
Acta Applicandae Mathematicae (2023) 187:18
https://doi.org/10.1007/s10440-023-00609-y

Existence Result for Solutions to Some Noncoercive Elliptic
Equations

A. Marah1 · H. Redwane2

Received: 28 December 2022 / Accepted: 3 October 2023 / Published online: 13 October 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
In this work, we study a class of degenerate Dirichlet problems, whose prototype is

⎧
⎪⎨

⎪⎩

− div
( ∇u

(1 + |u|)γ
+ c(x)|u|θ−1u logβ(1 + |u|)

)
= f in �,

u = 0 on ∂�,

where � is a bounded open subset of RN . 0 < γ < 1, 0 < θ ≤ 1 and 0 ≤ β < 1. We prove
existence of bounded solutions when f and c belong to suitable Lebesgue spaces. Moreover,
we investegate the existence of renormalized solutions when the function f belongs only to
L1(�).
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Mathematics Subject Classification (2010) 35J60 · 35J70

1 Introduction

In this paper we are interested in the existence of solutions for some nonlinear elliptic equa-
tions whose simplest model is

⎧
⎨

⎩

− div
( ∇u

(1 + |u|)γ
+ c(x)|u|θ−1u logβ(1 + |u|)

)
= f in �,

u = 0 on ∂�,

(1.1)
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where � is any bounded open subset of RN , N ≥ 3, 0 < γ < 1, 0 < θ ≤ 1 and 0 ≤ β < 1,
the measurables functions c and f belong to a suitable Lebesgue spaces. It is clear that the
nonlinear differential operator in the model problem (1.1) presents a strong lack of coerciv-
ity so that the classical theory for elliptic operator (see [21]) cannot be applied. In this paper,
we will prove first an L∞- estimate, when f and c belong to some Lebesgue spaces (see
Theorem 3.2), and then we prove the existence of a generalized solution (the so called renor-
malized solution, see Definition 2.3 and Theorem 4.1 below) when the datum f is merely
integrable.

When c ≡ 0, f ∈ Lm(�) and m ≥ 1, there is a wide literature about problems like (1.1)
(see for instance [1, 5, 9, 10, 12, 14, 17]). In these papers, existence and regularity of so-
lutions have been proved for different ranges of the parameter γ and depending on the
summability of the datum f . If γ = 0, β = 0 and θ = 1, existence, uniqueness and regular-
ity of distributional solutions of (1.1) have been proved in [6, 7] (see also [8], where the case
of singular coeffecient c(x) is studied). In [27] the case of 0 < θ < 1 was deeply studied un-
der different summability properties of c(x) and the datum f , while the case of unbounded
domains was considered in [23]. For other related results, we refer to [11, 13, 15, 16, 24, 29].

When f is just an L1 or measure data, θ = 1, β = 0 and the operator A(u) =
−div

(
∇u

(1+|u|)γ
)

is replaced by a p-Laplacian operator, the authors in [2, 4, 18, 19] proved

the existence of solutions of problem (2.1) using the framework of renomalized solutions
which was introduced in [21, 22].

The main difficulty that we face in this work is due to the presence of the non-coercive op-

erator −div
(

∇u
(1+|u|)γ − c(x)|u|θ−1u logβ(1 + |u|)

)
. In the case where the datum f ∈ Lm(�)

with m > N
2 , under some restriction on the parameters θ and γ that is, θ + γ ≤ 1 and

for every 0 ≤ β < 1, we show that problem (1.1) admits at least one bounded solution
(see Theorem 3.2). In order to deal with the case m = 1, the operator A(u) is replaced

by −div
(
b(u) ∇u

(1+|u|)γ
)

, where b is a continuous function on R such that b(s) ≥ (1 + |s|)q

for every s ∈ R, with q < γ . Under this assumption and θ + γ ≤ 1, one can establish the
existence of a renormalized solution for problem (1.1) (see Theorem 4.1).

In the case θ = 1 and β = 0, one can recover the existence result of a solution in both
cases (m > N

2 and m = 1) by adding a lower order zero term g (see Theorems 5.1 and 5.2).
Indeed, under some suitable assumptions on the continuous function g (see assumptions
(5.2)-(5.3) and condition at infinity (5.4)), problem (1.1) admits at least one solution.

This paper is organized as follows. In Sect. 2 we precise the assumptions on data and we
give the definitions of weak solutions and renormalized solutions. Section 3 is devoted to
study the existence of bounded weak solutions to problem (2.1) when θ +γ ≤ 1 and m > N

2 .
In Sect. 4, we establish the existence of renormalized solutions in the case where θ + γ ≤ 1
and m = 1. Finally, in Sect. 5 we show how the lower zero order term g will help us to insure
the existence of renormalized solutions if we assume that θ = 1 and β = 0.

2 Assumptions and Definition of Solution

Let us consider the following nonlinear elliptic problem

{
− div

(
a(x,u)∇u + �(x,u)

)
= f in �,

u = 0 on ∂�,
(2.1)
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where � is any bounded open subset of RN , N ≥ 3, a(x, s) : � ×R→R
+ and �(x, s) :

� × R → R
N are Carathéodory functions (that is, continuous with respect to s for almost

every x ∈ � and measurable with respect to x for every s ∈ R) satisfying

a(x, s) ≥ b(s)

(1 + |s|)γ
, a.e. x ∈ �, ∀s ∈ R, (2.2)

where b is a continous function in R such that b(s) ≥ α0 > 0, ∀s ∈R and γ ∈ (0,1).

sup
|s|≤k

|a(x, s)| ∈ L∞(�), ∀ k > 0, a.e. x ∈ �, (2.3)

|�(x, s)| ≤ c(x)|s|θ logβ(1 + |s|), a.e. x ∈ �, ∀s ∈ R, (2.4)

where c belongs to Lr(�), r ≥ 2, 0 < θ ≤ 1 and 0 ≤ β < 1. Finally, assume that the datum
f is a measurable function such that

f ∈ Lm(�), m ≥ 1. (2.5)

Notations. Hereafter, we will make use of two truncation functions Tk and Gk : for every
k ≥ 0 and r ∈R, let

Tk(r) = min(k,max(r,−k)), Gk(r) = r − Tk(r).

