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ABSTRACT
Apoptosis proteins have a central role in the development and homeostasis of an organism.

These proteins are very important for understanding the mechanism of programmed cell death,
and their function is related to their types. According to the classification scheme by Zhou and
Doctor (2003), the apoptosis proteins are categorized into the following four types: (1) cytoplasmic
protein; (2) plasma membrane-bound protein; (3) mitochondrial inner and outer proteins; (4) other
proteins. A powerful learning machine, the Support Vector Machine, is applied for predicting
the type of a given apoptosis protein by incorporating the sqrt-amino acid composition effect.
High success rates were obtained by the re-substitute test (98/98 = 100 %) and the jackknife test
(89/98 = 90.8%).
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1. INTRODUCTION
Apoptosis, or programmed cell death, is a fundamental process controlling normal

tissue homeostasis by regulating a balance between cell proliferation and death (e.g.
Jacobson et al., 1997; Chou et al., 1999; Chou and Maggiora, 1998; Chou et al., 1997;
Chou et al., 2000; Zhou et al., 1999). This process entails the autolytic degradation of
cellular components, and is characterized by blebbing of cell membranes, shrinkage of
cell volumes, and condensation of nuclei (Kerr et al., 1972), and is currently an area of
intense investigation. Cell death and renewal are responsible for maintaining the proper
turnover of cells, which ensures a constant controlled flux of fresh cells. Programmed
cell death and cell proliferation are tightly coupled. When apoptosis malfunctions, a
variety of formidable diseases can ensue: blocking apoptosis is associated with cancer
(Evan and Littlewood, 1998) and autoimmune disease, whereas unwanted apoptosis can
possibly lead to ischemic damage (Reed and Paternostro, 1999) or neurodegenerative
disease (Schulz et al., 1999). Apoptosis is considered to have a key role in these several
devastating diseases and, in principle, provides many targets for therapeutic intervention
(Barinaga, 1998; Chou et al., 1997; Chou et al., 2000).
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To understand the apoptosis mechanism and functions of various apoptosis proteins,
it would be helpful to obtain information about their subcellular location. This is because
the subcellular location of apoptosis proteins is closely related to their function (Chou,
2000a; Chou and Cai, 2003a; Chou and Elrod, 1999a, 1999b; Reed and Paternostro,
1999; Suzuki et al., 2000). It has been known that there are 732 archetypical proteins with
“apoptosis” domains (Zhou and Doctor, 2003), and only 98 of these proteins are known
to be the apoptosis protein (for more details, one can visit: http://www.apoptosis-db.org).
Scientists usually deal with a number of protein sequences already known belonging to
apoptosis proteins. However, it is both time-consuming and costly to determine which
specific subcellular location a given apoptosis protein belongs to. Confronted with such
a situation, can we develop a fast and effective way to predict the subcellular location for
a given apoptosis protein based on its amino acid sequence? Recently, Guo-ping Zhou
(Zhou and Doctor, 2003) attempted to identify the subcellular location of apoptosis
proteins according to their sequences by means of the covariant discriminant function,
which was established based on the Mahalanobis distance and Chou’s invariance theo-
rem (Chou, 1995; Chou, 2000a; Chou, 2001; Chou and Zhang, 1995; Pan et al., 2003;
Zhou and Assa-Munt, 2001; Zhou and Doctor, 2003). The results were quite promising,
indicating that the subcellular location of apoptosis proteins are predictable to a con-
siderably accurate extent if a good vector representation of protein can be established.
It is expected that, with a continuous improvement of vector representation methods by
incorporating amino acid properties, some predicting method might eventually become
a useful tool in this area because the function of an apoptosis protein is closely related
to its subcellular location. The present study was initiated in an attempt to address this
problem.

Chou and Elrod performed extensive research in predicting subcellular location
mainly based on amino acid composition (Chou and Elrod, 1999a, 1999b). Subsequently,
in order to take into account the sequence-order effects and improve the prediction qual-
ity, Chou has further incorporated the quasi-sequence order effect (Chou, 2001) and
introduced the concept of “pseudo-amino-acid composition” (Chou, 2001; Pan et al.,
2003). For example, Chou (1999) classified membrane proteins into five different types
and proposed a covariant discriminant algorithm to predict the types of membrane pro-
teins. Recently, Cai et al. (2001) applied neural networks to this problem. To improve
the prediction quality, Chou and Cai (2002) proposed a new method in which the co-
variant discriminate algorithm was augmented to incorporate the quasi-sequence-order
effect. This method uses the amino acid composition and the sequence-order-coupling
numbers (reflecting the sequence order effect) in order to improve the prediction quality.
Feng (2001) proposed a new representation of unified attribute vector explaining that
each protein can be represented by a vector, which is a 20-D vector in Hilbert space
with unified length. Hence, all proteins have their representative points on the surface
of the 20-D globe. The representative points of the proteins in the same family or with
the higher sequence identity are closer on the surface. The overall predictive accuracy
could be improved from 3 to 5% for different databases (Feng, 2001) with this sim-
ply modification of the usage of the amino acid composition. Recently, a series of new
powerful approaches have been developed by Chou and his co-workers (Cai and Chou,
2003; Cai et al., 2003; Chou and Cai, 2002; Chou and Cai, 2003a, 2003b). Encouraged
by the great successes of the previous investigators in the area, here we would like to
use a different strategy, involving support vector machines, to approach predication of
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apoptosis protein types in hope that our approach can play a complementary role to the
existing methods.

