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Abstract
This article establishes the existence of global classical solutions to discrete coagulation
equations with collisional breakage for collision kernels having linear growth. In contrast,
the uniqueness is shown under additional restrictions on collision kernels. Moreover, mass
conservation property and the positivity of solutions are also shown. While coagulation dom-
inates, the occurrence of the gelation phenomenon for kernels having specific growth is also
studied.
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Mathematics Subject Classification Primary 34A12 · 34K30 · Secondary 46B50

1 Introduction

Coagulation and breakage models describe the mechanisms by which clusters combine to
form bigger clusters or break into smaller fragments. These models are used to explain a
wide range of phenomena, such as cloud droplets formation [28, 31] and planet formation
[10, 30]. Each cluster in these situations is fully characterized by a size variable (volume,
mass, number of monomers, etc.) that can be either a positive real number (continuous mod-
els) or a positive integer (discrete models). The clusters we are looking at are discrete in the
sense that they are made up of a finite number of fundamental building blocks (monomers)
having unit mass. In nature, when we examine a very short period of time, coagulation is
binary, whereas breakage can occur in two ways: linear (spontaneous) or non-linear. The lin-
ear breakage process is governed solely by cluster properties (and also by external forces, if
any), whereas the non-linear breakage process occurs when two or more clusters encounter
and the matter is transferred between them. As a result, the mass of the emerging cluster in
a non-linear breakage process may be larger than the colliding clusters.
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Denoting by wi(t), i ≥ 1, the number of clusters made of i particles (i-clusters) per unit
volume at time t ≥ 0, the discrete coagulation equations with collisional breakage read

dwi

dt
=1

2

i−1∑

j=1

pj,i−j�j,i−jwjwi−j −
∞∑

j=1

�i,jwiwj

+ 1

2

∞∑

j=i+1

j−1∑

k=1

Bi
j−k,k(1 − pj−k,k)�j−k,kwj−kwk, (1.1)

wi(0) = win
i , (1.2)

for i ≥ 1. The first term on the right-hand side of (1.1) accounts for the appearance of i-
clusters through collision and coagulation of smaller ones, while the second term accounts
for their disappearance due to collisions with other clusters. The third term describes the
appearance of i-clusters after the collision and breakup of larger clusters. Here �i,j denotes
the rate by which clusters of size i collide with clusters of size j and pi,j is the probability
of the event that the two colliding clusters of sizes i and j join to form a single cluster. If
this does not occur, clusters fragment with the possibility of matter transfer, and this event
occurs with the probability (1 − pi,j ). The distribution function of the generated fragments,
{Bs

i,j , s = 1,2, . . . , i + j − 1}, has the properties listed below.

Bs
i,j = Bs

j,i ≥ 0 and
i+j−1∑

s=1

sBs
i,j = i + j. (1.3)

The second term in (1.3) infers that mass is conserved during each collisional breakage
event. We also assume that the collision kernel is non-negative and symmetric, i.e.,

0 ≤ �i,j = �j,i for i, j ≥ 1. (1.4)

For a solution w(t) = (wi(t))i≥1 of (1.1), we define the r-th moment as

Mr (w(t)) = Mr (t) :=
∞∑

i=1

irwi(t) for r ≥ 0. (1.5)

In the above equation (1.5), the zeroth (r = 0) and first (r = 1) moments denote the total
number of particles and the total mass of particles, respectively, in the system.