For every s ∈ R, we set α(s) = 1

(1 + |s|)γ
and we define α̃(s) =

∫ s

0
α(r) dr which is a C1

increasing function on R.
For the sake of simplicity we will use, when referring to the integrals, the following

notation
∫

�

f =
∫

�

f (x)dx.

Finally, throughout this paper, C will indicate any positive constant which depends only on
data and whose value may change from line to line.

Now we give the following definition of weak solutions to problem (2.1) in the sense of
finite energy solutions.

Definition 2.1 A measurable function u is a weak solution of (2.1) if a(x,u)∇u ∈ (L2(�))N ,
�(x,u) ∈ (L2(�))N , and

∫

�

a(x,u)∇u∇ϕ +
∫

�

�(x,u)∇ϕ =
∫

�

f ϕ,

holds for every ϕ ∈ H 1
0 (�) ∩ L∞(�).

Before giving the definition of renormalized solutions to (2.1), let us first recall the defi-
nition of generalized gradient of u introduced in [3].

Definition 2.2 Let u : � → R be a measurable function defined on � which is finite almost
everywhere such that Tk(u) ∈ H 1

0 (�) for every k > 0. Then there exists a unique measurable
function v defined in � such that

∇Tk(u) = vχ{|u|<k} a.e. in �, ∀k > 0,
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Let us now define the renormalized solution to (2.1).

Definition 2.3 A real function u defined in � is a renormalized solution of problem (2.1) if

u is measurable and finite almost everywhere in �, (2.6)

Tk(u) ∈ H 1
0 (�) ∀k > 0, (2.7)

1

m

∫

{|̃α(u)|≤m}
α(u)a(x,u)|∇u|2 → 0 as m → +∞, (2.8)

and if, for every function S ∈ W 1,∞(R) such that the support of S is compact, Supp(S) ⊂
[−k, k], u satisfies

∫

�

a(x,u)∇u∇(S(u)ϕ) +
∫

�

�(x,u)∇(S(u)ϕ) =
∫

�

f S(u)ϕ, (2.9)

for every ϕ ∈ H 1
0 (�) ∩ L∞(�).

Remark 2.4 We notice that, since α̃(±∞) = ±∞ which means that the set {|̃α(u)| ≤ k} may
be equivalent to {|u| ≤ k′} with k′ > 0, then, due to (2.7) and (2.3) we deduce that the con-
dition (2.8) is well defined.

The renormalized equation (2.9) is formally obtained through a pointwise multiplication
of (2.1) by S(u)ϕ. Let us observe that by (2.7) and the propreties of S, every term in (2.9)
makes sense.

3 Existence of a Bounded Weak Solution to Problem (2.1)

In this section, we will prove the existence of a bounded weak solution to problem (2.1). We
begin by recalling the following technical Lemma proved in [26] (see also the Appendix of
[10]).

Lemma 3.1 Let a > 0 and let ϕ : [a,+∞[→ R
+ be a nonincreasing function which satisfies

ϕ(h) ≤ ω(k)ρ

(h − k)ρ
ϕ(k)1+ν ∀h > k ≥ a,

where lim
k→+∞

ω(k)

k
= 0 and ρ, ν > 0. Then, there exist k∗, k0 > a such that k∗ = k0 + d and

ϕ(k∗) = 0, where

dρ = M[ϕ(k0)]ν2
(1+ν)ρ

ν ,

with M > 0.

Now we state the main result of this section.
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Theorem 3.2 Assume (2.2)-(2.4), with r > N , and assume that f belongs to Lm(�), m > N
2 .

Furtheremore, we suppose that γ + θ ≤ 1 so that

lim|s|→+∞
|s|θ

1 + |̃α(s)| = � ∈R
+. (3.1)

Then there exists a weak solution u for (2.1) in the sense of Definition 2.1.

Remark 3.3 We point out that from the limit condition (3.1), we derive the existence of a
nonnegative constant C and real number k0 > 0 such that for every |s| > k0, one has

|s|θ ≤ C(1 + |̃α(s)|). (3.2)

Proof For n ∈N let us define

�n(x, s) = Tn(�(x, s)),

an(x, s) = a(x,Tn(s))

and

fn = Tn(f ).

Let us consider the following Dirichlet approximate problems
{

− div
(
an(x,un)∇un + �n(x,un))

)
= fn in �,

un = 0 on ∂�.
(3.3)

Note that the existence of weak solutions un ∈ H 1
0 (�) follows from the classical results of

([21]) and Schauder’s fixed point theorem. Moreover, thanks to Stampacchia’s boundedness
theorem (see [28]), the solutions un belong to L∞(�).

In order to prove Theorem 3.2, we have to distinguish two cases.

