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Abstract
Obesity-related factors have been associated with beta cell dysfunction, potentially lead-
ing to Type 2 diabetes. To address this issue, we developed a comprehensive obesity-based
diabetes model incorporating fat cells, glucose, insulin, and beta cells. We established the
model’s global existence, non-negativity, and boundedness. Additionally, we introduced a
delay to examine the effects of impaired insulin production resulting from beta-cell dys-
function. Bifurcation analyses were conducted for delay and non-delay models, exploring
the model’s dynamic transitions through backward and forward Hopf bifurcations. Utilizing
the maximal Pontryagin principle, we formulated and evaluated an optimal control problem
to mitigate diabetic complications by reducing the prevalence of overweight individuals and
halting disease progression. Comparative graphical outputs were generated to demonstrate
the beneficial effects of glucose-regulating medication and regular exercise in managing
diabetes.

Keywords Type 2 diabetes · Obesity · Bifurcation · Diet control · Delay · Optimal control

1 Introduction

Diabetes is a long-term (chronic) health condition that affects how the body transforms
food into energy. Most food is broken down into sugar (glucose) by the body and released
into the bloodstream. When blood sugar levels rise, the pancreas releases insulin, which is
necessary for transporting blood sugar into cells for use as energy. Type 1 diabetes, type
2 diabetes, and gestational diabetes are the three forms of diabetes (https://www.cdc.gov/
diabetes/basics/gestational.html).

1. Type 1 diabetes is caused by an autoimmune reaction (the body accidentally fights itself).
Insulin synthesis is halted as a result of this response.
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2. With type 2 diabetes, the body does not utilize insulin well and cannot maintain normal
blood sugar levels.

3. Pregnant women who have never had diabetes acquire the third type of diabetes, i.e.,
gestational diabetes.

In our work, we focused on the mechanism of type 2 diabetes. Diabetes mellitus type 2
(T2DM) is a major global health concern linked to the obesity pandemic. Insulin resistance
is widely regarded as the primary cause of type 2 diabetes. Insulin resistance raises plasma
fatty acids, decreasing glucose delivery into muscle cells and boosting fat breakdown, in-
creasing hepatic glucose production. Diabetes type 2 must result from insulin resistance and
pancreatic cell failure [1]. People with type 2 diabetes mellitus are at an increased risk for
both microvascular complications (such as retinopathy, nephropathy, and neuropathy) and
macrovascular complications (such as cardiovascular comorbidities) due to hyperglycemia
and individual components of the insulin resistance (metabolic) syndrome [2].

Interdisciplinary research of chronic disease dynamics has grown rapidly in recent
decades. Mathematical, physics, biology, computer science, statistics, and epidemiological
contributions are critical for improving public health [3]. Mathematical modeling is very im-
portant. In this setting, mathematical modeling is critical for understanding the complexities
of disease dynamics [4, 5]. Many mathematical models have been developed to understand
the mechanism of type 2 diabetes [2, 6–10]. In 2000, Topp et al. [6] created a model illustrat-
ing beta-cell mass dynamics along with the evolution of type 2 diabetes. The model was a
foundation for various diabetes progression models [6]. De Winter et al. [11] created a popu-
lation pharmacodynamic model comprised of glucose, insulin, and glycosylated hemoglobin
differential equations to characterize the impact of treatment on the time course of insulin
sensitivity and gradually reduced beta-cell function. Banzi et al. [12] devised a mathemat-
ical model to explore the dynamic behavior of glucose-insulin which is specific for type 2
diabetic patients. Bergman et al. [13] proposed a simple compartmental model of diabetes
dynamics in 1981. This mathematical model has been employed in diabetic research [14].
To explain why fasting hyperinsulinemia can occur decades before hyperglycemia, Joon et
al. [15] expanded Topp’s model by connecting beta-cell proliferation to beta-cell secretory
burden, which can magnify the impact of modest changes in glucose. The model accurately
predicted the effect of weight loss and bariatric surgery on the glucose-regulating system.
Despite these efforts, a model that depicts the long-term history of diabetes while incorpo-
rating diabetogenic elements (such as an obesogenic environment) is only a few. Recently,
Yang et al. [7] developed a mathematical model to study the role of beta-cell dysfunction on
diabetes progression. Environmental and genetic factors contribute to the pathophysiologi-
cal abnormalities that cause poor glucose homeostasis in type 2 diabetes mellitus [2, 7].

According to various studies [2, 7], obesity, physical inactivity, a high-fat diet, and a diet
rich in saturated fatty acids have all been associated with an elevated risk of diabetes. Obe-
sity has become a major global concern due to its rising prevalence and the accompanying
cluster of diseases degrading life quality and longevity. It is the abnormal fat deposition in
the adipose tissue due to prolonged overeating, limited physical activity, or inherited fac-
tors [10]. It raises the chance of developing type 2 diabetes, cardiovascular disease, cancer,
and dying prematurely. The global obesity and type 2 diabetes epidemic is worsening. Ac-
cording to the World Health Organisation (WHO) data, global obesity has nearly doubled
since 1990 [16]. Over 1.1 billion individuals are considered overweight, with approximately
320 million classified as obese [17]. Obesity and diabetes are firmly connected, with around
80% of people with diabetes being obese. Obesity worsens the glucose content in the blood-
stream; as a result, the pancreas becomes overworked and wears out. It begins to produce
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less insulin. Diabetes develops and rapidly worsens if fat resistance persists (https://health.
clevelandclinic.org/diabesity-the-connection-between-obesity-and-diabetes/).

The current paper focuses on how beta-cell dysfunction due to the obesity-related factor
can worsen the diabetic condition. The following is the outline for the paper: The model is
framed in Sect. 2. Section 3 contributes to the model’s analysis (boundedness, equilibrium
points, and stability analysis). Section 4 contributes to the bifurcation analysis. In Sect. 5, we
extend our model and incorporate a delay term. This section is also devoted to the analysis
of the delay model. Section 6 deals with the optimal control problem. Numerical results for
both non-delay and delay models are illustrated in Sect. 7. Section 8 is where we interpret
our results.

2 Formulation of Model

Obesity and diabetes are complex; however, many studies show that obesity and being over-
weight increase the likelihood of acquiring type 2 diabetes [7, 18, 19]. Mathematical models
are used for depicting the progression and analyzing its nature. It is a combination of low
pancreatic-cell insulin production and peripheral insulin resistance. Saturated fats have been
linked to insulin resistance and beta-cell malfunction, according to [9]. To function normally,
the human body relies on strict management of blood glucose levels. Insulin, produced in
the pancreas by beta cells, stimulates glucose utilization by target cells and is essential for
blood glucose control. High blood glucose levels stimulate the release of insulin from beta-
cell secretory granules, which aids in the restoration of glucose concentrations to normal.
When the glucose level drops, insulin secretion eventually stops. The glucose regulatory
system can maintain glucose homeostasis for individuals free from diabetogenic events [7].

What happens when a person is obese is still a controversial question. However, find-
ings suggest that if a person is obese or overweight, the amount of glucose level increases
in his body [1]. Increased glucose levels, combined with increased NEFA (non-esterified
fatty acids), can synergistically affect beta-cell health and insulin function [20, 21]. Type 2
diabetes is a heterogeneous condition characterized most commonly by insulin resistance,
which is a state of decreased insulin-mediated glucose absorption caused by the pancre-
atic beta cells’ failure to make and produce adequate insulin to fulfill the required demands
[17, 22]. The findings suggest that increased fat breakdown leads to increased hepatic glu-
cose generation [1]. When blood glucose levels rise, beta-cells in the pancreatic islets secrete
insulin, further decreasing blood glucose levels by acting on specific tissues [8]. Few math-
ematical models are designed in this direction [7, 23].

Motivated by the above-described mechanism, we have formulated an obesity-based dia-
betes model. The model is organized into four compartmental representations of the human
body, with each compartment representing an organ or tissue that is connected by blood
flow, namely, glucose concentration (G), insulin concentration (I ), beta-cell mass (B), and
obesity-related factor (F ). In this work, we have considered the following assumptions:

• As glucose growth and death occur naturally, the parameter a represents the average daily
glucose infusion rate (with meal consumption as the primary source), including hepatic
glucose generation. The term d1G refers to the insulin-independent elimination of glucose
[6].

