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Abstract

The linearized Boltzmann collision operator appears in many important applications of the
Boltzmann equation. Therefore, knowing its main properties is of great interest. This work
extends some classical results for the linearized Boltzmann collision operator for monatomic
single species to the case of polyatomic single species, while also reviewing corresponding
results for multicomponent mixtures of monatomic species. The polyatomicity is modeled
by a discrete internal energy variable, that can take a finite number of (given) different
values. Results concerning the linearized Boltzmann collision operator being a nonnegative
symmetric operator with a finite-dimensional kernel are reviewed.

A compactness result, saying that the linearized operator can be decomposed into a sum
of a positive multiplication operator, the collision frequency, and a compact operator, bring-
ing e.g., self-adjointness, is extended from the classical result for monatomic single species,
under reasonable assumptions on the collision kernel. With a probabilistic formulation of the
collision operator as a starting point, the compactness property is shown by a splitting, such
that the terms can be shown to be, or be the uniform limit of, Hilbert-Schmidt integral oper-
ators and as such being compact operators. Moreover, bounds on - including coercivity of -
the collision frequency are obtained for a hard sphere like model, from which Fredholmness
of the linearized collision operator follows, as well as its domain.

Keywords Boltzmann equation - Polyatomic gases - Linearized collision operator -
Hilbert-Schmidt integral operator

Mathematics Subject Classification 82C40 - 35Q20 - 35Q70 - 76P05 - 47G10

1 Introduction

The Boltzmann equation is a fundamental equation in the kinetic theory of gases. It takes
binary collisions into account (assuming rarefied gases), while it is assumed that momentum
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and (kinetic plus possible internal) energy is conserved during collisions. Considering devi-
ations of an equilibrium or a Maxwellian distribution, in the collision integral a linearized
collision operator is obtained. The (usually unbounded) linearized Boltzmann collision oper-
ator appears in a large number of important applications of the Boltzmann equation [1-4, 6].
Classical results are that it is a nonnegative symmetric operator with a finite-dimensional
kernel, while it is less trivial to prove self-adjointness or Fredholmness (for some collision
kernels).

The linearized collision operator can in a natural way be written as a sum of a positive
multiplication operator, the collision frequency, and an integral operator — K. Compactness
properties of the integral operator K (for Grad’s cut-off kernels) are extensively studied for
monatomic single species [15, 16, 19, 24]. The integral operator can be written as the sum
of a Hilbert-Schmidt integral operator and an operator that is the uniform limit of Hilbert-
Schmidt integral operators (cf. Lemma 4 in Sect. 2.3) [18], and so compactness of the in-
tegral operator K is obtained. More recently, compactness results were also obtained for
monatomic multicomponent mixtures by Boudin et al. [10]. For a polyatomic gas, assuming
that the translational and vibrational energies can be modelled by a single internal energy
variable, one can either consider the internal energy variable to be discrete or continuous
[11, 17, 20]. See also [8] where a general framework is exploited. In this work, we consider
polyatomic single species, where the polyatomicity is modeled by a discrete internal en-
ergy variable [17, 20]. We also review the case of multicomponent mixtures of monatomic
species, for which the compactness result is already covered by Boudin et al. [10], while
approached from a different starting point. This is a first step to cover the case of multicom-
ponent mixtures of polyatomic species.

Motivated by an approach by Kogan in [23, Sect. 2.8] for monatomic single species
case, a probabilistic formulation of the collision operator is considered as the starting point.
By starting from the probabilistic formulation, there is no initial parametrization of the ve-
locities based on the momentum and energy conservation, why the parametrization can be
chosen from scratch to be more suitable from case to case. From our point of view, this
really helps to find appropriate substitutions, by geometrical motivations, for the non-trivial
cases, and was crucial for us in the polyatomic case. Using this approach, it is shown, based
on ideas from the corresponding proof for monatomic single species by Grad [19], in par-
ticular, as presented by Glassey [18], that the integral operator K can be written as a sum
of Hilbert-Schmidt integral operators and operators that are the uniform limit of Hilbert-
Schmidt integral operators, and hence, compactness of the integral operator K follows for
the polyatomic model. The operator K is self-adjoint, as well as the collision frequency,
why the linearized collision operator, as the sum of two self-adjoint operators of which one
is bounded, is also self-adjoint.

For hard sphere like models, bounds on the collision frequency are obtained, implying
its domain. Then the collision frequency is coercive and becomes a Fredholm operator. The
set of Fredholm operators is closed under addition with compact operators, why also the
linearized collision operator becomes a Fredholm operator by the compactness of the inte-
gral operator K. For hard sphere like models the linearized collision operator satisfies all
the properties of the general linear operator in the abstract half-space problem considered in
[4], and, hence, the existence results in [4] apply. The same applies for hard sphere models
for multicomponent mixtures, see [3].

Related studies have attracted recent attention. The case of polyatomic single species,
where the polyatomicity is modeled by a continuous internal energy variable is considered
in [5], see also [9] for the case of molecules undergoing resonant collisions (for which
internal energy and kinetic energy, respectively, are conserved under collisions), and [13, 14]
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for diatomic and polyatomic gases, respectively - with more restrictive assumptions on the
collision kernels than in [5], but also a more direct approach.

The rest of the paper is organized as follows. In Sect. 2 polyatomic gases are considered,
while multicomponent gases are considered in Sect. 3. The models considered are presented,
for polyatomic molecules in Sect. 2.1 and for multicomponent mixtures in Sect. 3.1. The
probabilistic formulation of the collision operators considered and its relations to more clas-
sical formulations [10, 17, 20] are accounted for in Sect. 2.1.1 for polyatomic molecules and
in Sect. 3.1.1 for mixtures. Some classical results for the collision operators in Sects. 2.1.2
and 3.1.2, respectively, and the linearized collision operators in Sects. 2.1.3 and 3.1.3, re-
spectively, are reviewed. Sections 2.2 and 3.2 are devoted to the main results of this paper,
while the main proofs are addressed in Sects. 2.3 and 3.3; proofs of compactness of the in-
tegral operators K are presented in Sects. 2.3.1 and 3.3.1, respectively, while proofs of the
bounds on the collision frequencies appear in Sects. 2.3.2 and 3.3.2, respectively. Finally,
the Appendix concerns a new (more basic, as well as, constructive) proof of a crucial - for
the compactness in the mixture case - lemma in [10].

2 Polyatomic Molecules Modeled by a Discrete Internal Energy
Variable

For a polyatomic gas, assuming that the translational and vibrational energies can be mod-
elled by a single internal energy variable, one can either consider the internal energy vari-
able to be discrete or continuous [11, 17, 20]. See also [8] where a general framework is
exploited. Here will the case when the energy variable can take a finite number of different
(given) values be considered.

2.1 Model

This section concerns the considered model for a polyatomic single species. A probabilistic
formulation of the collision operator, inspired by one for monatomic single species [7, 23,
26], is considered. See also [21] for a probabilistic formulation of the collision operator for
polyatomic gases. The relation to a more classical formulation [17, 20] is also accounted for.
Known properties of the model and a corresponding linearized collision operator are also
reviewed.

Consider a single species of polyatomic molecules with mass m, where the polyatomicity
is modeled by r different internal energies I, ..., I,. The internal energies I;,i € {1, ..., r},
are assumed to be nonnegative real numbers; {I, ..., I,} C R, . The distribution functions
are of the form f = (fi,..., f;), where the component f; = f; (t,x,&) = f(¢,x,§, I;),
ief{l,...,r},withteR,,x=(x,y,2) € R3, and &= (SX, &y, Sz) € R3, is the distribution
function for particles with internal energy 7;,i € {1,...,r}.

Moreover, consider the real Hilbert space h) := (L2 (d& ))r, with inner product

(=3 [ fadstor fige (L @)
i=1

The evolution of the distribution functions is (in the absence of external forces) described
by the (vector) Boltzmann equation

a
8—];+(E-Vx)f=Q(f,f), ey
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where the (vector) collision operator Q = (01, ..., Q,) is a quadratic bilinear operator that
accounts for the change of velocities and internal energies of particles due to binary colli-
sions (assuming that the gas is rarefied, such that other collisions are negligible), and where
each component Q; is the collision operator for the distribution function f;, i € {1,...,r}.

A collision can be represented by two pre-collisional pairs, each pair consisting of a
microscopic velocity and an internal energy, (£, I;) and (E*, ) and two corresponding
post-collisional pairs, (&', Ik) and (£, 1)), for some {i, j, k,1} C {1, ..., r}. The notation for
pre- and post-collisional pairs may, of course, be interchanged as well. Due to momentum
and total energy conservation, the following relations have to be satisfied by the pairs

E+E =E+E,

m. ., m 2 m 2 M2
— — L+1I,=— — I+ 1. 2
2|£|+2\£*|+ +1 2|§|+2\§*|+k+z 2
2.1.1 Collision Operator
The components of the (vector) collision operator Q = (Q1, ..., Q,) can be written in the
following form
fifte  fifi ,
i(f, f)= f WEE. L1 |E, E*,Ik,l)< L 2 ) dg dE'dE., (3)
k=1 QiP;j
Js
foralli € {1,...,r}, for some constant ¢ = (¢y, ..., ¢,) € R". Here and below the abbrevi-
ations
foo=fi(t.x.8,), f{ = fi (t.x.€'),and f/, = f; (1. x.§)) “)

are used. In the collision operator (3) the gain term - the term containing the product f; f;, -
accounts for the gain of particles with microscopic velocity & and internal energy /; (at time
t and position x) - here (&, I;) and (‘;‘*, 1 j) represent the post-collisional particles, while
the loss term - the term containing the product f; f;. - accounts for the loss of particles
with microscopic velocity & and internal energy /; - here (&, [;) and (E . ) represent the
pre-collisional particles. The corresponding (signed) internal energy gap is

Al =L+1L -1 —1;.

The transition probability W : (R3 x{I,..., I,})4 — R, :=10, 00) is of the form, cf. [21],
as well as [7, 23, 26] for the monatomic case,

WE. &1, 1; |§.E. L. 1)

|, Icos o) ‘l—‘ S (E+&,—&—¢)

s (2 (|§|2+|-s*|2—|8’| REY)
(E+&. —&-8)
<oy (2 (|§| e —IEI - 18:) - arf).

