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Abstract
For temperatures below and beyond the Curie temperature, the stochastic Landau-Lifshitz-
Bloch equation describes the evolution of spins in ferromagnetic materials. In this work,
we consider the stochastic Landau-Lifshitz-Bloch equation driven by a real valued Wiener
process and show Wong-Zakai type approximations for the same. We consider non-zero
contribution from the helicity term in the energy. First, using a Doss-Sussmann type trans-
form, we convert the stochastic partial differential equation into a deterministic equation
with random coefficients. We then show that the solution of the transformed equation de-
pends continuously on the driving Wiener process. We then use this result, along with the
properties of the said transform to show that the solution of the originally considered equa-
tion depends continuously on the driving Wiener process.

Keywords Stochastic partial differential equations · Stochastic Landau-Lifshitz-Bloch
equation · Ferromagnetism · Helicity

Mathematics Subject Classification 60H15

1 Introduction

We consider the stochastic Landau-Lifshitz-Bloch equation, which models the phenomenon
of ferromagnetism for temperatures T both below and above the Curie temperature Tc . The
magnetization vector field m = (

m1,m2,m3
) : Rd → R

3, d = 1,2,3 satisfies the Landau-
Lifshitz-Bloch (LLB) equation

∂m

∂t
= λ (m × Heff(m)) + L1

(m · Heff(m))m

|m|2 − L2
m × (m × Heff(m))

|m|2 . (1.1)

with initial data m(0) = m0. Here, L1, L2 are the longitudinal and transverse kinetic coef-
ficients, and λ is the gyromagnetic ratio. The effective field Heff(m) is the negative of the
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derivative of the total energy E(m) is given by

Heff(m) = ∂E
∂m

. (1.2)

Here,

E(m) = −H · m + 1

2
|∇m|2 + 1

2
m · (∇ × m) + 1

8χ||

(
1 + |m|2)2

. (1.3)

H denotes the applied external field. χ|| is a positive constant that depends on the material.
The second term on the right-hand side of (1.3) denotes the contribution from the exchange
energy and the third term denotes the contribution from the helicity term or the chiral inter-
action term, which arises from the Dzyaloshinskii-Moriya interaction. Note that we have not
considered the anisotropy term here. For calculations regarding the stochastic LLB equation
with Anisotropy, we refer the interested readers to [9]. For more background on the model’s
physics, we refer the readers to [6–8]. For more on magnetism, one can refer to the works
of Brown [1, 2] In this work, we assume the external field H to be 0.

For the temperatures T above the Curie temperature Tc , we have L1 = L2. Further, sim-
plifying the equation (1.1), we obtain the following form of the LLB equation.

∂tm = Heff(m) + λm × Heff(m), (1.4)

with

Heff(m) = λ�m + ∇ × m − 1

2χ||

(
1 + |m|2)m, (1.5)

Le in [11] showed the existence of a solution for the above LLB equation (without the
helicity term) for dimensions d = 1,2,3. Pu and Yang in [12] showed the global existence
of smooth solutions for the LLB equation with helicity.

It turns out that the LLB equation is not sufficient, for example, it is unable to describe the
dispersion of individual trajectories at higher temperatures. The authors in [5, 8] discussed
and formulated a stochastic form of the LLB equation. We add noise to the effective field,
resulting in the form of the stochastic LLB equation that we now describe. Let O ⊂ R

d ,
d = 1,2 be a bounded domain with a smooth boundary ∂O. Let 0 < T < ∞ be also fixed.
Let (�,F,P) denote a probability space with σ -algebra F . Let F = {Ft }t∈[0,T ] denote a
filtration on the above probability space. Let W denote a real-valued Wiener process on the
said probability space. For t ∈ [0, T ], we consider the following stochastic LLB equation
driven by a real-valued Wiener process W .

m(t) =m0 +
∫ t

0

[
�m(s) + m(s) × �m(s) − (

1 + |m(s)|2
R3

)
m(s)

+ ∇ × m(s) + m(s) × (∇ × m(s))
]
ds +

∫ t

0
[m(s) × h] ◦ dW(s), (1.6)

Homogeneous Neumann boundary conditions are assumed. Note that the differential is
assumed to be in the Stratonovich sense. Here, h : O →R

3 is given. Also, we have replaced
all the coefficients by 1 for simplicity.

Brzezniak, Goldys and Le in [4] proved the existence of a weak martingale solution to the
stochastic LLB equation for dimensions d = 1,2,3. For d = 1,2, they showed that the solu-
tion is pathwise unique. Further, they showed the existence of invariant measures. Regarding
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the Wong-Zakai type approximations, Gokhale and Manna in [9] established Wong-Zakai
type approximations for the stochastic LLB equation (with non-zero anisotropy) for dimen-
sions d = 1,2. In a way, this work can be considered as an extension of [9], as we consider
the stochastic LLB equation with helicity.