Before going any further, it is important to note that in the absence of fragmentation
(pi,j = 1), the system (1.1)–(1.2) is a Smoluchowski coagulation equation that physicists
and mathematicians have widely studied. Since the particles are neither created nor de-
stroyed in the reactions described by (1.1), it is expected that the total mass M1(t) re-
mains conserved throughout the time evolution. However, when the coagulation dominates
the fragmentation, it is by now well understood from the theory of classical coagulation-
fragmentation equations that the mass conservation fails in finite time for the coagula-
tion rates growing rapidly, a phenomenon known as gelation (see, e.g., [15] and the ref-
erences therein). Therefore, it is expected that the gelation may occur for the solutions to
(1.1)–(1.2) when coagulation dominates the collisional breakage, and this will be addressed
in Sect. 5.
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In the last few decades, the linear (spontaneous) fragmentation equation with coagula-
tion has received a lot of attention, which was initially studied by Filippov [19], Kapur [22],
McGrady and Ziff [29, 35]. In [3–6, 23], the semigroup technique has been employed to
study the existence and uniqueness of classical solutions to linear fragmentation equations
with coagulation having appropriate assumptions on coagulation and fragmentation kernels,
whereas in [11, 12, 14, 25–27, 32] issues related to existence and uniqueness of weak so-
lutions to coagulation equation with spontaneous fragmentation have been investigated by
using weak L1 compactness method (for more information, see [7] and references therein).
On the other hand, the nonlinear breakage equation has not been studied to that level. In
[13], Cheng and Redner discussed the dynamics of continuous, linear, and collision-induced
nonlinear fragmentation events. For a linear fragmentation process, they looked at scaling
theory to characterize the evolution of the cluster size distribution, whereas, for a nonlin-
ear fragmentation process, they examined the asymptotic behavior of a class of models in
which a two-particle collision causes both particles to break into two equal parts, just the
larger particle to split in two, or only the smaller particle to split. In addition, it is also
demonstrated in [13] that certain models can be transformed into the linear fragmentation
equation by adjusting the time scale. This transformation technique is employed in [16] to
analyze the nonlinear fragmentation equation with product collision kernels, and to investi-
gate the existence and non-existence of solutions, as well as the formation of singularities
within a finite time. Later, Krapivsky and Ben-Naim [24] studied the kinetics of nonlin-
ear collision-induced fragmentation, obtaining the fragment mass distribution analytically
using the traveling wave behavior of the nonlinear collision equation. Moreover, it is also
shown that the system goes through a shattering transition, in which a finite part of the
mass is lost to fragments of infinitesimal sizes. The first mathematical study of (1.1)–(1.2)
is due to Laurençot and Wrzosek [27], in which the existence, uniqueness, mass conserva-
tion, and the large time behavior of weak solutions to (1.1)–(1.2) with suitable restrictions
on the collision kernel and probability function. In [17, 18], Fasano et al. proposed an anal-
ogous (continuous) system with the imposition of a maximum cluster size in the context
of liquid-liquid dispersions in chemical engineering, see also [33]. From a mathematical
point of view, the continuous collision-induced fragmentation equation is recently studied
in [8, 9, 20] where coagulation is assumed to be the dominant process. When coagula-
tion is absent, the existence, non-existence, and uniqueness of mass-preserving solutions
to the continuous collision-induced fragmentation equation are investigated in [21], for the
collision kernel of the form �(x,y) = xα0yβ0 + xβ0yα0 . This investigation shows that the
well-posedness depends strongly on the range of (α0 + β0) and that a finite-time singularity
may occur, a phenomenon previously observed in [16] for product collision kernels (when
α0 = β0).

Laurençot and Wrzosek [27] address the issue related to the existence, uniqueness, and
various other interesting properties of weak solutions to the system (1.1)–(1.2). The goal of
this paper is to prove the existence, uniqueness, and mass conservation of classical solutions
to equation (1.1)–(1.2) using the approach developed in [34].

The paper is organized as follows. Section 2 covers the local existence theorem, and the
proof of the main theorem. In Sect. 3, it is shown that the solution is unique. In Sect. 4, we
have addressed the issue of the positivity of solutions. Finally, in Sect. 5 the occurrence of
gelation is discussed for certain classes of the collision kernel.
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2 Existence of Classical Solution

We begin by outlining the problem and providing some definitions. Let

Yμ =
{
w = (wi) ∈R

N,

∞∑

i=1

iμ|wi | < ∞
}

(2.1)

equipped with the norm

‖w‖μ =
∞∑

i=1

iμ|wi |.

To be more precise, we use the positive cone Y +
μ of Yμ, that is,

Y +
μ = {w ∈ Yμ, wi ≥ 0 for each i ≥ 1}.

Next we define what we mean by a solution to (1.1)–(1.2).

Definition 2.1 Let T ∈ (0,+∞] and win = (win
i )i≥1 be a sequence of non-negative real num-

bers. A solution to (1.1)–(1.2) on [0, T ) is a sequence of non-negative continuous functions
satisfying, for each i ≥ 1 and t ∈ (0, T )

(a) wi ∈ C([0, T ]),
(b)

∫ t

0

∑∞
j=1 �i,jwiwjdσ < ∞,

∫ t

0

∑∞
j=i+1

∑j−1
k=1(1−pj−k,k)B

i
j−k,k�j−k,kwj−kwkdσ < ∞,

(c) and there holds

wi(t) = win
i +

∫ t

0

(
1

2

i−1∑

j=1

pj,i−j�j,i−jwj (σ )wi−j (σ ) −
∞∑

j=1

�i,jwi(σ )wj (σ )

+ 1

2

∞∑

j=i+1

j−1∑

k=1

(1 − pj−k,k)B
i
j−k,k�j−k,kwj−k(σ )wk(σ )

)
dσ. (2.2)

Throughout this section the assumptions made on the collision kernel (�i,j ) and the
daughter distribution function (Bs

i,j ) are the following: there are positive real numbers A

and β such that

0 ≤ �i,j ≤ A(i + j), i, j ≥ 1, (2.3)

Bs
i,j ≤ β, 1 ≤ s ≤ i + j − 1, i, j ≥ 1. (2.4)