• Yang et al., [7], designed the enhanced hepatic glucose production to be a power func-
tion of obesity-related factor as Fα , which can be estimated by the extent to which the
pathogenic factor affects the rate of glucose generation. In our work, we employ the same

https://health.clevelandclinic.org/diabesity-the-connection-between-obesity-and-diabetes/
https://health.clevelandclinic.org/diabesity-the-connection-between-obesity-and-diabetes/
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Fig. 1 3D plot showing the
behaviour of the function

G

1 + pG + qF

power function by assuming α as 1 (F 1) to show the role of obesity-related factors in
glucose growth.

• We suggest a novel functional response,
bIG

1 + pG + qF
, to imitate the mechanism of in-

sulin and fat-dependent glucose swings. It is similar to the Holling type 2 functional
response but includes an additional term that describes mutual interference by an obesity-
related factor (qF ). Glucose consumption saturates the Holling type II functional re-
sponse, and glucose has high per-capita mortality at low densities and falling mortality as
density increases. Here, b denotes the rate of decrease in glucose level due to insulin, q

describes the rate of mutual interference by the obesity-related factor, and p is the glucose
saturation constant. Figure 1, describes the behavior of the function. We can observe that
the function attains its maxima when no obesity-related factors are present and glucose
levels are normal. This means that the natural glucose removal process due to insulin is
working effectively. However, at high-fat levels, the function’s value tends to zero, thus
depicting low removal of glucose due to hampering insulin function by obesity-related
factors.

• We have considered Holling type-II functional response,
μBG

k1 + G
, to model the interac-

tion between glucose and beta-cells, which results in insulin production. This functional
response accounts for the fact that beta and glucose interaction produces insulin; how-
ever, the production rate saturates at high glucose levels, and declining glucose levels can
increase insulin density.

• Holling type-II response,
hG

k2 + G
, is also considered to model glucose and beta-cell in-

teraction resulting in beta-cell growth.
• There is growing evidence that accumulating harmful compounds within beta-cells in

obese patients promotes beta-cell death, eventually leading to diabetes [7]. We have
demonstrated that beta-cell dysfunction is caused by an obesity-related component
(δF 2B).

• Considering that obesity-related factors grow slowly to a maximum limit in humans, we
employ logistic growth [7].

The ODE model is developed and illustrated below based on the aforementioned assump-
tions:

dG

dt
= a − bIG

1 + pG + qF
+ cF − d1G, (1)
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Table 1 Parameters description for the model (1)-(4)

Variables/parameters Description

G glucose concentration

I insulin concentration

B beta-cell mass

F obesity-related factor

a growth rate of glucose

b glucose clearance due to insulin

c growth of glucose due to obesity-related factor

d1 natural death rate of glucose

p saturation constant due to glucose interference

q mutual interference constant by the obesity-related factor

μ maximum rate of insulin secretion by beta-cell

k1 saturation constant

d2 natural death rate of insulin

h growth of beta-cell due to glucose

k2 saturation constant

δ death of beta-cell due to obesity-related factor

d3 natural death of beta-cell

r growth rate of obesity-related factor

k3 carrying capacity of obesity-related factor

dI

dt
= μBG

k1 + G
− d2I, (2)

dB

dt
=

(
hG

k2 + G
− δF 2 − d3

)
B, (3)

dF

dt
= rF

(
1 − F

k3

)
. (4)

All of the model’s parameters are positive, and their descriptions are shown in Table 1.
In addition, Fig. 2 depicts the schematic diagram of the obesity-based diabetes model.

3 Analysis of the Model

In this section, we examine the boundedness, positivity, existence, and stability behavior of
the system’s (1)-(4) steady-state solutions.

3.1 Boundedness

To ensure that the model (1)-(4) is well-posed, we examine the boundedness in this section.

Theorem 3.1 Assume that all the initial conditions are non-negative and the condition
hḠ

k2
< d3, holds, where Ḡ = max

(
G(0),

a + cF̄

d1

)
, then the solutions of the system (1)-

(4) is bounded in R
4+.
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Fig. 2 Schematic diagram for obesity-based diabetes model (1)-(4)

Proof From Eq. (4), we have

dF

dt
= rF

(
1 − F

k3

)

Hence, we get

lim sup
t→∞

F(t) ≤ k3.

Then, we call the upper bound of F as

F̄ = max(F (0), k3). (5)

From Eq. (1), we have

dG

dt
= a − bIG

1 + pG + qF
+ cF − d1G

≤ a + cF̄ − d1G, where F̄ is taken from Eq. (5)

Hence, we have

G(t) ≤ a + cF̄

d1
+ C4e

−d1t ,

where C4 is a constant.
Taking,

lim sup
t→∞

G(t) ≤ a + cF̄

d1
.
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Hence, we get the upper bound of G as

Ḡ = max

(
G(0),

a + cF̄

d1

)
. (6)

From Eq. (3), we have

dB

dt
= hBG

k2 + G
− δF 2B − d3B

≤ hBḠ

k2
− d3B, where Ḡ is defined in Eq. (6)

Hence, we have

B(t) ≤ e

⎛
⎜⎝hḠ

k2
−d3

⎞
⎟⎠t

+ eC6

where C6 is a constant.
Taking,

lim sup
t→∞

B(t) ≤ eC6 if
hḠ

k2
< d3.

Then, we get the upper bound of B as

B̄ = max(B(0), eC6). (7)

From Eq. (2), we have

dI

dt
= μBG

k1 + G
− d2I,

≤ μB̄Ḡ

k1
− d2I, where Ḡ and B̄ is taken from Eq. (6) and Eq. (7)

Hence, we get

I (t) ≤ μB̄Ḡ

k1d2
+ C5e

−d2t ,

where C5 is a constant.
Taking,

lim sup
t→∞

I (t) ≤ μB̄Ḡ

k1d2
.

Hence, we have the upper bound of I as

Ī = max(I (0),
μB̄Ḡ

k1d2
). (8)

Hence, from above, we conclude that our system is bounded. �
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3.2 Positivity of the Solutions

To ensure that the system solution (1)-(4) is positive for all t ≥ 0, we calculate the lower
bound as follows:

From the first equation of the system (1)-(4), we have,

dG

dt
= a − bIG

1 + pG + qF
+ cF − d1G,

≥ −bĪG − d1G,where Ī is taken from Eq. (8)

Hence, we have

G(t) ≥ C0e
−(bĪ+d1)t ,

where C0 is a constant.
Taking lim t → ∞, we get

G(t) ≥ 0.

From the second equation of the system (1)-(4), we have,

dI

dt
= μBG

k1 + G
− d2I

≥ −d2I

Hence, we have

I (t) ≥ C1e
−d2t ,

where C1 is a constant.
Taking lim t → ∞, we get

I (t) ≥ 0.

From third equation of the system (1)-(4), we have,

dB

dt
= hBG

k2 + G
− δF 2B − d3B,

≥ −δF̄ 2B − d3B, where F̄ is taken from Eq. (5)

Hence, we have

B(t) ≥ C2e
−(d3+δF̄ 2)t ,

where C2 is a constant.
Taking lim t → ∞, we get

B(t) ≥ 0.

From the last equation of the system (1)-(4), we have,

dF

dt
= rF (1 − F

k3
)
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Hence, we have

F(t) ≥ C3e
−rt ,

where C3 is a constant.
Taking lim t → ∞, we get

F(t) ≥ 0.

3.3 Existence of Equilibrium Points

Proposition 1 For system (1)-(4), there exist four potential equilibrium points as follows:

1. Totally glucose point: E1 = (G1, I1,B1,F1) =
(

a

d1
,0,0,0

)
has only glucose level

present and it always exist.

2. Glucose and obesity-related factor point : E2 = (G2, I2,B2,F2) =
(

a + ck3

d1
,0,0, k3

)

has only glucose level and obesity-related factor present, and it always exists.
3. Free from obesity-related factor point :

E3 = (G3, I3,B3,F3) =
(

− d3k2

d3 − h
,

XY

bd3(d3 − h)k2
,− ZXY

bd2
3 (d3 − h)k2

2μ
,0

)
,

where X = (ad3 − ah + d1d3k2), Y = (h + d3k2p − d3) and Z = d2(d3k1 − hk1 − d3k2)

is free from obesity-related factor and it exists if the following condition holds: d3 < h

and d3(a + d1k2) < ah.
4. Disease-endemic point :

E4 = (G4, I4,B4,F4) =
(

d3k2 + δk2k
2
3

h − d3 − δk2
3

,
UW

bk2(d3 + δk2
3)(h − d3 − δk2

3)
,
T UW

V
,k3

)
,

where U = ad3 − ah + d1d3k2 + cd3k3 − chk3 + aδk2
3 + d1δk2k

2
3 + cδk3

3 , V = bk2
2(d3 +

δk2
3)

2(h − d3 − δk2
3)μ, T = d2(d3k1 − hk1 − d3k2 + δk1k

2
3 − δk2k

2
3) and W = d3 − h +

δk2
3 − d3k2p − δk2k

2
3p + d3k3q − hk3q + δk3

3q has all factors present and it exists if the

following condition holds: h > d3 + δk2
3 ,

(
a > 0 and c ≥ − d1k2(d3 + δk2

3)

k3(d3 − h + δk2
3)

)
.