Our aim in this work is to prove Wong-Zakai type approximations for stochastic LLB
equation. Let {Wn}n∈N be a sequence of processes on (�,F,P) with continuously differ-
entiable paths. Later on, we go on to assume that similar processes Wn approximate the
process W in C([0, T ] :R). For Wn, the corresponding equation is given by

mn(t) =mn
0 +

∫ t

0

[
�mn(s) + mn(s) × �mn(s) −

(
1 + |mn(s)|2

R3

)
mn(s)

+ ∇ × mn(s) + mn(s) × (∇ × mn(s))
]
ds

+
∫ t

0

[
mn(s) × h

]
dWn(s), (1.7)

We want to show that whenever Wn approximates the given process W , then mn should
approximate the corresponding m in some appropriate sense.

We use an indirect method to prove the result. We first convert (using a Doss-Sussmann
type transform (2.11)) the given stochastic partial differential equation (1.6) into a deter-
ministic partial differential equation with random coefficients (2.12). We then show that the
solution to this transformed equation depends continuously on the driving Wiener process
W . Using the properties of the transformation (2.11), we show the same result for the orig-
inally considered equation (1.6). That is, we show that the solution of the equation (1.6)
depends continuously on the driving Wiener process W .

We conclude the section by providing some notations that we will be using throughout
the work. Firstly, for k ∈ Z and p ≥ 1, Wk,p(O :R3) denotes the Sobolev space of functions
defined on the bounded domain O ⊂ R

d , d = 1,2, and will be denoted by just Wk,p for
brevity. We will use Hk when p = 2. Similarly, Lp will be used to denote the space Lp(O :
R

3). The given data h will be assumed to be in W 2,∞. We will henceforth assume that
(�,F,F,P) is a filtered probability space (with filtration F = {Ft }t∈[0,T ]) that satisfies the
usual hypothesis. Further, C will be used to denote a generic (positive) constant, the value
for which can change from line to line.

2 The Transformation

In this section, we define the said (Doss-Sussmann type) transform. For p ≥ 1, let us first
define the mapping G : Lp → Lp by

G(v) = v × h. (2.1)

For h ∈ W 2,∞, the above mapping is well defined. We further define the exponential operator
etG : L2 → L2 by

etGv =
∞∑

i=0

tn

n!G
n(v). (2.2)
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2.1 Some Technical Results

In particular, we have the following properties of the operator G and the exponential operator
defined in (2.1) and (2.2) respectively. We skip the proof and refer the reader to, for example,
Sect. 3 in [10], see also [3, 9].

Lemma 2.1 Let t ∈ R and v, v1, v2 ∈ L2 and n ∈ N. Then the following hold. Let the given
function h be such that |h(x)|R3 = 1, for a.a. x ∈ O.

(1)

etGv = v + sin (t)Gv + (1 − cos(t))G2v, (2.3)

(2)
e−tGetGv = v, (2.4)

(3)
etG (v1 × v2) = etGv1 × etGv2, (2.5)

(4)
G2n+1(v) = (−1)nG(v), (2.6)

(5)
G2n(v) = (−1)nG2(v), (2.7)

(6) ∣∣etGv(x)
∣∣2

R3 = |v(x)|2
R3 , for Leb. a.e. x ∈ O. (2.8)

(7) Let f be a scalar-valued function. Then

etG(f v) = f etGv. (2.9)

Using the above-mentioned properties of the operator G and the given h, we have

etGv = v + sin tGv + (1 − cos t)G2(v). (2.10)

Let M be a given process. We define a new process m from M as follows.

m(t) = eW(t)GM(t) (2.11)

Following the proof of Lemma 4.1 in [10], see also the Appendix in [9] one can show that
the new process m is a solution to the stochastic LLB equation (1.6) if and only if the process
M is a solution to the following (transformed) equation.

dM(t) = [
�M(t) + M(t) × �M(t) − (

1 + |M(t)|2
R3

)
M(t) + F(M,W)(t)

]
dt. (2.12)

Here

F(M,W) =F1(M,W) + M × F1(M,W) − F3(M,W) + F1(M,W) + M × F1(M,W)

=e−WG

[
sin(W)CM + (1 − cos(W)) (GCM − CGM)

]
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+ M ×
[
e−WG

(
sin(W)CM + (1 − cos(W)) (GCM − CGM)

)]

−
(

M + (sin(W))2 |GM|2
R3 M + (1 − cos(W))2

∣
∣G2M

∣
∣2

R3 M

+ 2〈M,(1 − cos(W))G2M〉R3M

)

+ e−WG
[∇ × eWGM + eWGM × (∇ × eWGM

)]
. (2.13)

Here C is given by

C(u) = u × �h + 2∇u × ∇h. (2.14)

Therefore

GCM = (M × �h) × h + 2 (∇M × ∇h) × h, (2.15)

CGM = (M × h) × �h + 2 (∇M × h) × ∇h + 2 (M × ∇h) × ∇h. (2.16)

We have the notations

F1(M,W) = e−WG

[
sin(W)CM + (1 − cos(W)) (GCM − CGM)

]
, (2.17)

and

F2(M,W) = M × F1(M,W). (2.18)

Further,

F1(M,W) = e−WG
(∇ × eWGM

)
, (2.19)

and we have

F2(M,W) = M × F1. (2.20)

Remark 2.2 (Equivalence of M and m) Observing the way the transformation (2.11) has
been defined, we can prove that if M is a solution of (2.12), then the process m defined from
M using (2.11) is a solution of (1.6). For a rigorous proof, we refer the reader to [9, 10].