=4m<ﬂk¢10/g (

=4m(/)l§0/ z/
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!

with ai’;.l = ai’;l (lg|, |cosf]) >0 a.e., cosd = 5 g/ s
lgllg'l
gzs_E*’glzg/_$;7andAIj];1:]k+I]_Ii_Ij (5)

where 83 and §; denote the Dirac’s delta function in R and R, respectively; taking the
conservation of momentum and total energy (2) into account. Here and below we use the
(inconsistent) shorthanded expressions

ol =0(&.&,.1;,1;|E &, . I. 1) =5(g|. [cos 0|, I;, I}, I, I) and

U}:{ :G(E/s 8;, Ikv 11 |§s 8*7 11'7 1] ) :&(|g/

) |COSG| ) Ikv 117 11'5 I])s

2
. . . 2 . .
for a given scattering cross-section o : ((Rg) x{I,..., I,}Z) — R, or in the alternative

formo : R, x [0, 1] x {I1,..., LY — R, ; assuming the pairs (&, I;), (S*, Ij), (§', Ik), and
(i;‘ ” I,) being given - here, by the arguments of W.
The scattering cross sections okl i, Jok, 1} € {1,...,r}, are assumed to satisfy the mi-

ij>
croreversibility conditions

0ip; 182 ol (gl Icoso)) = e |2 oif (€] Icosb]). (©)

Furthermore, to obtain invariance under exchange of particles in a collision, it is assumed

that, the scattering cross sections oi';l, {i, j.k, 1} S {1,...,r},satisfy the symmetry relations
(fixing the pairs (§, 1), (,.1;), (&', I), and (€. ;)
ai];-l = ai[;‘ = aj[.f.‘. 7

The invariance under change of particles in a collision, which follows directly by the defi-
nition of the transition probability (5) and the symmetry relations (7) for the collision fre-
quency, and the microreversibility of the collisions (6), implies that the transition probabili-
ties (5) satisfy the relations

WEE. 1,1 |EE, L, I)=WE,.§ 1,1 6.8, 1, 1)
WEE LI EE L I)=WE & . L, 1|88, .1.1))

WE & L 1 |E 8 I, 1) =WEE, 1L 1 6,8 1, L), ®)
Applying known properties of Dirac’s delta function §, in R", n € {1, 2, ...}, e.g., that
8, (ax) =38, (x) / |a|" for any non-zero real number a and x € R”, the transition probabilities

may - aiming to obtain expressions for G’ and |g/| in the arguments of the delta-functions -
be transformed to

WE &1, 1; |§.E. L. 1)

= 4m9"k9”1"13%53 2G-6))s (5 (127 - [g[") - az))
= 20010 %63 (G-G)s (|g|2 - gl - %Ali’;.’>

= U[jil 2 k8 (G—G’)S \/m_|g/|
= QP10 el mlg?>4A1} 3 1 — AL
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Ig| 4 ,
=‘Pi‘PjUi]}l—zlm\g|2>4A1."153 (G_ G/) 81 |g|2 - _Alilj‘l - |g | ’
gl i m
’ ’
with G = # and G' = § ;5*

Remark 1 Note that, cf. [21],
3 (% (|g|2 - ’g,}z) - Alilj-l) =681 (Eij — Eu).

m ) m 12
forE,-J-:Z|g| +I,-—|—IjandEk1:Z|g| + I+ 1.

’ ’
By a change of variables {§', &} — {g/ =§-§,G = § ;5* }, followed by that to

/

LW = £ }, noting that

spherical coordinates {g'} — {|g’

lg']
dg'dg, = dG'dg = |¢|’dG'd|g| de, )
the observation that

Qi(f. )
= Z/ . WE &, 1 1 €& I 1)

k=Y () xRy xS?

fifte  fifi 2 /
(o = ) 81 800018100
i¥j

_zr: ||kl|| 0 //‘pi(/’j o)1 dE d
= , 1810i; (gl cosO) | fifru=——" = fifis mlgl2>4A1H §.do,

k=1 VR3xS (3 J

where
» 4 4
e it S m gy m Y,
2 2 2
,we S,
2 4 4
£E \/|£—£*| — — AL lg* — —Arlf
’ * m m
g=>0 - : w=G- 1",

can be made, resulting in a more familiar form of the Boltzmann collision operator for
polyatomic molecules modeled with a discrete energy variable, cf. e.g. [17, 20].

Remark 2 Note that, when considering spherical coordinates, we, maybe unconventionally,
often represent the direction by a vector in S?, rather than with azimuthal and polar angels,
still referring to it as spherical coordinates. By representing the direction by a unit vector, the
sine of the polar angle will not appear as a factor in the Jacobian, resulting in the Jacobian
to be the square of the radial length.
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2.1.2 Collision Invariants and Maxwellian Distributions
The following lemma follows directly by the relations (8).
Lemma 1 Forany {i, j,k,1} C{1,...,r} the measure
dAf; =W (E.E,. I, 1; |§ &, I I,) d§ d§ ,dE'dE|,

is invariant under the interchanges of variables

(55 ‘S*v Il'v Ij) <~ (E/vg;s ]kv Il) 5
&, 1)< (’g'*, Ij) , and
(" 1) < (&.. 1) (10)

respectively.

The weak form of the collision operator Q(f, f) reads

¢ ho=Y /(R3)4 (M—&> grdAY

i,j.k1=1 Yk Pi9j
r ! £ . .
e ®) N e Qi) :
S / (f,zf,; _ ﬁff*>glidAf;
e @)\ i
. / (fk’fl; - ﬁf,'*)gl,*dAg
e @)\ i

for any function g = (gy, ..., &), such that the first integrals are defined for all indices
{i, j,k,1} < {1,...,r}, while the following equalities are obtained by applying Lemma 1.
We have the following proposition.

Proposition 1 Let ¢ = (g1, ..., &) be such that

®3)* \ e LiQ;j Y

is defined for all {i, j,k,1} C{1,...,r}. Then

f,f/ flf ’ ’
o (B2 22 =iy
> ¥y

r

1
ik =1
Definition 1 A function g = (g1, ..., g-) is a collision invariant if
(gi+tgin—g —8)WEE.IL,1;|§.E, L, I)=0ae.

forall {i, j,k, 1} <{1,...,r}.
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Clearly, 1,, &:1,,&,1,,&.1,,and m |§|2 1,+2I,with1, =(1,...,1) € R" and the vector
internal energy I = (Iy, ..., I,), are collision invariants - corresponding to conservation of
mass, momentum, and total energy.

In fact, we have the following proposition, cf. [15, 20].

Proposition 2 The vector space of collision invariants is generated by

{1, 61,61, &1, ,mE1, + 21},

wherel,={,...,)eR and I = (14, ..., 1,).
Define

WIf1:=(Q(f. f).log (7" f)).

where ¢ = diag (¢, ..., ¢,). It follows by Proposition 1 that

r

1 fifis (Wiwjfk/fl; ) (‘Pi%fk'f/*) u
WIfl=—- —— | ————= —1)log| ——— ) dA};.
4!‘,/',1;:1 ®)* i@ \fifixpeq S\t !

Since (x — 1)log (x) > O for all x > 0, with equality if and only if x =1,
WIf1=<0,

with equality if and only if for all {i, j, k,I} S {1,...,r}

)W(‘g',’g'*,li,l_,»‘S/,E;,Ik,IZ)ZOa.e., (11)
Qip;j (437]

or, equivalently, if and only if

of, fH=0.
For any equilibrium, or Maxwellian, distribution M = (M, ..., M,), follows by equation
(11), since Q(M, M) =0, that for all {i, j, k, I} S {1,...,r}
M, M, M, M/
(10g — + lOg il IOg k_ IOg J) W(S, E*, Il', Ij ‘S/, S;, Ik» Il ) = O a.c. .
i j Pr 2]
—1 Ml Mr . .. . .
Hence, log ((p M ) = |log —,...,log— ) is a collision invariant, and the components
1

of the Maxwellian distributions M = (M,, ..., M,) are of the form

o ng;m’/? —m\&—u\2/2Tefli/T
L@rT)q
1 . " _I./T . m 2
Here n = (M, 1,), u= — (M, £1,), while g = > g;e /T, with T = ™ (M, & —ul*1,),
n i=1 n

1

where 1, =(1,...,1) e R".
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Note that by equation (11) any Maxwellian distribution M = (M|, ..., M,) satisfies the
relations

(M,QM;* MiM ;.

)W(§5$*7Ii71j |§/7E;alk711):0a'e' (12)
(23 Yipj

forall {i, j,k, 1} <{1,...,r}.

Remark 3 Introducing the H-functional

Hf1=(flog f),

an H-theorem can be obtained.
2.1.3 Linearized Collision Operator

Consider a deviation of a Maxwellian distribution M = (M, ..., M,), with components

3/2
pim o—mIER/2 = 1;

372 i, of the form
@m)Y

i =

f=M+M"h (13)
Insertion in the Boltzmann equation (1) results in the system

%+(§.Vx)h+£h=r(h,h). (14)

The components of the linearized collision operator £ = (L, ..., £,) are given by

Lih=—M""(Q;(M, M'?h) + Q:(M"*h, M))

MM MM\ "> -
— M Z/ (171<I*> W&, 1,1 |§.E, I, 1)

k=1 PiQjPePi
hi hj* h;c h}* T
(Mi”2 M )" ()" AR AR
=v;h; — K; (h), where M =diag(M,, ..., M,), (15)

with

Z/ Moy 66,11, &, 8, 1 1) dE.d8 dE,, and
R%

JokI=1 big;
-2 MM MM\
Ki(hy=M Z / <17> W&, 1,1 |§.E, I, 1)
k=1 PipjPrpr '
h;, hj, hj.
X 7+ 7~ 1/2 dg dg'dE’, (16)
((M,i) (M) M,

@ Springer



3 Page100f45 N. Bernhoff

for all i € {1,...,r}. The components of the nonlinear (quadratic) term I' = (I"y, ..., [,)
are given by

i (b, k) =M"? Qi (M1, M'?h). (17)
The multiplication operator A defined by
A(f)=vf, where v =diag (v, ..., v,),

is a closed, densely defined, self-adjoint operator on (L* (d& ))r. It is Fredholm, as well, if
and only if A is coercive.
The following lemma follows immediately by Lemma 1.

Lemma2 Forany {i, j, k,l} C{1,...,r} the measure
12
dA = <—M"Mf*MLM/*> dA
2175173

is invariant under the interchanges (10) of variables respectively.

