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Abstract
The chemotaxis system{

ut = �u − χ∇ · (u|∇v|p−2∇v) + λu − μuκ,

0 = �v + u − h(u, v)
(∗)

is considered in a smoothly bounded domain � ⊂ R
n (n ∈ N), where χ > 0, p > 1, λ ≥ 0,

μ > 0, κ > 1, and h = v or h = 1
|�|

∫
�

u. It is firstly proved that if n = 1 and p > 1 is
arbitrary, or n ≥ 2 and p ∈ (1, n

n−1 ), then for all continuous initial data a corresponding no-
flux type initial-boundary value problem for (∗) admits a globally defined and bounded weak
solution. Secondly, it is shown that if n ≥ 2, � = BR(0) ⊂ R

n is a ball with some R > 0,
p > n

n−1 and κ > 1 is small enough, then one can find a nonnegative radially symmetric
function u0 and a weak solution of (∗) with initial datum u0 which blows up in finite time.
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1 Introduction

A chemotaxis system, which Keller and Segel introduced ahead of others ([16]), often
describes chemotactic aggregation phenomena as finite-time blow-up of solutions to the
system. Their trailblazing studies on modeling chemotaxis made it possible to analyze the
movement of an organism toward a higher concentration of a chemical substance mathemat-
ically, and to this date, a large variety of chemotaxis systems has been widely investigated.
Naturally, in the study of these systems, one of the mathematical interests is whether the
systems admit solutions which blow up in finite time, or solutions are global and bounded,
though, there are still many systems that such a behavior of solutions to them is unknown or
not fully investigated (cf. the survey [1]).
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In this paper we reveal global existence, boundedness and finite-time blow-up in a
chemotaxis system which was remained to be clarified. Specifically, we consider the chemo-
taxis system with flux limitation and logistic source,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = �u − χ∇ · (u|∇v|p−2∇v) + λu − μuκ, x ∈ �, t > 0,

0 = �v + u − h(u, v), x ∈ �, t > 0,

∇u · ν = ∇v · ν = 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), x ∈ �

(1.1)

in a smoothly bounded domain � ⊂ R
n (n ∈N), where χ > 0, p > 1, λ ≥ 0, μ > 0, κ > 1,

h(u, v) = v (1.2)

or

h(u, v) = 1

|�|
∫

�

u, (1.3)

ν is the outward normal vector to ∂�, and where

u0 ∈ C0(�) and u0 ≥ 0 in �. (1.4)

Herein, u stands for the population density of organisms, and v is used to describe the
concentration of a signal substance.

When p = 2, the model (1.1) turns out to be the chemotaxis-growth system,

{
ut = �u − χ∇ · (u∇v) + λu − μuκ, x ∈ �, t > 0,

0 = �v + u − h(u, v), x ∈ �, t > 0,
(1.5)

which has been studied over decades, and there are a lot of results concerning global exis-
tence, boundedness and finite-time blow-up.

In the case that h satisfies (1.2), Tello and Winkler [27] showed that classical solutions to
(1.5) are global and bounded when κ = 2 and μ > max{0, n−2

n
χ}, or κ > 2 and μ > 0. Kang

and Stevens [15] extended the result on global existence to the case μ = n−2
n

χ when n ≥ 3
and κ = 2. Similar results for parabolic–parabolic relatives of the system can be found in
[22, 30, 38], for instance.

On the other hand, in the radially symmetric case and when h satisfies (1.3), finite-time
blow-up in (1.5) was firstly detected by Winkler [31] for n ≥ 5 and 1 < κ < 3

2 + 1
2(n−1)

, and
then the result on blow-up in (1.5) with h satisfying (1.2) was also established in [35] when
n ≥ 3 as well as

1 < κ <

{
7
6 if n ∈ {3,4},
1 + 1

2(n−1)
if n ≥ 5.

(1.6)

Later on, these results were generalized to the case of nonlinear diffusion by Black et al. [4],
where they also extended the conditions in [31] to the lower-dimensional as n ≥ 3 and
1 ≤ κ < min{ 3

2 , 2(n−1)

n
}. Recently, in the case that h satisfies (1.3), Fuest [9] showed that

finite-time blow-up of solutions can occur at the origin when n ≥ 3, 1 < κ < min{2, n
2 } and
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μ > 0, or n ≥ 5, κ = 2 and μ ∈ (0, n−4
n

). In [4, 9, 35], they introduced the moment-type
functional

φ(t) =
∫ t

0
s−γ (s0 − s)w(s, t)ds,

where w is a mass accumulation function corresponding to solutions (cf. [12]), and derived
the superlinear differential inequality

φ′(t) ≥ c1φ
2(t) − c2, t > 0,

which ensures that the maximal existence time of solutions is finite. The same method was
also used to establish finite-time blow-up in other chemotaxis systems (e.g. [7, 20, 34]).

For the system with flux limitation and logistic term,{
ut = �u − χ∇ · (u(1 + |∇v|2)−α∇v) + λu − μuκ, x ∈ �, t > 0,

0 = �v + u − 1
|�|

∫
�

u(·, t), ∫
�

v(·, t) = 0, x ∈ �, t > 0,
(1.7)

Marras et al. [19] showed that in the case 0 < α < n−2
2(n−1)

, (1.7) admits finite-time blow-up

when n ≥ 3, 1 < κ < min{2,1+ (n−2)2

4 } and μ > 0, or when n ≥ 5, κ = 2, and μ > 0 is small
enough, whereas all radially symmetric solutions are global and bounded when α > n−2

2(n−1)

and κ > 1, or when α > 0 and κ > 2. We note that the case of the critical value α = n−2
2(n−1)

in
(1.7) is compatible with the case when p = n

n−1 in (1.1). Similar results for the system (1.7)
with λ = μ = 0 can be found in [37].

Now, for the system (1.1) with λ = μ = 0, boundedness of solutions was obtained by
Negreanu and Tello [21] when p > 1 (n = 1) or 1 < p < n

n−1 (n ≥ 2), whereas when h

satisfies (1.3), it was shown that finite-time blow-up occurs when p > n
n−1 (n ≥ 2) in [17,

26]. In [17], we used the technique based on the moment-type functional as in [24] and
established the framework of finite-time blow-up of weak solutions in the system (see also
[13, 23]). For parabolic–elliptic and fully parabolic variants, we refer to [14, 39]. However,
to the best of our knowledge, boundedness and blow-up results for the system (1.1) with
κ > 1 were not obtained.

Our aim of this paper is to present conditions for p and κ that weak solutions of (1.1) are
globally bounded or blow up in finite time.

Global existence and boundedness of weak solutions Before we state the main results, let
us first give a definition of weak solutions to (1.1).

Definition 1.1 Let u0 satisfy (1.4) and let T > 0. A pair (u, v) of functions is called a weak
solution of (1.1) in � × (0, T ) if

(i) u ∈ C0
w−�([0, T );L∞(�)) ∩ L2

loc([0, T );W 1,2(�)),
(ii) v ∈ L∞

loc([0, T );W 1,2(�)),
(iii) u ≥ 0 a.e. on � × (0, T ), and v ≥ 0 a.e. on � × (0, T ) if h satisfies (1.2),
(iii) |∇v|p−2∇v ∈ L2

loc(� × [0, T )),
(iv) for any ϕ ∈ C1

c (� × [0, T )),∫ T

0

∫
�

(∇u · ∇ϕ − χu|∇v|p−2∇v · ∇ϕ − (λu − μuκ)ϕ − uϕt ) =
∫

�

u0ϕ(·,0), (1.8)

∫ T

0

∫
�

∇v · ∇ϕ −
∫ T

0

∫
�

uϕ +
∫ T

0

∫
�

h(u, v)ϕ = 0.
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If (u, v) : � × (0,∞) → R
2 is a weak solution of (1.1) in � × (0, T ) for all T > 0, then

(u, v) is called a global weak solution of (1.1), or a weak solution of (1.1) in � × (0,∞).

Our first result will then be to establish global existence and boundedness of weak solu-
tions.

Theorem 1.1 Let � ⊂ R
n (n ∈ N) be a smoothly bounded domain, and let χ > 0, λ ≥ 0,

μ > 0 and κ > 1. Assume that p fulfills

⎧⎨
⎩

p > 1 if n = 1,

p ∈
(

1,
n

n − 1

)
if n ≥ 2,

(1.9)

that h satisfies (1.2) or (1.3), and that u0 satisfies (1.4). Then the problem (1.1) admits a
global weak solution (u, v), which is bounded in the sense that there exists C > 0 fulfilling

‖u(·, t)‖L∞(�) ≤ C for all t > 0. (1.10)

Remark 1.1 The precedent work in [19, Theorem 1.5] indicates that when κ > 2, it might
be able to improve the condition (1.9) as p ∈ (1,2) if n ≥ 2. However, due to singularity of
chemotactic coefficient we could not apply their proofs in our case, and it is still unknown
whether the condition (1.9) is optimal or not in the system (1.1).

Finite-time blow-up of weak solutions We next state finite-time blow-up of weak solutions
to (1.1). In this part, we let � = BR(0) ⊂ R

n (n ≥ 2) be a ball with some R > 0, and let h

satisfy (1.3). For T ∈ (0,∞] and a function u defined a.e. on � × [0, T ) which is radially
symmetric with respect to x = 0, we write u(|x|, t) instead of u(x, t) if necessary, and for
s0 ∈ (0,Rn) and γ ∈ (0,1) we define the moment-type functional as

φ(t) :=
∫ s0

0
s−γ (s0 − s)

(
w(s, t) − s

n
M(t)

)
ds for t ∈ [0, T ), (1.11)

where

w(s, t) :=
∫ s

1
n

0
σn−1u(σ, t)dσ for s ∈ [0,Rn] and t ∈ [0, T )

and

M(t) := 1

|�|
∫

�

u(·, t) for t ∈ [0, T ).

Within these settings, the second of our main results asserts that finite-time blow-up can
occur in (1.1).