3.4 Stability Analysis

The general Jacobian form of (1)-(4) model is as follows:

J =

⎛
⎜⎜⎜⎜⎜⎝

bGIp

(1 + Gp + Fq)2
− bI

1 + Gp + Fq
− bG

1 + Gp + Fq
− d1 0 c + bGIq

(1 + Gp + Fq)2

Bμ

G + k1
− BGμ

(G + k1)2
−d2

Gμ

G + k1
0

Bh

G + k2
− BGh

(G + k2)2 0
Gh

G + k2
− d3 − δF 2 −2BδF

0 0 0 (1 − F

k3
)r − Fr

k3

⎞
⎟⎟⎟⎟⎟⎠
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To test the stability of the equilibrium points, we execute the following:

1. For the equilibrium point E1: The eigenvalues are

(
−d1,−d2,

ah

a + d1k2
− d3, r

)
. Here,

one of the eigenvalue is positive so E1 is always unstable.

2. For the equilibrium point E2: The eigenvalues are

(
− d1,−d2,

h(a + ck3)

a + d1k2 + ck3
− d3 −

δk2
3,−r

)
and E2 is stable if the following condition hold d3 >

h(a + ck3)

a + d1k2 + ck3
.

3. For the equilibrium point E3: The eigenvalues are (r, λ1, λ2, λ3), where λ′
i s are roots of

the characteristic polynomial

λ3 + R1λ
2 + R2λ + R3

where

R1 = a(d3 − h)2 + d3k2(d2(h − d3) + (d1 + d2)d3k2p)

d3k2(h + d3(k2p − 1))
,

R2 = d1d2d3k2(d
2
3 k2

2p − (d3 − h)2k1) + ad2(d3 − h)2(2hk1 + d3(k2 + k1k2p − 2k1))

d3k2(hk1 + d3(k2 − k1))(h + d3(k2p − 1))
,

R3 = d2(d3 − h)(a(d3 − h) + d1d3k2)

hk2
.

One of the eigenvalues, i.e., ′r ′, is always positive, so E3 is always unstable.
4. For the equilibrium point E4: The eigenvalues are (−r, σ1, σ2, σ3), where σ ′

i s are roots
of the characteristic polynomial

F(σ) = σ 3 + S1σ
2 + S2σ + S3 (9)

where

S1 = d2 + d1k
2
2(d3 + δk2

3)2p + a(d3 − h + δk2
3)2(1 + k3q) + ck3(d3 − h + δk2

3)2(1 + k3q)

k2(d3 + δk2
3)(h(1 + k3q) − d3(1 − k2p + k3q) − δk2

3(1 − k2p + k3q))
,

S2 = A

k2(d3 + δk2
3)(hk1 + d3C + δCk2

3)

+ B

h(1 + k3q) − d3(1 − k2p + k3q) − δk2
3(1 − k2p + k3q)

,

where
A = d2(d3 − h + δk2

3)(d1k1k2(d3 + δk2
3) + a(2d3k1 − 2hk1 − d3k2 + δ(2k1 − k2)k

2
3) +

ck3(2d3k1 − 2hk1 − d3k2 + δ(2k1 − k2)k
2
3)),

B = d2(d1k2(d3 + δk2
3) + a(d3 − h + δk2

3) + ck3(d3 − h + δk2
3))p,

C = k2 − k1,

S3 = d2(d3 − h + δk2
3)(d1k2(d3 + δk2

3) + a(d3 − h + δk2
3) + ck3(d3 − h + δk2

3))

hk2
.

The first eigenvalue is always negative and from Routh-Hurwitz conditions [24], E4

is locally asymptotically stable if

S1 > 0, S2 > 0, S3 > 0, S1S2 − S3 > 0

holds.
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Proposition 2 If S1 > 0, S2 > 0, S3 > 0, and S1S2 − S3 > 0 hold, the equilibrium point E4

is locally asymptotically stable.

3.5 Global Stability

The following theorem gives us sufficient conditions for the equilibrium point E4 to be
globally asymptotically stable.

Theorem 3.2 Assume that the following conditions hold

a ≥ 2G4k3

r

(
(

c

Ḡ
+ bqI4

(1 + pḠ + qF̄ )(1 + pG4 + qF4)

)2

,

cF4d2

2G4
≥ μ2k2

1

(k1 + Ḡ)2(k1 + G4)2
,

d2d3 ≥ 2μ2G2
4

(k1 + Ḡ)2
, (10)

b p ≥ hk2
2(1 + pG4 + qF4)

(k2 + Ḡ)2(k2 + G4)G4
,

r ≥ 2δF 2
4 k3

F̄ 2
.

where F̄ and Ḡ are defined in Eqs. (5) and (6) respectively.
Then the equilibrium point E4 = (G4, I4,B4,F4) of system (1)-(4) is globally asymptoti-

cally stable.

Proof Let us choose a positive definite function,

V (t) = G − G4 − G4 ln

(
G

G4

)
+ 1

2
(I − I4)

2 + 1

2
(B − B4)

2 + F − F4 − F4 ln

(
F

F4

)
.

Finding the derivatives along the positive solution of system (1)-(4) yields

dV

dt
= dG

dt

(
G − G4

G

)
+ dI

dt
(I − I4) + dB

dt
(B − B4) + dF

dt

(
F − F4

F

)
,

=
(

G − G4

G

)[
a − bIG

1 + pG + qF
+ cF − d1G

]
+ (I − I4)

[
μBG

k1 + G
− d2I

]

+ (B − B4)

[(
hG

k2 + G
− δF 2 − d3

)
B

]
+

(
F − F4

F

)[
rF (1 − F

k3
)

]
.

Hence, we obtain

dV

dt
= −

[
a

GG4
(G − G4)

2

−
(

c

G
+ bqI4

(1 + pG + qF)(1 + pG4 + qF4)

)
(F − F4)(G − G4) + r

2k3
(F − F4)

2

]
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−
[

cF4

GG4
(G − G4)

2 − μk1B

(k1 + G)(k1 + G4)
(G − G4)(I − I4) + d2

2
(I − I4)

2

]

−
[

d2

2
(I − I4)

2 − μG4

k1 + G
(I − I4)(B − B4) + d3(B − B4)

2

]

−
[
− −hG4

(k2 + G4)
(B − B4)

2 − k2hB

(k2 + G4)(k2 + G)
(B − B4)(G − G4)

− bpI

(1 + pG + qF)(1 + pG4 + qF4)
(G − G4)

2

]

−
[
δF 2(B − B4)

2 + δB(F + F4)(F − F4)(B − B4) + r

2k3
(F − F4)

2

]
.

Let A∗
0 = a

GG4
, B∗

0 = r

2k3
, C∗

0 = c

G
+ bqI4

(1 + pG + qF)(1 + pG4 + qF4)
.

For
dV

dt
to be negative definite we must have the following,

A∗
0B

∗
0 − C∗2

0 ≥ 0 =⇒ a

GG4

r

2k3
−

(
c

G
+ bqI4

(1 + pG + qF)(1 + pG4 + qF4)

)2

≥ 0

=⇒ a

G4

r

2k3
−

(
c

Ḡ
+ bqI4

(1 + pḠ + qF̄ )(1 + pG4 + qF4)

)2

≥ 0,

where F̄ and Ḡ are defined in Eqs. (5) and (6)

=⇒ a ≥ 2G4k3

r

(
c

Ḡ
+ bqI4

(1 + pḠ + qF̄ )(1 + pG4 + qF4)

)2

.

Again, let A∗
1 = cF4

GG4
, B∗

1 = d2

2
, C∗

1 = μk1B

(k1 + G)(k1 + G4)
.

Similarly,

A∗
1B

∗
1 − C∗2

1 ≥ 0 =⇒ cF4

GG4

d2

2
−

(
μk1B

(k1 + G)(k1 + G4)

)2

≥ 0,

=⇒ cF4d2

2G4
≥ μ2k2

1

(k1 + Ḡ)2(k1 + G4)2
,where Ḡ is defined in Eq. (6).