The weak form of the linearized collision operator £ reads

(Lh, g)
_ Z f ( hj* _ hi _ hi, ) 8i d Ak
1/2 1/2 12 N\1/2 172 ¢ 4%j
i\ jk =1 Mj* (Mk) (Ml*) M;
_ Z / ( LI e hy > 8i i e
= 1/2 1/2 1/2 172 1/2
ijkd=1 r)* M, (M,/() (M,/*) Mj,
i / ]’l[ hj* h/ h; ) g/,( Tkl
1/2 1/2 12 1/2 ANV
i.jddet? (B <Mi M~ (M) (M,)"") (M)
1/2 172 N1/2 N\ 1/2 172 ¢
i,j.k,l=1 Mj* (Mk) (M[*) (M[/*)
for any function g = (gy, ..., &), such that the first integrals are defined for all indices

{i, j,k, 1} < {1,...,r}, while the following equalities are obtained by applying Lemma 2.
We have the following lemma.

Lemma3 Let g =(gy,..., g ) be such that
h; h iy h hy, i ~
/ 172 + J1/2 - k1/2 - Z 172 gl/2 dAf.‘,l»
®)* \ M; M, (Mlé) (Ml/*) M; '

is defined for all {i, j, k,1} C{1,...,r}. Then

L h, n,
(Lh,g) = Z _/ < 1/2 iz (M];)I/Z - (M[/*;I/Z)

ljkll J*
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(s e~ e~ )
Proposition 3 The linearized collision operator is symmetric and nonnegative,
(Lh,g)=(h,Lg) and (Lh,h) >0,
and the kernel of L, ker L, is generated by
{M1/275XM1/27 gyMl/Z’ EMV2 m g2 M2+ 2/\/11/21} 7
where I = (I, ..., I,) and M =diag(M,, ..., M,).
Proof By Lemma 3, it is immediate that (Lh, g) = (h, Lg), and

2
h’* hy hy ki
(Lh, h)_ / o — * dAY > 0.
Z ]R? 1/2 Ml/z (Ml:)l/z ,)1/2 ij

I]kl 1 J* (Ml*

Furthermore, & € ker £ if and only if (Ch, h) = 0, which will be fulfilled if and only if for
all {i, j,k, I} < {1,...,r}

hi hj* hllc hI,
< |/2+ 1/2_ 1/2_ *1/2 W(S E*vlzvl |£ £*7Ik7]1)—0ae

MM (M) (ML)
i.e., if and only if M~!/?h is a collision invariant. The last part of the lemma now follows
by Proposition 2. O

Remark 4 A property of the nonlinear term - although of no relevance to the studies here,
still mentioned due to its importance - is that the nonlinear term is orthogonal to the kernel
of £, i.e. T (h, h) € (ker £)™0®

This follows, since any element in ker £ is of the form M
g, while for any collision invariant g

172 for some collision invariant
(T (h, by, M) = (MT12 QMY 2h, M), M 2g)
=(QM'h, M'?h), g) =0

2.2 Main Results

This section is devoted to the main results, concerning a compactness property in Theorem
1 and bounds of collision frequencies in Theorem 2.

Assume that for some positive number y, such that 0 < y < 1, there is a positive constant
C such that

C . 4
0<0l (g, |cos0|><W(\P"l+(WZ-’)V”),wnhw,ﬁ?=|g| g~ — ALl (18)

for |g> > 4AT K 7 /m on the scattering cross sections o;

U,{zjkl}C{ ..., r}. Then the
following result may be obtained.
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3 Page120f45 N. Bernhoff

Theorem 1 Assume that the scattering cross sections O'l-];l forall {i, j, k,1} Z{1,...,r}, sat-
isfy the bound (18) for some positive number y, such that 0 <y < 1.
Then the operator K = (Ky, ..., K,), with the components K; given by (16) is a self-

adjoint compact operator on (L2 (d&))r.

Theorem 1 will be proven in Sect. 2.3.1, based on ideas from the corresponding proof for
monatomic single species by Grad [19], especially, as presented by Glassey [18]. However,
by starting from the probabilistic formulation, there is no initial parametrization of the ve-
locities based on the momentum and total (kinetic plus internal) energy conservation. Then
the parametrization can be chosen from scratch to be more suitable from case to case. From
our point of view, this really simplifies to find appropriate substitutions, by geometrical mo-
tivations and manipulations of the delta-functions, for the non-trivial cases.

Corollary 1 The linearized collision operator L, with scattering cross sections satisfying
(18), is a closed, densely defined, self-adjoint operator on (L2 (d&))r.

Proof By Theorem 1, the linear operator £ = A — K, with the multiplication operator given
by Af =vf for v =diag (vy, ..., V), is closed as the sum of a closed and a bounded op-
erator, and densely defined, since the domains of the linear operators £ and A are equal;
D(L) = D(A). Furthermore, it is a self-adjoint operator, since the set of self-adjoint opera-
tors is closed under addition of bounded self-adjoint operators, see Theorem 4.3 of Chapter
Vin [22]. O

Now consider the scattering cross sections - cf. hard sphere models -

|g|2 - %Alik'] 4
okl = Lif g? > — ALY, (19)
gl pip; m
for some positive constant C > 0 and all {i, j, k,I} S {1,...,r}.
In fact, it would be enough with the bounds
lgl* — 2A1 lgl* — A1l 4
Y= ¥ = Uilj‘l = +7j if |g|2 = _Alil;l’ (20)
gl pip; gl vip; m
for some positive constants C+ > 0 and all {7, j, k,l} € {1,...,r}, on the scattering cross

sections.

Theorem 2 The linearized collision operator L, with scattering cross sections (19) (or (20)),
can be decomposed as a positive multiplication operator A, defined by Af = vf, where

v=v(|§|) =diag (vi, ..., v,), minus a compact operator K on (L2 (df;‘))r
L=A-K, @2y
where there exist positive numbers v_ and vy, 0 < v_ < v, such that foranyi € {1, ...,r}
vo (L+ 18D < vi(1ED) < vy (1 + [§]) forall § e R, (22)

The decomposition (21) follows by the decomposition (15), (16) and Theorem 1, while
the bounds (22) are proven in Sect. 2.3.2.
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Corollary 2 The linearized collision operator L, with scattering cross sections (19) (or (20)),
is a Fredholm operator, with domain

D(L) = (L* (1 + &) d§))".

Proof By Theorem 2 the multiplication operator A is coercive and, hence, a Fredholm op-
erator. The set of Fredholm operators is closed under addition of compact operators, see
Theorem 5.26 of Chapter IV in [22] and its proof, so, by Theorem 2, £ is a Fredholm oper-
ator. ]

Corollary 3 For the linearized collision operator L, with scattering cross sections (19) (or
(20)), there exists a positive number A, 0 < A < 1, such that

(h, Lh) = A (h,v(IEDh) = Av_ (h, (1 + |&]) h)

forany h € (L2((l + IEI)dE))r NImL.

Proof Let h € (L*((1 + |€])d§))" N (kerL)* = (L*((1 + |€])d&))" NImL. As a Fredholm
operator, L is closed with a closed range, and as a compact operator, K is bounded, and so
there are positive constants vy > 0 and cgx > 0, such that

(h, Lh) > vo(h, h) and (h, Kh) <ck(h, h).

Vo
Vo + (657¢

(h, Lh) = (1 = 1) (h, Lh) + 1(h, (v(|§]) — K)h)
= (1 =Mvo(h, h) + A(h, v(IED)h) — Aek (h, h)
= (vo = A(vo + cx))(h, h) + A(h, v(IE)h) = A(h, v(IEDA). O

Let A = . Then

Remark 5 By Proposition 3 and Corollary 1-3 the linearized operator £ fulfills the properties
assumed on the linear operators in [4], and hence, the results therein can be applied to hard
sphere like models.

2.3 Compactness and Bounds on the Collision Frequency

This section is devoted to the proofs of the compactness property in Theorem 1 and the
bounds on the collision frequency in Theorem 2 of the linearized collision operator for poly-
atomic molecules modeled with a discrete number of internal energies. Note that throughout
this section C will denote a generic positive constant.

To show the compactness property we will apply the following result.

Denote, for any (non-zero) natural number N,

hN={@£9e®ﬁ%E—SJZ§HﬂSN}
and

b =pM (&, E,) :=b(E, EN,.

Then we have the following lemma by Glassey [18], that will be of practical use for us to
obtain compactness.
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Lemma4 (Glassey [18, Lemma 3.5.1], Drange [16])
Assume that b(§,E,) > 0and let Tf (§) = [o3 b(E. &) f (‘g'*) dg,.
Then T is compact on L* (d&) if
(i) [g3 D(E, E,)dE is bounded in & ;
(i) b € L? (d§ d& ) for any (non-zero) natural number N';

(iii) sup fR3 b, &) —bMNM(E,E)dE, — 0as N — oo.
£cR3

Then the operator T is the uniform limit of Hilbert-Schmidt integral operators [18] and
we say that the kernel b(§, &,) is approximately Hilbert-Schmidt, while 7' is an approxi-
mately Hilbert-Schmidt integral operator. The reader is referred to Lemma 3.5.1 in [18] by
Glassey for a proof of Lemma 4.

2.3.1 Compactness

This section concerns the proof of Theorem 1. Note that in the proof the kernels are rewrit-
ten in such a way that &, - and not " and &', - always will be the argument of the distribution
functions. Then there will be essentially two different types of kernels; either &, is an ar-
gument in the loss term (like &) or in the gain term (unlike &) of the collision operator.
The kernels of the terms from the loss part of the collision operator will be shown to be
Hilbert-Schmidt in a quite direct way, while the kernels of the terms from the gain parts
of the collision operators will be shown to be the uniform limit of Hilbert-Schmidt integral
operators, i.e. approximately Hilbert-Schmidt in the sense of Lemma 4.

Proof Fori € {l,...,r}, rewrite expression (16) as

Kih=M""? Z/ wE &, I 1 €8 L 1)

J.kI=1

, W,k
x + - d€,dg'dg,
((Mlé)l/z (Ml,*)l/Z M]l}iz)

with

MM M M,

1/2
) WE. &, 1,1 |§.E, L. 1)
PiPjPrPi

wE. E,. L, 1|8 I 1) = (
for all {i, j, k,1} € {1,...,r}. Due to relations (8), the relations

wE &, L, 1 |E. 8 I ) =wE&, &1, 1 |§.8, 1, I,)
w(gvg*a Iis Ij |£,a E;v Ika Il) = w(E’inp Ikv Il Iis ]J)
wE E L |EE L) =wE §,,1,1;|§.8. 1, 1) (23)

are satisfied for all {7, j, k,1} € {1,...,r}. Hence, for any {i, j, k,I} C {1,...,r}, by first
renaming {’;'*, Ij} = {5/, Ik} and then renaming {{-'*, Ij} = {5;, Il}, followed by applying
the last relation in (23),

wE E L1 |EE L L) —E— 75 d§,dEdE,
Z / (M] )

k=1
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2/ w(SE Il’Ik‘EﬁwE*’Ij?Il)

J.k,I=1 ( I£3

)1/2 dE dE'dE.