Theorem 1.2 Let � = BR(0) ⊂ R
n (n ≥ 2) be a ball with some R > 0, and let χ > 0, λ ≥ 0

and μ > 0. Assume that h satisfies (1.3), and that p and κ satisfy

p >
n

n − 1
(1.12)
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as well as

1 < κ < 1 + 1

(n − 1)(p − 1)p
min

{
2 + np − n − p

n
,

p(np − n − p)

n(p − 1)

}
. (1.13)

Then for all L > 0 and m > 0, one can find m0 ∈ (0,m) and r0 ∈ (0,R) with the following
property: Whenever u0 satisfies (1.4) and

u0 is radially symmetric with respect to x = 0, (1.14)

and is such that

1

|Br(0)|
∫

Br (0)

u0 ≥ 1

|�|
∫

�

u0 for all r ∈ (0,R) (1.15)

as well as

u0(x) ≤ L|x|−n(n−1)(p−1) for all x ∈ � (1.16)

and ∫
�

u0 = m but
∫

Br0 (0)

u0 ≥ m0, (1.17)

there exist Tmax ∈ (0,∞] and a weak solution (u, v) of (1.1) in �× (0, Tmax), which satisfies

φ(t) − φ(0) ≥ Cs
−3+3(2−p)− 2−p

n +(p−1)γ

0

∫ t

0
φp(τ) dτ − Cs

3−γ−θ

0 t (1.18)

for all t ∈ (0,min{1, Tmax}) with some s0 ∈ (0,Rn), γ ∈ (0,1), θ ∈ (0,2) and C ≥ 0, and
moreover, if C > 0, then (u, v) blows up in finite time in the sense that Tmax < ∞ and

lim sup
t↗Tmax

‖u(·, t)‖L∞(�) = ∞. (1.19)

Remark 1.2 We note that in Theorem 1.2, if (u, v) is a classical solution of (1.1) in
� × (0, Tmax), then we can apply the same arguments as in Sect. 4 to obtain the moment
inequality (1.18) for (u, v) with C > 0 directly, which ensures that Tmax < ∞ and (1.19)
holds.

It might be possible to show that for any weak solutions of (1.1) the inequality (1.18)
holds with C > 0, by choosing a suitable test function in (1.8) to construct the moment
inequality for weak solutions directly. We plan to continue working on this in future.

Remark 1.3 When p = 2, the condition (1.13) can be reduced to (1.6), however, our method
could not reach the better conditions as in [4, 9]. One of the main causes is the fact that the
inequality ur ≤ 0 does not hold in our case, which makes a pointwise estimate for u different
from the previous papers (see Lemma 4.8 for a more precise statement).

Plan of the paper The main part of our analysis in both boundedness and finite-time blow-up
will be considering the regularized problem of (1.1), and establishing global boundedness or
a moment inequality for approximate solutions (uε, vε). Then we construct a weak solution
(u, v) by approximation, and show that the same boundedness/blow-up properties are also
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valid for (u, v). Noting that the maximal existence time of (uε, vε) depends on the parameter
ε, first we will find the time T > 0 such that for any parameters ε the approximate solution
(uε, vε) exists in � × (0, T ) (Lemma 2.5).

Global existence and boundedness in (1.1) (Theorem 1.1) can be achieved by deriving a
uniform bound for ‖uε(·, t)‖L∞(�) on (0,∞) (Lemma 3.2).

To prove finite-time blow-up (Theorem 1.2), we construct a suitable moment-type func-
tional for approximate solutions by following the pioneering works in [37]. Then we gen-
eralize the techniques in [35] to the flux limitation case (Lemmas 4.8 and 4.9), and derive
a superlinear differential inequality for its functional. The arguments for blow-up of weak
solutions are based on [24].

This paper is organized as follows. In Sect. 2 we show existence of weak solutions on
�× (0, T ) for some T > 0. Section 3 is devoted to the proof of Theorem 1.1, which ensures
global existence and boundedness of weak solutions in (1.1). Finally, under the radially
symmetric setting, in Sect. 4 we prove Theorem 1.2, establishing finite-time blow-up of
weak solutions to (1.1).

2 Existence of Weak Solutions

Throughout this section, we fix a smoothly bounded domain � ⊂ R
n (n ∈ N) and u0 satis-

fying (1.4). The function h is assumed to satisfy (1.2) or (1.3).
We shall show existence of weak solutions to (1.1) in � × (0, T ) with some T > 0,

which we will achieve by considering a regularized problem and constructing solutions of
(1.1) through an approximation procedure.

Let us start by modifying the term −χ∇ · (u|∇v|p−2∇v) in the first equation therein
to another term which has no singularity. Accordingly, for ε ∈ (0,1) we shall consider the
regularized problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(uε)t = �uε − χ∇ · (uε(|∇vε|2 + ε)
p−2

2 ∇vε) + λuε − μuκ
ε , x ∈ �, t > 0,

0 = �vε + uε − h(uε, vε), x ∈ �, t > 0,

∇uε · ν = ∇vε · ν = 0, x ∈ ∂�, t > 0,

uε(x,0) = u0(x), x ∈ �.

(2.1)

In particular, in the case that h satisfies (1.3), for each ε ∈ (0,1) we consider the problem
(2.1) with ∫

�

vε(·, t) = 0, t > 0. (2.2)

A theory for local existence in (2.1) can be obtained by a standard fixed point argument
and regularity theory (see e.g. [8, Lemma 1.2] or [27, Theorem 2.1]). We record the basic
statement without proof.

Lemma 2.1 Let χ > 0, p > 1, λ ≥ 0, μ > 0 and κ ≥ 1. Then for each ε ∈ (0,1) there exist
Tmax,ε ∈ (0,∞] and uniquely determined functions

uε ∈ C0(� × [0, Tmax,ε)) ∩ C2,1(� × (0, Tmax,ε)) and

vε ∈
⋂
q>n

L∞
loc([0, Tmax,ε);W 1,q (�)) ∩ C2,0(� × (0, Tmax,ε))

(2.3)
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such that (uε, vε) solves (2.1) in the classical sense in � × (0, Tmax,ε), that fulfills (2.2) in
the case that h satisfies (1.3), and that

if Tmax,ε < ∞, then lim sup
t↗Tmax,ε

‖uε(·, t)‖L∞(�) = ∞. (2.4)

Moreover, uε ≥ 0 in � × (0, Tmax,ε), and additionally, vε ≥ 0 in � × (0, Tmax,ε) if h satisfies
(1.2). Furthermore, if � = BR(0) with some R > 0 and u0 is radially symmetric with respect
to x = 0, then also uε(·, t) and vε(·, t) are radially symmetric with respect to x = 0 for each
t ∈ (0, Tmax,ε).

In the sequel, for each ε ∈ (0,1) we let Tmax,ε and (uε, vε) be as accordingly provided by
Lemma 2.1.

We next recall boundedness of ‖uε(·, t)‖L1(�), which is important as usual and will be
used frequently throughout the paper.

Lemma 2.2 Let λ ≥ 0, μ > 0 and κ > 1. For any ε ∈ (0,1), uε satisfies

∫
�

uε(·, t) ≤ M1 := max

{∫
�

u0,

(
λ

μ

) 1
κ−1 |�|

}
for all t ∈ (0, Tmax,ε).

Proof Using the first equation in (2.1) along with the Hölder inequality, we see that

d

dt

∫
�

u ≤ λ

∫
�

u − μ|�|1−κ

(∫
�

u

)κ

in (0, Tmax,ε) for all ε ∈ (0,1). An ODE comparison argument hence proves the claim. �

Aiming to construct weak solutions of (1.1), we first have to ensure the existence of T > 0
such that for every ε ∈ (0,1), the system (2.1) admits a classical solution in �× (0, T ). This
is sufficient to find T > 0 and K > 0 such that

T ≤ Tmax,ε and ‖uε(·, t)‖L∞(�) ≤ K for all t ∈ (0, T ) and ε ∈ (0,1). (2.5)

In order to show this, let us first state the lemma which gives an estimate for ∇vε .

Lemma 2.3 Let ε ∈ (0,1), λ ≥ 0, μ > 0, κ > 1, q > n and T ∈ (0,∞]. Assume that there is
M̃ > 0 such that

sup
t∈(0,T )

‖uε(·, t)‖Lq(�) ≤ M̃.

Then there exists L = L(�,q,M1, M̃) > 0 such that

sup
t∈(0,T )

‖vε(·, t)‖W1,∞(�) ≤ L.

Proof With the aid of Lemma 2.2, this can be shown similarly in [17, Lemma 2.2]. �

Before deriving (2.5) we show the next key lemma, which implies that for q > n, the
function t �→ ‖uε(·, t)‖Lq(�) is uniformly bounded on some time interval with respect to ε.
The idea of the proof is based on [11, Lemma 2.4] (see also [17, Lemma 2.3]).
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Lemma 2.4 Let χ > 0, p > 1, λ ≥ 0, μ > 0, κ > 1 and q > n. Then there exists Tq > 0 such
that

Tq ≤ Tmax,ε and ‖uε(·, t)‖q

Lq (�) ≤ ‖u0‖q

Lq (�) + 1 for all t ∈ [0, Tq) and ε ∈ (0,1).