Again, let A∗
2 = d2

2
, B∗

2 = d3, C∗
2 = μG4

(k1 + G)
.

Similarly,

A∗
2B

∗
2 − C∗2

2 ≥ 0 =⇒ d2d3

2
−

(
μG4

k1 + G

)2

≥ 0

=⇒ d2d3 ≥ 2μ2G2
4

(k1 + Ḡ)2
,where Ḡ is defined in Eq. (6).
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Again, let

A∗
3 = − hG4

(k2 + G4)
, B∗

3 = − bpI

(1 + pG + qF)(1 + pG4 + qF4)
,

C∗
3 = − k2hB

(k2 + G)(k2 + G4)
.

Similarly,

A∗
3B

∗
3 − C∗2

3 ≥ 0 =⇒ hG4

(k2 + G4)

bpI

(1 + pG + qF)(1 + pG4 + qF4)

−
(

− k2hB

(k2 + G)(k2 + G4)

)2

≥ 0

=⇒ b p ≥ hk2
2(1 + pG4 + qF4)

(k2 + Ḡ)2(k2 + G4)G4
,where Ḡ is defined in Eq. (6).

Again, let A∗
4 = δF 2, B∗

4 = r

2k3
, C∗

4 = −δB(F + F4).

Similarly,

A∗
4B

∗
4 − C∗2

4 ≥ 0 =⇒ δF 2 r

2k3
− (−δB(F + F4))

2 ≥ 0

=⇒ r ≥ 2δF 2
4 k3

F̄ 2
,where F̄ is defined in Eq. (5).

Under the assumption (10), we have
dV (t)

dt
< 0. As a result of Lasalle’s invariance prin-

ciple [25], the global asymptotic stability of E4 follows. This completes the proof. �

4 Bifurcation Analysis

The bifurcations and related dynamical behaviors of many human disease models are stud-
ied thoroughly by many researchers [23, 26]. In this section, we will also investigate the
existence of bifurcation in model system (1)-(4).

Theorem 4.1 Let d1c = (a + ck3)(h − d3 − δk2
3)

k2(d3 + δk2
3)

. For system (1)-(4), the equilibrium point

E2

(
a + ck3

d1
,0,0, k3

)
is

• stable if d1 > d1c .
• unstable if d1 < d1c.
• a saddle node if d1 = d1c .

Proof From the Jacobian (J ) provided in Sect. 3.4, we get the characteristic equation at

E2

(
a + ck3

d1
,0,0, k3

)
as

(d1 +λ)(d2 +λ)(r+λ)(d1k2(d3 +δk2
3 +λ)+a(d3 −h+δk2

3 +λ)+ck3(d3 −h+δk2
3 +λ)) = 0,
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Table 2 Parameter values used for numerical simulation

Parameters a b p q c d1 μ k1 d2 h k2

Values 864 0.019 0.5 1 300 1.44 86.4 200 432 1.984 125

Reference [6] [7] Assumed Assumed [7] [6] [7] Assumed [7] Assumed Assumed

Parameters δ d3 r k3

Values 0.001 0.06 0.55 100

Reference Assumed [6] Assumed Assumed

Fig. 3 Bifurcation diagram at E2
for bifurcating parameter d1.
Here, BP, represents the saddle
point. When d1 < BP, E2 is
unstable, when d1 > BP, E2 is
stable

which have three negative roots i.e. λ1 = −d1, λ2 = −d2, λ3 = −r and the fourth root is

λ4 = h(a + ck3)

a + d1k2 + ck3
− d3 − δk2

3 , therefore λ4 = 0 if d1 = d1c = − (a + ck3)(d3 − h + δk2
3)

k2(d3 + δk2
3)

and λ4 > 0 (< 0) if d1 < (>) d1c .
This analysis shows that when d1 crosses a critical value d1c , E2 becomes locally asymp-

totically stable. It may be noted that below this critical point, two equilibriums E2 and E4

exist. However, the equilibrium E4 vanishes as d1 > d1c . �

Example 4.1 Consider d1 = 0.091, d2 = 0.075, k2 = 900, δ = 0.01, k3 = 5.7 and other
parameters as defined in Table 2. We note that a saddle point occurs (represented by
BP) at d1 = d1c = 11.882115. At this critical point the eigenvalues are λ1 = −11.8821,
λ2 = −0.075, λ3 = −0.55, λ4 = 0. When d1 < d1c , the equilibrium point E2 is unstable,
and as d1 > d1c , E2 becomes stable, i.e., a stable branch is observed (c.f. 3).

Theorem 4.2 The equilibrium point E4(G4, I4,B4,F4) undergoes two Hopf bifurcation with
respect to bifurcation parameter d3.

Proof The equilibrium point E4 has two pure complex eigenvalues if

S2S1 = S3,

let these two eigenvalues be represented as

σ1,2 = ±ια,

for some positive real number α.
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Since the sum of three zeros of Eq. (9) is
∑3

i=1 σi = −S1, then we get σ3 = −S1. Then
we have F(σ3) = 0, which gives us the critical values of d3,

i.e.

d3 = d3c1
and d3 = d3c2

.

Now, to verify the transversality condition, let us consider,

F(σj ) ≡ σ 3
j + S1σ

2
j + S2σj + S3 = 0, for j = 1, 2

therefore,

∂F

∂d3
= (3σ 2

j + 2σjS1 + S2)
∂σj

∂d3
+ σ 2

j S ′
1 + σjS

′
2 + S ′

3 = 0,

hence

∂σj

∂d3
= − σ 2

j S ′
1 + σjS

′
2 + S ′

3

S2 + 2S1σj + 3σ 2
j

,

we get



(

∂σj

∂d3

)∣∣∣∣∣
d3=d3c1,2

= − (3α4S ′
1 − α2S ′

1S2 − 3S ′
3α

2 + S ′
3S2 + 2α2S ′

2S1)

(S2 − 3α2)2 + 4α2S2
1

�= 0.

Hence, the system undergoes Hopf bifurcation at E4 for some critical values of d3.
It is difficult to find the critical points analytically, thus prompting the exploration of

numerical alternatives. Subsequently, we validate these findings numerically. Following the
procedure presented in [27] and considering the parameters value same as discussed in Ex-
ample 4.1, the equilibrium point E4(G4, I4,B4,F4), in terms of d3 is given by

G4 =292.41 + 900.d3

(1.6591 − d3)
,

I4 =d3(68851.5d3 − 85584.7) − 39044.3

(d3 − 1.6591)(0.3249 + d3)
,

B4 =d3(d3(46.4854d3 − 16.3292) − 77.8892) − 23.5075

(d3 + 0.3249)2(d3 − 1.6591)
,

F4 =5.7.

The feasibility condition for E4 to exist requires 0 < d3 < 1.59792 (see Fig. 4). In this d3 fea-
sible range, S1 is positive and S3 is positive whenever E4 is feasible, that is, in the range d3 ∈
(0,1.59792) while S1S2 −S3 is positive for d3 ∈ (0,0.109415) and d3 ∈ (1.52208,1.59792)

(see Fig. 5 and for magnified version see Fig. 6 ).
Since the existence of this equilibrium point E4 is upto d3 = 1.59792, hence we discuss

the scenario of stability for d3 ∈ (0,1.59792).

• At d3 = d3c1
= 0.109415, we have

S1 > 0, S2 > 0 and S1S2 − S3 ≈ 0 with
d

dd3
(S1S2 − S3)

∣∣∣∣∣
d3=d3c1

�= 0.
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Fig. 4 Feasible region of d3 for the co-existence of all the four densities

Fig. 5 Plot showing the occurrence of Hopf bifurcation at H1 = 0.109415 and H2 = 1.52205 when curve
S1S2 − S3 crosses the x-axis

This establishes the first Hopf bifurcation point (H1).
• At d3 = d3c2

= 1.52205, we have

S1 > 0, S2 > 0 and S1S2 − S3 ≈ 0 with
d

dd3
(S1S2 − S3)

∣∣∣∣∣
d3=d3c2

�= 0.
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Fig. 6 (a) Plot showing the magnified version of region R1 of Fig. 5. This figure clearly shows the occurrence
of 1st Hopf Bifurcation (H1) at d3 = d3c1

= 0.109415, (b) Plot showing the magnified version of region R2
of Fig. 5. This figure shows the occurrence of 2nd Hopf Bifurcation (H2) at d3 = d3c2

= 1.52205

This establishes the second Hopf bifurcation point (H2).