Z/ W& L8811y mdg d¥ds,

k=1

Z/ W L E B L ) l/zds dE'd..

J.kI=1
As well, for any {i, j,k,1} C{1,...,r}, by renaming {£,. I;} S {&', I},

Z/ B 1 £ 1) T 08 0,

joki=1 (k

Zf WEE I I 6.8l 1. 1) s d A8 S,

ik i=1

It follows that for any i € {1,...,r}
Ki =Y [ (6. 6h. ds,. where
=1 R
kij(§,8,) =kij»(§.§,) —kij1(§,§,), with

i1 (6.6,) = (M;M,.) ”2Zf W 11§ 8L I 1)) dE'dE, and

k=1

a8, £,) =2 (M, M) ‘/22/ W& L I8, 8L 1 ) dEdE,. (24)

k=1

Next we obtain some symmetry relations that will help to yield self-adjointness of the oper-
ator K below. Indeed, for any {i, j} € {1,...,r},

kij(§,8,)=kjin(§,.8) —k;jii(§,.8) =k;i(§,.8),

since, by applying the first and the last relation in (23),

i (6, 8,) = (M, M,.) ‘”Z/ (L b0 L |60 8 1 ) dE'dE,

k=1
()Y f W, £ 0y, 1 8.8, L 1) dEdE,
k=1
= k(€. 8) (25)

and, by applying the second relation in (23) and renaming {&', I} < {&., 1.},

is

1]2(& E )— (M Mj* I/ZZ/ w(E*sg*vljsIl

k=1
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Fig. 1 Typical collision of Ki(jl). 4 $
Classical representation of an
inelastic collision

& 3

= Z(MiMj*)_l/z Z /(R3)2 w,. & 1. I |§.&,. [ 1)) dE'dE,

k=1

We now continue by proving the compactness for the two different types of collision
kernel separately.

I. Compactness of Kl.(j') = fes kij1 (€, E) hj.dE, for {i, jYC{1,...,r}.

Assume the internal energy gap Allf = I + I — I; — I; as well as the velocities & and
&, to be given. Then a collision will be uniquely defined by the unit vector @ = g’/ | g,
with g’ = & — &/ . This follows, since, by conservation of momentum and total energy (2),
|g’} can be obtained, while also § — &' =& — &, cf. Fig. 1. Indeed, by a change of vari-

/ / /
s 1.) ~ [jl.o= 7= E2E
tion (12), expression (24) of k;;; may be transformed to the following form

, W=

, noting the invariance (9), and using rela-

kiji(§,§,)

r

Ml/ch/* >1/2 /2
= — gl WEE, L
,(JZZI /RMRMSZ <<Pi</’j<ﬂk(01 | e

g/v E;’ I, I )dG/d |g/| dw

1/2 d
= (M[Mj*) / gl Z /SZ o'l.];l (Igl, cos®) 1m\g|>4Al,.’j.’ dw.

k=1

By assumption (18) and the following relation for the exponent of the product M; M ;.

HE Ak
mT +m >

2
—|—I,+I]=m|G|2+m%+I,—|—I,=m|G|2+E,],

the bound
kizjl (E’ g*)
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2
C 2 r L
= Jep M (/s dw) (Z (8 + (¥)") Loy

k,I=1

. . 2
~ ! 1 2
) 'C'ZMMLEU (Z (1+ |g|2)) - wa"'m%u, @7
g

Pyt gl

may be obtained. Then, by applying the bound (27) and first changing variables of integra-
tion {’g‘, ’;'*} — {g, G}, with unitary Jacobian, and then to spherical coordinates,

1 4
/( ul(E £)dEdE, < /( ; (Tg%”emcpmdgd(;
R3

< C/ Rze—mdeR/ 67"1”2/4 (1 + 774) dn=C
0 0

Note that, here and below, we will, in general, not indicate an integration over a directional
vector in S? of the form
f dw =4,
SZ

but just integrate it in the generic constant C.
Concluding,

KO = / ki1 (6, 8.0 h o dE,
R3

are Hilbert-Schmidt integral operators and as such compact on L2 (d§), see e.g., Theorem
7.83in [25], forall {i, j} S {1,...,r}.

I1I. Compactness of K,(.z) = [skij2(E. &) hjs d‘;‘ for {i, j} C{1,...,r}.

Assume the internal energy gap Al ’k = I+ 1;—I; — I, as well as the velocities § and £,
to be given. Then a collision will be unlquely deﬁned by a vector w orthogonaltog =& —§&,,.
This follows, since, by conservation of momentum and total energy (2) (reminding that we
relabeled the velocities and internal energies), the relation between |§ — §’} and |§; — §*|
can be obtained, while also g’ = &/ — &' =g, cf. Fig. 2. Indeed, noting that - with the aim to
obtain expressions for g’ and y = (E* — & /) - g/ |g| in the arguments of the delta-functions -
cf. Fig. 2,

W(£’§/7 Ii’ Ik }g*’gik’ Ij? Il)

=g Bs, (¢~ g+ -85, (3 (168 - s+ [~ [62) - a1)

Igl
g+

:4mg0,—g0k(7ij,z 83 (g/ + g) Y (m (E* — §/) g— All.],'(l>

g gl | | gl

g=t—b.g =t €. F=(—& g =L & AL =1 +1 -1,

Ctvoad B i N, 8
=4pipo ——383 (8 +8) 8 | x ,with x = (€, — &) - =,
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Fig.2 Typical collision of K;jz) & n £

by the change of variables {§', €.} — {g =& —&,,h=§ —&,}, where

dg'dE. = dg'dh = dg'dxdw, with w=§ — &, + ynandn= >,

gl
the expression (24) of k;;, may be transformed to
kij2(8.§,)
MM, 1/2 / , ,
_Z/ ( ) W('Sss7Iz7lk‘§*,‘§*,l,,ll)dgdh
k=1 QiQiPkP1
80§ o 2] MM L e
=i D / l,n@‘aw,ﬂ( . 1*) o <|g|, o )dw, (28)
o/ o) (gl AN 8] lg.|

where
(R3)l" ={weR’:wLln}.

Here, for any {k,[} C {1, ...,r}, see Fig. 2,

’ l
’ ; Wlth = =
{ § —f+w—yn X =i = xii (Igh = |g|

implying the following relation for an expression appearing in the exponent of the product
M; M], in expression (28)

72 2 _ 2
IR R £
(E + g*)J_,, ’ (E + E*)n il ’ |g|2
= |72 +w| + 72 - X,-jk + T
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(e — 18P +2xk |E &, 2
(el X’ |)+|g|

z'(“j*)iuw

where

€% — |&, |
— an

|‘S_§*|
Hence, by assumption (18),
¢ M2 - 1 (|§'| — &> +2x;) |g|)
§|g7exp<—zlg|> kge(lk*'—ll)/zexp —m 81g
5 2
g Wi i W R
ik

c m , (1&.F 187 +2x 1)
leeXp(—Zlglz) Y exp|—m Sia’

k=1

2
C 4 m N2 m. o,
=7<Z GXP(—§ (|g|+2|:§|cos</>+2x,:’k) -3 el >>

|g k=1

2
Z ( ( +|£|cos¢+x)—§|g|2>, (30)

k=1

. E Tl ~ ~ 4 jl
with cosg =n- 1o, Wi = (8l lg.l, and |g.|” = [&" - — AT}

Here, the second inequality, follows by the following bound, which can be obtained by
noting that here min (|g|, |g.|) > |w/, cf. Fig. 2, while firstly making a change of variables
wo W= (§+§&,) 1, /2+ w followed by one to polar coordinates,

2

(E+¢&),,

+w dw

1

1 ., |14+ ———

/ 3yLln mlg|=>4Al; ~ 1-y/2
®) ()

dw

5/ 1—|—|w|”72dw+2/ exp _
wi<1 wiz1 2

5/ T+ w2 dw+2
w1

1 00
o (/ R+RV‘1dR+/ Re"”Rz/zdR> —=cC.
0 0

%;\
5
|
B
=
)
~
(3}
SH
=
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The integral of k?jz over the truncated domain hy will be bounded, since, by changing
variables &, — g = & — &, and then to spherical coordinates,

/ K2, (6. &,) dEdE, < f C e/ gt
by hN| |

N
SCf e_R2/4dR/ n’dn=CN?>.
0 0
Next we aim for proving that the integral of k;;»(&,&,) with respect to & over R? is
bounded in &, . Indeed, directly by the bound (30) on kizj2
0<kip(E £) <= Xr:ex =% (lel +218 cosp +2 -"’)2— 2 gP (31)
= Rij2(6,64) = |g| p 8 g @ Xik 8 g .

k=1

Hence, by applying the symmetry k;;»(&, &,) = k;;»(§,, &) (260), firstly changing variables
& — g=¢ — &,, and then to spherical coordinates,

/3kij2(§’§*)d§ =/3kji2(§*,§')d§
[1;3 g| k[ZI exp (_— gl )dg C/ Reme B4R =C.

Finally, heading for proving the uniform convergence of the integral of k;;» with respect
to &, over the truncated domain hy to the one over all of R3, the following bound on the
integral over R? can be obtained for |£| # 0 by bound (31), by changing to (conventional)
spherical coordinates, with & as zenithal direction, and hence ¢ as polar angle, followed by
the change of variables ¢ — n =R +2|&|cos¢ + 2sz (R), withdn = -2 |&|sinp de,

/ k(8. £.,) dE,
R3

: /Rs I e (__ (121 +2181cose + 2] lgh) — |g|2> dg

k=1

= / / Rexp(—g (R+2|’;‘|cos<p+2xl (R)) ——R)sintpdgodR
ki=1

R+2X,k(R)+2\§\ X R
|€| Z/ / e~ /8€—mR /SdﬂdR
R

] +2x (R)-21¢]

c o0 C
< — / Re ™R /8 R / e By = — (32)
&1 Jo % &]

Then, by the bounds (31) and (32),

Sup\/R IJZ(E E ) tj2(£7§*)1h1v dg*

EcR3
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< sup / 6. £)d, + sup /R K 8 de,

ger3 JIgl< 4 HEN

C C N 1 1 1
< —dg+ —<C RdR+ — | =C +—)—>0asN— oo.
MERF N 0 N 2N2 ' N

Hence, by Lemma 4, the operators
Ki(jZ) = /3 kij2(§,8,) h;. dé,
]R.

are compact on L?(d&) as uniform limits of Hilbert-Schmidt integral operators for all
i, j}f{t,....rh
Concluding, the operator

r

K=(Ki....K)=)_ ((KS), KD — (kDL ij!)))
=1

is a compact self-adjoint operator on (L2 (d& ))r. The self-adjointness is due to the symmetry
relations (25), (26), cf. [27, p. 198]. a

2.3.2 Bounds on the Collision Frequency

This section concerns the proof of Theorem 2 and is an extension of that for monatomic
single species.