2.1 Approximated Solutions

For n ≥ 1, we define a sequence of approximations of win and �i,j by

win,n = win1[0,n],

and

�n
i,j =

{
�i,j , if i + j ≤ n

0, elsewhere
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which implies

�n
i,j ≤ A(i + j), i, j ≥ 1. (2.5)

Owning to (2.5), �n
i,j exhibits at most linear growth. Consequently, we can employ [27,

Theorem 3.1 and Proposition 3.7] to establish the existence of solutions wn to

dwn
i

dt
=1

2

i−1∑

j=1

pj,i−j�
n
j,i−jw

n
j w

n
i−j −

∞∑

j=1

�n
i,jw

n
i w

n
j

+ 1

2

∞∑

j=i+1

j−1∑

k=1

Bi
j−k,k(1 − pj−k,k)�

n
j−k,kw

n
j−kw

n
k , i ∈ N, (2.6)

wn
i (0) = w

in,n
i , i ∈ N. (2.7)

More precisely we have the following result.

Proposition 2.1 There is at least one non-negative mass conserving solution wn to
(2.6)–(2.7) on [0,+∞). Moreover, wn belongs to Lloc([0,+∞), Yr) for all r > 1.

We present a classical identity for wn, typically applicable to bounded sequences. How-
ever, the summability properties of wn, as stated in Proposition 2.1, enable us to handle any
sequence with algebraic growth.

Lemma 2.1 Let (ψi)i≥1 be a non-negative sequence such that (i−rψi) is bounded for r ≥ 1.
Then there holds

d

dt

∞∑

i=1

ψiw
n
i =1

2

∞∑

i=1

∞∑

j=1

(ψi+j − ψi − ψj)�
n
i,jw

n
i w

n
j

+ 1

2

∞∑

i=1

∞∑

j=1

(1 − pi,j )
( i+j−1∑

s=1

ψsB
s
i,j − ψi − ψj

)
�n

i,jw
n
i w

n
j . (2.8)

Now, let us state and prove the main theorem of this section. We follow the same approach
as in [34], which deals with the Smoluchowski coagulation equations.

Theorem 2.1 Consider the system of equations given by (1.1)–(1.2) and assume that the
assumptions (1.3), (1.4), (2.3) and (2.4) hold. Assume further that Mr (0) = ∑∞

i=1 irwin
i <

∞ for some r > 1. Then the infinite system (1.1)–(1.2) has a global solution (wi) ∈ Y1.

Proof The consistency of the initial moment of the truncated system Mn
1(t) and the bound-

edness of the distribution function are essential ingredients of the proof. As a result, it will
imply that both wn

i and ẇn
i are uniformly bounded. Since, it follows from Proposition 2.1

that wn
i are non-negative and using (2.8), we get the bound on the first moment

∞∑

i=1

iwn
i (t) =

∞∑

i=1

iw
in,n
i ≤

∞∑

i=1

iwin
i = ‖win‖1. (2.9)
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In addition, it follows from the above equation that wn
i (t) ≤ i−1‖win‖1 for each n and i ≥ 1.

In the same way, for the derivatives, we have, for i ≥ 1 and n ≥ i

∣∣∣∣∣
dwn

i

dt

∣∣∣∣∣ ≤A

2

i−1∑

j=1

iwn
i w

n
j + A

∞∑

j=1

(i + j)wn
i w

n
j

+ Aβ

2

∞∑

j=i+1

j−1∑

k=1

jwn
j−kw

n
k

≤ A0‖win‖2
1,

where A0 is a positive constant depending on A, β and ‖win‖1. Therefore, the sequence (wn
i )

is uniformly bounded and equicontinuous. Then by invoking the Arzelá–Ascoli theorem,
we infer that there is a subsequence of (wn

i )n≥i still denoted by (wn
i )n≥i which converges

uniformly to a continuous function, say wi , i.e.

lim
n→∞wn

i (t) = wi(t) (2.10)

for each i ≥ 1 and t ≥ 0. Clearly wi(t) ≥ 0 for i ≥ 1 and t ≥ 0 and it follows from the con-
vergence of the sequence and (2.9) that w(t) ∈ Y +

1 with ‖w(t)‖1 ≤ ‖win‖1 for t ≥ 0. To show
that wi(t) is a solution to the original problem we need to show the series

∑∞
j=1 �n

i,jw
n
j and

∑∞
j=i+1

∑j−1
k=1(1 − pj−k,k)B

i
j−k,k�

n
j−k,kw

n
j−kw

n
k converges uniformly on bounded intervals

of time [0, T ] for T ∈ (0,+∞). In order to prove this, we need to establish the boundedness
of higher moments. Hence, without loss of generality take ψi = ir for some 1 < r ≤ 2 in
(2.8), we have

Ṁn
r (t) = 1

2

∞∑

i=1

∞∑

j=1

[
(i + j)r − ir − j r)]�n

i,jw
n
i w

n
j

+ 1

2

∞∑

i=1

∞∑

j=1

(1 − pi,j )
( i+j−1∑

q=1

qrB
q

i,j − (i + j)r
)
�n

i,jw
n
i w

n
j . (2.11)

Using (1.3), we deduce that the second term in the above equation is negative, whereas in
the first term, we use the following inequality from [1],

(i + j)[(i + j)r − ir − j r ] ≤ Cr(ij
r + irj ).