Remark 2.3 (Some observations) We state some (formal) observations about the operators
mentioned above

(1) Firstly, the exponential operator eWG : L2 → L2 is linear. That is,

eWG(v1 + v2) = eWG(v1) + eWG(v2), v1, v2 ∈ L2. (2.21)

(2) Both F1 and F1 are linear in M (the first variable).
(3) Both F1 and F1 are Lipschitz continuous in the second variable. To see this, recall

the equality (2.10). The mappings t �→ sin t and t �→ cos t are Lipschitz continuous.
Hence, as a continuous combination of these, the mapping t �→ etG(·) is also Lipschitz
continuous.
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(4) Both F1 and F1 exhibit the following growth estimates. There exists a constant C > 0
such that

|F1(v)|L2 ≤ C |v|L2 , v ∈ L2, (2.22)

and

|F1(v)|H 1 ≤ C |v|H 1 , v ∈ H 1. (2.23)

Similarly,

|F1(v)|L2 ≤ C |v|L2 , v ∈ L2, (2.24)

and

|F1(v)|H 1 ≤ C |v|H 1 , v ∈ H 1. (2.25)

We now state a couple of results about some growth estimates for the operator G and
effectively the operator etG.

Proposition 2.4 The map G : L2 → L2 is linear. Further,

|Gv|L2 ≤ C |v|L2 , v ∈ L2, (2.26)

and

|Gv|H 1 ≤ C |v|H 1 , v ∈ H 1. (2.27)

Moreover (similarly)

∣∣G2v
∣∣
L2 ≤ C |v|L2 , v ∈ L2, (2.28)

and

∣
∣G2v

∣
∣
H 1 ≤ C |v|H 1 , v ∈ H 1. (2.29)

Lemma 2.5 There exists a constant C > 0 that can depend on h such that

∣
∣etGv

∣
∣
L2 ≤ C |v|L2 , v ∈ L2. (2.30)

∣∣etGv
∣∣
H 1 ≤ C |v|H 1 , v ∈ H 1. (2.31)

In particular, we also have

∣
∣∇ × (

etGv
)∣∣

L2 ≤ C |v|H 1 , v ∈ H 1. (2.32)

Both Proposition 2.4 and Lemma 2.5 can be proven as consequences of Lemma 2.1
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3 Existence of a Solution for the Transformed Equation

Definition 3.1 (Weak solution of (2.12)) For any function W ∈ C([0, T ] : R), the problem
(2.12) is said to admit a weak solution M , with initial condition M(0) = M0 if

(1) The process M takes values in the space C([0, T ] : L2).
(2) There exists a constant C > 0 such that

sup
t∈[0,T ]

|M(t)|H 1 ≤ C, (3.1)

and

∫ T

0
|M(t)|2

H 2 dt ≤ C. (3.2)

(3) For V ∈ W 1,4, M satisfies the following equality.

〈M(t),V 〉L2 =〈M0,V 〉 −
∫ t

0
〈∇M(s) + M(s) × ∇M(s),∇V 〉 ds

+
∫ t

0

〈
(
1 + |M(s)|2

R3

)
M(s)

+ ∇ × M(s) + M(s) × (∇ × M(s)) + F(M(s),W(s)),V

〉
ds. (3.3)

Theorem 3.2 (Existence and uniqueness of solution for (2.12)) Let h ∈ W 2,∞ be such that
|h(x)|R3 = 1 for Leb. a.a. x ∈ O. Further, let W ∈ C([0, T ] : R) and M0 ∈ H 1. Then the
problem (2.12) admits a unique weak solution as given in Definition 3.1.

Proof of Theorem 3.2 We prove the existence of a weak solution by Faedo-Galerkin type
arguments. We give a sketch of the proof. First, let {ei}i∈N denote an orthonormal basis of
L2, consisting of the eigen functions of the Neumann Laplacian operator �. Let Hn denote
the span of e1, . . . , en and let Pn denote the orthogonal projection operator onto Hn. Let us
define a cut-off function. Let n ∈ N and let �n : R → [0,1] denote a smooth function such
that

�n(x) =
{

1, if |x| ≤ n,

0, if |x| ≥ 2n,
(3.4)

We now approximate the equation (2.12) in Hn.

dMn(t) = Pn

[
�Mn(t) + Mn(t) × �Mn(t) − (

1 + |Mn(t)|2R3

)
M(t) + Fn(Mn,W)(t)

]
dt,

(3.5)

with initial data Mn(0) = Pn(M0). Here,

Fn(Mn,W) = F1(Mn,W) + F2(Mn,W) + �n(|Mn|L4) [F1(Mn,W) + F2(Mn,W)] . (3.6)

The following proposition enlists some properties of the operator Fn.
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Proposition 3.3 Let ε > 0. Then there exists a constant C > 0, which can depend on ε, such
that

|〈Fn(Mn,W),Mn〉L2 | ≤ε |Mn|2H 1 + C(ε) |Mn|2L2 , (3.7)

and

|〈Fn(Mn,W),−�Mn〉L2 | ≤ε |Mn|2H 2 + C(ε) |Mn|2H 1 . (3.8)