(2.6)

Proof For ε ∈ (0,1) we put

τε := sup{τ ∈ (0, Tmax,ε) | ‖uε(·, t)‖q

Lq (�) ≤ c1 := ‖u0‖q

Lq (�) + 1 for all t ∈ (0, τ )}, (2.7)

which is positive due to (2.3). We infer from (2.7) that

‖uε(·, t)‖q

Lq (�) ≤ c1 for all t ∈ (0, τε) and ε ∈ (0,1), (2.8)

whence Lemma 2.3 provides a constant c2 = c2(�,q,M1, c1) > 0 such that

‖∇vε(·, t)‖L∞(�) ≤ c2 for all t ∈ (0, τε) and ε ∈ (0,1). (2.9)

For each ε ∈ (0,1), it suffices to consider the cases τε = Tmax,ε = ∞, and τε < Tmax,ε with
‖uε(·, τε)‖q

Lq (�) = c1. Indeed, if τε = Tmax,ε < ∞, then by the Moser iteration technique
(cf. [25]) there is K > 0 such that

‖uε(·, t)‖L∞(�) ≤ K for all t ∈ (0, Tmax,ε),

which contradicts (2.4).
First, in the case that τε = Tmax,ε = ∞, let us choose any T̃q > 0. Then from (2.8), we

find that

T̃q ≤ Tmax,ε and ‖uε(·, t)‖q

Lq (�) ≤ ‖u0‖q

Lq (�) + 1 for all t ∈ [0, T̃q). (2.10)

Next, in the case when τε < Tmax,ε with ‖uε(·, τε)‖q

Lq (�) = c1, we see on testing the first
equation of (2.1) by uq−1

ε in conjunction with the Young inequality and μ > 0 that

1

q

d

dt

∫
�

uq
ε = −(q − 1)

∫
�

uq−2
ε |∇uε|2 + χ(q − 1)

∫
�

uq−1
ε (|∇vε|2 + ε)

p−2
2 ∇vε · ∇uε

+ λ

∫
�

uq
ε − μ

∫
�

uq+κ−1
ε

= −4(q − 1)

q2

∫
�

|∇u
q
2
ε |2 + 2χ(q − 1)

q

∫
�

u
q
2
ε (|∇vε|2 + ε)

p−2
2 ∇vε · ∇u

q
2
ε

+ λ

∫
�

uq
ε − μ

∫
�

uq+κ−1
ε

≤ −4(q − 1)

q2

∫
�

|∇u
q
2
ε |2 + q − 1

q2

∫
�

|∇u
q
2
ε |2

+ χ2(q − 1)

∫
�

uq
ε (|∇vε|2 + ε)p−2|∇vε|2 + λ

∫
�

uq
ε

≤ −3(q − 1)

q2

∫
�

|∇u
q
2
ε |2 + χ2(q − 1)

∫
�

uq
ε (|∇vε|2 + 1)p−1 + λ

∫
�

uq
ε (2.11)
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in (0, Tmax,ε), where in the last inequality we also used the facts that ε ∈ (0,1) and p > 1.
We combine (2.11) with (2.8) and (2.9) to estimate

d

dt

∫
�

uq
ε ≤ χ2q(q − 1)c1(c

2
2 + 1)p−1 + λqc1 =: c3 in (0, τε).

Integrating this over (0, τε) shows that

c1 − ‖u0‖q

Lq (�) ≤ c3τε

and that hence

1

c3
≤ τε.

Therefore, if we choose T̃q > 0 such that T̃q ≤ 1
c3

, we obtain (2.10).

Noting that the time T̃q is independent of ε in both cases, we thus conclude that (2.6)
holds with Tq := 1

c3
. �

With the above preparations at hand, we can show the existence of T > 0 and K > 0 that
satisfy (2.5) by using the generalized Moser iteration technique (see [25, Appendix A]).

Lemma 2.5 Let χ > 0, p > 1, λ ≥ 0, μ > 0 and κ > 1. Then there exist T0 > 0, K0 > 0 and
L0 > 0 such that

T0 ≤ Tmax,ε, ‖uε(·, t)‖L∞(�) ≤ K0 and ‖vε(·, t)‖W1,∞(�) ≤ L0 (2.12)

for all t ∈ (0, T0) and ε ∈ (0,1).

Proof Using Lemmas 2.3 and 2.4 as well as [25, Lemma A.1], this can be obtained in the
same way as in [17, Lemma 2.4]. �

In the remaining part of this section, we aim to construct weak solutions of (1.1). To this
end, we further give some estimates when there exist T ∈ (0,∞] and constants K,L > 0
such that

T ≤ Tmax,ε, ‖uε(·, t)‖L∞(�) ≤ K and ‖vε(·, t)‖W1,∞(�) ≤ L (2.13)

hold for all t ∈ (0, T ) and ε ∈ (0,1).

Lemma 2.6 Let χ > 0, p > 1, λ ≥ 0, μ > 0 and κ > 1. Assume that there are T > 0, K > 0
and L > 0 such that (2.13) holds for all t ∈ (0, T ) and ε ∈ (0,1). Then there exists a constant
C = C(T ) > 0 such that

‖∇uε‖2
L2(0,T ;L2(�))

≤ C for all ε ∈ (0,1).

Proof Invoking the differential inequality (2.11) with q = 2, we readily have the claim by
the same arguments as in [17, Lemma 2.5]. �

The next lemma will also be used in Sect. 3 to construct global weak solutions of (1.1).
We note that unlike in Lemma 2.6, here we can treat the case T = ∞.
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Lemma 2.7 Suppose that u0 satisfies (1.4), and let χ > 0, p > 1, λ ≥ 0, μ > 0 and κ > 1.
Assume that there exist T ∈ (0,∞], K > 0 and L > 0 such that (2.13) holds for all t ∈ (0, T )

and ε ∈ (0,1). Then there is C > 0 such that

‖(uε)t (·, t)‖(W
2,2
0 (�))�

≤ C for all t ∈ (0, T ) and ε ∈ (0,1). (2.14)

In particular, we have

‖uε(·, t1) − uε(·, t2)‖(W
2,2
0 (�))�

≤ C|t1 − t2| for all t1, t2 ∈ [0, T ) and ε ∈ (0,1). (2.15)

Proof Both the estimate (2.14) and the property (2.15) can be established in the same way
as in [17, Lemma 2.6]. �

We are now in a position to show that there exist weak solutions of (1.1) in � × (0, T )

with some T > 0.

Lemma 2.8 Suppose that u0 satisfies (1.4), and let χ > 0, p > 1, λ ≥ 0, μ > 0 and κ > 1.
Assume that there exist T > 0, K > 0 and L > 0 such that (2.13) is valid for all t ∈ (0, T )

and ε ∈ (0,1). Then there exist a sequence (εj )j∈N ⊂ (0,1) with εj ↘ 0 as j → ∞ and
functions u, v fulfilling

u ∈ L∞(0, T ;L∞(�)) ∩ L2(0, T ;W 1,2(�)) ∩ C0
w−�([0, T );L∞(�)), (2.16)

v ∈ L∞(0, T ;W 1,∞(�)) and (2.17)

|∇v|p−2∇v ∈ L2(� × (0, T )) (2.18)

such that

uεj

�
⇀ u in L∞(0, T ;L∞(�)), (2.19)

uεj
→ u a.e. in � × (0, T ), (2.20)

uεj
→ u in C0

loc([0, T ); (W 2,2
0 (�))�), (2.21)

∇uεj
⇀ ∇u in L2(0, T ;L2(�)), (2.22)

vεj

�
⇀ v in L∞(0, T ;L∞(�)), (2.23)

vεj
→ v a.e. in � × (0, T ), (2.24)

∇vεj

�
⇀ ∇v in L∞(0, T ;L∞(�)), (2.25)

∇vεj
→ ∇v a.e. in � × (0, T ) and (2.26)

(|∇vεj
|2 + εj )

p−2
2 ∇vεj

→ |∇v|p−2∇v in L2(� × (0, T )) (2.27)

as j → ∞, and that (u, v) is a weak solution of (1.1) in � × (0, T ).

Proof Thanks to Lemmas 2.6 and 2.7, as in the proof of [17, Lemma 2.7] we can find a
sequence (εj )j∈N ⊂ (0,1) and functions u, v such that (2.16), (2.17), (2.19), (2.21), (2.22),
(2.23) and (2.25) holds. In addition, the property (2.18) results from (2.17).
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We will show (2.20). By (2.13) and Lemma 2.6, we see that

(uεj
)j ⊂ L2(0, T ;W 1,2(�)),

whereas Lemma 2.7 implies that

((uεj
)t )j ⊂ L∞(0, T ; (W 2,2

0 (�))�).

An application of the Aubin–Lions lemma ([28, Theorem III.2.3]) therefore enables us to
extract a subsequence, still denoted by (εj )j∈N, and to find ξ ∈ L2(0, T ;L2(�)) such that

uεj
→ ξ in L2(0, T ;L2(�)) as j → ∞. (2.28)

This together with (2.19) entails ξ = u. In view of (2.28), along a suitable subsequence we
can furthermore achieve (2.20).

We next prove (2.24) and (2.26). Fixing ϕ ∈ C1
c (�×[0, T )), we test the second equation

of (2.1) by ϕ to obtain

∫ T

0

∫
�

∇vεj
· ∇ϕ −

∫ T

0

∫
�

uεj
ϕ +

∫ T

0

∫
�

h(uεj
, vεj

)ϕ = 0 for all j ∈N. (2.29)

By virtue of (2.23) or (2.19), we see that whenever h satisfies (1.2) or (1.3),

h(uεj
, vεj

)
�

⇀ h(u, v) in L∞(0, T ;L∞(�)) as j → ∞. (2.30)

From (2.29) we infer on letting j → ∞ and taking into account (2.19), (2.25) and (2.30)
that ∫ T

0

∫
�

∇v · ∇ϕ −
∫ T

0

∫
�

uϕ +
∫ T

0

∫
�

h(u, v)ϕ = 0

holds. In particular, we have

∫
�

∇v · ∇ϕ̃ −
∫

�

uϕ̃ +
∫

�

h(u, v)ϕ̃ = 0 a.e. in (0, T )

for all ϕ̃ ∈ W
1,2
0 (�). This together with standard elliptic regularity theory and (2.28) war-

rants that

vεj
→ v in L2(0, T ;W 1,2(�)) as j → ∞. (2.31)

Thanks to (2.31), extracting a suitable subsequence we obtain (2.24) and (2.26).
Convergence (2.27) results from (2.26) and the Lebesgue convergence theorem. Finally,

we argue similarly in [17, Lemma 2.7] to conclude that (u, v) is indeed a weak solution of
(1.1) in � × (0, T ). �

Remark 2.1 If we argue similarly in Lemma 2.8 with uε and vε respectively replaced with
uεj

and vεj
for a sequence (εj )j∈N, we can find a subsequence of (εj )j∈N and functions u, v

such that the assertion of Lemma 2.8 remains true for the subsequence and the functions.



7 Page 12 of 31 S. Kohatsu

3 Global Existence and Boundedness

In this section we shall consider the system (1.1) under the hypothesis that � ⊂ R
n (n ∈ N)

is a smoothly bounded domain and u0 satisfies (1.4). We also assume that h satisfies (1.2)
or (1.3).