The case γ + θ = 1. In this case, it easy to check, by Hôpital’s rule that

lim|s|→+∞
|s|θ

1 + |̃α(s)| = θ,

so that � = θ , where � is defined in (3.1). Next, we define the nonnegative function �

�(s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if |s| ≤ k,

s

1 + s
− k

1 + k
if s > k,

−s

1 − s
− k

1 + k
if s < −k,

and let us take �(̃α(un)) as test function in (3.3), using assumptions (2.2), (2.4) and since
|Tn(s)| ≤ |s|, |�(s)| ≤ 1 for every s ∈R and for k ≥ k0, using (3.2), we obtain

α0

∫

{|̃α(un)|>k}

|∇α̃(un)|2
(1 + |̃α(un)|)2

≤ C

∫

{|̃α(un)|>k}
c(x) logβ(1 + |un|) |∇α̃(un)|

1 + |̃α(un)|

+
∫

{|̃α(un)|>k}
|f |,
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where the positive constant C does not depend on k. On the other hand, applying again (3.2),
one has for every |s| > k0

log(1 + |s|) ≤ log(1 + C(1 + |̃α(s)|) 1
θ ) ≤ log((1 + C)(1 + |̃α(s)|) 1

θ ) (3.4)

≤ C(1 + log(1 + |̃α(s)|)),

which then implies that

α0

∫

{|̃α(un)|>k}

|∇α̃(un)|2
(1 + |̃α(un)|)2

≤ C

∫

{|̃α(un)|>k}
c(x) logβ(1 + |̃α(un)|) |∇α̃(un)|

1 + |̃α(un)|

+C

∫

{|̃α(un)|>k}
c(x)

|∇α̃(un)|
1 + |̃α(un)| +

∫

{|̃α(un)|>k}
|f |. (3.5)

Now we deal with the first term in the right hand side of (3.5), we have

∫

{|̃α(un)|>k}
c(x) logβ(1 + |̃α(un)|) |∇α̃(un)|

1 + |̃α(un)|

≤ 1

log1−β(1 + k)

∫

{|̃α(un)|>k}
c(x) log(1 + |̃α(un)|) |∇α̃(un)|

1 + |̃α(un)| .

Let us notice that |s| = k + |Gk(s)| in {|s| > k}, which gives

∫

{|̃α(un)|>k}
c(x) logβ(1 + |̃α(un)|) |∇α̃(un)|

1 + |̃α(un)|

≤ 1

log1−β(1 + k)

∫

{|̃α(un)|>k}
c(x)

∣
∣
∣ log(1 + k + |Gk(̃α(un))|) − log(1 + k)

∣
∣
∣

|∇α̃(un)|
1 + |̃α(un)|

+ logβ(1 + k)

∫

{|̃α(un)|>k}
c(x)

|∇α̃(un)|
1 + |̃α(un)| .

Then, using Hölder and Young inequalities, we obtain

∫

{|̃α(un)|>k}
c(x) logβ(1 + |̃α(un)|) |∇α̃(un)|

1 + |̃α(un)|

≤ ‖c‖LN (�)

log1−β(1 + k)

(∫

�

| log(1 + k + |Gk(̃α(un))|) − log(1 + k)|2∗) 1
2∗

×
(∫

{|̃α(un)|>k}

|∇α̃(un)|2
(1 + |̃α(un)|)2

) 1
2

+C log2β(1 + k)

∫

{|̃α(un)|>k}
c2(x) + α0

4

∫

{|̃α(un)|>k}

|∇α̃(un)|2
(1 + |̃α(un)|)2

,
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where 2∗ = 2N
N−2 , so, with the help of Sobolev inequality, it yields that

∫

{|̃α(un)|>k}
c(x) logβ(1 + |̃α(un)|) |∇α̃(un)|

1 + |̃α(un)| ≤ C‖c‖LN (�)

log1−β(1 + k)

(∫

{|̃α(un)|>k}

|∇α̃(un)|2
(1 + |̃α(un)|)2

)

+C log2β(1 + k)

∫

{|̃α(un)|>k}
c2(x) + α0

4

∫

{|̃α(un)|>k}

|∇α̃(un)|2
(1 + |̃α(un)|)2

.

Then, from the previous inequality, (3.5) and using again Young’s inequality, we obtain

(α0

2
− C‖c‖LN (�)

log1−β(1 + k)

)∫

{|̃α(un)|>k}

|∇α̃(un)|2
(1 + |̃α(un)|)2

≤ C(1 + log2β(1 + k))

∫

{|̃α(un)|>k}
c2(x) +

∫

{|̃α(un)|>k}
|f |.

We remark that there exists k1 > 0 such that for every k ≥ k1

α0

2
− C‖c‖LN (�)

log1−β(1 + k)
≥ α0

4
.

Thus we have if k ≥ k1,

α0

4

∫

{|̃α(un)|>k}

|∇α̃(un)|2
(1 + |̃α(un)|)2

≤ C(1 + log2β(1 + k))

∫

{|̃α(un)|>k}
c2(x) +

∫

{|̃α(un)|>k}
|f |.

Now putting k = eh − 1, w = log(1 + |̃α(un)|), Ah = {w > h} and applying Poincaré in-
equality we obtain

∫

{w>h}
|Gh(w)|2 ≤ C

(
(1 + h2β)

∫

{w>h}
c2(x) + |f |

)
.

Let us take l > h > 0, then

Al ⊂ Ah, |Gh(w)| ≥ l − h in Al,

so, using Sobolev and Hölder inequalities, it follows that

|Al | ≤ C

(l − h)2∗
(
(1 + h2β)‖c‖L2m(�) + ‖f ‖Lm(�)

) 2∗
2 |Ah| 2∗

2 (1− 1
m ) ∀l > h.