Fig. 7(a, c) shows the branch of E4 and its stability w.r.t bifurcation parameter d3. We
observe that the equilibrium point E4(G4, I4,B4,F4) is stable for d3 < d3c1

and unstabi-
lizes through Hopf-bifurcation (H1) at d3 = d3c1

= 0.109415 and it again stabilizes through
Hopf-bifurcation (H2) giving us another critical value of d3 i.e. d3 = d3c2

= 1.52205. In the
bifurcation diagram 7 the variations of the glucose and beta-cells densities are examined in
the ranges of 0 < G < 30000 and 0 < B < 7000, as a function of d3 which varies in the
range 0 < d3 < 2.

We will now plot the phase portrait and time series around two Hopf-bifurcations (H1

and H2)

• when d3 ∈ (0, d3c1
) i.e. d3 < d3c1

, a stable behaviour is observed around E4 (see Fig. 8).
• when d3c1

< d3 < d3c2
, we observe a stable limit cycle as a result of 1st supercritical Hopf

bifurcation (see Fig. 9).
• At d3 = d3c2

the system encounters 2nd Hopf Bifurcation and as the result of it when
d3 > d3c2

, system restores its stability (see Fig. 10). �

5 Delayed Model and Its Dynamics

The lags, referred to as delays, can group along complex biological processes, merely in-
dicating the time required for these processes to occur [28]. Time-delay models are be-
coming more familiar and widespread in several biological modeling fields [29]. These
models have been seen in epidemiology [30], chemostat model theory [31], brain net-
works [32, 33], circadian rhythms [34], diabetes [6]. Chuedoung et al. [35] investigated
the oscillatory behavior of the glucose and insulin dynamic system as a single-compartment
model.

In diabetic patients, as glucose level increases, beta-cell come under more pressure to
work, leading to its disruption, affecting insulin production. Beta cells usually work in start-



8 Page 18 of 34 A. Jain, P. Roy

Fig. 7 (a) Bifurcation analysis (G vs d3) showing occurrence of two supercritical hopf points. (b) Same as
in (a) to visualize the family of limit cycles bifurcating between the Hopf point H1 and H2. (c) Bifurcation
analysis (B vs d3) showing occurrence of two supercritical hopf points. (d) Same as in (c) but shown on a
different scale to visualize the family of limit cycles bifurcating between the Hopf point H1 and H2. The
dotted line represents unstable branch and the solid line represents stable branch

Fig. 8 (a) Phase Portrait, (b) Time series solution of system (1)–(4). Both diagrams are plotted with d3 = 0.06
(d3 < d3c1

). Here, we observe that the system is stable

ing, but they disrupt as the load increases. To investigate the consequences of the time delay
in handling increased glucose levels, we introduced lag in insulin production due to beta-cell
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Fig. 9 (a) Phase Portrait, (b) Time series solution of system (1)–(4). Both diagrams are plotted with d3 = 1
(d3c1

< d3 < d3c2
). Here, we observe that the equilibrium point E4 becomes unstable giving rise to stable

limit cycle ranging between two Hopf bifurcation points (H1 and H2)

Fig. 10 (a) Phase Portrait, (b) Time series solution of system (1)–(4). Both diagrams are plotted with
d3 = 1.53 (d3 > d3c2

). Here, we observe that the system again regains stability as it exceeds 2nd Hopf
bifurcation point (H2)

disruption. The modified model (1)–(4) with delay term is given as follows:

dG

dt
= a − bIG

1 + pG + qF
+ cF − d1G, (11)

dI

dt
= μB(t − τ)G

k1 + G
− d2I, (12)

dB

dt
=

(
hG

k2 + G
− δF 2 − d3

)
B, (13)

dF

dt
= rF

(
1 − F

k3

)
. (14)

with initial conditions G(ζ) = φ1(ζ ) ≥ 0, I (ζ ) = φ2(ζ ) ≥ 0, B(ζ ) = φ3(ζ ) ≥ 0, F(ζ ) =
φ4(ζ ) ≥ 0, ζ ∈ [−τ,0], φi(0) > 0, i = 1,2,3,4, where (φ1(ζ ),φ2(ζ ),φ3(ζ ),φ4(ζ )) ∈
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C([−τ,0], R4
+0) is the Banach space of continuous functions mapping the interval [−τ ,

0] into R4
+0, where R4

+0 = {(G, I,B,F ) : G ≥ 0, I ≥ 0,B ≥ 0,F ≥ 0}.
τ denotes the time delay in insulin synthesis due to beta cell dysfunction, and all other

parameters are same as described in Table 1.

5.1 Stability Analysis of Delay Model

The system (11)- (14) has been linearized around E4 and represented as follows:

dG

dt
= A11G(t) + A12I (t) + A13B(t) + A14F(t), (15)

dI

dt
= A21G(t) + A22I (t) + A23B(t − τ) + A24F(t), (16)

dB

dt
= A31G(t) + A32I (t) + A33B(t) + A34F(t), (17)

dF

dt
= A41G(t) + A42I (t) + A43B(t) + A44F(t). (18)

where the values of A11, A12, A13, A14, A21, A22, A23, A24, A31, A32, A33, A34, A41, A42,
A43, A44 are discussed in appendix A. The characteristic equation of lineralized system
(15)-(18) is given as,

η4 + p1η
3 + p2η

2 + p3η + p4 + e−ητ (q1η + q2) = 0, (19)

where the values of p1, p2, p3, p4, q1 and q2 are mentioned in appendix A.
The requirement for E4 to be asymptotically stable with τ = 0 is given by proposition 2,

and the solutions approach E4 as the time t → ∞.
Now, to analyze the condition that guarantees system (11)–(14) to remain stable as τ

increases from zero. By the continuity of τ , equation (19) will have roots with a positive
real part if it crosses the imaginary axis. It is clear that η = ιω (ι = √−1, ω > 0) is a root of
equation (19) if and only if

(ιω)4 + p1(ιω)3 + p2(ιω)2 + p3ιω + p4 + e−ιωτ (q1(ιω) + q2) = 0.

By Euler’s formula, e−ιωτ = cos(ωτ) − ι sin(ωτ), we have

ω4 − ω2p2 + p4 + q2 cos(ωτ) + q1ω sin(ωτ) = 0,

−ω3p1 + p3ω + q1ω cos(ωτ) − q2 sin(ωτ) = 0.
(20)

Now, we have from above equation

sin τω = ω3(p2q1 − q2p1) − ω5q1 − p4q1ω + p3q2ω

q2
1ω2 + q2

2

and

cos τω = −q1p3ω
2 − q1ω

4p1 + q2ω
4 − ω2p2q2 + p4q2

q2
1ω2 + q2

2

,
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using the trigonometric property sin2 ωτ + cos2 ωτ = 1, we get

ω8 + ω6(p2
1 − 2p2) + ω4(p2

2 − 2p1p3 + 2p4) + ω2(p2
3 − q2

1 − 2p2p4) + p2
4 − q2

2 = 0. (21)

By Descarte’s rule of signs, Eq. (21) has at least one positive real root defined by ω0. Thus,
from Eq. (20) we have

tan τω = −ω3(p2q1 − q2p1) − ω5q1 − p4q1ω + p3q2ω

q1p3ω2 − q1ω4p1 + q2ω4 − ω2p2q2 + p4q2
.

Therefore,

τ ∗
j = 1

ω0
tan−1

[
−ω3

0(p2q1 − q2p1) − ω5
0q1 − p4q1ω0 + p3q2ω0

q1p3ω
2
0 − q1ω

4
0p1 + q2ω

4
0 − ω2

0p2q2 + p4q2

]
+ 2πj

ω0
(22)

where j = 0,1,2,3, . . .. Let τ0 = τ ∗
0 be the first critical value for equation (19) to have roots

on the imaginary axis.
E4 remains stable for τ ∈ [0, τ ∗

0 ) and unstable for τ > τ ∗
0 . The system stability (11)–(14)

is changed at the critical value of delay τ ∗
0 and cannot occur again for greater delays [36].

We choose τ as the bifurcation parameter because system (11)–(14) loses stability at τ = τ ∗
0 .