Hence, we have

Ṁn
r (t) ≤ A

2

∞∑

i=1

∞∑

j=1

(ij r + jir )wn
i w

n
j ≤ AMn

r (t)M1(0).

With the help of Gronwall’s inequality, one can obtain

Mn
r (t) ≤ Mn

r (0) exp(AM1(0)t) ≤ �r(T ), (2.12)

where �r(T ) := Mr (0) exp(AM1(0)T ). Next, using (2.10) and a lower semicontinuity ar-
gument, we have

Mr (t) ≤ �r(T ). (2.13)
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Finally to complete the proof of the theorem, we show that w is solution to (1.1)–(1.2). To
do this, let us consider the following, by using (1.1) and (2.6) as

(wn
i (t) − wi(t)) + wi(t)

= w
in,n
i +

∫ t

0

[
1

2

i−1∑

j=1

pi−j,j (�
n
i−j,j − �i−j,j )w

n
i−j (σ )wn

j (σ )

+
i−1∑

j=1

pi−j,j�i−j,j [wn
i−j (σ ) − wi−j (σ )]wn

j (σ )

+ 1

2

i−1∑

j=1

pi−j,j�i−j,j [wn
j (σ ) − wn

j (σ )]wi−j (σ )

+ 1

2

i−1∑

j=1

pi−j,j�i−j,jwi−j (σ )wj (σ ) − wn
i (σ )

∞∑

j=1

(�n
i,j − �i,j )w

n
j (σ )

− (wn
i (σ ) − wi(σ ))

∞∑

j=1

�i,jw
n
j (σ ) − wi(σ )

∞∑

j=1

�i,j (w
n
j (σ ) − wj(σ ))

− wi(σ )

∞∑

j=
�i,jwj (σ )

+ 1

2

∞∑

j=i+1

j−1∑

k=1

Bi
j−k,k(1 − pj−k,k)�j−k,kwj−k(σ )wk(σ )

+ 1

2

∞∑

j=i+1

j−1∑

k=1

(1 − pj−k,k)B
i
j−k,k(�

n
j−k,k − �j−k,k)w

n
j−k(σ )wn

k (σ )

+ 1

2

∞∑

j=i+1

j−1∑

k=1

(1 − pj−k,k)B
i
j−k,k�j−k,k(w

n
j−k(σ ) − wj−k(σ ))wn

k (σ )

+ 1

2

∞∑

j=i+1

j−1∑

k=1

(1 − pj−k,k)B
i
j−k,k�j−k,kwj−k(σ )(wn

k (σ ) − wk(σ ))

]
dσ

(2.14)

In order to control the tail of infinite sums involved in (2.14), we choose a positive con-
stant r1 such that 1 + r1 ≤ r . Let us estimate the tail of the integral involved in the fifth term
on the right-hand side of (2.14), with the help of (2.5), (2.12) and (2.13) as

∣∣∣
∞∑

j=m

(�n
i,j − �i,j )w

n
j (σ )

∣∣∣ ≤ 2A(i + 1)m−r1�r(T ). (2.15)
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By applying (2.3) and (2.12), we evaluate the sixth term on the right hand side of (2.14) as

∣∣∣
∞∑

j=1

�i,jw
n
j (σ )

∣∣∣ ≤ A(i + 1)M1(0). (2.16)

Similarly, using (2.3), (2.12) and (2.13), we can estimate the tail of the seventh term on the
right-hand side of (2.14) as

∣∣∣
∞∑

j=m

�i,j (w
n
j (σ ) − wj(σ ))

∣∣∣ ≤ 4A(i + 1)m−r1�r(T ). (2.17)

Now, let us consider the tenth term of the right-hand side of (2.14) as

∞∑

j=i+1

j−1∑

k=1

(1 − pj−k,k)B
i
j−k,k(�

n
j−k,k − �j−k,k)w

n
j−k(σ )wn

k (σ )

≤
∞∑

j=1

∞∑

k=1

(1 − pj,k)B
i
j,k|�n

j,k − �j,k|wn
j (σ )wn

k (σ ). (2.18)

With the help of (2.3), (2.5) and (2.12), the tail of the term on the right-hand side of
(2.18) is calculated as

∞∑

j=1

∞∑

k=m

(1 − pj,k)B
i
j,k|�n

j,k − �j,k|wn
j (σ )wn

k (σ )

≤ 2A0β

∞∑

j=1

∞∑

k=m

(j + k)wn
j (σ )wn

k (σ )