Proof Under assumption (19) each collision frequency vy, ..., v,, by a change of variables
! !’ i
{5/78/} {|g | |g| G = § ;g*},can be rewritten as
g

[171 |§ E*a[kvll)dg dEd‘S

v,_zf

J.k, =1

Z f M;.0 18183 (G = G) 1, an s
]R 1,

k=1 2Ry xS?

4
8 (,/|g|2 - gAI,.';.’ - |g’|> d§,dG'd |g/|dw

= Z _1/ e o Il Ljg-aart 8.

/kll

=0 Z / el /2\/ gl - _Alt]; Lug-anry d8..

Given i € {1,...,r}, there are {j,k,1} C {1,...,r}, such that AL <0. Assuming that
ATl <0 for some fixed {j, k,1} C {1, ..., r}, imply the inequality

v > Ce / e—m‘g*‘zﬂ l|g|2 Alkld£
Yi Jm3
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>C / gl Il gt
R3

First, aiming to prove the lower bound of Theorem 2, consider the two different cases
|€] < 1 and |&| > 1 separately. If |£| < 1, then, by trivial estimates and a change to spherical
coordinates,

vz C /R (g1 = [&.][) eIe- 2 ag,

%

_ —mlg, 22
C/§*|zz(‘§*| £l) e dé,

1 2
cf Slefemerra,
£.|>2 2 ‘ ‘

o0
=c/ R qR=C > C (1 +|E]),
1

v

while, if || > 1, then, by a trivial estimate,

v=C /R (g1 Jg. [y ele- "2 g,
— *’"‘5*|2/2
e /E PRCEINE s,

1
> cl |s|e*’"/8f dE. = ClEl=C(1+ED.
2 le.]<1/2

Hence, there is a positive constant v_ > 0, such that v; > v_ (1 4 |&|) foralli € {I,...,r}
and & € R3.
On the other hand, regarding the upper bound, by an estimate and a change to spherical

coordinates,
r 4 N
) 2 T oA gk ,—mlE|7)2
u=C ), fR3 Vel - Alje Ljg-aary 48,

Jiki=1

<e 2 [ (il fe et R,

Jiki=1
<C /3 & R2e2"% 4 (R + R®) e """ dR < C (1 + |E]).
R’
Hence, there is a positive constant vy > 0, such that v; < v, (1 4 |§|) foralli € {1,...,r}
and § € R3. O
3 Multicomponent Mixtures of Monatomic Species
This section concerns mixtures of s monatomic species for any positive integer s with (pos-

sibly) disparate masses, cf. e.g. [10, 12]. The case s = 1, formally corresponds to a single
species, and no mixture, but can still be included.
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3.1 Model

This section concerns the considered model for multicomponent mixtures. A probabilistic
formulation of the collision operator is considered, whose relation to a more classical for-
mulation is accounted for. Known properties of the model and a corresponding linearized
collision operator are also reviewed.

Consider a mixture of s, s > 1, monatomic species ay, ..., d;, with masses my, ..., my,
respectively (s = 1 corresponds to the case of a single species). The distribution functions
are of the form f = (fi,..., f;), where f, = f, (t,x,&), witht e R, x = (x, y,z) € R,
and & = (&, &,,&) € R?, is the distribution function for species a,.

Moreover, consider the real Hilbert space h® := (L* (d§))", with inner product

(flg)= Z/RS fugadt for f.g e (L2 @) .
a=l1

The evolution of the distribution functions is (in the absence of external forces) de-
scribed by the (vector) Boltzmann equation (1), where the (vector) collision operator
0 =(Q,..., Q) is a quadratic bilinear operator that accounts for the change of veloci-
ties of particles due to binary collisions (assuming that the gas is rarefied, such that other
collisions are negligible), where the component Q, is the collision operator for species a, .

A collision can, given two species a, and ag, {o, B} C {1, ..., s}, be represented by two
pairs of microscopic velocities, one pair of pre-collisional velocities & and &, of particles
of species a, and ag, respectively, and one pair of post-collisional velocities £ and &/, of
particles of species a, and ag, respectively. The notation for pre- and post-collisional pairs
may, of course, be interchanged as well. Due to momentum and total energy conservation,
the following relations have to be satisfied by the pairs

mo& +mp€, =mo& +mgk,
ma &P +mp €, =mq & +mp |8]. (33)
3.1.1 Collision Operator

The (vector) collision operator Q = (Qy, ..., Q) has components that can be written in the
following form - reminding the abbreviations (4),

0.(f, =Y / Wap 6 .86 (FLfh— fufpe) dE.dE dE.
g1 (RY)

2
The transition probability W : ((R3)2 x {ay, ..., as}) — R, :=[0, 00) is of the form cf.
[15, p. 65]

W & a,|E,. 8. ap)=Wes(&.E,|E.E)
=2 (mq +mﬁ)2mamﬂaaﬁ (Igl, cos0) 83 (me& +mp§, —my&' — mgk.)
g g
gl gl
g=E—&,.8 =8 —§&., and o5 =045 (g, c0s0) > O ae., 34)

)

x 81 (ma &% 4 mp ‘S*‘z — My ‘E/‘Z —mg ‘S;‘z) , with cosd =

@ Springer



3 Page240f45 N. Bernhoff

where we remind that 85 and §; denote the Dirac’s delta functions in R? and R, respectively;
taking the conservation of momentum and kinetic energy (33) into account. Here and below
we use the shorthanded expressions

oup =0 (&,aq4,&,,a5) =05 (|g|,cosb,a,,ag)

for a given scattering cross-section o : (]R3 x{a,..., as})2 — R, or in the alternative form
F:Ry x[—1,1]x {a1,...,a,}> > R,.
The scattering cross sections 044, {o, B} € {1, ..., s}, satisfy the symmetry relation
Oup = OBa> (35)
while also for any @ € {1, ..., s}
Oya (|g|, _COSG):Gaa (|g| ,COS@). (36)

Applying known properties of Dirac’s delta function, the transition probabilities may, with
the aim to obtain expressions for Gz = (m§ "+mg&l)/(my+mg) and ’ g” in the arguments
of the Dirac’s delta functions, be transformed to

Waﬁ(sv &* |§/7 g;)

=2 (o +mp)" papbs (o +mp) (Gap = Gly)) &1 (11ap (1212 = &) )

(o] meym

|"‘|*63(G G.y) 1 (12l —[g) whereuaﬁzﬁ,

Gup = BT MR g, = Mab E meEs (37)
af ma+mﬂ af ma+mﬂ .

Due to invariance under change of particles in a collision and microreversibility of the col-
lisions, which follows directly by the definition of the transition probability (34), (37), and
the symmetry relations (35) and (36) for the collision frequency, the transition probabilities
(34) satisty the relations

Wap (€. 8, €, 8,) = Wpa (€, §[E,. &)
Waﬂ(&v&* |§/7E;) =W

Waa(Ev£*|§/7§;)=Waa(£a§* |£;7£/) (38)
By changing variables {£', &} — {g =& —£,.G,= M}’ followed by a
my +mg

change to spherical coordinates, noting that

/

d§'dE, = dG.,dg = |g| dG,,d|g| de, with © = 2

, (39)
gl

the observation that
Qu(f. f)
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_2/ W [ D (S~ fudh) 8] 48,46, ¢ do
>< +XS
= lel 0w (1155, - fupe) d8.do.
B=1 RxS2
where
/_mag'i_mﬂ&*
&= My + Mg, Mgy +m ‘E §|w Gaﬂ+ + ﬂ|g|w
,a)eSz,
/_ma€+mﬁ§* _ My
£ = e mﬁm 8 — &, |0=Gy prasrl L

can be made, resulting in a more familiar form of the Boltzmann collision operator for
mixtures.

3.1.2 Collision Invariants and Maxwellian Distributions
The following lemma follows directly by the relations (38).

Lemma5 The measures

dAes = Wep(§, &, |E,E,)dE dE dE'dE., (o, By C{1,...,5},

are invariant under the (ordered) interchange
(§.8.) < (6.8 (40)
of variables, while
dAgg +dAge, {a, B} C{1,..., s},
are invariant under the (ordered) interchange of variables
(&.8) < (5..8). @1

The weak form of the collision operator Q(f, f) reads

0. o=y / (FLfpe = fufpe) gudAcg

a,p=I

Z/ ffﬂ* fafﬂ*)gﬂ*dAaﬂ
a,f=1

- Z/ ffﬂ* fafﬂ*) dAaﬁ

a,f=1

-y / (FLf5s = FuFs) 8o dAup

o,f=1
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for any function g = (g, ..., &), such that the first integrals are defined for all indices
{a, B} < {1, ..., s}, while the following equalities are obtained by applying Lemma 5.
We have the following proposition.

Proposition4 Let g = (g1, ..., &s) be such that
foif/*_fotf* gadAa
foy Uit = fufo) s

is defined for any {a, B} € {1,...,s}. Then
1 g / ! ! /
Q. =75 Y. f (fatpe = fape) (80 + 85+ — 8o — 85.) dAug.
4 Pyl (®3)*
Definition 2 A function g = (g1, ..., g) is a collision invariant if
(80 + g+ — 80 — 8,) Wap (€. 6, |EE,) =0ace.
for all {«, B} C {1, ..., s}.
It is clear that ey, ..., e5, m&,, m&,, m&;, and m |’g‘|2, where {e;, ..., e} is the standard
basis of R* and m = (m, ..., my), are collision invariants - corresponding to conservation

of mass(es), momentum, and kinetic energy.
In fact, we have the following proposition, cf. [15, 20].

Proposition 5 The vector space of collision invariants is generated by
2
{er, ... es,mEc, méy, m& m|E*},
where m = (my, ..., my) and {ey, ..., e} is the standard basis of R®.

Define

WIf1:=(Q(f, f).log ).