We demonstrated that, equation (19) has roots on the imaginary axis, namely η = ιω0 at each
τ = τ ∗

0 .
Now, in order to establish the Hopf bifurcation condition [37], we check the transversality

requirement. Differentiating (19) w.r.t. τ , we get

(
4η3 + 3η2p1 + 2ηp2 + p3 + q1e

−ητ − τe−ητ (q1η + q2)
) dη

τ
= ηe−ητ (q1η + q2)

Using e−ητ = −η4 + p1η
3 + p2η

2 + p3η + p4

q1η + q2
, we get

(
dη

dτ

)−1

= 4η3 + 3η2p1 + 2ηp2 + p3

−η(η4 + p1η3 + p2η2 + p3η + p4)
+ q1

η(q1η + q2)
− τ

η

Since for τ = τ ∗
0 and η = ιω0, we have

τ

η
= −ι

τ ∗
0

ω0
,

η(q1η + q2) = ιq2ω0 − q1ω
2
0,

4η3 + 3η2p1 + 2ηp2 + p3 = 2ιω0p2 + p3 − 4ιω3
0 − 3ω2

0p1,

−η(η4 + p1η
3 + p2η

2 + p3η + p4) = −(ιω5
0 + p1ω

4
0 − p2ιω

3
0 − p3ω

2
0 + ιp4ω0).

Then
[



(
dη

dτ

)−1
]

τ=τ∗
0

=
[

4η3 + 3η2p1 + 2ηp2 + p3

−η(η4 + p1η3 + p2η2 + p3η + p4)
+ q1

η(q1η + q2)
− τ

η

]
η=ιω0

= 1

ω2
0

[3ω2
0p1 − p3

p1ω
2
0 − p3

− 1]
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= 2p1

p1ω
2
0 − p3

Hence,

sign

{
d
(η(τ ))

dτ

}
τ=τ∗

0

> 0

if

p1w
2
0 − p3 > 0.

Therefore, a Hopf bifurcation is established at the equilibrium point E4 when τ = τ ∗
0 .

Theorem 5.1 Considering the system (11)-(14),

• As τ increases from zero, there exists τ ∗
j given by equation (22) such that τ0 = τ ∗

0 is the
initial critical-value of delay. The disease-endemic equilibrium E4 is locally asymptoti-
cally stable for τ ∈ [0, τ ∗

0 ) and unstable when τ > τ ∗
0 . Furthermore, the system undergoes

Hopf bifurcation at E4 when τ = τ ∗
0 .

6 The Optimal Control Problem

A crucial part of health facilities is the prevention of diabetes complications. The financial
cost of diabetes is mostly related to long-term diabetic implications in terms of medication.
This section proposes an optimal control strategy to lower the incidence and consequences
of diabetes while keeping the relative cost of applying measures as low as possible. We
quantify two forms of control interventions in this paper, namely, w1(t) and w2(t). Each
intervention is discussed as follows:

Let [0, T ] denote the time when the optimal control technique is applied to the system
(1)–(4). In this study, we quantify two types of control interventions: w1(t) and w2(t). Each
intervention is explained as follows:

• Control variable w1(t): Due to the prevalence of the disease, the control w1(t) is used to
lower glucose production by using medication such as Metformin, the best prescription
to reduce blood glucose levels and help keep blood sugar levels at a healthy range.

• Control variable w2(t): This intervention reduces the obesity-related factor by exercis-
ing daily, buying exercise equipment, eating healthy food, following a regular diet, and
keeping a healthy weight.

Due to limited medical resources, it is necessary to put some boundaries on controls, such
as 0 ≤ w1(t), w2(t) ≤ 1. If w1(t) and w2(t) are zero, no effort is placed into these controls at
time t , whereas one represents the maximum capacity of applied interventions. Considering
the preceding assumptions, the system (1)–(4) is modified as follows to customize control
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variables:

dG

dt
= a − w1(t)IG

1 + pG + qF
+ cF − d1G,

dI

dt
= μBG

k1 + G
− d2I,

dB

dt
=

(
hG

k2 + G
− δF 2 − d3

)
B,

dF

dt
= (1 − w2(t))F

(
1 − F

k3

)
.

(23)

For our convenience, we write w1(t) = w1 and w2(t) = w2 for future analysis.

6.1 Controls Cost Construction and Characterization

This section is divided into two parts. These involve determining the total cost of disease
and its controls and the analytical forms of the controls.

6.1.1 Total Cost Determination

Here, we calculate the overall cost incurred as a result of the control measures that are to be
minimised.

(i.) Cost incurred in lowering the glucose level: Cost involved in treatment policy is given
as:

∫ T

0 A∗w2
1 dt .

The term A∗w2
1 refers to the cost of treatment policy and related activities such as

medicine, diagnostic expenses, and hospitalization. For the cost of the treatment policy,
we used typical quadratic non-linearity w2

1 .
(ii.) Cost related to obesity-related factor and its treatment: The overall cost resulting

from disease burden and treatment policy is stated as:
∫ T

0

[
U1F(t) + D∗w2

2

]
dt .

Consider the control problem of minimizing the objective function over time T .

L(w1,w2) =
∫ T

0

[
U1F(t) + A∗w2

1 + D∗w2
2

]
dt (24)

subject to the model system (23).
where U1 > 0, A∗ > 0, D∗ > 0 are positive weight constants that balance the unit of

integrands and measure the relative costs.
Our target is to search the optimal controls w∗

1 , w∗
2 such that

L(w∗
1,w

∗
2) = min

w1,w2∈U
L(w1,w2)

where U is the set of admissible controls defined by

U = {w1,w2 | 0 ≤ w1, w2 ≤ 1, t ∈ [ 0, T ] }.

The controls in this situation are bounded and measurable.
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6.1.2 Existence of an Optimal Control

To begin, we demonstrate the existence of optimal control functions that minimize the cost
function in a finite period. We follow the results proven in [38–40] to achieve this. This
problem’s Lagrangian is described as follows:

L1(G, I,B,F,w1,w2) = U1F(t) + A∗w2
1 + D∗w2

2 .

The following conclusion ensures the existence of the ideal control functions.

Theorem 6.1 Consider the control problem with system (23), ∃ an optimal control
(w∗

1,w
∗
2) ∈ U such that L(w∗

1,w
∗
2) = min

w1,w2∈U
L(w1,w2).

Proof The existence of the optimal control can be determined using Theorem 4.1 of [41].

• For each bounded control coming from the control set U , all state variables are bounded,
as was previously explained. The right-hand portion of the model system (23), about state
variables, also satisfies the Lipschitz criterion.

• The model system (23) is linear in control variables, and the control variable set U is
convex and closed by definition.

• The integrand L1(G, I,B,F,w1,w2) = U1F(t) + A∗w2
1 + D∗w2

2 , is convex in U due to
quadratic nature of control variables. Also, L1(G, I,B,F,w1,w2) = U1F(t) + A∗w2

1 +
D∗w2

2 ≥ A∗w2
1 + D∗w2

2 . Now, we consider e1 = min(A∗,D∗) > 0 and g(w1,w2) =
e1(w

2
1 + w2

2). Hence, L1 ≥ g(w1,w2) is true and g is continuous and satisfies
|(w1,w2)|−1g(w1,w2) → ∞ whenever |(w1,w2)| → ∞.

Therefore, all conditions for the existence of controls are fulfilled. Hence, the result. �

6.1.3 Characterization of Optimal Control Functions

Here, we employ Pontryagin’s Maximum Principle to create the prerequisites for ideal con-
trol functions and examine the routes of ideal control functions for the control system (23)-
(24). For this, the associated Hamiltonian H is defined by

H = L1 + λ1
dG

dt
+ λ2

dI

dt
+ λ3

dB

dt
+ λ4

dF

dt
(25)

where λ = (λ1, λ2, λ3, λ4)
T is known as adjoint variable. In the following theorem, we char-

acterize the optimal controls.

Theorem 6.2 Let w∗
1 and w∗

2 , be two optimal control functions, and G∗, I ∗, B∗ and F ∗

are the state variables of the optimal control problem (23)-(24). Then ∃ adjoint variable
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λ = (λ1, λ2, λ3, λ4)
T ∈ R4 which satisfies the following canonical equations:

dλ1

dt
=

(
d1 − GIpw1

(1 + pG + qF)2
+ Iw1

(1 + pG + qF)

)
λ1

−
(

Bμ

k1 + G
− BGμ

(k1 + G)2

)
λ2 −

(
hB

k2 + G
− hGB

(k2 + G)2

)
λ3,

dλ2

dt
= d2λ2 +

(
Gw1

1 + pG + qF

)
λ1,

dλ3

dt
=

(
d3 + δF 2 − hG

k2 + G

)
λ3 −

(
μG

k1 + G

)
λ2,

dλ4

dt
=

(
F(1 − w2)

k3
−

(
1 − F

k3

)
(1 − w2)

)
λ4 − U1 + 2BδFλ3

−
(

c + GIqw1

(1 + pG + qF)2

)
λ1.