Lemma 3.4 There exists a constant C > 0 such that the following inequalities hold for each
n ∈ N.

|Mn|L∞(0,T :L2) ≤ C, (3.9)

|Mn|L2(0,T :H 1) ≤ C, (3.10)

|Mn|L4(0,T :L4) ≤ C. (3.11)

Proof of Lemma 3.4 The main idea is to multiply both sides of the equality (3.5) by Mn and
then simplify. The equality (after multiplication) is

〈dMn(t),Mn(t)〉L2 =〈Pn [�Mn(t) + Mn(t) × �Mn(t)

− (
1 + |Mn(t)|2R3

)
M(t)

]
,Mn(t)

〉
L2 dt

+ 〈Pn [Fn(Mn,W)(t)] ,Mn(t)〉L2 dt. (3.12)

Using the self adjoint property of the projection operator Pn, we have the following inequal-
ity (see [4, 11] for example)

〈
Pn

[
�Mn(t) + Mn(t) × �Mn(t) − (

1 + |Mn(t)|2R3

)
M(t)

]
,Mn(t)

〉
L2

= −|∇Mn(t)|2L2

− |Mn(t)|2L2 − |Mn(t)|4L4 . (3.13)

Further, using Proposition 3.3, we can write the following inequality. Let ε > 0. Then
there exists a constant C > 0 such that

1

2
|Mn(t)|2L2 +

∫ t

0
|Mn(s)|2H 1 ds +

∫ t

0
|Mn(s)|4L4 ds ≤1

2
|Mn(0)|2

L2 + ε

∫ t

0
|Mn(s)|2H 1 ds

+ C

∫ t

0
|Mn(s)|2L2 ds. (3.14)

Firstly, ε > 0 can be chosen small enough so that the coefficient 1 − ε remains positive.
Then, all three terms on the left-hand side of the above inequality are non-negative, and
hence any of them can be neglected without changing the inequality. In particular, keeping
the first term and neglecting the second and third terms (for now), we have

1

2
|Mn(t)|2L2 ≤1

2
|Mn(0)|2

L2 + +
∫ t

0
|Mn(s)|2L2 ds.
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Taking the supremum over [0, T ] of both sides, followed by using the Gronwall inequality
gives the desired inequality (3.9). Similarly, neglecting the first and third terms on the left-
hand side of (3.14) and using (3.9) gives the bound (3.10). The bound (3.11) can be obtained
similarly by neglecting the first and second terms on the left-hand side of (3.14). �

Lemma 3.5 There exists a constant C > 0 such that the following inequality holds for each
n ∈ N.

|Mn|L∞(0,T :H 1) ≤ C, (3.15)

and

|Mn|L2(0,T :H 2) ≤ C. (3.16)

Proof of Lemma 3.5 The structure of the proof of Lemma 3.5 is the same as that of the proof
of Lemma 3.4. Here, we multiply (3.5) by (−�Mn) to obtain

〈dMn(t),−�Mn(t)〉L2 =〈
Pn

[
�Mn(t) + Mn(t) × �Mn(t)

− (
1 + |Mn(t)|2R3

)
M(t)

]
,−�Mn(t)

〉
L2 dt

+ 〈Pn [Fn(Mn,W)(t)] ,−�Mn(t)〉L2 dt (3.17)

Using the self adjoint property of the projection operator Pn and the fact that for v ∈ Hn,
�v ∈ Hn, we have

〈
Pn

[
�Mn(t) + Mn(t) × �Mn(t) − (

1 + |Mn(t)|2R3

)
M(t)

]
,−�Mn(t)

〉
L2 ≤ −|�Mn(t)|2L2 .

(3.18)

Using the above estimate and Proposition 3.3, we obtain

|∇Mn(t)|2L2 +
∫ t

0
|�Mn(s)|2L2 ds ≤ε

∫ t

0
|Mn(s)|2H 2 ds + C

∫ t

0
|Mn(s)|2H 1 ds. (3.19)

We choose ε small enough so that the coefficient 1 − ε stays positive. The resulting inequal-
ity is

1

2
|Mn(t)|2L2 + (1 − ε)

∫ t

0
|Mn(s)|2H 2 ds ≤1

2
|Mn(0)|2

H 1 + C + ε

∫ t

0
|Mn(s)|2H 2 ds

+ C

∫ t

0
|Mn(s)|2H 1 ds. (3.20)

Remark 3.6 Note that we have replaced the term containing |�Mn|2L2 by one containing
|Mn|2H 2 . This can be done by adding

∫ t

0 |Mn|2H 1 ds to both sides, thus completing the H 2

norm. Adding the said H 1 norm term just adds 1 to the constant C already existing on the
right-hand side. Also, we have replaced the seminorm |∇Mn|L2 by the full norm |Mn|H 1 .
We use the same logic, adding |Mn|L2 on both sides to complete the norm, and use (3.9) to
bound the added term by a constant.