Denoting ω(h) =
(
(1 + h2β)‖c‖L2m(�) + ‖f ‖Lm(�)

) 1
2
, since m > N

2 , which means 2∗
2 (1 −

1
m
) > 1, and since lim

h→+∞
ω(h)

h
= 0, then, Lemma 3.1 implies that there exists k∗(ω,N,α0,

β,m,f ) > 0 such that |{w > k∗}| = 0 and α̃(un) is bounded as desired. Moreover, since
α̃(±∞) = ±∞, we deduce that un is bounded as well.

The case γ + θ < 1. In this case, one can easily check that

lim|s|→+∞
|s|θ

1 + |̃α(s)| logβ(1 + |s|) = 0.
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Then, using as above the test function �(̃α(un)) in (3.3) and by Young’s inequality it results

α0

2

∫

{|̃α(un)|>k}

|∇α̃(un)|2
(1 + |̃α(un)|)2

≤ C

∫

{|̃α(un)|>k}
c2(x) +

∫

{|̃α(un)|>k}
|f |.

Then, by following the proof of the previous case, we deduce that

|Al | ≤ C

(l − h)2∗
(
‖c‖L2m(�) + ‖f ‖Lm(�)

) 2∗
2 |Ah| 2∗

2 (1− 1
m ) ∀l > h.

Hence, applying Lemma 3.1, it follows that there exists k∗ such that |{w > k∗}| = 0, that is,
un is bounded as desired.

Now, taking un as test function in (3.3), by assumptions (2.2), (2.4) and using Young’s
inequality, one obtains, if ‖un‖L∞(�) ≤ C that un is bounded in H 1

0 (�). Hence, thanks to
Rellich-Kondrachov Theorem, we deduce that up to subsequences,

un ⇀ u weakly in H 1
0 (�),

un → u strongly in L2(�),

un → u a.e. in �.

So that, due to the assumptions (2.3) and (2.4), one can pass easily to the limit in (2.1) as n

tends to infinity to conclude the proof of Theorem 3.2. �

4 Existence of Renormalized Solutions

The existence result of renormalized solutions for problem (2.1) can be stated as follows

Theorem 4.1 Assume that (2.2)-(2.5) hold, with r ∈ [2,N), m = 1, and that γ + θ ≤ 1.
Suppose that β < γ and that b(s) ≥ α0(1 + |s|)q , ∀s ∈ R with q ∈ [β,γ ). Then there exists
at least a renormalized solution u for (2.1) in the sense of Definition 2.2.

Remark 4.2 In what follows, we will only deal with the case θ + γ = 1 since in the case
θ + γ < 1, up the change of the unknown α̃(u) and by proceeding as in [2, 4] one can
deduce that u is a renormalized solution of (2.1) for every β > 0. Indeed, we remark that for

every 0 < β1 < β , we have lim|s|→+∞
logβ(1 + |s|)

|s|β1
= 0, so, by distinguishing the sets where

|s| ≤ s0 (s0 > 0) and where |s| > s0, the assumption (2.4) on � could be written as follows

|�(x, s)| ≤ C ′ c(x)(1 + |s|θ ′
),

where 0 < θ < θ ′ < 1 such that γ + θ ′ < 1, and C ′ is a positive constant. Then, we conclude
the proof of Theorem 4.1.

Proof We take Tk(un) as test function in the approximate problem (3.3); using assumptions
(2.2) and (2.4), we obtain

α0

∫

�

|∇Tk(un)|2
(1 + |un|)γ

≤ kθ (1 + k)
γ
2 logβ(1 + k)

∫

�

c(x)
|∇Tk(un)|
(1 + |un|) γ

2
+ k‖f ‖L1(�).
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By Young’s inequality, it follows that

α0

2

∫

�

|∇Tk(un)|2
(1 + |un|)γ

≤ Ck2θ (1 + k)γ log2β(1 + k)

∫

�

c2(x) + k‖f ‖L1(�),

so, we get

∫

�

|∇Tk(un)|2 ≤ Ck2θ (1 + k)2γ log2β(1 + k)

∫

�

c2(x) + k(1 + k)γ ‖f ‖L1(�),

then, we deduce that, for every k > 0,

Tk(un) is bounded in H 1
0 (�). (4.1)

Moreover, using Tk(̃α(un)) as test function in the problem (3.3), we deduce that

Tk(̃α(un)) is bounded in H 1
0 (�). (4.2)

The next step is to prove that un converges almost everywhere to a measurable func-
tion which is almost everywhere finite. To this end, we follow the classical approach of
[3, 25]. Let us start by evaluating the measure of the set {|̃α(un)| > k} as k → ∞, we take
∫ α̃(un)

0

dr

(1 + |r|)2
as a test function in (3.3), using assumptions (2.2) and (2.4) lead to

α0

∫

�

|∇α̃(un)|2
(1 + |̃α(un)|)2

≤
∫

�

c(x)|un|θ logβ(1 + |un|) |∇α̃(un)|
(1 + |̃α(un)|)2

+
∫

�

|f |,

and using (3.2), (3.4) we obtain

α0

∫

�

|∇α̃(un)|2
(1 + |̃α(un)|)2

≤
∫

{|un|>k0}
c(x)|un|θ logβ(1 + |un|) |∇α̃(un)|

(1 + |̃α(un)|)2
(4.3)

+
∫

{|un|≤k0}
c(x)|un|θ logβ(1 + |un|) |∇α̃(un)|

(1 + |̃α(un)|)2
+

∫

�

|f |

≤ C

∫

�

c(x) logβ(1 + |̃α(un)|) |∇α̃(un)|
1 + |̃α(un)|

+C

∫

�

c(x)
|∇α̃(un)|

1 + |̃α(un)| +
∫

�

|f |.