It follows by Proposition 4 that

1 g TaTps ) (f;f,é*>
w =—- o [+ —1]1 dAys <0,
7] 4; ﬂ_lf(wf To (fafﬁ* O\ Tty ) =

with equality if and only if for all {«, 8} C {1, ..., s}

(fuTpr — S foe) Wap (€. €, |&, &) =0ae, (42)
or, equivalently, if and only if
o, H=0.
For any equilibrium, or Maxwellian, distribution M = (M1, ..., M;), it follows, by equa-

tion (42), since Q(M, M) = 0, that for all {«, 8} C {1, ..., s}

(log M, +log Mg, —log M), — log M,;*) Wop (€. 6, |88 )=0ae..
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Hence, logM = (log M, ...,log My) is a collision invariant, and the components of the
Maxwellian distributions M = (M, ..., My) are Gaussians

7

1 1
where ny = (M, e), u = — (M, m§), and T = ™ (M, m& —u|2), with the mass vector
P n

m=(my,...,my),whilen="> n,and p =) myn,.
a=1 a=1
Note that by equation (42) any Maxwellian distribution M = (M, ..., M;) for all
{a, B} C {1, ..., s} satisfies the relations

(MM}, — Mo Mp,) Wop(§.£, €. E,)=0ae.. (43)
Remark 6 Introducing the H-functional

HIf1=(flog[),

an H-theorem can be obtained.
3.1.3 Linearized Collision Operator

Consider a deviation of a Maxwellian distribution M = (M, ..., M;), where the compo-
mg\3/2 .
nents are given by M, = n, (—) e””“‘g‘z/z, of the form (13). Insertion in the Boltz-

T
mann equation (1) results in a system (14), where the components of the linearized collision
operator L = (L4, ..., L) are given by

Loh=— 3" M (Qup (M, Mi*hg) + Qs (MY, M)
p=1

= /@@)3 (Mp. M M})"? Wos (8,8, €. 8))
p=1 (&

hg hps hl, g, L,
X 1/2 + /2 NV L N\1/2 d§.d§ d§,
(M"‘ Mﬁ* (Mut) (Mﬁ*)
= vuhy — Ko (h), (44)
where
= 3 [ MW 858180 8.5 @s)
p=1 7

K=Y f@w (MM M},)'* W 8,6, |66
p=17E

h, h%* hﬂ* ) TV
X = + - dg*dg dg*’
<(M&)]/2 ()" Ml
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while the components of the quadratic term I' = (T, ..., I['y) are of the form (17).
The multiplication operator A defined by

A(f) =vf, where v =diag (v, ..., vy),
is a closed, densely defined, self-adjoint operator on (L2 (d&))x. It is Fredholm, as well, if
and only if A is coercive.
The following lemma follows immediately by Lemma 5.
Lemma 6 Forany {a, 8} C{1,...,s}, the measure
dAos = (M Mg, MLM,) P d A
is invariant under the (ordered) interchange (40) of variables, while
dZaf; + dZﬂa

is invariant under the (ordered) interchange (41) of variables.

The weak form of the linearized collision operator £ reads

(Lh,g)
! hoz hﬂ* h, h;?* ) 8a >
= Z —+ — z — dAaﬂ
1/2 1/2 1/2 YR 1/2
ayﬁ_lf(ﬂ@)“ (Ma/ My (M) (M) ) My
. he  hp h! R, ) 8pr
-3 [t o
1/2 1/2 172 S \1/2 1/2
a,p=1 (R3)4 (MO‘ Mﬁ* (Ma) (Mﬁ*) Mﬁ*
d h R n, . ! ~
== Z / 4 (M;l/z + Mfi/z - /D(l/2 - /ﬁ 1/2) éjal/z dAqp
apot? (®)' \ Ma g (M) (M) ) (M)
s ha h . W W . g/* _
= Z / s 4<M1/2 + Mfli/z - ,al/Z - ,ﬁ 1/2) ,ﬁ 754 Aap;
ap=1’ (®) o B (Ma) (Mﬂ*) (Mﬂ*)
for any function g = (g, ..., &), such that the first integrals are defined for all indices

{o, B} < {1, ..., s}, while the following equalities are obtained by applying Lemma 6.
We have the following lemma.

Lemma?7 Let g =(g,...,&s) be such that for any {o, B} C {1, ..., s}

[ (et B Vo
1/2 1/2 1/2 1/2 1/2 &
@ \M M ()" ()" ) M

is defined. Then

1 s ho( hﬂ* h/ h%*
Lh,g) =~ + -5
e 4a,ﬁz_1/<Rz>4(Mé” ME () ()"
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8a 8px g(; g;S* ~
X + — — dAgys.
(Mol/z M/;iz (M[;)I/Z (M/é*)l/2> B

Proposition 6 The linearized collision operator is symmetric and nonnegative,
(Lh,g) = (h,Lg) and (Lh,h) >0,

and the kernel of L, ker L, is generated by

{\/Mlel, oo Mseg, MYy, Ml/zmvy,/\/ll/zmvz, Mm |V|2} ,

where M =diag (M, ..., My),m = (my,...,my), and {ey, ..., es} is the standard basis of
R®.

Proof By Lemma 7, it is immediate that (Lh, g) = (h, Lg), and
2
o hﬁ* h/ h;ﬁ* ~
(Ch,h) = Z[ ( 1 - dAu > 0.
72t 12 12
E )™ ()

Furthermore, / € ker £ if and only if (Lh, h) = 0, which will be fulfilled if and only if for
all {o, B} S {1,...,5}

(ha hy .

MM () (v,

)1/2> Wap (&, 8, |§ £)=0ae,

i.e. if and only if M~!/2h is a collision invariant. The last part of the lemma now follows by
Proposition 5. a

Remark 7 Again, with exactly the same arguments as in Remark 4, although without rele-
vance for the studies here still of great importance, the nonlinear term is orthogonal to the

kernel of £, i.e. T (h, h) € (ker £)"5¢ .
3.2 Focused Properties

This section is devoted to results concerning the compactness property in Theorem 3 and
bounds of collision frequencies in Theorem 4.

Assume that for some positive number y, such that 0 < y < 1, there is a positive constant
C such that, cf. [10],

1
0 <ous(lgl, cos9)<C(1+| = y>,0<y<1, (46)

on the scattering cross sections o4 for any {a, B} € {1, ..., s}. This includes, but are not
limited to inverse power law potentials under Grad’s cut-off [19], implying scattering cross
sections of the form, cf. [10],

gaﬂ -

5
Oup = ““ﬂ (cos @) |g|*#~", with . = T where ¢,5 > 3, 47)

af
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for bounded positive functions bgﬂ (cos ), including the limiting case of hard sphere gases
for which 0,5 = Cqg for some positive constant Cyp (i.e. with o = 1 and bgﬁ (cos0) = Cqup
in expression (47)) for any {«, B} € {1, ..., s}.

Remark 8 Note that due to a different choice of velocity parametrization Grad’s assumption

on the collision kernel in [19] also has a factor cos, where 6 = ﬁ . %, withg=§ — &
gl I8
and g = & — &', added in the upper bound (46), as well as, since having parametrizid in

azimuthal and polar angles as integration variables in the collision integral, a factor sin @, cf.
Remark 2, also adds. It appears in the literature, see e.g. [10, 12], that a factor sind is added
in the upper bound although that the collision integral is expressed by a non-parametrized
vector in S?, cf. Remark 2 rending in (seemingly) more restrictive conditions, excluding e.g.,
the important case of hard spheres. However, this might be of technical nature, rather than
affecting the validity of the posed results and their proofs.

The following result may be obtained.

Theorem 3 Assume that the scattering cross sections ogg for {o, B} C {1, ..., s} satisfy
the bound (46) for some positive number y, such that 0 <y < 1. Then the operator
K = (K, ..., Ky), with the components K, given by (45) is a self-adjoint compact operator
on (L (d§))’.

Theorem 3 will be proven in Sect. 3.3.1, based on ideas from the corresponding proof for
monatomic single species by Grad [19], especially, as presented by Glassey [18], combined
by an crucial lemma by Boudin et al. [10], where a complete proof based on the same lemma
and the proof of Grad appeared first. The main innovation in this work is that by starting from
the probabilistic formulation, there is no initial parametrization of the velocities based on the
momentum and kinetic energy conservation. Then suitable parametrizations can be chosen
from scratch from case to case. From our point of view, this really helps to find appropriate
substitutions, by geometrical motivations and manipulations of the delta-functions, for the
non-trivial cases. The substitutions were developed independently, but are related to the ones
in [10, 19]. Based on ideas by [10, 18, 19] the proof is completed. Restricted to equal masses
the proof is essentially similar to the one for monatomic single species.

Corollary 4 The linearized collision operator L, with scattering cross sections satisfying
(46), is a closed, densely defined, self-adjoint operator on (L2 (d&))x.

Now consider a hard sphere model, i.e. such that
Ouap = Caﬂ (48)

for some positive constant Cog > 0 for all {o, B} S {1,...,s}.
In fact, it would be enough with the bounds

C <oy=Cy (49)

for some positive constants Cy > 0 and all {«, B} € {1, ..., s}, on the scattering cross sec-
tions.
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Theorem 4 [10] The linearized collision operator L, for a hard sphere model (48) (or
(49)), can be decomposed as a positive multiplication operator A, where Af = vf for

v =v(|&]) =diag (vi, ..., vs), minus a compact operator K on (L2 (dS))S
L=A—-K, (50)
where there exist positive numbers v_ and vy, 0 < v_ < vy, such that forany o € {1, ..., s}
vo (1+18) < vo(1&]) < vy (1 + [E]) for all § € R, (51)

The decomposition (50) follows by the decomposition (44), (45) and Theorem 3, while
the bounds (51) are proven in Sect. 3.3.2, essentially mimicking the proof for monatomic
single species.

Corollary 5 The linearized collision operator L, for a hard-sphere model (48) (or (49)), is a
Fredholm operator, with domain

D(L) = (L* (1 + €] d§))".

Corollary 6 For the linearized collision operator L, for a hard sphere model (48) (or (49)),
there exists a positive number A, 0 < ) < 1, such that

(h, Lh) = X (h, v(1EDR) = Av_ (h, (1 + |E]) h)
forany h € (L*((1 + |€])d§))" NImL.

Remark 9 By Proposition 6 and Corollary 4-6 the linearized operator £ fulfills the properties
assumed on the linear operators in [4], and hence, the results therein can be applied to hard
sphere models, see [3].

3.3 Compactness and Bounds on the Collision Frequency

This section is devoted to the proofs of the compactness property in Theorem 3, cf. the
proof by Boudin et al. in [10] and the variant by Glassey [18] of the one by Grad [19]
for monatomic single species, and the bounds on the collision frequency in Theorem 4, cf.
corresponding proof for monatomic single species, of the linearized collision operator for
(monatomic) multicomponent mixtures.