For ε > 0 small enough, both the terms on the left-hand side of (3.20) are non-negative,
and hence can be neglected as and when required, without changing the inequality. Not
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considering the second term on the left-hand side of (3.20) for now, taking the supremum of
both sides over [0, T ] gives

sup
t∈[0,T ]

|Mn(t)|2H 1 ≤ C + C

∫ T

0
|Mn(s)|2H 1 ds. (3.21)

Applying the Gronwall inequality gives (3.15). Further, neglecting the first term on the right-
hand side of (3.20), taking the supremum over [0, T ] of both sides and then using the bound
(3.15) gives the bound (3.16).

Lemma 3.7 There exists a constant C > 0 such that for every n ∈N, the following inequality
holds.

|Mn|
H 1

(
0,T :L 3

2

) ≤ C. (3.22)

Proof of Lemma 3.7 The proof can be given by the bounds already established in Lemma 3.4,
Lemma 3.5 and the equality (3.5). �

As a corollary of the above result, we have

Corollary 3.8 There exists a constant C > 0 such that the following holds uniformly in n ∈N.

|Mn|H 1(0,T :(H 1
)′

)
≤ C. (3.23)

Proof The following embedding is continuous.

H 1 ↪→ L3. (3.24)

Therefore

L
3
2 ↪→ (

H 1
)′

. (3.25)

The corollary follows as a result of the above embedding and Lemma 3.7. �

Using the bounds established in Lemmata 3.4, 3.5 and 3.7, we prove that the se-
quence {Mn}n∈N admits a subsequence (with the same notation) that converges in C([0, T ] :
(H 1)′) × L4(0, T : L4) × L2(0, T : H 1) to a process M . We then show that the process M

satisfies the same bounds as the processes Mn. In particular, we can show term by term con-
vergence of the terms on the right hand side of (3.5) to the corresponding terms of (2.12)
(with the test function V as given in (3.3)). We then conclude that the process M satis-
fies the equality (2.12) as in Definition 3.1, thus proving the existence of a solution M .
This concludes the proof of the existence of a weak solution. The arguments for unique-
ness are standard, and hence are skipped. The interested reader can refer to [9] for similar
arguments. �

Remark 3.9 (Existence and uniqueness for Mn) A definition for a solution for Mn to the
problem (1.7) can be given in the same spirit as that of Definition 3.1. In fact, the proof of
Theorem 3.2 works for the driving process Wn (with corresponding solution Mn) as well
since the result holds true for any continuous function W . The only difference will be due to
the term F(Mn,Wn), which will involve the approximation Wn. This may give us bounds
with some constants Cn that are dependent on n But since the sequence {Wn}n∈N is uniformly
bounded, we can choose a constant C large enough so that supn∈N Cn ≤ C.
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Remark 3.10 (Equivalence of (2.12) and (1.6)) Owing to the definition of the transformation
(2.11), one can readily see (at least formally) that whenever M is a solution to (2.12), the
corresponding (transformed) m is a solution to (1.6). One can argue similarly for the case
when the driving process is the approximation Wn (corresponding solutions then are Mn and
mn). For a rigorous proof, one can follow the proof of Lemma 7.1 in [9] (see also Lemma
4.1 in [10]).

4 Robustness: Continuous Dependence of m on W

Brief idea of the section Let {Wn}n∈N be a sequence of processes, having continuously dif-
ferentiable paths, that approximate W in C([0, T ] :R). In the main theorem (Theorem 4.8),
we show that the solution m of (1.6) depends continuously on the driving process W . To-
wards that, we first show that the solution M of the transformed equation (2.12) depends
continuously on the driving process W (Theorem 4.1). We then use the properties of the
transformation (2.11) to show that m depends continuously on W (Theorem 4.8). �

4.1 Robustness: Continuous Dependence of M on W

Theorem 4.1 (Robustness for M ) Let the processes {Wn}, n ∈ N be processes with continu-
ously differentiable paths, that approximate the process W . That is

Wn → W in C([0, T ] :R). (4.1)

Let Mn be the solution of (2.12) corresponding to Wn. Then

Mn → M in L∞(0, T : L2) ∩ L2(0, T : H 1). (4.2)

Before giving a proof of the theorem, we give some technical results that will be used.

Proposition 4.2 For v ∈ L2, there exists a constant (independent of n) C > 0 such that the
following holds for each n ∈N.

∣∣
∣eWnGv − eWGv

∣∣
∣
L2

≤ C |Wn − W | |v|L2 , (4.3)

and
∣
∣∣∇ ×

(
eWnGv

)
− ∇ × (

eWGv
)∣∣∣

L2
≤ C |Wn − W | |v|H 1 . (4.4)

Proof of Proposition 4.2 The proof for the first inequality follows from the properties of the
exponential operator, in particular 2.1, the expression (2.10), the linearity of the operator G

and the bounds on G from 2.4. We give brief calculations for the second inequality.

∣
∣∣∇ ×

(
eWnGv

)
− ∇ × (

eWGv
)∣∣∣

L2
≤

∣∣
∣∣∇

(
v − v + sinWnGv − sinWGv

+ (1 − cosWn)G2v − (1 − cosW)
)
∣∣
∣∣
L2

≤ ∣
∣[sinWn − sinW

]∇Gv
∣
∣
L2
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+ ∣∣[cosW − cosWn
]∇G2v

∣∣
L2

≤C |v|H 1 . (4.5)
�

Proposition 4.3 There exists a constant C > 0 such that the following holds uniformly in
n ∈ N.