This section is devoted to proving Theorem 1.1, which asserts global existence and
boundedness in (1.1). As a first step, we derive an Lθ -estimate for ∇vε with some θ ≥ 1.

Lemma 3.1 Let λ ≥ 0, μ > 0 and κ > 1. Then for any θ satisfying

⎧⎨
⎩

θ ≥ 1 if n = 1,

θ ∈
[

1,
n

n − 1

)
if n ≥ 2,

(3.1)

there exists C > 0 such that

‖∇vε(·, t)‖Lθ (�) ≤ C for all t ∈ (0, Tmax,ε) and ε ∈ (0,1). (3.2)

Proof We fix θ satisfying (3.1). In the case that h satisfies (1.2), [5, Lemma 23] provides
C > 0 such that

‖∇vε(·, t)‖Lθ (�) ≤ C‖uε(·, t)‖L1(�) for all t ∈ (0, Tmax,ε) and ε ∈ (0,1). (3.3)

Thanks to Lemma 2.2, this immediately implies (3.2).
When h fulfills (1.3), by virtue of [6, Theorem 2.8 and Lemma 2.5] we can also find

C > 0 such that (3.3) holds, and hence we proceed as above to obtain (3.2). �

As a consequence of Lemma 3.1 we shall acquire boundedness of uε in L∞(�), which
will be one of the important ingredients to prove Theorem 1.1.

Lemma 3.2 Let χ > 0, λ ≥ 0, μ > 0 and κ > 1. Suppose that p satisfies (1.9). Then there
exists C > 0 such that

‖uε(·, t)‖L∞(�) ≤ C for all t ∈ (0, Tmax,ε) and ε ∈ (0,1). (3.4)

In particular, we have

Tmax,ε = ∞ for all ε ∈ (0,1). (3.5)

Proof As p satisfies (1.9), Lemma 3.1 asserts the existence of q > n and c1 > 0 such that

abbreviating Pε(·, t) := −χ(|∇vε(·, t)|2 + ε)
p−2

2 ∇vε(·, t) for t ∈ (0, Tmax,ε) and ε ∈ (0,1),
we have

‖Pε(·, t)‖Lq (�) ≤ c1 for all t ∈ (0, Tmax,ε) and ε ∈ (0,1). (3.6)

Since uε satisfies

(uε)t ≤ �uε + ∇ · (uεPε) + c2
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in � × (0, Tmax,ε) for all ε ∈ (0,1) with c2 := λ( λ
μκ

)
1

κ−1 + 1 > 0, invoking semigroup esti-
mates for the Neumann heat semigroup (cf. [29, Lemma 1.3]) together with Lemma 2.2 and
(3.6), we find ι ∈ (0,1) and c3 = c3(‖u0‖L∞(�), c1, c2,M1, ι) > 0 such that

uε(·, t) ≤
∥∥∥∥et�u0 +

∫ t

0
e(t−s)�∇ · (uε(·, s)Pε(·, s))ds +

∫ t

0
e(t−s)�c2 ds

∥∥∥∥
L∞(�)

≤ c3 + c3 sup
τ∈(0,t)

‖uε(·, τ )‖ι
L∞(�)

for all t ∈ (0, Tmax,ε) and ε ∈ (0,1). By nonnegativity of uε , we conclude that (3.4) and (3.5)
hold. �

Let us close this section by showing existence of global bounded weak solutions to (1.1).

Proof of Theorem 1.1 Noting that uε is continuous on � × [0,∞), we see from Lemma 3.2
that the function t �→ uε(·, t) is measurable as L∞(�)-valued function, and there exists
K > 0 such that

‖uε‖L∞(0,∞;L∞(�)) ≤ K for all ε ∈ (0,1), (3.7)

whence Lemma 2.3 applies so as to ensure the existence of L = L(�,n,M1,K) > 0 such
that

‖vε‖L∞(0,∞;W1,∞(�)) ≤ L for all ε ∈ (0,1). (3.8)

In view of (3.7), (3.8) and Lemma 2.7, an extraction procedure on the basis of the Arzelà–
Ascoli theorem enable us to obtain a sequence (εj )j∈N ⊂ (0,1) with εj ↘ 0 as j → ∞, as
well as functions

u ∈ L∞(0,∞;L∞(�)) and v ∈ L∞(0,∞;W 1,∞(�))

such that

uεj

�
⇀ u in L∞(0,∞;L∞(�)), (3.9)

uεj
→ u in C0

loc([0,∞); (W 2,2
0 (�))�), (3.10)

vεj

�
⇀ v in L∞(0,∞;L∞(�)) and (3.11)

∇vεj

�
⇀ ∇v in L∞(0,∞;L∞(�)) (3.12)

as j → ∞. We claim that (u, v) is a global weak solution of (1.1).
To verify this, we fix an arbitrary T > 0. According to (3.7) and (3.8), we infer from

Lemma 2.8 and Remark 2.1 that there exist a subsequence, still denoted by (εj )j∈N, and
functions ũ, ṽ such that

uεj

�
⇀ ũ in L∞(0, T ;L∞(�)), (3.13)

vεj

�
⇀ ṽ in L∞(0, T ;L∞(�)) and (3.14)

∇vεj

�
⇀ ∇ṽ in L∞(0, T ;L∞(�)) (3.15)
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as j → ∞, and that (̃u, ṽ) is a weak solution of (1.1) in � × (0, T ). According to (3.9) and
(3.13), we observe that ũ = u in L∞(0, T ;L∞(�)). Similarly, from (3.11), (3.12), (3.14)
and (3.15) we deduce that ṽ = v in L∞(0, T ;W 1,∞(�)). In consequence, these would show
that (u, v) is a weak solution of (1.1) in � × (0, T ) for all T > 0, and that hence the claim
holds.

Thereupon, boundedness of u as in (1.10) results from (3.7), (3.9) and (3.10) in the same
way as detailed in [18, Theorem 1.2] (see also [33, Lemma 4.2]). �

4 Finite-Time Blow-up

We henceforth assume n ≥ 2 and � := BR(0) ⊂ R
n for some R > 0. We also suppose that

u0 satisfies (1.4) and (1.14), and that h satisfies (1.3).
The goal of this section will be to establish the integrated version of moment inequality

(1.18) and to finally prove Theorem 1.2, which ensures existence of weak solutions to (1.1)
that could blow up in finite time.

The main part of our analysis will be focused on deriving a moment inequality for ap-
proximate solutions. We note that since u0 is radially symmetric with respect to x = 0, by
Lemma 2.1 we observe that for every ε ∈ (0,1), the functions uε(·, t) and vε(·, t) are also
radially symmetric with respect to x = 0 for each t ∈ (0, Tmax,ε).

4.1 Moment-Type Functional for Approximate Solutions

Following [12], for each ε ∈ (0,1) we define the mass accumulation function

wε(s, t) :=
∫ s

1
n

0
σn−1uε(σ, t)dσ for s ∈ [0,Rn] and t ∈ [0, Tmax,ε).

Since uε is nonnegative for any ε ∈ (0,1), it follows that

(wε)s(s, t) = 1

n
uε(s

1
n , t) ≥ 0 for all s ∈ (0,Rn), t ∈ (0, Tmax,ε) and ε ∈ (0,1). (4.1)

Moreover, for all ε ∈ (0,1) the function wε transforms (2.1) into the Dirichlet problem

(wε)t = n2s2− 2
n (wε)ss

+ nχ
(
wε − s

n
Mε(t)

)
(wε)s

(
s

2
n −2

(
wε − s

n
Mε(t)

)2 + ε

) p−2
2

+ λwε − nκ−1μ

∫ s

0
(wε)

κ
s (ξ, t)dξ, s ∈ (0,Rn), t ∈ (0, Tmax,ε), (4.2)

wε(0, t) = 0, wε(R
n, t) = Rn

n
Mε(t), t ∈ (0, Tmax,ε), (4.3)

wε(s,0) = w0(s) :=
∫ s

1
n

0
σn−1u0(σ )dσ, s ∈ (0,Rn), (4.4)

where

Mε(t) := 1

|�|
∫

�

uε(·, t) for t ∈ [0, Tmax,ε) and ε ∈ (0,1). (4.5)
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The next lemma is important in constructing a moment-type functional for approximate
solutions. The idea is based on [37, Lemma 3.1], in which they considered the system (1.7)
with λ = μ = 0.

Lemma 4.1 Let χ > 0, p > 1, λ ≥ 0, μ > 0 and κ > 1. Suppose that u0 satisfies (1.4), (1.14)
and (1.15). Then

wε(s, t) ≥ s

n
Mε(t) for all s ∈ (0,Rn), t ∈ (0, Tmax,ε) and ε ∈ (0,1).

Proof For ε ∈ (0,1) we put

wε(s, t) := s

n
Mε(t) for s ∈ [0,Rn] and t ∈ [0, Tmax,ε). (4.6)

Then we obtain from (4.5) and (2.1) that

(wε)t (s, t) = s

n|�|
(

λ

∫
�

uε(·, t) − μ

∫
�

uκ
ε (·, t)

)
(4.7)

for all s ∈ (0,Rn), t ∈ (0, Tmax,ε) and ε ∈ (0,1), whereas we deduce from (4.6) and (4.5)
that

λ(wε)(s, t) − nκ−1μ

∫ s

0
(wε)

κ
s (ξ, t)dξ

= λs

n|�|
∫

�

uε(·, t) − µs

n|�|κ
(∫

�

uε(·, t)
)κ

(4.8)

for all s ∈ (0,Rn), t ∈ (0, Tmax,ε) and ε ∈ (0,1). Furthermore, (4.6) implies that

(wε)ss(s, t) = 0 and wε(s, t) − s

n
Mε(t) = 0 (4.9)

for all s ∈ (0,Rn), t ∈ (0, Tmax,ε) and ε ∈ (0,1). In light of (4.7), (4.8), (4.9) and the Hölder
inequality, we thus see that

(wε)t − n2s2− 2
n (wε)ss

− nχ
(
wε − s

n
Mε(t)

)
(wε)s

(
s

2
n −2

(
wε − s

n
Mε(t)

)2 + ε

) p−2
2

−
(

λwε − nκ−1μ

∫ s

0
(wε)

κ
s (ξ, t)dξ

)