Then, by using Hölder and Young inequalities in the right hand side of (4.3), we obtain

α0

2

∫

�

|∇α̃(un)|2
(1 + |̃α(un)|)2

≤ ‖c‖Lr (�)

(∫

�

| log(1 + |̃α(un)|)|2∗)
β

2∗ (∫

�

|∇α̃(un)|2
(1 + |̃α(un)|)2

) 1
2

+C

∫

�

c2(x) +
∫

�

|f |,
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where r = 2N
N−β(N−2)

(note that β < 1 implies r < N ). Then, an application of Sobolev
inequality leads to

α0

2

∫

�

|∇α̃(un)|2
(1 + |̃α(un)|)2

≤ ‖c‖Lr (�)

(∫

�

|∇α̃(un)|2
(1 + |̃α(un)|)2

) β+1
2

+C

∫

�

c2(x) +
∫

�

|f |.

Using Young’s inequality, we get

∫

�

|∇ log(1 + |̃α(un)|)|2 ≤ C
((∫

�

cr(x)
) 2

r(1−β) +
∫

�

c2(x)
)

+
∫

�

|f |
)
,

so, by Sobolev inequality, we find

(∫

�

| log(1 + |̃α(un)|)|2∗) 2
2∗ ≤ C

((∫

�

cr(x)
) 2

r(1−β) +
∫

�

c2(x)
)

+
∫

�

|f |
)
.

Then, for every k > 0, the previous estimate implies that

|{|̃α(un)| > k}| 2
2∗ ≤ C

log(1 + k)2

((∫

�

cr(x)
) 2

r(1−β) +
∫

�

c2(x)
)

+
∫

�

|f |
)
,

which yields

lim
k→+∞

sup
n

meas{|̃α(un)| > k} = 0. (4.4)

Now, we show that un is a Cauchy sequence in measure. For t , k > 0, we observe that

{|un − um| > t} ⊂ {|un| > k} ∪ {|um| > k} ∪ {|Tk(un) − Tk(um)| > t},
which leads to

meas({|un − um| > t}) ≤ meas({|un| > k})
+meas({|um| > k}) + meas({|Tk(un) − Tk(um)| > t}).

To estimate meas({|Tk(un) − Tk(um)| > t}), by using (4.2) and applying Rellich-
Kondrachov theorem, we deduce, up to subsequences, that Tk(un) is a Cauchy sequence
both in L2(�) and measure. Then, for any fixed ε > 0, there exists nε > 0 such that

meas({|Tk(un) − Tk(um)| > t}) <
ε

3
,

for every n, m > nε and for every t > 0.
We remark that, due to the proprety of α̃ (̃α is C1 increasing), we have

{|un| > k} = {̃α(un) > α̃(k)} ∪ {̃α(un) < α̃(−k)},
so that

meas({|un| > k}) = meas({̃α(un) > α̃(k)}) + meas({̃α(un) < α̃(−k)}).
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Then, using (4.4) and the fact that α̃(±∞) = ±∞, there exists k0 > 0 such that for any fixed
ε > 0, we have

meas({|un| > k}) + meas({|um| > k}) ≤ 2ε

3
,

for every n, m ∈ N and for every k > k0.
Hence, for every ε > 0, we obtain

meas({|un − um| > t}) <
ε

3
,

for every n, m > nε .
Hence, we deduce that un is a Cauchy sequence in measure which means that there

exists a measurable function u which is finite almost everywhere in � such that up to a
subsequence still indexed by n

un → u a.e. in �, (4.5)

Tk(un) → Tk(u) weakly in H 1
0 (�). (4.6)

Next, we prove that

1

m

∫

{|̃α(un)|≤m}
α(un)an(x,un)|∇un|2 = ω(n,m), (4.7)

where ω(n,m) denotes any quantity that vanishes as the arguments goes to its natural limit
(that is n → +∞, m → +∞).

We use
1

m

∫ Tm(̃α(un))

Tk (̃α(un))

ds

(1 + |s|)q
as test function in (3.3) with m > k ≥ k0, using (2.2),

(3.2) and (3.4), we obtain

α0

m

∫

{k<|̃α(un)|≤m}

( 1 + |Tn(s)|
1 + |̃α(un)|

)q |∇α̃(un)|2

≤ C

m

∫

{k<|̃α(un)|≤m}
c(x)(1 + |̃α(un))|)1−q+β |∇Tm(̃α(un))|

+ 1

m

∫

�

fn

∫ Tm(̃α(un))

Tk (̃α(un))

ds

(1 + |s|)q
.

Since |̃α(un)| ≤ m is equivalent to |un| ≤ m1 = max {̃α−1(m),−α̃−1(−m)}, for n > m1, we
obtain

α0

m

∫

{k<|̃α(un)|≤m}

( 1 + |s|
1 + |̃α(un)|

)q |∇α̃(un)|2 (4.8)

≤ 1

m

∫

{k<|̃α(un)|≤m}
c(x)(1 + |̃α(un))|)1−q+β |∇Tm(̃α(un))|

+ 1

m

∫

�

fn

∫ Tm(̃α(un))

Tk (̃α(un))

ds

(1 + |s|)q
.
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Remark that lim|s|→+∞
1 + |s|

1 + |̃α(s)| = +∞, then, for some C1 > 0, using the assumption (2.2) in

the left hand side of (4.8) and if k ≥ k∗, we have

α0

m

∫

{k<|̃α(un)|≤m}

( 1 + |s|
1 + |̃α(un)|

)q |∇α̃(un)|2 ≥ C1α0

m

∫

{|̃α(un)|≤m}
|∇α̃(un)|2.