∣∣
∣F̃1(M,Wn)

∣∣∣
L2

≤ C |M|H 1 . (4.6)

|F1(M,W)|L2 ≤ C |M|H 1 . (4.7)

Proof of Proposition 4.3 For a proof of the first inequality (4.6), we refer the reader to [9] and
give a brief calculation for the second inequality. Recalling the definition of F1 from (2.19)

|F1(M,W)|L2 = ∣
∣e−WG

(∇ × (
eWGM

))∣∣
L2

≤C
∣∣∇ × (

eWGM
)∣∣

L2

≤C
∣∣eWGM

∣∣
H 1

≤C |M|H 1 . (4.8)
�

Lemma 4.4 There exists a constant C > 0 such that the following inequalities hold.

|F1(M,Wn) − F1(M,W)|L2 ≤ C |W − Wn| |M|H 1 . (4.9)

|F1(M,Wn) − F1(M,W)|L2 ≤ C |W − Wn| |M|H 1 . (4.10)

Proof of Lemma 4.4 The inequality (4.9) can be proven using the linearity of F1 and the
bound (4.6). We give some calculations for the proof of (4.10). Let us recall from Remark
2.3 that the operator F1 is linear in the first variable and Lipschitz continuous in the second
variable.

|F1(M,Wn) − F1(M,W)|L2 =
∣
∣∣∇ ×

(
eWnGM

)
− ∇ × (

eWGM
)∣∣∣

L2

≤ ∣
∣[sinWn − sinW

]∇GM
∣
∣
L2

+ ∣∣[cosW − cosWn
]∇G2M

∣∣
L2

≤C |Wn − W | |M|H 1 . (4.11)
�

Proposition 4.5 Let ε > 0. Then there exists a constant C > 0 such that

∣
∣∣
∣

∫ t

0
〈F2(M

n,Wn) − F2(M,Wn),Mn − M〉L2 ds

∣
∣∣
∣ ≤ε

2

∫ t

0
|Mn − M|2

H 1 ds

+ C2

2ε

∫ t

0
|M|2

H 2 |Mn − M|2
L2 ds.

(4.12)
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∣∣
∣∣

∫ t

0
〈F2(M

n,Wn) − F2(M,Wn),Mn − M〉L2 ds

∣∣
∣∣ ≤ε

2

∫ t

0
|Mn − M|2

H 1 ds

+ C2

2ε

∫ t

0
|M|2

H 2 |Mn − M|2
L2 ds.

(4.13)

Proof of Proposition 4.5 The inequality (4.12) can be shown using a combination of (4.9) and
the definition (2.18) of F2. For the second inequality (4.13), we recall from (2.20) that

F2(M,W) = M × F� (M,W), (4.14)

Now,

F2(M
n,Wn) − F2(M,Wn) =Mn × F1(M

n,Wn) − M × F1(M,Wn)

=Mn × F1(M
n,Wn) − M × F1(M

n,Wn)

+ M × F1(M
n,Wn) − M × F1(M,Wn)

= (Mn − M) × F1(M
n,Wn) + M × F1(M

n − M,Wn)

(4.15)

Therefore,

∣∣
∣∣

∫ t

0
〈F2(M

n,Wn) − F2(M,Wn),Mn − M〉L2 ds

∣∣
∣∣

≤
∣∣∣
∣

∫ t

0
〈M × F1(M

n − M,W),Mn − M〉L2 ds

∣∣∣
∣

≤
∫ t

0
|M|L∞ |F1(M

n − M)|L2 |Mn − M|L2

≤ C

∫ t

0
|M|H 2 |Mn − M|H 1 |Mn − M|L2

≤ ε

2

∫ t

0
|Mn − M|2

H 1 ds

+ C(ε)

∫ t

0
|M|2

H 2 |Mn − M|2
L2 ds. (4.16)

�

Proposition 4.6 There exists a constant C > 0 such that

∣∣
∣∣

∫ t

0
〈F2(M,Wn) − F2(M,W),Mn − M〉L2 ds

∣∣
∣∣ ≤C

∫ t

0
|Wn − W |2 ds

+ 1

2

∫ t

0
|M|2

H 2 |Mn − M|2
L2 ds. (4.17)
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and
∣∣
∣∣

∫ t

0
〈F2(M,Wn) − F2(M,W),Mn − M〉L2 ds

∣∣
∣∣ ≤C

∫ t

0
|Wn − W |2 ds

+ 1

2

∫ t

0
|M|2

H 2 |Mn − M|2
L2 ds. (4.18)

Proof of Proposition 4.6 We skip the proof for (4.17) and refer the reader to [9]. For the
second inequality (4.18), we have

F2(M,Wn) − F2(M,W) = M × (F1(M,Wn) − F1(M,W)) . (4.19)