3.3.1 Compactness

This section concerns the proof of Theorem 3. Note that in the proof the kernels are rewritten
in such a way that &, - and not & and &, - always will be argument of the distribution
functions. As for single species, either £, is an argument in the loss term (like &) or in the
gain term (unlike &) of the collision operator. However, in the latter case, unlike for single
species, for mixtures we have to differ between two different cases; either &, is associated
to the same species as &, or not. The kernels of the terms from the loss part of the collision
operator will be shown to be Hilbert-Schmidt in a quite direct way. The kernels of - some
of - the terms - for which &, is associated to the same species as & - from the gain parts of
the collision operators will be shown to be approximately Hilbert-Schmidt in the sense of
Lemma 4. By applying the following lemma, Lemma 8, (for disparate masses) by Boudin
et al. in [10], it will be shown that the kernels of the remaining terms - i.e. for which &, is
associated to the opposite species to & - from the gain parts of the collision operators, are
Hilbert-Schmidt.
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Lemma 8 [10] Assume that m, # mg,

s—s——!s £.|n
£, =£— Ie E.ln

, where n € s?,

and
Mo |§12 +mp |8 =mg |8, +mp |

Then there exists a positive number p, 0 < p < 1, such that

mpl&' [ +ma 6L = p (ma 161 +mg [£.]%).

(52)

(53)

An alternative - and more basic, in the sense that only very basic calculations are used -
to the proof of Lemma 8 in [10] is accounted for in the Appendix. The proof is constructive,
in the way that an explicit - not necessarily optimal - value of such a number p, namely

P= (JJZ:+£)

is obtained in the proof.
Now we turn to the proof of Theorem 3.

Proof For any {a, B} C {1,...,s}, by firstly renaming {£,} < {£'} and then secondly

(.= (&),

g 02) o6 8. 15800 iy 5.

= VM) W 88800 8 .

= | (MyML)'" Wap (6. §|EL,E,) hp. dE,dE dE..
(®3)°

Moreover, for any {a, 8} C{1,..., s}, by renaming {&,} < {&'},

f(m@ﬁ (MpM},)'" Wap (6.8, |§. &) ), dE, dE dE.

- /( o (VEMR) e 6.8 . 6 el 08 05

It follows that for any « € {1, ..., s}

Ko (h) = 2/1;3 kop (€.£,) h.dE,, where

kaphs =k hos + ki g = K& has — kG g, + kR g, with
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ky (6.6 = /@@)2 (MyM.)" W6, 8|, &) dE dE.,

(e = [ (M) W6, 8. 881 dE d and

(&%)

k(& E,) = /(w (M, M) Was (6.8 [€.8,) dE'dE.. (54)

Next we obtain some symmetry relations that will help to yield self-adjointness of the
operator K below. By applying the second relation in (38) and renaming {‘g‘ /} = {§ ! },

*

ks (6.6, = / (M) Wy 6 6L |68 dE d,

(®?)

= /(R3)2 (MM},)" W &, 8 [€.£,) dE a8,
=k (&,.6) (55)
for all {«, B} C {1, ..., s}. Moreover, for all {a, B} C {1,...,s}
KD (€ E) =K (6, 8) — K\ (6, 8) =k (€, §), (56)

since, by applying the first relation in (38) and renaming {&'} < {£.},

*

k&8, = / (M M) Wi 6. & |8, € dg dE,

(&)

= ~/(]R3)2 (Mo/z*M;s)l/z Wﬁa(s*a E

§.&,)dEdE,
= kgfx)l (E*’ £)7

while, by applying the two first relations in (38) and renaming {£'} = {£.},

kg;a)z(s’ E*) = /(‘RS)Z (M‘;*M/;)I/Z W,BD( (E/’E ’E*,E;) dE/dE;
B f(Rs)z (M3 M3) " Wo (..6. |8/, €) d'ag.

- /(]R3)2 (M‘;A4/,5*)1/2 W,Bﬂt (g*v E/ |‘E;a§) dE/dE;

= ki (€, §).

We now continue by proving the compactness for the three different types of collision
kernel separately. Note that, by applying the last relation in (38), k;i)z &, &)= k;‘;) (&, &, if
o = B, and we will remain with only two cases - the first two below. Even if m, = mg, the
kernels k;";i) (&,&,) and k;’?z (&, &,) are structurally equal, why we (in principle) remain with
(first) two cases (the second one twice).
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Fig.3 Typical collision of Ké};. §'. .E
Classical representation of a
collision between particles of g’ g
different species 0
AV .
GaB M=mq (heavy particle)

m=mg (light particle)

& g

I. Compactness of K;}g) = Jas k;g)l("g', &) hg, dE, for {a, B} C{1,...,5}.

Assume the velocities & and &, to be given. Then a collision will be uniquely
defined by the unit vector @ = g//|g/|, with g = & — &.. This follows, since, by
conservation of momentum and kinetic energy (2), g/| = |‘g‘ —§;| = |g|, while also
my (§ —&') = mg (€, —&,), cf. Fig. 3. Indeed, by applying the change of variables
{§/, §;} — {’g/’ LW = i/, G, = M }, noting that (39), and using relation (43),

|g I My + m,B
expression (54) of k[(f;)] may be transformed to

k(gt“;)l (E ) S*)

2
Oup |8 , , ,
—nan) [ L (660 - ) dga ] o
R3xRy xS? |g|
=(MaMﬂ*)1/2|g|/ 0us (18] . c0s8) dw, with cos@:ar%.
§2

By assumption (46) and the relation

2 2 . memg
me [EP° +mg |&,]" = (ma +mp) |Gas|” + pap |87, with p1es = o
for the exponent of the product (Ma M ﬁ*)z, the bound
® g LY e
<k0¢;1(§a E*)> =< CMuMﬁ* 1 + T 2=y |g|
g~
2 2 1 2
— Ce(matmp)|Gap|”/2—paplgl? /2 <|g| + f) (57)
gl

may be obtained. Then, by applying the bound (57) and first changing variables of integra-
tion {£,&,} — {8, Gup}, with unitary Jacobian, and then to spherical coordinates,

[y (ihie 80) asas.

@ Springer



Linearized Collision Operator: |. Polyatomic/Multicomponent Gases Page350f45 3

Fig.4 Typical collision of K(%) é*l n .g
g g
gl. .g'*
2 2 ?
< C/ e—(ma+mf;)‘Gaﬁ| /2—raplgl®/2 <|g| + I ) dgdGo(ﬁ
(R3) gl
oo S o
< C/ Rze*deRf (0 +n") e *dn < C/ (1+5*) e Fan=C.
0 0 0

Hence,
K = /3 KD (&, 6,) . dE,
R

are Hilbert-Schmidt integral operators and as such continuous and compact on L? (d§), see
e.g., Theorem 7.83 in [25], for all {«, B} € {1,...,s}.

II. Compactness of thj;) = [ k(%)("g', &) hexdE, for{o, B} C{1,...,s}.

Assume that the velocities & and &, are given. Then a collision will be uniquely defined
by a vector w orthogonal to g =& — &,. This follows, since, by conservation of momentum
and kinetic energy (33) (reminding that we here relabeled the velocities), we obtain that
mpg =mg (€, — &) = myg, while also the equality |§ — &'| = |&, — &, | can be obtained,
cf. Fig. 4. Indeed, note that - aiming to obtain expressions for g’ and x = (E; — §) -nin the
arguments of the delta-functions - cf. Fig. 4,

Waﬁ(svg/ |§*! g;)

=2 (g +mp)’ mampods (Mag +mpg) 8 (2 gl mq (x e = |g|)>

2Mﬁ

2

my +m My , My —m

TR N (T Y PR
|g|m5 g 2mp

§=8. . Then, by a change of

whereg=& —&,,8 =& —&,, x=(&,—&) -n,andn= |£_§ ’

variables {§',§.} — {g =& — £ h=¢ — £}, noting that

dg'dg' =dg/dh=dgdxdw, withw=§ —& — xn,

@ Springer



3 Page360f45 N. Bernhoff

the expression (54) of k;‘;;) may be rewritten in the following way

ki (6.8, = / o (M M5.) " Wep 6.6 8., 81 dg'd

mj [ 18] g

2 g V12
my +m MyMp, g
:/(R3) ( ) ( b 5) <|g| g8 )dw

where (R3)l“ ={weR’:wln},g=£(—¢ andg. =§, — &,
Here, see Fig. 4,

S/:E*-FW—XH
£ =E+WwW+ xn

. —
, with y = “2

implying that, reminding the notations (29), the following relation for the exponent of the
product M, My,

€ g je+e P (E-&]+2x)
IR e 4
2 2
— (£+2§*)J—n +w +<(E+2§*)n> + ma

(E+5),
# +

S (l&.! —|§|2) AR

e

Hence, by assumption (46)

(k9@ 50)

2 2
iexp _@M_m_i|§_§ |2
gl 4 le—gr  4ms "
2 2
1 I’Hﬂ (§+£*)J_n
) /m»*)i" (HMZITY)W a2 Y
) 2
C mg <|§*| _|§|2) mi 2
S e | - - e[
lgl 4 g-g, 4mp
c ms (g +2g-6)° md
= —exp(—£XE TS T g
PR p( PR dmy ©
c : 2
= o (—mﬂ('§'+|s|cow> —%|g|2>, (58)

@ Springer



Linearized Collision Operator: |. Polyatomic/Multicomponent Gases Page370f45 3

with cos¢ = % Here, the second inequality, follows by the following bound, which can
g

be obtained by noting that [g] > |w/|, cf. Fig. 4, while firstly making a change of variables
w— W= (§+§&,) 1, /2 + w followed by one to polar coordinates,

1 meg

1+~— (94 —_—

/mw( |g|2—y> |2
Mg

5/ 1+|w|y_zdw+2/ exp | —
wi<1 wi>1 2

s/ 14wl 2 dw+2/ eI g
Iwi=<1

(=)

2

(E+8&.),,

2

dw

2

(E+8&.),,

2

dw

1 ()
=2r (/ R+ R’”‘ldR+2/ Re‘"’ﬁRz/zdR) =C.
0 0

2
We obtain that the integral of (k(ff/;)) over the truncated domain hy is bounded, by first

changing variables &, — g =& — &, and then to spherical coordinates,

o 2 C o 21e/(4m
/ﬁ ) (k57 6.6.)) agag, < / e e/t agdg

by |g|2
o0 A N
:c/ e—"’a’*‘/(‘*"’ﬂ)dR/ n*dn = CN>.
0 0

a)

Next we are heading for proving that the integral of kéﬁ (&, &,) with respect to & over R? is

2
bounded in &, . Indeed, directly by the bound (58) on (k(%)) ,

o C m mg
0<k (&, &)< —exp(——2L (gl +21&|cosp)® — —= |g ). (59)

Due to the symmetry ké‘;) &, &)= k‘%) (§,.8) (55) and bound (59), by changing variables

& —> g=¢£& — &, and then to spherical coordinates,

f kg (€. &,)dE = / ki (€. &) dE
R3 R3

C 2 o)
5/ — exp (‘ e Iglz) dg:/ Re™"aR*/Bmp)gR = C.
r3 gl 8mg 0

Furthermore, heading for proving the uniform convergence of the integral of k;‘;;) with
respect to &, over the truncated domain b to the one over all of R?, the following bound on
the integral over R3 can be obtained for |£| # 0 by bound (59), by changing to (conventional)
spherical coordinates, with & as zenithal direction, and hence, ¢ as polar angle, followed by
the change of variables ¢ — n = R + 2|&| cos ¢, with dn = =2 |&|singp dg,

f kS (8.8, dE,
R3
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C m mi
</ —ex p(——ﬁ<|g|+2|s|cos<p>2— —|g|2) dg
r3 gl 8 Smﬂ

[e'S] T mﬁ m2
:C/ / Rexp | ——= (R +2|&|cosp)? — —~R? ) sinpdpdR
0 8 8Mﬁ

R+2|£I ) —
/ / P /Se—maR /(Sm,g)dndR
|E| R-2|¢|

2 p2 o0 2 C
" RemRm) 4R / e B = — (60)
I’él —x &1

By bounds (59) and (60), and a change to spherical coordinates

sup [ K560 — K5 6,815, .