= µs

n|�|κ
(∫

�

uε(·, t)
)κ

− µs

n|�|
∫

�

uκ
ε (·, t)

≤ 0

for all s ∈ (0,Rn), t ∈ (0, Tmax,ε) and ε ∈ (0,1). In addition, wε satisfies

wε(0, t) = 0 and wε(R
n, t) = Rn

n
Mε(t)
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for all t ∈ (0, Tmax,ε) and ε ∈ (0,1). Besides, the assumption (1.15) allows us to derive

w0(s) = s

n

1

|B
s

1
n
(0)|

∫
B

s
1
n

(0)

u0 ≥ s

n

1

|�|
∫

�

u0 = wε(s,0)

for all s ∈ (0,Rn) and ε ∈ (0,1). As a consequence, an application of a comparison principle
(cf. [3, Lemma 5.1]) to (4.2), (4.3) and (4.4) yields the result. �

By virtue of Lemma 4.1, under the assumption (1.15), for any ε ∈ (0,1) the function zε

defined as

zε(s, t) := wε(s, t) − s

n
Mε(t) for s ∈ [0,Rn] and t ∈ [0, Tmax,ε) (4.10)

is nonnegative on (0,Rn) × (0, Tmax,ε). Moreover, we infer from (4.2) and (4.7) that for any
ε ∈ (0,1) the function zε satisfies

(zε)t = n2s2− 2
n (zε)ss + nχzε(wε)s(s

2
n −2z2

ε + ε)
p−2

2 + λwε

− nκ−1μ

∫ s

0
(wε)

κ
s (ξ, t)dξ

− s

n|�|
(

λ

∫
�

uε(·, t) − μ

∫
�

uκ
ε (·, t)

)
(4.11)

for all s ∈ (0,Rn) and t ∈ (0, Tmax,ε). In accordance with the results, let us introduce the
moment-type functional for approximate solutions similar as in [17, 37], namely, for ε ∈
(0,1), s0 ∈ (0,Rn) and γ ∈ (0,1) we define

φε(t) :=
∫ s0

0
s−γ (s0 − s)zε(s, t)ds for t ∈ [0, Tmax,ε). (4.12)

We note that in light of Lemma 2.1, for any ε ∈ (0,1) the property

φε ∈ C0([0, Tmax,ε)) ∩ C1((0, Tmax,ε))

holds.

Lemma 4.2 Let χ > 0, p > 1, λ ≥ 0, μ > 0 and κ ≥ 1. Then for all ε ∈ (0,1), s0 ∈ (0,Rn)

and γ ∈ (0,1), the function φε as in (4.12) satisfies the inequality

φ′
ε(t) ≥ n2

∫ s0

0
s2− 2

n −γ (s0 − s)(zε)ss(s, t)ds

+ nχ

∫ s0

0
s−γ (s0 − s)zε(s, t)(wε)s(s, t)(s

2
n −2z2

ε(s, t) + ε)
p−2

2 ds

− nκ−1μ

∫ s0

0
s−γ (s0 − s)

(∫ s

0
(wε)

κ
s (ξ, t)dξ

)
ds

− λ

n|�|
(

1

2 − γ
− 1

3 − γ

)
s

3−γ

0

∫
�

uε(·, t)

=: I1,ε(t) + I2,ε(t) + I3,ε(t) + I4,ε(t) (4.13)

for all t ∈ (0, Tmax,ε).
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Proof According to (4.11), we have

φ′
ε(t) = n2

∫ s0

0
s2− 2

n −γ (s0 − s)(zε)ss(s, t)ds

+ nχ

∫ s0

0
s−γ (s0 − s)zε(s, t)(wε)s(s, t)(s

2
n −2z2

ε(s, t) + ε)
p−2

2 ds

+ λ

∫ s0

0
s−γ (s0 − s)wε(s, t)ds

− nκ−1μ

∫ s0

0
s−γ (s0 − s)

(∫ s

0
(wε)

κ
s (ξ, t)dξ

)
ds

− 1

n|�|
(

λ

∫
�

uε(·, t) − μ

∫
�

(uε)
κ(·, t)

)∫ s0

0
s1−γ (s0 − s)ds (4.14)

for all t ∈ (0, Tmax,ε), ε ∈ (0,1), s0 ∈ (0,Rn) and γ ∈ (0,1). Furthermore, for all s0 ∈ (0,Rn)

and γ ∈ (0,1) we compute∫ s0

0
s1−γ (s0 − s)ds =

(
1

2 − γ
− 1

3 − γ

)
s

3−γ

0 (4.15)

Inserting (4.15) into (4.14), and in view of the fact that λ ≥ 0 and μ > 0, we arrive at the
conclusion. �

4.2 Estimating the Term I2,ε in (4.13)

Our derivation begins with giving estimates for the second integral on the right of (4.13),
which arises from the chemotactic term. The idea of the estimations for I2,ε is based on
[37], however, in order to construct moment solutions of (1.1), we have to estimate this term
uniformly with respect to ε ∈ (0,1). The next lemma makes it possible to deal with the term
independently of ε ∈ (0,1).

Lemma 4.3 Let χ > 0 and p > 1. Suppose that u0 satisfies (1.4), (1.14) and (1.15). Then for
any ε ∈ (0,1), s0 ∈ (0,Rn), γ ∈ (0,1) and β ∈ (0,1],

I2,ε(t) ≥ nχ

∫ s0

0
s(1− 1

n )(2−p)−γ (s0 − s)zp−1
ε (s, t)(wε)s(s, t)ds

− nχ(2 − p)+
2β

∫ s0

0
s(1− 1

n )(2−p+2β)−γ (s0 − s)zp−1−2β
ε (s, t)(zε)s(s, t)ds

− χ(2 − p)+
2β

Mε(t)

∫ s0

0
s(1− 1

n )(2−p+2β)−γ (s0 − s)zp−1−2β
ε (s, t)ds

=: J1,ε(t) − J2,ε(t) − J3,ε(t) (4.16)

for all t ∈ (0, Tmax,ε), where (2 − p)+ := max{0,2 − p}.

Proof We first consider the case when p ∈ (1,2). Then we observe that

(s
2
n −2z2

ε(s, t) + ε)
p−2

2 ≥ (s
2
n −2z2

ε(s, t) + 1)
p−2

2 (4.17)
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for all s ∈ (0,Rn), t ∈ (0, Tmax,ε) and ε ∈ (0,1), whence

I2,ε(t) ≥ nχ

∫ s0

0
s−γ (s0 − s)zε(s, t)(wε)s(s, t)(s

2
n −2z2

ε(s, t) + 1)
p−2

2 ds (4.18)

for all t ∈ (0, Tmax,ε), ε ∈ (0,1), s0 ∈ (0,Rn) and γ ∈ (0,1). Fixing β ∈ (0,1], and using the
inequality (1 + ξ)−α ≥ 1 − α

β
ξβ for all α > 0 and ξ ≥ 0 (cf. [37, Lemma 3.4]), we further

compute∫ s0

0
s−γ (s0 − s)zε(s, t)(wε)s(s, t)(s

2
n −2z2

ε(s, t) + 1)
p−2

2 ds

=
∫ s0

0
s(1− 1

n )(2−p)−γ (s0 − s)zp−1
ε (s, t)(wε)s(s, t)(1 + s2− 2

n z−2
ε (s, t))− 2−p

2 ds

≥
∫ s0

0
s(1− 1

n )(2−p)−γ (s0 − s)zp−1
ε (s, t)(wε)s(s, t)ds

− 2 − p

2β

∫ s0

0
s(1− 1

n )(2−p+2β)−γ (s0 − s)zp−1−2β
ε (s, t)(wε)s(s, t)ds (4.19)

for all t ∈ (0, Tmax,ε), ε ∈ (0,1), s0 ∈ (0,Rn) and γ ∈ (0,1). Moreover, we infer from (4.10)
that

(wε)s(s, t) = (zε)s(s, t) + 1

n
Mε(t) for all s ∈ (0,Rn), t ∈ (0, Tmax,ε) and ε ∈ (0,1).

(4.20)

Combining (4.18) with (4.19) and (4.20), we obtain (4.16).
Now, we can also obtain (4.16) in the complementary case p ≥ 2, by using the estimate

(s
2
n −2z2

ε(s, t) + ε)
p−2

2 ≥ s(1− 1
n )(2−p)zp−2

ε (s, t)

for all s ∈ (0,Rn), t ∈ (0, Tmax,ε) and ε ∈ (0,1), instead of (4.17) in (4.18). �

Next, we give an estimate for J1,ε .

Lemma 4.4 Let χ > 0, and let p > 1 and γ ∈ (0,1) be such that

γ >

(
1 − 1

n

)
(2 − p). (4.21)

Then there exists C > 0 such that whenever u0 satisfies (1.4), (1.14) and (1.15), for all
ε ∈ (0,1) and s0 ∈ (0,Rn),

J1,ε(t) ≥ C

∫ s0

0
s(1− 1

n )(2−p)−γ−1(s0 − s)zp
ε (s, t)ds

+ C

∫ s0

0
s(1− 1

n )(2−p)−γ zp
ε (s, t)ds

=: H1,ε(t) + H2,ε(t)

holds for all t ∈ (0, Tmax,ε).
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Proof It follows from (4.20) that

(wε)s ≥ (zε)s on (0,Rn) × (0, Tmax,ε) for all ε ∈ (0,1),

whence

J1,ε(t) ≥ nχ

∫ s0

0
s(1− 1

n )(2−p)−γ (s0 − s)zp−1
ε (s, t)(zε)s(s, t)ds

for all t ∈ (0, Tmax,ε), ε ∈ (0,1) and s0 ∈ (0,Rn). The conclusion thereby follows from [37,
Lemma 3.6] with α = 2−p

2 . �

The term H1,ε would be a good term in deriving the moment inequality as follows:

Lemma 4.5 Let p > 1 and γ ∈ (0,1) satisfy

(p − 1)γ < 2 − 2(2 − p) + 2 − p

n
. (4.22)

Then there is C > 0 such that for any ε ∈ (0,1) and s0 ∈ (0,Rn), whenever u0 satisfies (1.4),
(1.14) and (1.15) it follows that

H1,ε(t) ≥ Cs
−3+3(2−p)− 2−p

n +(p−1)γ

0 φp
ε (t)

for all t ∈ (0, Tmax,ε).