Therefore
∣
∣∣
∣

∫ t

0
〈F2(M,Wn) − F2(M,W),Mn − M〉L2 ds

∣
∣∣
∣

=
∣∣
∣∣

∫ t

0
〈M × (F1(M,Wn) − F1(M,W)) ,Mn − M〉L2 ds

∣∣
∣∣

≤
∫ t

0
|M|L∞ |F1(M,Wn) − F1(M,W)|L2 |Mn − M|L2 ds

≤C

∫ t

0
|M|H 2 |M|H 1 |Wn − W |L2 |Mn − M|L2 ds

≤C

2
sup

t∈[0,T ]
|M|2

H 1

∫ t

0
|Wn − W | ds + 1

2

∫ t

0
|M|2

H 2 |Mn − M|2
L2 ds

≤C

∫ t

0
|Wn − W |2 ds + 1

2

∫ t

0
|M|2

H 2 |Mn − M|2
L2 ds. (4.20)

�

Lemma 4.7 There exists a constant C > 0 such that
∣∣
∣∣

∫ t

0
〈F2(M

n,Wn) − F2(M,W),Mn − M〉L2 ds

∣∣
∣∣

≤ ε

2

∫ t

0
|Mn − M|2

H 1 ds + C

∫ t

0
|M|2

H 2 |Mn − M|2
L2 ds + C

∫ t

0
|Wn − W |2 ds. (4.21)

and
∣∣
∣∣

∫ t

0
〈F2(M

n,Wn) − F2(M,W),Mn − M〉L2 ds

∣∣
∣∣

≤ ε

∫ t

0
|Mn − M|2

H 1 ds + C

∫ t

0
|M|2

H 2 |Mn − M|2
L2 ds + C

∫ t

0
|Wn − W |2 ds. (4.22)

Proof of Lemma 4.7 The inequality (4.21) follows from (4.12) and (4.17). For the second
term, we have

F2(M
n,Wn) − F2(M,W) =F2(M

n,Wn) − F2(M,Wn) + F2(M,Wn) − F2(M,W).
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The inequality (4.22) now follows from using (4.13) and (4.18)

F2(M
n,Wn) − F2(M,W) =Mn × F1(M

n,Wn) − M × F1(M,W)

=Mn × F1(M
n,Wn) − M × F1(M

n,Wn)

+ M × F1(M
n,Wn) − M × F1(M,Wn)

+ M × F1(M,Wn) − M × F1(M,W)

= (Mn − M) × F1(M
n,Wn)

+ M × F1(M
n − M,Wn)

+ M × (F1(M,Wn) − F1(M,W)) . (4.23)

Therefore,
∣
∣∣
∣

∫ t

0
〈F2(M

n,Wn) − F2(M,W),Mn − M〉L2 ds

∣
∣∣
∣

≤
∣
∣∣
∣

∫ t

0
〈M × F1(M

n − M,Wn),Mn − M〉L2 ds

∣
∣∣
∣

+
∣∣
∣∣

∫ t

0
〈M × (F1(M,Wn) − F1(M,W)) ,Mn − M〉L2 ds

∣∣
∣∣ (4.24)

�

Proof of Theorem 4.1 We take the difference Mn − M and consider the equation satisfied by
this difference. For each n ∈N, Mn satisfies the following equation.

dMn(t) =
[
�Mn(t) + Mn(t) × �Mn(t) −

(
1 + |Mn(t)|2

R3

)
Mn(t) + F(Mn,Wn)(t)

]
dt.

(4.25)

Similarly, M satisfies the following equation.

dM(t) = [
�M(t) + M(t) × �M(t) − (

1 + |M(t)|2
R3

)
M(t) + F(M,W)(t)

]
dt. (4.26)

Therefore the difference Mn − M satisfies the following equation.

Mn(t) − M(t) − Mn(0) + M(0)

=
∫ t

0

[
�(Mn(s) − M(s))

]
ds

+
∫ t

0

[
Mn(s) × �Mn(s) − M(s) × �M(s)

]
ds

−
∫ t

0

[(
1 + |Mn(s)|2

R3

)
Mn(s) − (

1 + |M(s)|2
R3

)
M(s)

]
ds

+
∫ t

0

[
F(Mn(s),Wn) − F(M(s),W)

]
ds. (4.27)

The idea now is to multiply both the sides of the above equality by Mn − M and simplify.
This is followed by the application of Gronwall’s inequality. On multiplying both sides of
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(4.27) by (Mn − M), we get the following equality.

∣
∣Mn(t) − M(t)

∣
∣2

L2 − ∣
∣Mn(0) + M(0)

∣
∣2

L2

=
∫ t

0
〈�(Mn(s) − M(s)) ,Mn(s) − M(s)〉L2 ds

+
∫ t

0
〈Mn(s) × �Mn(s) − M(s) × �M(s),Mn(s) − M(s)〉L2 ds

−
∫ t

0
〈
(

1 + |Mn(s)|2
R3

)
Mn(s) − (

1 + |M(s)|2
R3

)
M(s),Mn(s) − M(s)〉L2 ds

+
∫ t

0
〈F(Mn(s),Wn) − F(M(s),W),Mn(s) − M(s)〉L2 ds

=
4∑

i=1

CiIi(t). (4.28)

The calculations for the first three terms (I1, I2, I3) are similar to the calculations for the
corresponding terms in the proof for pathwise uniqueness in [4, 11], Sect. 6 in [9] since the
terms do not directly depend on the function Wn or W . The difference is with the term F .
The term F can be handled using Lemma 4.4 and Lemma 4.7.