£eR3

=N

< () (o)
—S“p/@ K <£s>ds+sup/k .8 dE,

Hence, by Lemma 4 the operators
K = [ K8 at,

are compact on L? (d§) for all {a, B} € {1,...,s}.

IIL. Compactness of K = s ks (€. 8,) hp. dE, for {a, B} C {1,....s}.

First assume that m, # mg.

Assume that the velocities & and &, are given. Then a collision will be uniquely defined
by a unit vector § = (§ — &) = (¢ —¢&.)/|& —&.|. This follows, since,
by conservation of momentum and kinetic energy (33) (reminding that we relabeled the
velocities), the equality | = |&, — &, (or, equivalently, |§' — & | = |§ — &,|) can be
obtained, while also mg (&, — &) =m, (§ — &), cf. Fig. 5. Note that, knowing 5 will give
us b= (mo, — m,g) (S — E;) / (Zmﬂ), cf. Fig. 5. Indeed, noting that - with the aim to obtain
mas; - mﬁg/

mpg

mey —

expressions for |g/| and g, s = in the arguments of the delta-functions,

’ mem
Wap 6.8/ [61.8.) =2 (ne -+ ) o (22 (16 = &)

X33 ((ma - mﬁ) (gaﬂ - gixﬂ))

2
ot .
= M%ﬂ 1 (181 = |g']) 83 (8up — £,p) » with

(ma —mﬂ)2 gl
/ /
my& —m m —m
g = of —mgk, and g, = o, —mpé ,
my —mg my —mg
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Fig.5 Typical collision of K(%) E'* n E

g

b b
3 &
b = (m, — mg)a/(2mp)

ma&; - mﬂg/

, and then to
my —mg

by first changing variables {§’, ’.;‘;} — {g’ =t -, g,=

spherical coordinates, where

/

s

dE'dg, = dgdg,, = |g| d |¢| dg,sdw, withw = Ii’l

the expression (54) of k;‘;)z may be transformed to

kopp(6.8.) = / (M M) W (5.8 |81, 6.) € delyd |g| dw
R3 xR4 xS?
(ma+mﬂ)2/ / 1\ 1/2 (~ gg* )
= - M M s T~ d »
(my —mp)’ Sz( pMa) lelow (18 &gl

with g=§—§,.¢g=§—-§,.8=£6—§andg, =§, &,

Here, see Fig. 5,

s/zs*—%rs—g;n E—&

E.=6—[6—¢&n

Then, by Lemma 3, since relation (53) follows by energy conservation, we have the follow-
ing relation between the exponents of the products (M . MI;*)Z and (MO, M ,3*)2, respectively,

mo 8 4 ma8.7 2 p (me 6P +mp 8.[°).
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for some positive number p, 0 < p < 1. Hence, by assumption (46), noticing that |g| < [g|,
cf. Fig. 5, the bound

®) 2 o 1 ?
(kaﬂz(g’g*)) 5 C (MaMﬂ*) (/§2 (1 + |g|2 V) |g| d&))
<cMm/Mi, (1 ! : d 2
= o Bx + | |2 y |g| - ®

1 2
=CMyMy, <|g|+| = y> (61)

may be obtained. Then, by applying bound (61) combined with firstly changing variables
{§ &, } { 0,,3} with unitary Jacobian, and then to spherical coordinates,

/(w (kOhe.£.) agaz.

2
/ p(ma-+mp |Gaﬁ\ /2—1applgl?/2 <|g| + } > dgdGaﬂ
(R3)? gl

o0
/ R%e R dR/ r +r _’2/4dr
0

o0
C/ R%e~R dR/ e Hdr =C.
0

K = / k) (6.8, hp, dE,
3

| /\

I /\

Hence,

are Hilbert-Schmidt integral operators and as such also continuous and compact on L? (d§)
[25, Theorem 7.83] for all {«, B} € {1,...,s}.
On the other hand, if m, = mg, then

K8 (E,E*)Z/ 4 (Mym,)' 20 (I . )dw’
ap2 (R3)ln ( B ) |g| |g| |g*|
withg=& — & andg, =&, —&..

Here

=§/=—E§*:V‘:’v ,withw lgandg=§& —&,.

Then similar arguments to the ones for k(%) (§,&,) (with my, = mg) above, can be applied.
Concluding, the operator

s

K=K Ky =Y (K K = K} K + (K. KD))
p=1

is a compact self-adjoint operator on (L2 (dE))'Y. Self-adjointness is due to the symmetry
relations (55), (56), cf. [27, p. 198]. O
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3.3.2 Bounds on the Collision Frequency

This section concerns the proof of Theorem 4, which is essentially a mimicking of the cor-

responding proof for monatomic single species.

Proof For a hard sphere model 0,3 = Cyp for some positive constant C,g for any indices

{a, B} C {1, ..., s}. Then each collision frequency v,, with & € {1,
variables {e/,s*} S lglo=L G, = mo§ +mpk,
|g/| my +mﬁ
s
Vg = Z/ Mﬁ*W
p=1 (R3)
—Z/ My S [ P by (Gp — Gl) 0 (181 -
)2 xRy xS2 gl

—4x Y Cop | My gl de,
ﬂ; ;S/I;§3 8+ 18| d&

- 2
:Z”ﬂmﬂ\/ = Caﬂ/ ef'"‘*‘s*‘z/2|§*—§| dg,.
Al T R3

., s}, by the change of

}, can be rewritten as

|g|) d&,dG'd |g| dw

First, aiming to prove the lower bound of Theorem 4, consider the two different cases
|&] < 1 and |&| > 1 separately. For any « € {1, ..., s}, if |§| > 1, then by a trivial estimate

ey [ el e, as,
p=t U

zCl/ el (g - g,
ng=1: |§*|§]/2 ‘ |

=ey et BL g s cm=casia.
B

|&.]<1/2

while, if |&] < 1, then, by trivial estimates and a change to spherical coordinates,

vz O3 [ el g~ e, d.
> [ emte = e
>CZ/ el (6| 181) dt,

5.]22

=CZ/ Rie ™R R =C>C (1 +|&]).
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Hence, there is a positive constant v_ > 0, such that v, > v_ (14 |§]) forall @ € {1, ..., s}
and £ e R3.

On the other hand, regarding the upper bound, for any « € {1, ..., s}, by a change to
spherical coordinates,

= [ el (g4 8 g,
X [ e e e

S oS
=CZ/ & R2e™#R 4 R38R 4R < C (1 + |&)).
p=1"0

Hence, there is a positive constant v, > 0, such that v, <v, (14 |&]) forallw € {1, ..., s}

and & € R3, and the theorem follows. O

Appendix: Proof of Lemma 8
This appendix concerns an alternative, to the one presented in [10], proof of Lemma 8.

Proof Denote q := |§ — & |. For n = (§ —£.) /g the following (unique) decompositions
can be made, by the relations (52), cf. Fig. 5,

,withw L p,

{§=W+Vﬂ
E=w+(—q)n

while

(r* N m_ﬁq> " with % L.

r*:r—i—ma_mﬂq,
Zm,g
and hence,
E/ZVV—i-(r— Mo + Mp
ZI’VZﬁ . ~
m m , withw L 5.
£*=7v+<r+ : "q)n
2m5
Then

mp (&) +mq |8,

2 2
- m;, + 6mympg +m
:ma|W|2+mﬁ|w|2+(ma+mﬂ)r2—(3ma+m5)qr+ . / ﬁqz
B
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2 2
=me |W[* +mg [W[* + (mg + mp) (r— 3m“+m") ) (ma —my) Mo 2

2(ma+m5 my +mg 4mg
while
2
my €I +mg 8, ]
2 ~02 2 (ma_mﬂ)2 2
=my |W|" +mpg |W| +(ma+m,3)r +(ma—mﬁ)qr+Tq
B
C L (ma—my)’
) ~0n Mo — Mg myg —mg)” my ,
=My |W|"+mg |W|"+ (mg +m r—+ + —q".
Iwl p 191+ ( ﬁ)< 2 (mg +mp) ) my+mg 4mg
Denote
2
3my o« — my —m o
a=——2 e q,b:= Mo — Mp g,and ¢*: —( ﬁ)zm— 2,
2 (me +mp) 2 (e +mp) 4 (my +mp)” ™Mp
Then
/12 /12 2
ms &' +me |81 = o (ma 61 +my [8,]7)
my +mg
>(r+a)’=p@r+b)’+1-p)c
— pb 2 pb?
—(l—p) (422222, 2207 L2
1—p 1—p
a—pb\? c? a—>b
=(1—p)<r+ p>+ (,02—2p<+( 2)>+1)
1—p 1—p 2¢
c? ) (a —b)?
> —2p|1 1]>0
S (e (1 55) )=
, (a—b? 1 . 2
1f0§p§1+7—ﬁ\/(a—b) +4c2(a—b)" <.
Let
—-b
p=14 r @0 44 @b
4d?
1= 2
(a—D) 2
24 4d?
(a—b)? 1+ 1+(a—b)2
2 My — J/m 2
=1- =< ﬂ) > 0if my #mg.
(me —m )2 VM + /Mg
1+ 1—1—713
dmgmg d
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