Proof This is a direct consequence of [37, Lemma 3.12]. �

The term J2,ε and J3,ε can be treated as well when p ∈ (1,2).

Lemma 4.6 Let χ > 0, p ∈ (1,2) and γ ∈ (0,1). Then for all β ∈ (0,
p−1

2 ) and η > 0, there
are c1 > 0 and c2 > 0 such that for any ε ∈ (0,1) and s0 ∈ (0,Rn) we have

J2,ε(t) ≤ ηH1,ε(t) + ηH2,ε(t) + c1s
3− 2

n −γ

0 (4.23)

and

J3,ε(t) ≤ ηH1,ε(t) + c2s

3− 2−p
n −γ+2β(3− 2

n −γ )

1+2β

0 (4.24)

for all t ∈ (0, Tmax,ε).

Proof Noting that

Mε(t) ≤ M1

|�| for all t ∈ (0, Tmax,ε) and ε ∈ (0,1)

by Lemma 2.2, the estimate (4.23) results from [37, Lemmas 3.7 and 3.8], whereas (4.24) is
a consequence of [37, Lemma 3.9]. �
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4.3 Controlling the Term I3,ε Arising from the Logistic Source in (4.13)

In order to estimate I3,ε in (4.13), we shall derive a pointwise estimate for uε . We start with
an upper bound for (vε)r therein.

Lemma 4.7 Let χ > 0, p > 1, λ ≥ 0, μ > 0 and κ > 1. Then for all m > 0 there exists C > 0
with the following property: Whenever u0 satisfies (1.4) and (1.14) as well as∫

�

u0 ≤ m, (4.25)

we have

−Rn

n
Mε(t)r

−(n−1) ≤ (vε)r (r, t) ≤ 1

n
Mε(t)r (4.26)

for all r ∈ (0,R), t ∈ (0, Tmax,ε) and ε ∈ (0,1). In particular,

|(vε)r (r, t)| ≤ Cr−(n−1) (4.27)

for all r ∈ (0,R), t ∈ (0, Tmax,ε) and ε ∈ (0,1).

Proof The estimate (4.26) can be established similarly in [2, Lemma 2.5]. We next prove
(4.27). We infer from Lemma 2.2 and (4.25) that

∫
�

uε(·, t) ≤ max

{
m,

(
λ

μ

) 1
κ−1

}
=: M2 (4.28)

for all t ∈ (0, Tmax,ε) and ε ∈ (0,1). Moreover, we observe that

Rn

n|�| r
−(n−1) ≥ 1

n|�| r for all r ∈ (0,R). (4.29)

The estimate (4.27) thereby results from (4.26), (4.28) and (4.29) with C = RnM2
n|�| . �

An application of Lemma 4.7 yields a pointwise estimate for uε . The idea is based on
[35, Lemma 3.3].

Lemma 4.8 Let χ > 0, p ≥ n
n−1 , λ ≥ 0, μ > 0 and κ > 1. Then for all m > 0, L > 0 and

δ > 0 there is C > 0 such that whenever u0 satisfies (1.4), (1.14), (1.16) and (4.25), it follows
that

uε(r, t) ≤ Cr−n(n−1)(p−1)−δ (4.30)

for all r ∈ (0,R), t ∈ (0, T̃max,ε) and ε ∈ (0,1), where T̃max,ε := min{1, Tmax,ε}.

Proof We will apply [36, Theorem 1.1] to derive the estimate (4.30). To see this, we first
infer from Lemma 4.7 that there is c1 > 0 such that

|(vε)r (r, t)| ≤ c1r
−(n−1) (4.31)
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for all r ∈ (0,R), t ∈ (0, Tmax,ε) and ε ∈ (0,1). Noting that (n − 1)(p − 1) ≥ 1 holds, for
any δ > 0 we choose q > n satisfying

α := n(n − 1)(p − 1)δ >
n(n − 1)(p − 1)q

q − n
, (4.32)

and we utilize (4.31) so that we can derive∫
�

|x|(n−1)(p−1)q
∣∣− χ(|∇vε(x, t)|2 + ε)

p−2
2 ∇vε(x, t)

∣∣q dx

≤ n|�|χq

Rn

∫ R

0
rn−1+(n−1)(p−1)q(|(vε)r (r, t)|2 + 1)

(p−1)q
2 dr

≤ n|�|χq

Rn

∫ R

0
rn−1+(n−1)(p−1)q(c2

1r
−2(n−1) + 1)

(p−1)q
2 dr

≤ 2
(p−1)q

2 c
(p−1)q

1

n|�|χq

Rn

∫ R

0
rn−1+(n−1)(p−1)q−(n−1)(p−1)q dr

+ 2
(p−1)q

2
n|�|χq

Rn

∫ R

0
rn−1+(n−1)(p−1)q dr

= (
√

2c1)
(p−1)q |�|χq + 2

(p−1)q
2

n|�|R(n−1)(p−1)qχq

n + (n − 1)(p − 1)q
(4.33)

for all t ∈ (0, Tmax,ε) and ε ∈ (0,1). Now for each ε ∈ (0,1), we put

Uε(x, t) := e−λtuε(x, t) for (x, t) ∈ � × [0, Tmax,ε),

and from (2.1) we see that

(Uε)t ≤ �Uε + ∇ · (−χUε(|∇vε|2 + ε)
p−2

2 ∇vε) in � × (0, Tmax,ε),

with ∇Uε · ν = 0 on ∂� × (0, Tmax,ε). Therefore, due to (4.32) and (4.33), we can apply
[36, Theorem 1.1] and obtain some c2 > 0 such that Uε(x, t) ≤ c2|x|−α for every x ∈ �,
t ∈ (0, Tmax,ε) and ε ∈ (0,1), which readily proves (4.30) with C := c2e

λ. �

We also give a pointwise estimate for zε in the next lemma, which is important to control
I3,ε in (4.13). The idea is based on [35, Lemma 4.2].

Lemma 4.9 Let χ > 0, λ ≥ 0, μ > 0, κ > 1 and s0 ∈ (0,Rn). Assume that p > 1 and γ ∈
(0,1) satisfy (4.21). Then

zε(s, t) ≤ p
1
p s

1
p (γ−(1− 1

n )(2−p))
(s0 − s)

− 1
p J

1
p

1,ε(t)

for all s ∈ (0, s0), t ∈ (0, Tmax,ε) and ε ∈ (0,1).

Proof Noting that (2.3) and (4.1) imply zε(·, t) ∈ C1([0,Rn]) for arbitrary ε ∈ (0,1) and
t ∈ (0, Tmax,ε), for each ε ∈ (0,1) we let

ψε(s, t) := 1

p
s(1− 1

n )(2−p)−γ (s0 − s)zp
ε (s, t) for s ∈ [0,Rn] and t ∈ [0, Tmax,ε),
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so that ψε(·, t) ∈ C1([0, s0]) for all t ∈ [0, Tmax,ε), and thanks to (4.21),

ψε(s, t) =
∫ s

0
(ψε)s(σ, t)dσ

=
∫ s

0
σ (1− 1

n )(2−p)−γ (s0 − σ)zp−1
ε (σ, t)(zε)s(σ, t)dσ

− 1

p

(
γ −

(
1 − 1

n

)
(2 − p)

)∫ s

0
σ (1− 1

n )(2−p)−1−γ (s0 − σ)zp
ε (σ, t)dσ

− 1

p

∫ s

0
σ (1− 1

n )(2−p)−γ zp
ε (σ, t)dσ

≤
∫ s

0
σ (1− 1

n )(2−p)−γ (s0 − σ)zp−1
ε (σ, t)(wε)s(σ, t)dσ

≤
∫ s0

0
σ (1− 1

n )(2−p)−γ (s0 − σ)zp−1
ε (σ, t)(wε)s(σ, t)dσ

for all s ∈ (0, s0), t ∈ (0, Tmax,ε) and ε ∈ (0,1). Hence we arrive at the conclusion. �

We are now in a position to give an estimate for I3,ε .

Lemma 4.10 Let χ > 0, λ ≥ 0 and μ > 0. Moreover, we assume that p ≥ n
n−1 , κ > 1 and

γ ∈ (0,1) satisfy (4.21) as well as

(n − 1)(p − 1)(κ − 1) < 1, (4.34)

and

1

p

(
1 − 1

n

)
(2 − p) + (n − 1)(p − 1)(κ − 1) <

γ

p
. (4.35)

Then for all m > 0, L > 0 and η > 0 there is C > 0 such that whenever u0 satisfies (1.4),
(1.14), (1.15), (1.16) and (4.25), for any s0 ∈ (0,Rn) and ε ∈ (0,1),

I3,ε(t) ≥ −Cs
− 1

p (1− 1
n )(2−p)−(n−1)(p−1)(κ−1)+ 2p−1−(p−1)γ

p −η

0 J
1
p

1,ε(t)

− Cs
−(n−1)(p−1)(κ−1)+3−γ−η

0

holds for all t ∈ (0, T̃max,ε).