2. SUPPORT VECTOR MACHINE
A support vector machine (SVM) is one type of learning machines based on statistical

learning theory. The basic idea of applying SVM to pattern classification can be stated
briefly as follows.

Suppose we are given a set of samples, i.e. a series of input vectors Xi ∈ Rd (i =
1, 2, . . . , N ), with corresponding labels yi ∈ {+1, −1} (i = 1, 2, . . . , N ) , where –1
and +1 are used to stand respectively for the two classes. The goal here is to construct
one binary classifier or derive one decision function from the available samples, which
has small probability of misclassifying a future sample. Only the most useful linear
non-separable case (for most real life problems) are considered here.

SVM performs a nonlinear mapping of the input vector x from the input space Rd

into a higher dimensional Hilbert space, where the mapping is determined by the kernel
function. It finds the OSH (Optimal Separating Hyperplane, see Cortes and Vapnik,
1995) in the space H corresponding to a non-linear boundary in the input space. Two
typical kernel functions are listed below:

K (�xi , �x j ) = (�xi · �x j + 1)d , (1)

K (�xi , �x j ) = exp(−λ||�xi − �x j ||2). (2)

The first one is called the polynomial kernel function of degree d which will eventually
revert to the linear function when 1 = d , and the latter one is called the RBF (radial basis
function) kernel with one parameter λ. Finally, for the selected kernel function, the
learning task amounts to solving the following convex quadratic programming (QP)
problem,

Max
N∑

i=1

αi − 1

2

N∑

i=1

N∑

i=1

αiα j · yi y j · K (�xi · �x j )

subject to:

0 ≤ αi ≤ C

N∑

i=1

αi yi = 0

where the form of the decision function is

f (�x) = sgn

(
N∑

i=1

yiαi · K (�xi · �x j ) + b

)
.

For a given data set, only the kernel function and the regularity parameter C must be
selected.

A complete description to the theory of SVMs for pattern recognition is found
in Vapnik (1998). SVMs have been used in a range of bioinformatics problems in-
cluding protein fold recognition (Ding and Dubchak, 2001); protein–protein interac-
tions prediction (Cai et al., 2000a, 2000b); prediction of protein subcellular location
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(Cai et al., 2000, 2002; Hua and Sun, 2001a), protein secondary structure prediction
(Hua et al., 2001b), T-cell epitopes prediction (Zhao et al., 2003), classification of pro-
tein quaternary structure (Zhang et al., 2003).

In this paper, we apply Vapnik’s Support Vector Machine for predicting the types of
apoptosis proteins. We have used the OSUSVM, a Matlab SVM toolbox (can be download
freely from: http://www.ece.osu.edu/∼maj/osu svm), which is an implementation of
SVM for the problem of pattern recognition.

3. TRAINING AND PREDICTION
According to their subcellular location (Zhou and Doctor, 2003), apoptosis proteins

are classified into the following four types: (1) type I: Cytoplasmic protein; (2) type II:
Plasma membrane-bound protein; (3) type III: Mitochondrial inner and outer proteins;
(4) type IV:Other proteins.

In this research, every protein is represented as a point or a vector in a 20-D space.
Every component of its vector was supposed to be the square root of occurrence frequen-
cies of the 20 amino acids in the protein concerned. Therefore, we used