≤ 4A0βM1(0)

∞∑

k=m

kwn
k (σ ) ≤ 4AβM1(0)m−r1�r(T ). (2.19)

Next, similar to tenth term on the right-hand side of (2.14), using (2.3), (2.12) and (2.13),
we can estimate the tail of the eleventh and the twelfth term

∞∑

j=1

∞∑

k=m

(1 − pj,k)B
i
j,k�j,k|wn

j (σ ) − wj(σ )|wn
k (σ ) ≤ 4AβM1(0)m−r1�r(T ), (2.20)

∞∑

j=1

∞∑

k=m

(1 − pj,k)B
i
j,k�j,kwj (σ )|wn

k (σ ) − wk(σ )| ≤ 4AβM1(0)m−r1�r(T ), (2.21)

respectively. Consequently, we infer from the above estimates that the right-hand side of the
terms (2.15), (2.17), (2.19), (2.20), and (2.21) can be made arbitrarily small by choosing
m large enough. Next, taking limit n → ∞ in (2.14), it can easily be seen that all other
difference terms tends to zero. Thus, it is concluded that the function w is a solution to the
integral form (2.2) of (1.1)–(1.2). �
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Remark 2.1 From the construction of the proof in the preceding theorem, if we consider the
integral form of the equations, we can ensure that the limit solution wi(t) is differentiable
due to the uniform convergence of wn

i and the sums involved. We also note that, with the
boundedness of the higher moments, i.e. Mn

r (t) < Mr (0) exp(AM1(0)t) for r > 1, the
truncated solutions converge strongly for every fixed t to the limit function, i.e.

lim
n→∞‖wn

i − wi‖μ = 0 for μ < r.

Following the previous remark, we are able to state the following corollary as a conse-
quence.

Corollary 2.1 Let wi be the solution of (1.1)–(1.2) under the conditions of Theorem 2.1 for
some r > 1. Then wi is continuously differentiable, and it holds, on [0, T ], that

∞∑

i=1

iwi(t) =
∞∑

i=1

iwin
i .

We can only show the local existence of solutions for collision kernels that increase faster
than the linearity, as shown in the subsequent corollary.

Corollary 2.2 Consider the infinite system (1.1)–(1.2). Let �i,j be a symmetric kernel and
satisfy �i,j ≤ A1ij (for i, j ≥ 1) and Mr (0) < ∞ for some r > 2. Then the system
(1.1)–(1.2) has a local solution (wi) ∈ Y2.

Proof The proof follows similar to that of Theorem 2.1. In fact, if we consider Mn
2(t) using

(2.11) under the assumption �i,j ≤ A1ij , we have

Ṁn
2(t) ≤ A1

∞∑

i=1

∞∑

j=1

i2j 2wn
i w

n
j ≤ A1(Mn

2(t))
2.

By using this differential inequality, we can derive the following uniform bound

Mn
2(t) ≤ 1

1
Mn

2 (0)
− 2A1t

≤ 1
1

M2(0)
− 2A1t

,

which holds only upto some finite time. However, this still enables us to construct a subse-
quence wn

i that, as previously, converges uniformly to a limit function wi(t). We then find
a bound for M2(t) (valid up to some finite time T ), we may then establish that the partial
sums in the truncated system converge uniformly up to time T , showing the existence of
local solutions. �

In the next section, we will examine the uniqueness of a classical solution to (1.1)–(1.2).

3 Uniqueness of the Solution

The method of proof of existence we used in the previous section does not guarantee unique-
ness as there may be many subsequences of (wn

i ) which converges to different limit func-
tions. Hence, uniqueness has to be analyzed separately.
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Theorem 3.1 Assume that the assumptions (1.3) and (1.4) hold and there are γ ∈ [0,1] and
B > 0 such that

�i,j ≤ B(iγ + jγ ), i, j ≥ 1. (3.1)

Consider win ∈ Y +
r for r ≥ 1 + γ , then there is a unique solution to (1.1)–(1.2) on [0,+∞)

satisfying

sup
t∈[0,T ]

∞∑

i=1

irwi(t) < ∞ (3.2)

for each T ∈ (0,+∞).

Proof First we notice that the property (3.2) follows from (2.13). Let w(t) = (wi(t))i≥1 and
v(t) = (vi(t))i≥1 be two solutions to (1.1)–(1.2) on [0, T ], where T > 0 with the same initial
condition win = (win

i )i≥1 ∈ Y +
r . Let u := w − v.