Proof We fix arbitrary η > 0. Then from (4.34) and (4.35), there exists δ > 0 such that

δ

n
(κ − 1) ≤ min{η,1}, (4.36)

(n − 1)(p − 1)(κ − 1) + δ

n
(κ − 1) < 1 and (4.37)

1

p

(
1 − 1

n

)
(2 − p) + (n − 1)(p − 1)(κ − 1) + δ

n
(κ − 1) <

γ

p
, (4.38)
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whence Lemma 4.8 provides c1 > 0 such that

uε(r, t) ≤ c1r
−n(n−1)(p−1)−δ

for all r ∈ (0,R), t ∈ (0, T̃max,ε) and ε ∈ (0,1), and hence

(wε)
κ−1
s (s, t) ≤

(c1

n

)κ−1
s−(n−1)(p−1)(κ−1)− δ

n (κ−1) (4.39)

for all s ∈ (0,Rn), t ∈ (0, T̃max,ε) and ε ∈ (0,1). By virtue of the Fubini theorem and (4.39),
we entail that

I3,ε(t) = −nκ−1μ

∫ s0

0

(∫ s0

ξ

s−γ (s0 − s)ds

)
(wε)

κ
s (ξ, t)dξ

≥ − µcκ−1
1

1 − γ
s

1−γ

0

∫ s0

0
s−(n−1)(p−1)(κ−1)− δ

n (κ−1)(s0 − s)(wε)s(s, t)ds (4.40)

for all t ∈ (0, T̃max,ε), ε ∈ (0,1) and s0 ∈ (0,Rn), whereas integrating by parts yields∫ s0

0
s−(n−1)(p−1)(κ−1)− δ

n (κ−1)(s0 − s)(wε)s(s, t)ds

= − lim inf
ξ↘0

(
ξ−(n−1)(p−1)(κ−1)− δ

n (κ−1)(s0 − ξ)wε(ξ, t)
)

−
∫ s0

0

∂

∂s
(s−(n−1)(p−1)(κ−1)− δ

n (κ−1)(s0 − s))wε(s, t)ds

≤ −
∫ s0

0

∂

∂s
(s−(n−1)(p−1)(κ−1)− δ

n (κ−1)(s0 − s))wε(s, t)ds (4.41)

for any t ∈ (0, T̃max,ε), ε ∈ (0,1) and s0 ∈ (0,Rn). Now, in light of (4.36) we further compute

− ∂

∂s
(s−(n−1)(p−1)(κ−1)− δ

n (κ−1)(s0 − s))

=
(

(n − 1)(p − 1)(κ − 1) + δ

n
(κ − 1)

)
s−(n−1)(p−1)(κ−1)−1− δ

n (κ−1)(s0 − s)

+ s−(n−1)(p−1)(κ−1)− δ
n (κ−1)

≤ c2s0s
−(n−1)(p−1)(κ−1)−1− δ

n (κ−1)

for all s0 ∈ (0,Rn) and s ∈ (0, s0) with c2 := (n − 1)(p − 1)(κ − 1) + 2, and this together
with (4.41) shows that∫ s0

0
s−(n−1)(p−1)(κ−1)− δ

n (κ−1)(s0 − s)(wε)s(s, t)ds

≤ c2s0

∫ s0

0
s−(n−1)(p−1)(κ−1)−1− δ

n (κ−1)wε(s, t)ds (4.42)

for all t ∈ (0, T̃max,ε), ε ∈ (0,1) and s0 ∈ (0,Rn). Combining (4.40) with (4.42), we deduce

I3,ε(t) ≥ −c3s
2−γ

0

∫ s0

0
s−(n−1)(p−1)(κ−1)−1− δ

n (κ−1)wε(s, t)ds (4.43)
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for all t ∈ (0, T̃max,ε), ε ∈ (0,1) and s0 ∈ (0,Rn), with c3 := cκ−1
1 μ

1−γ
c2. We now estimate the

integral on the right of (4.43). In light of (4.10), we split the integral as

∫ s0

0
s−(n−1)(p−1)(κ−1)−1− δ

n (κ−1)wε(s, t)ds

=
∫ s0

0
s−(n−1)(p−1)(κ−1)−1− δ

n (κ−1)zε(s, t)ds + 1

n
Mε(t)

∫ s0

0
s−(n−1)(p−1)(κ−1)− δ

n (κ−1) ds

=: IA,ε(t) + IB,ε(t) (4.44)

for all t ∈ (0, T̃max,ε), ε ∈ (0,1) and s0 ∈ (0,Rn). By virtue of Lemma 4.9 in conjunction
with [4, Lemma 3.3], we confirm that

IA,ε(t) ≤ p
1
p J

1
p

1,ε(t)

∫ s0

0
s

1
p (γ−(1− 1

n )(2−p))−(n−1)(p−1)(κ−1)−1− δ
n (κ−1)

(s0 − s)
− 1

p ds

= p
1
p J

1
p

1,ε(t)s
1
p (γ−1−(1− 1

n )(2−p))−(n−1)(p−1)(κ−1)− δ
n (κ−1)

0

× B

(
γ

p
− 1

p

(
1 − 1

n

)
(2 − p) − (n − 1)(p − 1)(κ − 1) − δ

n
(κ − 1),

p − 1

p

)
(4.45)

for all t ∈ (0, T̃max,ε), ε ∈ (0,1) and s0 ∈ (0,Rn), where B is the beta function, noting that
this is well-defined thanks to (4.38). On the other hand, in light of (4.28) and (4.37), it
follows that for any choice of s0 ∈ (0,Rn),

IB,ε(t) ≤ M2

n|�|c4s
1−(n−1)(p−1)(κ−1)− δ

n (κ−1)

0 (4.46)

for all t ∈ (0, T̃max,ε) and ε ∈ (0,1), where c4 := (1 − (n − 1)(p − 1)(κ − 1) − δ
n
(κ − 1))−1.

Inserting (4.45) and (4.46) into (4.44), we thus obtain

∫ s0

0
s−(n−1)(p−1)(κ−1)−1− δ

n (κ−1)wε(s, t)ds

≤ c5R
nη−δ(κ−1)s

1
p (γ−1−(1− 1

n )(2−p))−(n−1)(p−1)(κ−1)−η

0 J
1
p

1,ε(t)

+ c6R
nη−δ(κ−1)s

1−(n−1)(p−1)(κ−1)−η

0 (4.47)

for all t ∈ (0, T̃max,ε), ε ∈ (0,1) and s0 ∈ (0,Rn), where

c5 := p
1
p B

(
γ

p
− 1

p

(
1 − 1

n

)
(2 − p) − (n − 1)(p − 1)(κ − 1) − δ

n
(κ − 1),

p − 1

p

)

and

c6 := M2

n|�|c4.

Combining (4.43) with (4.47), we finally arrive at the conclusion. �
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4.4 Estimating the Terms I1,ε and I4,ε in (4.13)

Quite in the style of [37], we can estimate the term I1,ε in (4.13) as in the next lemma.

Lemma 4.11 Let p > 2n−2
2n−3 and γ ∈ (0,1) satisfy

(p − 1)γ < 2 − 4

n
− 2(2 − p) + 3(2 − p)

n
. (4.48)

Then for any choice of η > 0 there is C > 0 such that whenever u0 satisfies (1.4), (1.14) and
(1.15), for all ε ∈ (0,1) and s0 ∈ (0,Rn) the function I1,ε satisfies

I1,ε(t) ≥ −ηH1,ε(t) − ηH2,ε(t) − Cs

3− 4
n −3(2−p)+ 3

n (2−p)−(p−1)γ

p−1
0

for all t ∈ (0, Tmax,ε).

Proof Following [37, Lemma 3.3], we observe that

I1,ε(t) ≥ −n2

(
2 − 2

n
− γ

)(
γ − 1 + 2

n

)∫ s0

0
s− 2

n −γ (s0 − s)zε(s, t)ds

− 2n2

(
2 − 2

n
− γ

)∫ s0

0
s1− 2

n −γ zε(s, t)ds (4.49)

for all t ∈ (0, Tmax,ε), ε ∈ (0,1) and s0 ∈ (0,Rn). Besides, [37, Lemma 3.11] warrants that
for any η > 0 there is C > 0 such that

∫ s0

0
s− 2

n −γ (s0 − s)zε(s, t)ds ≤ ηH1,ε(t) + Cs

3− 4
n −3(2−p)+ 3

n (2−p)−(p−1)γ

p−1
0

and

∫ s0

0
s1− 2

n −γ zε(s, t)ds ≤ ηH2,ε(t) + Cs

3− 4
n −3(2−p)+ 3

n (2−p)−(p−1)γ

p−1
0

for all t ∈ (0, Tmax,ε), ε ∈ (0,1) and s0 ∈ (0,Rn). These together with (4.49) prove the claim.
�

Finally, the estimation for I4,ε is already obtained throughout our analysis.

Lemma 4.12 Let χ > 0, p > 1, λ ≥ 0, μ > 0 and κ > 1. Suppose that u0 satisfy (1.4), (1.14),
(1.15) and (4.25). Then for all s0 ∈ (0,Rn), γ ∈ (0,1) and m > 0 there exists C > 0 such
that

I4,ε(t) ≥ −Cs
3−γ

0 for all t ∈ (0, Tmax,ε) and ε ∈ (0,1).

Proof This can be immediately derived from (4.28). �
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4.5 Moment Inequality for Approximate Solutions

With all these preparations in our hand, our analysis will reach the important lemma which
gives a superlinear differential inequality for φε .

Lemma 4.13 Let χ > 0, λ ≥ 0 and μ > 0. Assume that p and κ satisfy (1.12) and (1.13).
Then there exist γ ∈ (0,1) and θ ∈ (0,2) such that for all m > 0 and L > 0 one can find
C > 0 with the following property: Whenever u0 satisfies (1.4), (1.14), (1.15), (1.16) and
(4.25), for all ε ∈ (0,1) and s0 ∈ (0,Rn) the function φε as in (4.12) satisfies

φ′
ε(t) ≥ Cs

−3+3(2−p)− 2−p
n +(p−1)γ

0 φp
ε (t) − Cs

3−γ−θ

0

for all t ∈ (0, T̃max,ε).