Next, we estimate the first term in the right hand side of (4.8), using Hölder inequality with

1 − q + β

2∗ + 1

2
+ N − (1 − q + β)(N − 2)

2N
= 1,

we obtain

1

m

∫

{k<|̃α(un)|≤m}
c(x)(1 + |̃α(un))|)1−q+β |∇Tm(̃α(un))|

≤ C

m
‖c‖

L
2N

N−(1−q+β)(N−2) (�)

(
meas(�)2∗ +

∫

�

|Tm(̃α(un))|2∗)
1−q+β

2∗ (∫

�

|∇Tm(̃α(un))|2
) 1

2

≤ C

m
‖c‖

L
2N

N−(1−q+β)(N−2) (�)

(∫

�

|∇Tm(̃α(un))|2
) 1

2

+C

m
‖c‖

L
2N

N−(1−q+β)(N−2) (�)

(∫

�

|Tm(̃α(un))|2∗)
1−q+β

2∗ (∫

�

|∇Tm(̃α(un))|2
) 1

2
.

Using Sobolev together with Young inequalities, lead to

1

m

∫

{k<|̃α(un)|≤m}
c(x)(1 + |̃α(un))|)1−q+β |∇Tm(̃α(un))|

≤ C

m
‖c‖

L
2N

N−(1−q+β)(N−2) (�)

(∫

�

|∇Tm(̃α(un))|2
) 1

2

+C

m
‖c‖

L
2N

N−(1−q+β)(N−2) (�)

(∫

�

|∇Tm(̃α(un))|2
) 2−q+β

2

≤ C

m

(
‖c‖2

L
2N

N−(1−q+β)(N−2) (�)

+ ‖c‖
2

q−β

L
2N

N−(1−q+β)(N−2) (�)

)
+ C1α0

2m

∫

�

|∇Tm(̃α(un))|2.

Hence, from the previous result, one can deduce that

1

m

∫

{|̃α(un)|≤m}
|∇α̃(un)|2 (4.9)

≤ C

m

(
‖c‖2

L
2N

N−(1−q+β)(N−2) (�)

+ ‖c‖
2

q−β

L
2N

N−(1−q+β)(N−2) (�)

)

+ 1

m

∫

�

|∇Tk(̃α(un))|2 + 1

m

∫

�

fn

∫ Tm(̃α(un))

Tk (̃α(un))

ds

(1 + |s|)q
.
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Now, we pass to the limit as n goes to infinity and then as m tends to infinity in the right
hand side of (4.9). By virtue of (4.2), one has

1

m

∫

�

|∇Tk(̃α(un))|2 = ω(n,m).

As regards the last term in right hand side of (4.9), the fact that fn is bounded in L1(�)

gives that

∣
∣
∣

1

m

∫

�

fn

∫ Tm(̃α(un))

Tk (̃α(un))

ds

(1 + |s|)q

∣
∣
∣

≤ ‖f ‖L1(�)

1

m

∫ m

0

ds

(1 + |s|)q
+ ‖f ‖L1(�)

1

m

∫ k

0

ds

(1 + |s|)q
,

since q ≤ 1, by Hôspital’s rule, one has lim
m→∞

1

m

∫ m

0

ds

(1 + |s|)q
= 0, so that

1

m

∫

�

fn

∫ Tm(̃α(un))

0

1

(1 + |s|)q
ds = ω(n,m).

Therefore, we conclude the proof of (4.7).
Now we prove that for any k > 0,

Tk(un) → Tk(u) strongly in H 1
0 (�). (4.10)

We follow the method of [20]. Let h > k and take the test function ϕh,k(un) = T2k(un −
Th(un) + Tk(un) − Tk(u)) in (3.3), we have

∫

�

an(x,un)∇un∇ϕh,k(un) +
∫

�

�n(x,un)∇ϕh,k(un) (4.11)

=
∫

�

fnϕh,k(un).

In what follows, we study the behavior of each term of (4.11) as n → +∞ and h → +∞.
By (4.5), we have ϕh,k(un) converges to T2k(u−Th(u)) almost everywhere in � as n → +∞
and that T2k(u − Th(u)) goes to zero as h tends to +∞, so, by the Lebesgue’s convergence
theorem, we obtain

∫

�

fnϕh,k(un) = ω(n,h). (4.12)

Let M = 4k + h, for n > M , one can write,

∫

�

an(x,un)∇un∇ϕh,k(un) (4.13)

=
∫

�

a(x,Tk(un))∇Tk(un)∇(Tk(un) − Tk(u))
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+
∫

{|un|>k}
a(x,TM(un))∇un∇(un − Th(un))

−
∫

{|un|>k}
a(x,TM(un))∇TM(un)∇Tk(u).

Using (2.3), (4.5) and (4.6) yield that a(x,TM(un))∇TM(un) converges weakly in (L2(�))N

to a(x,TM(u))∇TM(u) and that ∇Tk(u)χ{|un|>k} converges strongly to zero in (L2(�))N .
Moreover, since the second term on the right hand side of (4.13) is positive, we deduce that

∫

�

an(x,un)∇un∇ϕh,k(un) (4.14)

≥
∫

�

a(x,Tk(un))∇Tk(un)∇(Tk(un) − Tk(u)) + ω(n).

Now, we deal with the second term in the left hand side of (4.11), we have for n > M

∫

�

�n(x,un)∇ϕh,k(un) (4.15)

=
∫

�

�(x,Tk(un))∇(Tk(un) − Tk(u))

+
∫

{|un|>k}
�(x,TM(un))∇(un − Th(un))χ{|un|≤M}

−
∫

{|un|>k}
�(x,TM(un))∇Tk(u).