√
fi to replace fi

as the input of the SVM. As an example, the 20-D vector of occurrence frequencies of the
20 amino acids of the protein NP 001151 can be computed as: (0.0218, 0.0327, 0.0218,
0.0360, 0.0235, 0.0402, 0.0461, 0.0427, 0.0519, 0.0394, 0.0695, 0.0243, 0.0494, 0.0737,
0.0637, 0.0695, 0.0796, 0.0494, 0.0528, 0.1122), and the represented vector was sup-
posed to be the square root of occurrence frequencies:(0.1476, 0.1807, 0.1476, 0.1898,
0.1531, 0.2005, 0.2146, 0.2067, 0.2279, 0.1984, 0.2637, 0.1558, 0.2223, 0.2715, 0.2523,
0.2637, 0.2821, 0.2223, 0.2297, 0.3350). In this article, we call this represented vector as
the sqrt-amino acid composition. The sqrt-amino acid compositions have the property
that they all are unit vectors of the 20-D Hilbert space, hence, all proteins have their
representative points on the surface of the 20-D globe. We expect that the representative
points of the proteins in the same family are closer on the surface, while the core of the
SVM is mapping the lower dimensional vectors into a higher dimensional Hilbert, so
that the these vectors can be classified OSH in the Hilbert. That is the reason we choose
the sqrt-amino acid composition. At the same time, we also standard the sqrt-amino acid
composition to unit length (which is no longer an unit vector), and get almost the same
high accuracy in total.

The computations were carried out on a PC. We have done many experiments by
using difference kernel function (including linear, polynomial and Gaussian RBF kernel
functions) as well as difference parameters, and find that by using Gaussian RBF kernel
function, the performance of the SVM is best with a proper parameter. For the SVM, the
width of the Gaussian RBFs is selected as that which minimized an estimate of the VC-
dimension. After being trained, the hyper-plane output by the SVM was obtained. The
SVM method applies to two-class problems. In this paper, for the four-class problems,
we have used a simple and effective method: “one-against-others” method (Ding and
Dubchak, 2001) to transfer it into two-class problems. We first test the self-consistency
and leave-one-out cross-validation (jackknife test) of the method, followed by testing the
method by prediction of an independent dataset. As a result, the rates of self-consistency,
cross-validation of prediction were quite high.

In addition to the prediction algorithm, we also need to construct a training data set
to complete the establishment of a statistical prediction method. To realize this, based
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Table 1. List of the accession numbers for the 98 apoptosis proteins classified into four categories
according to their subcellular locationa.

Type I: 43 cytoplasmic proteins

XP 013050 P55212 P42574 P39429 P55867 P55865 Q02357 NP 033941

NP 033940 NP 033939 NP 031637 NP 031570 NP 031563 NP 031490 NP 033447 P29452

NP 036246 NP 001218 NP 004041 O54786 Q60989 Q62210 NP 065209 NP 001151

NP 071610 NP 071567 NP 066961 NP 037054 NP 036894 NP 005649 NP 004392 NP 004315

NP 001187 NP 001159 NP 001157 NP 001156 P22366 P55866 Q60431 P55214

P55269 P29466 O70201

Type II: 30 plasma membrane-bound proteins

NP 037223 P28825 NP 037275 NP 032013 NP 032612 P50555 P25118 P18519

O19131 Q63199 O77736 P51867 NP 036742 NP 037315 NP 005916 NP 005579

NP 000034 NP 001056 NP 003781 NP 002498 O02703 Q13014 NP 031553 NP 031549

Q63690 Q07820 NP 001179 Q91828 Q91827 Q07812

Type III: 13 mitochondrial inner and outer proteins

XP 008738 O77737 Q00709 NP 033873 P10417 P53563 Q07816 P49950

Q07817 O95831 Q9OX1 Q9JM53 Q9VQ79

Type IV: 12 other proteinsb

Q63369 Q90660 Q00653 Q04861 P19838 NP 032715 P98150 Q15121

Q62048 NP 033872 NP 004040 NP 005736

aDerived from SWISS-PROT data bank.
bOf the 12 other apoptosis proteins, five are located in nucleus, two in endoplasmic reticulum, one in
microtubule, and one in lysosome (Zhou and Doctor, 2003).

on the SWISS-PROT data bank, 98 apoptosis proteins (the dates were taken from Zhou
and Doctor (2003)) were classified into the following four subcellular locations: (1)
cytoplasmic, (2) plasma membrane-bound, (3) mitochondrial, and (4) other (Table 1).

4. RESULTS AND DISCUSSION
By means of the SVM algorithm described in the last section, a statistical prediction

was performed for the 98 apoptosis proteins listed in Table 1. The prediction was con-
ducted by two different approaches, the re-substitution test and the jackknife test. The
results are given in Table 2.

Re-substitution test
The so-called re-substitution test is an examination for the self-consistency of a

prediction method (Chou and Maggiora, 1998; Chou and Zhang, 1994; Zhou, 1998;
Zhou and Assa-Munt, 2001; Zhou and Doctor, 2003). When the re-substitution test was
performed for the current study, the type of each apoptosis protein in a data set was in
turn identified using the rule parameters derived from the same data set, the so-called
training data set. As shown in Table 2, the overall success rate thus obtained for the
98 apoptosis proteins in Table 1 was 100%, indicating an excellent self-consistency.
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Table 2. Tested Results for the 98 apoptosis proteins in Table 1 by both.