Proof Since p and κ satisfy (1.12) and (1.13), we see that the condition (4.34) is valid. Also,
the assumption (1.12) ensures that p − 1 > 1

2n−3 , which implies

k1 := 3

n
+ 1

n(p − 1)
< 2. (4.50)

In addition, [37, Lemma 3.13] warrants that there is γ ∈ (0,1) such that (4.21), (4.22), (4.35)
and (4.48) hold. Based on (4.34) and (4.35), we can choose η > 0 satisfying

(n − 1)(p − 1)(κ − 1) + η < 1

and

1

p − 1

(
1 − 1

n

)
(2 − p) + p(n − 1)(κ − 1) + p

p − 1
η <

γ

p − 1
<

1

p − 1
= 1 − p − 2

p − 1
,

whence

k2 := max

{
(n − 1)(p − 1)(κ − 1) + η,− 2 − p

n(p − 1)
+ p(n − 1)(κ − 1) + p

p − 1
η

}
< 1

(4.51)

holds. Now, Lemma 4.10 together with the Young inequality provides c1, c2 > 0 such that

I3,ε(t) ≥ −c1s
− 1

p (1− 1
n )(2−p)−(n−1)(p−1)(κ−1)+ 2p−1−(p−1)γ

p −η

0 J
1
p

1,ε(t)

− c1s
−(n−1)(p−1)(κ−1)+3−γ−η

0

≥ −1

2
J1,ε(t) − c2s

− 1
p−1 (1− 1

n )(2−p)−p(n−1)(κ−1)+ 2p−1−(p−1)γ
p−1 − p

p−1 η

0

− c1s
−(n−1)(p−1)(κ−1)+3−γ−η

0 (4.52)

for all t ∈ (0, T̃max,ε), ε ∈ (0,1) and s0 ∈ (0,Rn). On the other hand, we infer from
Lemma 4.12 that with c3 > 0 we have

I4,ε(t) ≥ −c3s
3−γ

0 (4.53)



Boundedness and Finite-Time Blow-up in a Chemotaxis System. . . Page 27 of 31 7

for all t ∈ (0, Tmax,ε), ε ∈ (0,1) and s0 ∈ (0,Rn). Combining (4.13) with (4.16), (4.52) and
(4.53), we deduce that

φ′
ε(t) ≥ I1,ε(t) + 1

2
J1,ε(t) − J2,ε(t) − J3,ε(t)

− c1s
−(n−1)(p−1)(κ−1)+3−γ−η

0

− c2s
− 1

p−1 (1− 1
n )(2−p)−p(n−1)(κ−1)+ 2p−1−(p−1)γ

p−1 − p
p−1 η

0 − c3s
3−γ

0 (4.54)

for all t ∈ (0, T̃max,ε), ε ∈ (0,1), s0 ∈ (0,Rn) and β ∈ (0,1]. We further employ Lemma 4.4
to find c4 > 0 such that

J1,ε(t) ≥ c4H1,ε(t) + c4H2,ε(t) (4.55)

for all t ∈ (0, Tmax,ε), ε ∈ (0,1) and s0 ∈ (0,Rn), whereas in the case that p < 2, we fix
β ∈ (0,

p−1
2 ) and apply Lemma 4.6 to find c5, c6 > 0 such that

J2,ε(t) ≤ c4

8
H1,ε(t) + c4

8
H2,ε(t) + c5s

3− 2
n −γ

0 , (4.56)

and

J3,ε(t) ≤ c4

8
H1,ε(t) + c6s

3− 2−p
n −γ+2β(3− 2

n −γ )

1+2β

0 (4.57)

for all t ∈ (0, Tmax,ε), ε ∈ (0,1) and s0 ∈ (0,Rn). In addition, Lemma 4.11 entails that with
c7 > 0 we have

I1,ε(t) ≥ −c4

8
H1,ε(t) − c4

8
H2,ε(t) − c7s

3− 4
n −3(2−p)+ 3

n (2−p)−(p−1)γ

p−1
0 (4.58)

for all t ∈ (0, Tmax,ε), ε ∈ (0,1) and s0 ∈ (0,Rn). Taking account of (4.54) together with
(4.55), (4.56), (4.57) and (4.58), we thus find c8 > 0 such that

φ′
ε(t) ≥ c4

8
H1,ε(t) − c8s

3−γ−θ

0 (4.59)

for all t ∈ (0, T̃max,ε), ε ∈ (0,1) and s0 ∈ (0,Rn) with θ := max{k1, k2}, noting that θ ∈ (0,2)

due to (4.50) and (4.51). Since Lemma 4.5 provides c9 > 0 such that

H1,ε(t) ≥ c9s
−3+3(2−p)− 2−p

n +(p−1)γ

0 φp
ε (t)

for all t ∈ (0, Tmax,ε), ε ∈ (0,1) and s0 ∈ (0,Rn), this together with (4.59) leads to the con-
clusion. �

4.6 Proof of Theorem 1.2

Before we prove Theorem 1.2, we introduce the framework of weak solutions, so-called
moment solutions and maximal moment solutions, which satisfy a suitable integral form of
moment inequality. A similar concept was initially introduced in [24].
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Definition 4.1 Let p and κ satisfy (1.12) as well as (1.13), and let γ ∈ (0,1) and θ ∈ (0,2)

as in Lemma 4.13. Suppose that u0 satisfies (1.4) and (1.14). Let T ∈ (0,∞], and let
(u, v) be a weak solution of (1.1) in � × (0, T ) which is radially symmetric with respect
to x = 0. Then (u, v) will be called a moment solution of (1.1) on [0, T ) if there exists
C = C(R,n,χ,p,λ,μ,κ, γ ) ≥ 0 such that for any s0 ∈ (0,Rn) the function φ defined in
(1.11) with u satisfies

φ(t) − φ(0) ≥ Cs
−3+3(2−p)− 2−p

n +(p−1)γ

0

∫ t

0
φp(τ) dτ − Cs

3−γ−θ

0 t (4.60)

for all t ∈ (0,min{1, T }).

Definition 4.2 Define

S := {(T ,u, v) | T ∈ (0,∞], (u, v) is a moment solution of (1.1) on [0, T )}. (4.61)

Moreover, when S is nonempty, we introduce the order relation � on S given by

(T1, u1, v1) � (T2, u2, v2) :⇐⇒ T1 ≤ T2, u2|(0,T1) = u1, v2|(0,T1) = v1.

If there is a maximal element (Tmax, u, v) ∈ S , then (u, v) is called a maximal moment solu-
tion of (1.1) on [0, Tmax).

We first state that moment solutions of (1.1) exist.

Lemma 4.14 Let χ > 0, λ ≥ 0 and μ > 0. Assume that the function h satisfies (1.3), and
suppose that p and κ fulfill (1.12) and (1.13). Then for all L > 0 and m > 0, whenever
u0 satisfies (1.4), (1.14), (1.15) as well as (1.16), there is T > 0 such that (1.1) admits a
moment solution on [0, T ).

Proof We regard T0 > 0, K0 > 0 and L0 > 0 as in Lemma 2.5, which satisfy (2.12). We
claim that (1.1) admits a moment solution on [0, T0). To see this, first we infer that with
γ ∈ (0,1) and θ ∈ (0,2) as in Lemma 4.13, there exists C > 0, independently of T0, such
that for any s0 ∈ (0,Rn), it follows that

φε(t) − φε(0) ≥ Cs
−3+3(2−p)− 2−p

n +(p−1)γ

0

∫ t

0
φp

ε (τ )dτ − Cs
3−γ−θ

0 t (4.62)

for all t ∈ (0,min{1, T0}) and ε ∈ (0,1). Letting (εj )j∈N ⊂ (0,1) and the function u as in
Lemma 2.8, we argue as in [17, Lemma 3.4] (see also [10, Lemma 6.1]) to find a constant
α = α(n) ∈ (0,1) and a subsequence (εji )i such that

uεji
→ u in Cα, α

2 (� × [δ, T ]) as i → ∞

for all δ and T with 0 < δ < T < T0. By the same argument as in [17, Lemma 3.5], this
along with (4.62) and Lemma 2.8 thus proves the claim. �

We also ensure existence of maximal moment solutions to (1.1).
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Lemma 4.15 Let χ > 0, λ ≥ 0 and μ > 0. Assume that the function h satisfies (1.3), and
suppose that p and κ fulfill (1.12) and (1.13). Then for all L > 0 and m > 0, whenever
u0 satisfies (1.4), (1.14), (1.15) as well as (1.16), there exist Tmax ∈ (0,∞] and a pair of
functions (u, v) such that (u, v) is a maximal moment solution of (1.1) on [0, Tmax), and
that if Tmax < ∞ and (u, v) satisfies (1.18) with C > 0, then

lim sup
t↗Tmax

‖u(·, t)‖L∞(�) = ∞. (4.63)

Proof Thanks to Lemma 4.14, the set S in (4.61) is nonempty and inductive, whence the
Zorn lemma guarantees the existence of Tmax ∈ (0,∞] and a maximal moment solution
(u, v) to (1.1) on [0, Tmax). The remaining statement of this lemma can be derived by the
same way as in [17, Lemma 3.7]. �

We are finally in a position to prove Theorem 1.2, ensuring that finite-time blow-up of
weak solutions to (1.1) can occur.

Proof of Theorem 1.2 Lemma 4.15 guarantees that there are Tmax ∈ (0,∞] and (u, v) such
that (u, v) is a weak solution of (1.1) in � × (0, Tmax), that there are γ ∈ (0,1), θ ∈ (0,2)

and C ≥ 0 satisfying (1.18), and that (4.63) holds if C > 0. Therefore, we only have to show
that Tmax < ∞ in the case when C > 0. We note that as in the proof of [37, Lemma 3.15 and
Theorem 1.1], for s0 ∈ (0, Rn

4 ) we let m0 := m
2 and r0 := (

s0
2 )

1
n to see that from (1.17) we

find c1 = c1(n,m,R,γ ) > 0 fulfilling

φ(0) ≥ c1s
2−γ

0 .

This together with (1.18) shows that there is c2 > 0 such that

φ(t) ≥ c1s
2−γ

0 + c2s
−3+3(2−p)− 2−p

n +(p−1)γ

0

∫ t

0
φp(τ) dτ − c2s

3−γ−θ

0 t (4.64)

for any t ∈ (0,min{1, Tmax}). Now, abbreviating

a(s0) := c1s
2−γ

0 and b(s0) := c2s
−3+3(2−p)− 2−p

n +(p−1)γ

0 ,

we observe that ap−1b → ∞ as s0 ↘ 0, due to the fact that

(p − 1)(2 − γ ) − 3 + 3(2 − p) + 2 − p

n
+ (p − 1)γ < 0

holds according to (1.12). We therefore can choose s0 ∈ (0, Rn

4 ) small enough so that
2

(p−1)ap−1b
< 1, and since φ ∈ C0([0, Tmax)), thanks to [32, Lemma 4.9] we conclude from

(4.64) that

Tmax ≤ 2

(p − 1)ap−1(s0)b(s0)
< 1,

and hence (4.63) implies that (u, v) blows up in finite time Tmax. �
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