Define

ρ(t) =
∞∑

i=1

i|ui(t)|, (3.3)

where

ui(t) =wi(t) − vi(t) =
∫ t

0

1

2

i−1∑

j=1

pj,i−j�j,i−j [wj(s)wi−j (s) − vj (s)vi−j (s)]ds

−
∫ t

0

∞∑

j=1

�i,j [wi(s)wj (s) − vi(s)vj (s)]ds

+
∫ t

0

∞∑

j=i+1

j−1∑

k=1

(1 − pj−k,k)B
i
j−k,k�j−k,k[wj−k(s)wk(s) − vj−k(s)vk(s)]ds. (3.4)

Substituting equation (3.4) into (3.3), we get

ρ(t) =1

2

∫ t

0

∞∑

i=1

i−1∑

j=1

i sgn(ui(s))pj,i−j�j,i−j [wj(s)wi−j (s) − vj (s)vi−j (s)]ds

−
∫ t

0

∞∑

i=1

∞∑

j=1

i sgn(ui(s))�i,j [wi(s)wj (s) − vi(s)vj (s)]ds

+1

2

∫ t

0

∞∑

i=1

∞∑

j=i+1

j−1∑

k=1

i sgn(ui(s))(1 − pj−k,k)B
i
j−k,k�j−k,k

× [wj−k(s)wk(s) − vj−k(s)vk(s)]ds.

In the above equation, we can change the order of summation due to the finiteness of higher
moments (given by (3.2)). Hence, by repeated application of Fubini’s theorem in the first
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and third terms on the right-hand side of the preceding equation and rearranging the indices
in summation, we arrive

ρ(t) =1

2

∫ t

0

∞∑

i=1

∞∑

j=1

(i + j) sgn(ui+j (s))pi,j�i,j [wi(s)wj (s) − vi(s)vj (s)]ds

−
∫ t

0

∞∑

i=1

∞∑

j=1

i sgn(ui(s))�i,j [wi(s)wj (s) − vi(s)vj (s)]ds

+ 1

2

∫ t

0

∞∑

k=1

∞∑

j=1

( j+k−1∑

i=1

i sgn(ui(s))B
i
j,k

)

× (1 − pj,k)�j,k[wj(s)wk(s) − vj (s)vk(s)]ds. (3.5)

Note that

wi(s)wj (s) − vi(s)vj (s) = ui(s)wj (s) + vi(s)uj (s).

With the help of the above identity and after rearranging the terms, (3.5) becomes,

ρ(t) =1

2

∫ t

0

∞∑

i=1

∞∑

j=1

[(i + j) sgn(ui+j (s)) − i sgn(ui(s)) − j sgn(uj (s))]pi,j�i,j

× [ui(s)wj (s) + vi(s)uj (s)]ds

+ 1

2

∫ t

0

∞∑

k=1

∞∑

j=1

(
j+k−1∑

i=1

i sgn(ui(s))B
i
j,k − j sgn(uj (s)) − k sgn(uk(s))

)

× (1 − pj,k)�j,k

× [wj(s)uk(s) + vk(s)uj (s)]ds.

This can be rewritten as

ρ(t) =1

2

∫ t

0

∞∑

i=1

∞∑

j=1

P(i, j, s)pi,j�i,jui(s)wj (s)ds

+ 1

2

∫ t

0

∞∑

i=1

∞∑

j=1

P(i, j, s)pi,j�i,j vi(s)uj (s)

+ 1

2

∫ t

0

∞∑

k=1

∞∑

j=1

Q(j, k, s)(1 − pj,k)�j,kwj (s)uk(s)ds

+ 1

2

∫ t

0

∞∑

k=1

∞∑

j=1

Q(j, k, s)(1 − pj,k)�j,kvk(s)uj (s) :=
4∑

i=1

Ri (t), (3.6)

where

P(i, j, t) := (i + j) sgn(ui+j (s)) − i sgn(ui(s)) − j sgn(uj (s)),
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and

Q(i, j, t) :=
i+j−1∑

k=1

k sgn(uk(s))B
k
i,j − i sgn(ui(s)) − j sgn(uj (s)).

Using the properties of the signum function, we can evaluate

P(i, j, t)ui(t) = [(i + j) sgn(ui+j (t)) − i sgn(ui(t)) − j sgn(uj (t))]ui(t)

≤ [(i + j) − i + j ]|ui(t)| = 2j |ui(t)|.

Similar to the preceding argument, we obtain

P(i, j, t)uj (t) ≤ 2i|uj (t)|, Q(i, j, t)uj (t) ≤ 2i|uj (t)|
and Q(i, j, t)ui(t) ≤ 2j |ui(t)|.

Let us evaluate the first term in (3.6) as

R1(t) = 1

2

∫ t

0

∞∑

i=1

∞∑

j=1

P(i, j, s)pi,j�i,j ui(s)wj (s)ds

≤ B

2

∫ t

0

∞∑

i=1

∞∑

j=1

2j |ui(s)|(iγ + jγ )wj (s)ds

≤ B sup
s∈[0,t]

(M1(s) +M1+γ (s))

∫ t

0

∞∑

i=1

i|ui(s)|ds

≤ B sup
s∈[0,t]

(M1(s) +Mr (s))

∫ t

0
ρ(s)ds.

