 1 year, since individuals mature within the year of

birth. It is expected that population persistence is also more sensitive to the low food

years than to the peaks in other resident predator species showing a numerical

response to their main prey. Examples are the hen harrier Circus cyaneus, buzzard

Buteo buto, and the kestrel Falco tinnunculus in Western Europe (Cramp 1985; Del

Hoyo et al. 1994, 1999) and Montagu’s harrier Circus pygargus (Salamolard et al.

2000). Therefore, conservation of these species may also benefit from management
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aiming to improve habitat in such a way that years with low vole density are

avoided. Obviously, if these predators have a substantial impact on their prey

dynamics improvement of habitat to increase prey levels at low prey years will

become more complex.

Whereas resident predators have to track changes in food abundance in time,

nomadic species are expected not to depend strongly on the abundance of one

specific local prey species. However, nomadic species such as the short-eared owl

Asio flammeus and the long-eared owl Asio otus, respond numerically to voles, since

their reproductive output is strongly correlated with vole density (Korpimäki and

Norrdahl 1991). If voles do fluctuate in synchrony over extensive regions (Mackin-

Rogalska and Nabagło 1990; Norrdahl and Korpimäki 1996; Korpimäki and Krebs

1996), it can be expected that the population density of these nomadic species also

depends more on the low vole years than on the peaks. Therefore, improvement of

vole habitat, with the aim to increase the vole abundance in the low vole years, in

general can be considered a conservation strategy that will improve the persistence

of not only the barn owl but also other resident and nomadic predators that depend

on voles or numerically respond to their abundance.
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