(26)

with transversality conditions

λi(T ) = 0 ∀ 1 ≤ i ≤ 4. (27)

Also, the corresponding optimal controls w∗
1 and w∗

2 are given as,

w∗
1 = min

{
max

{
0,

(
λ1G

∗I ∗

2A∗(1 + pG∗ + qF ∗)

)}
,1

}
,

w∗
2 = min

{
max

{
0,

λ4F
∗

2D∗

(
1 − F ∗

k3

)}
,1

}
.

(28)

Proof Let w∗
1 and w∗

2 be the given optimal control functions and G∗, I ∗, B∗ and F ∗
are the corresponding optimal state variables of the system (23), which minimize the
cost functional (24). Then by the Pontryagin’s Maximum Principle, ∃ adjoint variable
λ = (λ1, λ2, λ3, λ4)

T ∈ R4 which satisfies the following canonical equations:

dλ1

dt
= −∂H

∂G
,

dλ2

dt
= −∂H

∂I
,

dλ3

dt
= −∂H

∂B
and

dλ4

dt
= −∂H

∂F

with transversality conditions (27).
Here, H is the Hamiltonian and given in (25). Then, we get the adjoint system (26) with

transversality conditions (27).
Now, using the optimality condition, we have

∂H
dwi

= 0, at wi = w∗
i f or i = 1,2.

Hence, we get

w∗
1 = 1

2A∗ λ1

(
G∗I ∗

1 + pG∗ + qF ∗

)
and w∗

2 = 1

2D∗ λ4

(
F ∗

(
1 − F ∗

k3

))
.

By following the above along with the properties of the control space U , we have the
optimal controls w∗

1 and w∗
2 as given in (28). �
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Fig. 11 Solution for system (1)-(4) with parameter values given in the Table 2 and when (a) δ = 0.00001, (b)
δ = 0.0001, (c) δ = 0.001. These figures indicates as obese related death among beta cells increases, glucose
levels correspondingly increase

7 Numerical Analysis

Numerical analysis is used to examine the global dynamical behavior of the systems (1)-(4),
(11)-(14) and (23). Table 2 mentions the parameter value and is either assumed or derived
from the literature.

7.1 ODE Simulation: Effect of δ

In this part, we simulate numerically the (1)–(4) system. The numerical results in this section
were produced using MATLAB’s built-in ODE 45 function with the initial conditions (100,
20, 300, 0.01). Here, we vary δ, i.e., the death rate of beta-cells due to obese-related factors.
We consider three values of δ: (i) δ = 0.00001, (ii) δ = 0.0001, and (iii) δ = 0.001 for our
simulation, and the other parameters are the same as given in Table 2. At a low death rate
of beta-cells due to obesity-related factors, say δ = 0.00001, we observe high insulin level
and beta-cell density. However, one can keep a low level of glucose (see Fig. 11 (a)). This is
due to proper beta-cell functioning, showing healthy conditions. When δ slightly increases
to 0.0001, the beta-cells with insulin density start decreasing with a corresponding rise in
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Fig. 12 Solution for system (1)-(4) with parameter values given in the Table 2 and when (a) r = 0.01, (b)
r = 0.1. These figures suggest that excessive fat disrupts beta cells, leading to unchecked glucose levels

glucose level (see Fig. 11 (b)). Finally, when δ increases to 0.001, the beta-cells with insulin
density start to decrease rapidly with a corresponding increase in glucose level, showing the
worst scenario (see Fig. 11 (c)). This simulation clearly states that an obesity-related factor
increases the glucose level in the bloodstream.

Our findings suggest that when the death rate of beta-cells due to obese-related factors is
less (negligible), glucose levels can be controlled in the body, and this represents the healthy
condition everyone wants, i.e., free from type 2 diabetes, and for this, one needs to follow
a proper well-maintained routine like by having a nutritious diet, by proper daily exercise,
whether by performing yoga or doing it with the help of gym equipment.

7.2 ODE Simulation: Effect of r

Here, we vary r , i.e., the growth rate of obese-related factors. We consider r as: (i) r =
0.01 and (ii) r = 0.1 for our simulation, and the other parameters are the same as given in
Table 2. Here, when r = 0.01 (see Fig. 12 (a)), we see insulin as well as beta-cell density
increases with time. However, glucose levels decrease, showing healthy conditions. When r

is increased to r = 0.1 after a few days, the glucose level crosses a critical value, resulting in
beta-cell dysfunction, thus causing low insulin production (see Fig. 12 (b)). An uncontrolled
growth in glucose is observed after the disruption of beta cells. By this simulation, we can
clearly state that beta-cell dysfunctions as the growth rate of obese-related factors increases.
Due to this, insulin production decreases, resulting in insulin resistance. As a result, glucose
level increases in the body and hyperglycemia occurs, and the condition of a person who
suffers from type two diabetes worsens.

Our result suggests that when r is less, i.e., there is a control level of obese-related factor
in the body, then beta-cells function properly, and this is the healthiest condition everyone
wants, i.e., free from type 2 diabetes, and to achieve this, one needs to perform a healthy
diet and routine and avoid the chances of getting obesity.

7.3 Numerical Simulation of the Model with Delay

Delay differential equations are an exciting type of differential equation with numerous
applications, particularly in biology and medicine. In this section, a numerical analysis is
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Fig. 13 Bifurcation diagram for system (11)-(14) considering τ as a bifurcation parameter. At τ = τ∗
0 = 0.68

occurrence of Hopf bifurcation leading to period doubling is observed

performed to investigate the dynamical behavior of the system (11)- (14). We have consid-
ered the same initial conditions as in the case without delay. We took the same parameters
as discussed in Example 4.1.

Here, we vary τ from 0.01 to 1.2. The simulation showed periodic doubling bifurcation
occurs when delay crosses a critical value (see Fig. 13). A period-doubling bifurcation in
dynamical systems theory happens when a slight change in a system’s parameters results in
the emergence of a new periodic trajectory from an existing one, the new one having twice
the original period. The numerical values acquired by the system repeat themselves twice as
slowly with a twofold period. For τ ∈ [0.01,0.68), the density of glucose level, insulin, and
beta cells converge to a stable fixed point. And once τ ≥ 0.68, the component’s densities
break in two, oscillating back and forth between two values and never settling to a single
constant value. The cycle then continues. These are period-doubling bifurcations since the
cycle’s or period’s duration has doubled. Also, from here, we note that the critical value of
τ = τ ∗

0 = 0.68; also, we identify a critical delay point at τ = 0.68 (ω = 0.547134), marking
the transition of the system’s stability from a stable state to an unstable state. Figure 14 show
the system (11)-(14) solution corresponding to τ = 0.3 and τ = 4.5 illustrating the impact
of the time delay in generating periodic solutions; from here, when τ < τ ∗

0 , we observe the
stable behavior of our system (see Fig. 14(a)). As τ > τ ∗

0 , we see the oscillatory behavior of
the system (see Fig. 14(b)).

From a biological perspective, we may argue that as τ grows, the density of all the com-
ponents oscillates, with more followed by less, and so on.
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Fig. 14 Solution of the system (11)-(14) showing the impact of different rate of delays (τ ), (a) τ = 0.3; (b)
τ = 4.5

Fig. 15 Profile of glucose level
with and without controls

7.4 Numerical Simulation of the Optimal Control Problem

This part focuses on running numerical simulations for the control problem to investigate
how control interventions affect disease transmission dynamics. To verify the predictability
of the controlled system (23), a graph compares the evolution of glucose levels in a diabetic
patient without control to a diabetic patient with control.

To compile the numerical simulations, we set k3 = 15, and others are the same as dis-
cussed in Example 4.1. The time period for controls to be applied is T = 300 days, along
with the same initial conditions [100, 20, 300, 0.01]. We choose the positive weight param-
eters as A∗ = 10, U1 = 30, D∗ = 5.

From Fig. 15, it is clear that due to measures like medication, exercise, and having a
healthy diet, the glucose level starts to decrease, showing the positive effect of measures
that are imposed.
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This represents the importance of control in disease transmission. It is observed that as
controls are imposed, disease invasion is controlled. If the individual suffers from diabetes
and does not adopt any measures, his/her health may worsen due to uncontrolled glucose
rise.