Analogously, R2(t), R3(t) and R4(t) can be estimated as

R2(t) ≤ B sup
s∈[0,t]

(M1(s) +Mr (s))

∫ t

0
ρ(s)ds,

R3(t) ≤ B sup
s∈[0,t]

(M1(s) +Mr (s))

∫ t

0
ρ(s)ds,

R4(t) ≤ B sup
s∈[0,t]

(M1(s) +Mr (s))

∫ t

0
ρ(s)ds.

Now gathering the estimates on R1, R2, R3, and R4 and inserting into (3.6) to obtain

ρ(t) ≤ 4B sup
s∈[0,t]

(M1(s) +Mr (s))

∫ t

0
ρ(s)ds

≤ 


∫ t

0
ρ(s)ds,
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where 
 = 4B sups∈[0,T ](M1(s) +Mr (s))). Next, the application of Gronwall’s inequality
gives

ρ(t) ≤ 0 × exp(
T ) = 0,

which implies wi(t) = vi(t) for t ∈ [0, T ]. �

In the next section, we will discuss the positivity of solutions and here we follow the
proof from [2, Theorem 4.6].

4 Positivity of Solutions

Suppose that the collision kernel, the probability function, and the distribution function sat-
isfy the following conditions:

�i,1 > 0, 0 < pi,1 < 1, and B1
i,j > 0, for all i, j ≥ 1. (4.1)

Then either the solution to (1.1)–(1.2) is trivial (zero for all arguments) or strictly positive
for all t > 0: Namely, the following theorem holds.

Theorem 4.1 Let (4.1) hold and w be a non-negative continuous solution of (1.1)–(1.2) on
[0, T ]. Suppose that there exists r > 1 such that win

r > 0. Then wi(t) > 0 for all t ∈ [0, T ]
and all i ≥ 1.

Proof Assume for the sake of contradiction that wi(τ ) = 0 for some i and some τ ∈ (0, T ].
If i > 1, then consider

dwi

dt
= ϕi(t) − wi(t)
i(t) (4.2)

where

ϕi(t) = 1

2

i−1∑

j=1

pj,i−j�j,i−jwj (t)wi−j (t)

+ 1

2

∞∑

j=i+1

j−1∑

k=1

Bi
j−k,k(1 − pj−k,k)�j−k,kwj−k(t)wk(t),

and


i(t) =
∞∑

j=1

�i,jwj (t).

Now from (4.2), we obtain

0 = wi(τ ) exp
(∫ τ

0

i(s)ds

)
= wi(0) +

∫ τ

0
exp

(∫ t

0

i(s)ds

)
ϕi(t)dt.
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Hence

1

2

i−1∑

j=1

pj,i−j�j,i−jwj (t)wi−j (t) + 1

2

∞∑

j=i+1

j−1∑

k=1

Bi
j−k,k(1 − pj−k,k)�j−k,kwj−k(t)wk(t) = 0.

Next, recalling (4.1), we end up with

i−1∑

j=1

pi−j,j�i−j,jwi−j (t)wj (t) = 0

for all t ∈ [0, τ ], and thus either wi−1(τ ) = 0 or w1(τ ) = 0. We obtain wi−1(τ ) = 0 if
w1(τ ) �= 0. Repeating similar arguments, we arrive at wi−2(τ ) = 0 if w1(τ ) �= 0 and so
on. Finally, we establish that w1(τ ) = 0.

For w1, we have

dw1

dt
= −w1(t)ς(t) + �(t), t ∈ (0, T ]. (4.3)

where

ς(t) =
∞∑

j=1

�1,jwj (t), �(t) = 1

2

∞∑

j=1

∞∑

k=1

B1
j,k(1 − pj,k)�j,kwj (t)wk(t). (4.4)

From (4.3), it is clear that

0 = w1(τ ) exp
(∫ τ

0
ς(s)ds

)
= win

1 +
∫ τ

0
exp

(∫ t

0
ς(s)ds

)
�(t)dt.

As a result, for all t ∈ (0, τ ), win
1 = 0 and �(t) = 0. Since each wi is continuous, and we

can deduce from (4.3) that wi = 0 for all i ≥ 2, and we get win = 0, which is a contradiction.
Thus, the proof of Theorem 4.1 has completed. �

Remark 4.1 It is worth noting that we have essentially used the positivity of the collisional
breakage kernel. If, e.g., we consider pure coagulation (pi,j = 1), then �(t) = 0 and we do
not obtain the result.

In the next section, the occurrence of gelation for the solutions to (1.1)–(1.2) is shown
when coagulation dominates breakage for a particular class of collision kernels. The result
presented here is an extension of the work done in [27, Proposition 4.3] for the case when
β0 = 2.