Success rate

Test method Type I Type II Type III Type IV Overall

Re-substitution test and jackknife test
Re-substitute

Covarianta 43/43 = 100% 30/30 = 100% 9/13 = 60.2% 7/12 = 58.3% 89/98 = 90.8%

SVM Ib 42/43 = 97.7% 30/30 = 100% 13/13 = 100% 12/12 = 100% 97/98 = 99.0%

SVM IIc 43/43 = 100% 30/30 = 100% 13/13 = 100% 12/12 = 100% 98/98 = 100%

SVM IIId 42/43 = 97.70% 30/30 = 100% 13/13 = 100% 12/12 = 100% 97/98 = 99.0%

Jack-knife
Covarianta 42/43 = 97.7% 22/30 = 73.3% 4/13 = 30.8% 3/12 = 25.0% 71/98 = 72.5%

SVM Ib 36/43 = 83.5% 26/30 = 86.7% 12/13 = 92.5% 9/12 = 75.0% 83/98 = 84.8%

SVM IIc 37/43 = 86.0% 27/30 = 90.0% 13/13 = 100% 12/12 = 100% 89/98 = 90.8%

SVM IIId 39/43 = 91.4% 28/30 = 93.3% 12/13 = 92.5% 9/12 = 75.0% 88/98 = 89.8%

aComes from Guo-Ping Zhou and Doctor (2003), by using covariant discriminant function.
bUsing SVM by occurrence frequencies of the 20 amino acids.
cUsing SVM by sqrt-amino acid composition.
dUsing SVM by standarding the aqrt-aminoacid composition to unit length.
All use Gauss RBF kernel function, while the value C were set to 100, 20, 200 according to a, b and
c respectively.

However, during the process of the re-substitution test, the rule parameters derived from
the training data set include the information of the query protein later plugged back in the
test. This will certainly underestimate the error and enhance the success rate because the
same proteins are used to derive the rule parameters and to test themselves. Nevertheless,
the re-substitution test is absolutely necessary because it reflects the self-consistency of
a prediction method, especially for its algorithm part. A prediction algorithm certainly
cannot be deemed as a good one if its self-consistency is poor. In other words, the re-
substitution test is necessary but not sufficient for evaluating a prediction method. As a
complement, a cross-validation test for an independent testing data set is needed because
it can reflect the effectiveness of a prediction method in practical application. This is
important especially for checking the validity of a training data set—whether it contains
sufficient information to reflect all the important features concerned so as to field a high
success rate in application.

Jackknife test
As is well known, the independent data set test, sub-sampling test, and jackknife test

are the three methods often used for cross-validation in statistical prediction. Among
these three, however, the jackknife test is deemed as the most effective and objective
one (see Chou and Zhang, 1995) for a comprehensive discussion about this). During
jackknifing, each protein in the data set is in turn singled out as a tested protein and all
the rule parameters are calculated based on the remaining proteins. In other words, the
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subcellular location of each apoptosis protein is identified by the rule parameters derived
using all the other apoptosis proteins except the one that is being identified. During the
process of jackknifing, both the training data set and testing data set are actually open,
and a protein will in turn move from one to the other. As expected, the success prediction
rates by jackknife test were decreased compared with those by the re-substitution test.
Such a decrement is particularly more remarkable for small subsets. This is because
the cluster-tolerant capacity (Chou, 1999) for small subsets is usually low. And hence
the information loss resulting from jackknifing will have a greater impact on the small
subsets than the large ones. Nevertheless, as shown in Table 2, the overall jackknife
rate for the data set of the 98 apoptosis proteins could still reach 90.8%. It is expected
that the success rate for identifying the subcellular location of apoptosis proteins can be
further enhanced by improving the training data of small subsets by adding into them
more new proteins that have been found belonging to the subcellular location defined by
these subsets.

5. CONCLUSIONS
The above results, together with those obtained by the covariant discriminant pre-

diction algorithm (Chou, 2000a, 2000b; Chou and Cai, 2002), have indicated that the
types of apoptosis proteins are predictable with a considerable accuracy. It is anticipated
that the covariant discriminant algorithm (Chou and Cai, 2003a), and the SVM, if ef-
fectively complemented with each other, will become a powerful tool for predicting the
types of apoptosis proteins. The current study has further demonstrated that the datasets
originally constructed by Zhou and Doctor (2003) will be very useful for the area of
apoptosis study. It is expected that the prediction quality can be further improved if the
current SVM can be properly combined with pseudo–amino acid composition (Chou,
2001; Pan et al., 2003) and function domain composition (Cai et al., 2003; Chou and
Cai, 2002) and with other amino acid properties.
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