8 Conclusion

A mathematical model has been developed to elucidate the interaction between obesity and
diabetes. The primary objective of this study is to demonstrate the significant role of obe-
sity in the progression of type 2 diabetes. The constructed model exhibits four biologically
plausible equilibria. Our investigation encompasses both local and global stability analy-
ses. Local and global stability conditions are defined using the Routh-Hurwitz criterion and
constructing appropriate Lyapunov function. We have established that the system’s pos-
itive equilibrium is globally asymptotically stable under specific parameter assumptions.
Furthermore, we have provided analytical evidence for the existence of Hopf bifurcations.
Numerical simulations have been conducted to validate these findings.

Bifurcation analysis reveals that a lower death rate of beta cells (d3) ensures the proper
cyclic elimination of glucose. The intricate balance of anabolism and catabolism in response
to variations in calorie intake, food composition, and physical activity influences the equi-
librium of insulin and blood glucose levels. However, when this rate exceeds a critical value,
glucose removal does not occur periodically due to beta cell dysfunction, necessitating exter-
nal insulin administration. Our numerical simulations also indicate that an excessive growth
rate of obesity-related factors impairs beta cells, leading to uncontrolled glucose levels.

Beta cells, responsible for producing and releasing insulin in response to glucose levels,
may exhibit impaired function in individuals with type 2 diabetes. Consequently, this dys-
function can lead to delays in insulin secretion, disrupting the delicately balanced feedback
mechanisms responsible for regulating blood glucose levels. We have introduced a time de-
lay term to our proposed model to integrate this fact. This delay factor accounts for beta cell
dysfunction in insulin production. Our analysis demonstrates that the system exhibits stable
behavior when the delay parameter (τ ) is in the range [0, 0.68). However, beyond the critical
value of 0.68, the system undergoes period doubling, transforming stable dynamics into pe-
riodic dynamics in the presence of delay. Period doubling exhibits non-linear behavior and
thus, underscores the complex interplay between insulin dynamics, beta cell function, and
glucose regulation in type 2 diabetes. We simulate the effect of reducing obesity through
exercise and medication and formulate an optimal control model using the Pontryagin max-
imum principle to identify the best control solution [42]. This analysis is conducted with a
sense of urgency, recognizing the imperative need for prompt action to curb the advance-
ment of diabetes and to introduce accessible treatment solutions to counteract this alarming
trend. Our findings corroborate this urgency, as evidenced by the results in Fig. 15. It is evi-
dent that the glucose level gradually decreases over time with the implementation of control
measures. This reduction aligns with our objectives, as it signifies the effective management
of the disease dynamics. By adhering to lifestyle modifications such as regular exercise and
maintaining a healthy diet, individuals can control the disease’s progression. Conversely,
failure to adopt these healthy lifestyle measures can exacerbate the condition of diabetic
individuals. Thus, our analysis underscores the critical importance of proactive intervention
and lifestyle management in mitigating the adverse effects of diabetes and improving overall
health outcomes.
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While our model exhibits several strengths, it is not without its limitations. One signifi-
cant challenge is measuring beta-cell mass, a pivotal parameter within the model. Obtaining
precise measurements of beta-cell mass presents inherent difficulties, as current method-
ologies often lack the necessary sensitivity and specificity. Moreover, reliable data about
beta-cell mass are frequently scarce or unavailable, further complicating efforts to validate
and refine the model. Furthermore, the scarcity of empirical evidence necessitates assum-
ing certain parameter values within the model. While necessary for model development,
these assumptions introduce uncertainty to the analysis and interpretation of results. The
complex nature of the disease epidemic, encompassing multifaceted interactions between
various physiological, genetic, environmental, and behavioral factors, underscores the need
for ongoing research efforts. Addressing the intricacies of diabetes requires a comprehen-
sive approach that extends beyond the scope of any single model. Future research endeavors
must elucidate the complex mechanisms underlying diabetes pathogenesis and progression,
integrating diverse datasets and methodologies to capture the full spectrum of disease dy-
namics. Continued research efforts are imperative to overcome these challenges and refine
our understanding of diabetes, ultimately paving the way for more effective prevention and
management strategies.

The global prevalence of diabetes is rapidly escalating, with an alarming increase in mor-
tality rates associated with the disease. Factors such as obesity, unhealthy dietary habits, and
sedentary lifestyles are identified as key contributors to this epidemic. These factors are
largely preventable, underscoring the importance of raising public awareness about their
detrimental effects. Research studies [1, 43–45] highlight the profound impact of these
lifestyle choices on the onset and progression of diabetes. Surgical interventions, partic-
ularly bariatric surgery, emerge as highly effective strategies for addressing both obesity
and type 2 diabetes [45]. These procedures offer promising outcomes in weight loss and
glycemic control, emphasizing the potential for targeted interventions to mitigate the bur-
den of diabetes. The findings presented in this paper collectively support the conclusion that
the developed model is physiologically consistent and holds promise as a valuable tool for
advancing our understanding of diabetes. By delving deeper into the intricacies of diabetes
dynamics and exploring innovative interventions, we can strive to mitigate the economic and
humanistic burden of this widespread disease.

Appendix A

A11 = bGIp

(1 + Gp + Fq)2
− bI

1 + Gp + Fq
− d1,

A12 = − bG

1 + Gp + Fq
,

A13 = 0,

A14 = c + bGIq

(1 + Gp + Fq)2
,

A21 = Bμ

G + k1
− BGμ

(G + k1)2
,

A22 = −d2,

A23 = Gμe−ητ

G + k1
,
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A24 = 0,

A31 = Bh

G + k2
− BGh

(G + k2)2
,

A32 = 0,

A33 = Gh

G + k2
− d3 − δF 2,

A34 = −2BδF,

A41 = 0,

A42 = 0,

A43 = 0,

A44 = (1 − F

k3
)r − Fr

k3
.

p1 = d1 + d2 + d3 + δF 2 − Gh

G + k2
− bGIp

v2
+ bI

v
− r + 2Fr

k3
, and v = (1 +Gp +Fq),

p2 = bG2hIp

(G + k2)v2
− bd3GIp

v2
− bδF 2GIp

v2
+ bd3I

v
+ bδF 2I

v
− bGhI

(G + k2)v
− d3r −

δF 2r + Ghr

G + k2
+ 2d3Fr

k3
+ 2δF 3r

k3
− 2FGhr

(G + k2)k3
+ bGIpr

v2
− 2bFGIpr

k3v2
− bIr

v
+ 2bFIr

k3v
+

d1

(
d2 + d3 + δF 2 − Gh

G + k2
− r + 2Fr

k3

)
+ d2

(
d3 + δF 2 − Gh

G + k2
− bGIp

v2
+ bI

v
− r +

2Fr

k3

)
+ bBGk1μ

(G + k1)2v
,

p3 = d2(d3(G + k2) − Gh + δF 2(G + k2))(2F − k3)r

(G + k2)k3
+ 1

(G + k2)k3
(d1d2(d3(G+k2)−

Gh + δF 2(G + k2))k3 + d1(G(d2 + d3 + δF 2 − h) + (d2 + d3 + δF 2)k2)(2F − k3)r) +
1

v2
b(

2d3FIr

k3
− d3Ir + δF 2GIpr − G2hIpr

G + k2
− 2δF 3GIpr

k3
+ 2FG2hIpr

(G + k2)k3
− d3FIqr +

2d3F
2Iqr

k3
− δF 2Ivr + GhIvr

G + k2
+ 2δF 3Ivr

k3
− 2FGhIvr

(G + k2)k3
+

d2I (1 + Fq)(d3(G + k2)k3 − Ghk3 + δF 2(G + k2)k3 + (G + k2)(2F − k3)r)

(G + k2)k3
+

Bd3Gk1μ

(G + k1)2
+ Bd3G

2k1pμ

(G + k1)2
+ Bd3FGk1qμ

(G + k1)2
− BδF 2G2vμ

(G + k1)2
+ BδF 2Gvμ

G + k1
+

BG3hvμ

(G + k1)2(G + k2)
− BG2hvμ

(G + k1)(G + k2)
+ BG2vrμ

(G + k1)2
− BGvrμ

G + k1
− 2BFG2vrμ

(G + k1)2k3
+

2BFGvrμ

(G + k1)k3
),

p4 = (d3(G + k2) − Gh + δF 2(G + k2))(2F − k3)r(bd2I (G + k1)
2(1 + Fq) + d1d2(G + k1)

2v2 + bBGk1vμ)

(G + k1)2(G + k2)k3v2 ,

q1 = bBG2hk2u

v(G + k1)(G + k2)2
,

q2 = bBG2hk2(2F − k3)rμ

(G + k1)(G + k2)2k3v
.
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