Due to the assumption (2.4), one has |�(x,Tk(un))| ≤ Cc(x) ∈ L2(�) where C is a constant
depending on k. On the other hand, by (4.5) we have

�(x,Tk(un)) → �(x,Tk(u)) a.e. in �.

Then, by Lebesgue’s convergence theorem, we deduce that

�(x,Tk(un)) → �(x,Tk(u)) strongly in (L2(�))N .

Moreoever, using (4.6) and the fact that u is almost everywhere finite, we obtain
∫

�

�(x,Tk(un))∇(Tk(un) − Tk(u)) = ω(n), (4.16)

∫

{|un|>k}
�(x,TM(un))∇Tk(u) = ω(n), (4.17)

and
∫

{|un|>k}
�(x,TM(un))∇TM(un)χ{un>h} (4.18)

=
∫

{|u|>k}
�(x,TM(u))∇TM(u)χ{u>h} + ω(n) = ω(n,h).
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Putting together (4.12), (4.14), (4.17) and (4.18), from (4.11) it follows that

∫

�

a(x,Tk(un))∇Tk(un)∇(Tk(un) − Tk(u)) ≤ ω(n,h).

Moreover, writing

∫

�

a(x,Tk(un))|∇(Tk(un) − Tk(u))|2

=
∫

�

a(x,Tk(un))∇Tk(un)∇(Tk(un) − Tk(u))

−
∫

�

a(x,Tk(un))∇Tk(u)∇(Tk(un) − Tk(u)),

so, by (4.6), letting n tends to infinity, we obtain

∫

�

a(x,Tk(un))|∇(Tk(un) − Tk(u))|2 = ω(n).

Moreover, using (2.2), we conclude that (4.10) holds.
Now we pass to the limit in the approximated problem (3.3). Let S be a function in

W 1,∞(R) with compact support, contained in [−k, k], k > 0 and let ϕ ∈ H 1
0 (�) ∩ L∞(�).

Using S(un)ϕ as test function in (3.3) we have

∫

�

S ′(un)α(un)an(x,un)|∇un|2ϕ +
∫

�

S(un)an(x,un)∇un∇ϕ (4.19)

+
∫

�

S(un)�n(x,un)∇ϕ +
∫

�

S ′(un)α(un)�n(x,un)∇unϕ

=
∫

�

fnS(un)ϕ.

Since S has a compact support contained in [−k, k], the strong convergence of fn to f in
L1(�) together with (4.5) imply that

∫

�

fnS(un)ϕ =
∫

�

fnS(u)ϕ + ω(n).

For n > k, using assumption (2.4), the pointwise convergence of un to u together with the
Lebesgue’s convergence theorem yield that

∫

�

S(un)�n(x,un)∇ϕ =
∫

�

S(u)�(x,u)∇ϕ + ω(n).

Similarly by (4.6) we obtain

∫

�

S ′(un)�n(x,un)∇unϕ =
∫

�

S ′(u)�(x,u)∇uϕ + ω(n).
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In view of (2.3) and (4.6) we obtain

∫

�

S(un)an(x,un)∇un∇ϕ =
∫

�

S(un)a(x,Tk(un))∇Tk(un)∇ϕ

=
∫

�

S(u)a(x,u)∇u∇ϕ + ω(n).

Finally, thanks to (4.10) we get

∫

�

S ′(un)an(x,un)|∇un|2ϕ

=
∫

�

S ′(un)α(un)a(x,Tk(un))|∇Tk(un)|2ϕ

=
∫

�

S ′(un)a(x,u)|∇u|2ϕ + ω(n).

Gathering all the previous results, we deduce that the condition (2.9) in the definition of
renormalized solution holds. The condition (2.8) follows from (4.7) and (4.10). Since u is
finite almost everywhere in � and since Tk(u) ∈ H 1

0 (�) for every k > 0, we deduce that u

is a renormalized solution of problem (2.1) and the proof of Theorem 4.1 is completed. �

5 Non Coercive Operator with a Lower Order Term

In this section, we consider the following problem similar to (2.1) of the form

{
− div

(
a(x,u)∇u + �(x,u)

)
+ g(u) = f in �,

u = 0 on ∂�,
(5.1)

where g is a continuous function in R such that:

g(s)s ≥ 0, ∀s ∈R, (5.2)

lim
s→±∞|g(s)| = +∞. (5.3)

We assume that there exist δ1, δ2 > 0 such that

lim|s|→+∞
|s|

(1 + |̃α(s)|)δ2(1 + |g(s)|)δ1
= �′ ∈R

+,

which means the existence of a real number k1 > 0 and a constant C > 0 such that for every
|s| > k1, one has

|s| ≤ C(1 + |̃α(s)|)δ2(1 + |g(s)|)δ1 . (5.4)

As we said in the introduction, the presence of the lower order term g is crucial in the sense
that it guarantees to existence of renormalized solutions when θ = 1 and β = 0.
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Theorem 5.1 Assume that (2.2)-(2.4) and (5.2)-(5.3) hold with r > N and m > N
2 . Further-

emore, we suppose that θ = 1, β = 0. If δ1 < 1
N

− 1
2m

and δ2 = 1, then there exists a weak
solution u for (2.1) in the sense of Definition 2.1.

Proof Let us consider the following approximate problem similar to (3.3) admitting a solu-
tion un ∈ H 1

0 (�) by Schauder’s fixed point theorem.