5 Gelation Phenomenon in (1.1)–(1.2)

Proposition 5.1 Assume that (�i,j ), (pi,j ) and (Bs
i,j ) satisfy (1.3)–(1.4) and

i+j−1∑

s=1

Bs
i,j ≤ β0 and pi,j >

(β0 − 2)

(β0 − 1)
, (5.1)
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ζ ij ≤
[
pi,j − (β0 − 2)

(β0 − 1)

]
�i,j and �i,j ≤ μij, (5.2)

for i, j ≥ 1, and β0 ≥ 2, the constants μ and ζ are positive real numbers.
Consider win ∈ Y +

1 , win �≡ 0 and assume that (1.1)–(1.2) has a solution w on [0,+∞)

such that t 
→ ‖w(t)‖1 is a non-increasing function on [0,+∞). Then

lim
t→∞‖w(t)‖1 = 0.

Remark 5.1 In (5.1), the first condition implies that the number of particles produced in each
collision event remains finite. Meanwhile, the second condition implies that coagulation is
the dominant process compared to breakage. On the one hand, the first condition in (5.2)
with the help of (5.1) gives

(β0 − 2)(1 − pi,j )�i,j + ζ ij ≤ pi,j�i,j ,

which clearly shows that the coagulation kernel (pi,j�i,j ) dominates the breakage kernel
((1 − pi,j )�i,j ) and has quadratic growth lower bound. On the other hand from the second
condition in (5.2), we infer that the collision kernel has at most quadratic growth.

Proof For l ≥ 1, τ1 ≥ 0 and τ2 > τ1, let us consider (1.1), which after some rearrangement
of terms gives

l∑

i=1

(wi(τ2) − wi(τ1)) = − 1

2

∫ τ2

τ1

l−1∑

i=1

l−i∑

j=1

pi,j�i,jwiwjdτ

− 1

2

∫ τ2

τ1

l∑

i=1

∞∑

j=l+1−i

�i,jwiwjdτ

+
∫ τ2

τ1

l∑

i=1

∞∑

j=l+1

j−1∑

k=1

Bi
j−k,k(1 − pj−k,k)�j−k,kwj−kwkdτ

+ 1

2

∫ τ2

τ1

l∑

i=1

l−i∑

j=1

( i+j−1∑

s=1

Bs
i,j − 2

)
(1 − pi,j )�i,jwiwjdτ.

Since w(τ) ∈ Y +
1 with ‖w(τ)‖1 ≤ ‖win‖1 for every τ ∈ [τ1, τ2], as a result, we can use the

growth conditions (5.1)–(5.2) and (1.4) to pass to the limit as l → ∞ in the above equality
and get

∞∑

i=1

(wi(τ2) − wi(τ1)) ≤ −1

2

∫ τ2

τ1

∞∑

i=1

∞∑

j=1

pi,j�i,jwiwjdτ

+ (β0 − 2)

2

∫ τ2

τ1

∞∑

i=1

∞∑

j=1

(1 − pi,j )�i,jwiwjdτ.

In the above equation, the first term on the right-hand side represents the loss due to
coagulation, while the second term corresponds to the gain resulting from breakage. On
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rearranging these terms, we obtain

∞∑

i=1

(wi(τ2) − wi(τ1)) ≤ − (β0 − 1)

2

∫ τ2

τ1

∞∑

i=1

∞∑

j=1

[
pi,j − (β0 − 2)

(β0 − 1)

]
�i,jwiwjdτ. (5.3)

Now, with the help of the lower bound in (5.2), we obtain

∞∑

i=1

wi(τ2) + ζ(β0 − 1)

2

∫ τ2

τ1

‖w(τ)‖2
1dτ ≤

∞∑

i=1

wi(τ1).

Let t ∈ (0,+∞) and since it is given that t 
→ ‖w(t)‖1 is non-increasing, we can deduce
from the previous estimate (with τ1 = 0 and τ2 = t ) that

ζ(β0 − 1)t

2
‖w(t)‖2

1 ≤
∞∑

i=1

win
i ≤ ‖win‖1.

Thus

‖w(t)‖1 ≤
( 2‖win‖1

ζ(β0 − 1)t

) 1
2
, t ∈ (0,+∞),

which completes the proof of Proposition 5.1. �

An interesting consequence of the above Proposition is that when

[
pi,j − (β0 − 2)

(β0 − 1)

]
�i,j ≥ κ, where κ > 0, for i, j ≥ 1.

Then, we have

∞∑

i=1

wi(τ2) + κ(β0 − 1)

2

∫ τ2

τ1

‖w(τ)‖2
0dτ ≤

∞∑

i=1

wi(τ1). (5.4)

From the previous inequality (with τ1 = 0 and τ2 = ∞), it follows that

M0 ∈ L2(0,+∞). (5.5)

Recalling (5.4), we realize that M0 is a non-increasing and non-negative function which
also belongs to L2(0,+∞). Therefore

lim
t→∞M0(t) = 0.
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