Simplifying (4.28) and using the above mentioned estimates, we obtain a constant C > 0
and an integrable functio n φC such that

sup
t∈[0,T ]

|Mn(t) − M(t)|2
L2 + 1

2

∫ T

0
|Mn(s) − M(s)|2

H 1 ds

≤C1 |Mn(0) − M(0)|2
L2 + C2

∫ T

0
|Wn(s) − W(s)|2 ds

+ C

∫ t

0
(1 + φC(s)) sup

r∈[0,s]
|Mn(r) − M(r)|2

L2 ds. (4.29)

Since φC is integrable, applying the Gronwall inequality and using the fact that all the pro-
cesses Mn,n ∈ N have the same initial data M0, along with the convergence of Wn to W

from Theorem 4.1 gives the required convergence in (4.2). �

4.2 Robustness: Continuous Dependence of m on W

Our aim for this section, which is also the main aim of the work, is to show that the solution
m of (1.6) depends continuously on the driving process W . The following theorem, which
is the main result of this work will make the statement rigorous.

Theorem 4.8 Let {Wn}n∈N be a sequence of processes with continuously differentiable paths
that approximate the Wiener process W , P-a.s. That is, let

Wn(ω) → W(ω) in C([0, T ] : R) for P− a.s. ω ∈ �.

Then the solution m of (1.6) depends continuously on the Wiener process W . That is, if
mn denotes the solution for (1.7) corresponding to Wn (and m is the solution for (1.6)
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corresponding to W ) then

mn(ω) → m(ω) in L∞(0, T : L2) ∩ L2(0, T : H 1) for P− a.s. ω ∈ �. (4.30)

To prove the result, we will use the convergence of the corresponding Mn to M . For
that, we use the following lemma. We skip the proof for the lemma, as it follows from the
properties of the exponential operator given in Sect. 2.1 and the Lipschitz continuity of the
sin and cos functions. For a detailed proof, the reader can refer to [3, 9].

Lemma 4.9 Let v1, v2 ∈ L∞(0, T : L2) ∩ L2(0, T : H 1). Then there exists a constant C > 0
such that

∣∣et1Gv1 − et2Gv2

∣∣2

L2 ≤ C |t1 − t2|2 |v1|2L2 + C |v1 − v2|2L2 . (4.31)

∣∣et1Gv1 − et2Gv2

∣∣2

H 1 ≤ C |t1 − t2|2 |v1|2H 1 + C |v1 − v2|2H 1 . (4.32)

This lemma essentially shows that if the sequence Mn converges to M in L∞(0, T :
L2) ∩ L2(0, T : H 1) and Wn converges to W in C([0, T :R]) then mn, defined by the trans-
formation (2.11) converge to m in L∞(0, T : L2) ∩ L2(0, T : H 1). To see this, replace v1 by
Mn, v2 by M and t1 and t2 by Wn(t) and W(t) in the above result to get

∣∣eW(t)GMn − eW(t)GM
∣∣2

L2 ≤ C |Wn(t) − W(t)|2 |Mn(t)|2
L2 + C |Mn(t) − M(t)|2

L2 . (4.33)

Therefore

sup
t∈[0,T ]

∣∣eW(t)GMn − eW(t)GM
∣∣2

L2 ≤C sup
t∈[0,T ]

|Wn(t) − W(t)|2 sup
t∈[0,T ]

|Mn(t)|2
L2

+ C sup
t∈[0,T ]

|Mn(t) − M(t)|2
L2 . (4.34)

Similarly, we have the following from the second inequality in the lemma (after integrating).

∫ T

0

∣∣eW(t)G(Mn) − eW(t)GM
∣∣2

H 1 dt ≤C sup
t∈[0,T ]

|Wn(t) − W(t)|2
∫ T

0
|Mn(t)|2

L2 dt

+ C

∫ T

0
|Mn(t) − M(t)|2

H 1 dt. (4.35)

Therefore adding the two inequalities (4.34), (4.35) gives

sup
t∈[0,T ]

|mn(t) − m(t)|2
L2 +

∫ T

0
|mn(t) − m(t)|2

H 1 dt

≤ C sup
t∈[0,T ]

|Wn(t) − W(t)|2 sup
t∈[0,T ]

|Mn(t)|2
L2

+ C sup
t∈[0,T ]

|Mn(t) − M(t)|2
L2

+ C sup
t∈[0,T ]

|Wn(t) − W(t)|2
∫ T

0
|Mn(t)|2

L2 dt
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+ C

∫ T

0
|Mn(t) − M(t)|2

H 1 dt. (4.36)

Since Mn converges to M in L∞(0, T : L2) ∩ L2(0, T : H 1) and Wn converges to W in
C([0, T : R]), the right hand side of the above inequality goes to 0 as n goes to infinity.
Therefore the left hand side also goes to 0 as n goes to infinity. Hence

mn → m in L∞(0, T : L2) ∩ L2(0, T : H 1). (4.37)

This concludes the proof of Theorem 4.8, thereby concluding the continuous dependence of
m on W .
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