{
− div

(
an(x,un)∇un

)
− div

(
�n(x,un))

)
+ g(un) = fn in �,

un = 0 on ∂�.
(5.5)

By taking Tk(un) as test function in (5.5), using (5.2), it’s easy to check that

g(un) is bounded in L1(�). (5.6)

Now, let j > 0, by (5.3), there exists j0 > 0 such that |g(s)| ≥ j for every j ≥ j0. Then,
using (5.6), we obtain

meas({|un| > j}) ≤ 1

j
‖g(un)‖L1(�) ≤ C

j
,

which leads to

lim
j→+∞

sup
n

meas{|un| ≥ j} = 0. (5.7)

Thus, (4.6) and Fatou’s lemma yield that u is almost everywhere finite in �.
As in the proof of Theorem 3.2, we use �(̃α(un)) as test function in (5.5), dropping the

positive term, using assumptions (2.2), (2.4), condition (5.4) and for k ≥ k1, we obtain

α0

∫

{|̃α(un)|>k}

|∇α̃(un)|2
(1 + |̃α(un)|)2

≤ C

∫

{|̃α(un)|>k}
c(x)(1 + |g(un)|)δ1

|∇α̃(un)|
1 + |̃α(un)|

+
∫

{|̃α(un)|>k}
|f |,

by Young inequality, we obtain

α0

2

∫

{|̃α(un)|>k}

|∇α̃(un)|2
(1 + |̃α(un)|)2

≤ C

∫

{|̃α(un)|>k}
c2(x)(1 + |g(un)|)2δ1 +

∫

{|̃α(un)|>k}
|f |,

and applying Hölder inequality with
1

m
+ 2δ1 + m − 1 − 2δ1m

m
= 1, it results

∫

Ak

|∇ log(1 + |̃α(un)|)|2 ≤ C‖c‖L2m(Ak)

(∫

Ak

(1 + |g(un)|)
)2δ1 |Ak|

m−1−2δ1m
m

+‖f ‖Lm(Ak)|Ak|
m−1−2δ1m

m |�|2δ1 ,

where Ak = {|̃α(un)| > k}. Thus, thanks to (5.6) and the proof of Therem 3.2, it follows that

|Al | ≤ C

(l − h)2∗
(
‖c‖L2m(�) + ‖f ‖Lm(�)

) 2∗
2 |Ah| 2∗

2 (
m−1−2δ1m

m ) ∀l > h.
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Since m > N
2 and δ1 < 1

N
− 1

2m
imply that 2∗

2 (
m−1−2δ1m

m
) > 1. Then, applying Lemma 3.1,

there exists k∗ such that |{w > k∗}| = 0, that is, un is bounded. �

Theorem 5.2 Assume that (2.2)-(2.5), with r = N , m = 1, β = 0 and θ = 1. Assume that
(5.4) holds with δ2 ∈ (0,1) and δ1 = 1−δ2

2∗ . Then there exists at least a renormalized solution
u for (2.1) in the sense of Definition 2.2.

Proof Due to (5.6) and (5.7), the proof of Theorem 5.2 is similar to one of Theorem 4.1, the

only difference is the convergence result (4.7). In order to prove it, we use
1

m
Tm(̃α(un)) as

test function in (5.5), dropping the positive term and using (5.4) with δ1 = 1−δ2
2∗ give

1

m

∫

{|̃α(un)|≤m}
|∇α̃(un)|2 (5.8)

≤ 1

m

∫

{|̃α(un)|≤m}
c(x)(1 + |̃α(un)|)δ2(1 + |g(un)|)

1−δ2
2∗ |∇Tm(̃α(un))|

+ 1

m

∫

�

fnTm(̃α(un)).

Now we estimate the first term in the right hand side of (5.8), using Hölder inequality with
1

N
+ δ2

2∗ + 1 − δ2

2∗ + 1

2
= 1 and by (5.6), we obtain

1

m

∫

{|̃α(un)|≤m}
c(x)(1 + |̃α(un)|)δ2(1 + |g(un)|)

1−δ2
2∗ |∇Tm(̃α(un))|

≤ C

m
‖c‖LN (�)

(∫

�

|Tm(̃α(un)|)|2∗)
δ2
2∗ (∫

�

(1 + |g(un)|)|
) 1−δ2

2∗ (∫

�

|∇Tm(̃α(un))|2
) 1

2

+C

m
‖c‖LN (�)

(∫

�

(1 + |g(un)|)|
) 1−δ2

2∗ (∫

�

|∇Tm(̃α(un))|2
) 1

2

≤ C

m
‖c‖LN (�)

(∫

�

|Tm(̃α(un)|)|2∗)
δ2
2∗ (∫

�

|∇Tm(̃α(un))|2
) 1

2

+C

m
‖c‖LN (�)

(∫

�

|∇Tm(̃α(un))|2
) 1

2
.

Using Sobolev and Young inequalities, it yields that

1

m

∫

{|̃α(un)|≤m}
|∇α̃(un)|2 (5.9)

≤ C

m

(
‖c‖

2
2−δ2
LN (�)

+ ‖c‖
2

1−δ2
LN (�)

)
+ 1

m

∫

�

fnTm(̃α(un)).

We pass to the limit in each term in the right hand side of (5.9) as n and m tends to infinity
respectively. Since the first term in the right hand side easily goes to zero as m → +∞,
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using Lebesgue’s convergence theorem and the fact that u is finite almost everywhere in �,
we deduce that

1

m

∫

�

fnTm(̃α(un)) = ω(n,m).

Thus, (4.7) holds true. At last, repeating the proof of Theorem 4.1, we conclude that u is a
renormalized solution of (5.1). Therefore, the proof Theorem 5.1 is completely proved. �

Data Availability Data sharing is not applicable to this article as no new data were generated or analysed
during the current study.
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