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Abstract
This paper establishes the large time behavior of the solution to two dimensional Boussinesq
equations with mixed partial dissipation. Our main result is achieved in terms of the global
H 2-stability. Finally, we also obtain the decay estimates of linearized Boussinesq equations.
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1 Introduction

This note is concerned with the following two dimensional Boussinesq equations with mixed
partial dissipation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tU1 + U · ∇U1 − μ∂22U1 + ∂1π = 0, (x, t) ∈ R2 × (0,∞),

∂tU2 + U · ∇U2 − κ∂11U2 + ∂2π = �, (x, t) ∈ R2 × (0,∞),

∂t� + U · ∇� − η∂11� = 0, (x, t) ∈ R2 × (0,∞),

∇ · U = 0, (x, t) ∈ R2 × (0,∞),

U |t=0 = U0,�|t=0 = �0, x ∈ R2,

(1.1)

where the unknown U = (U1,U2) denotes the velocity field, π is the pressure, � is the
temperature, μ and κ are the velocity viscosity, η is the thermal diffusivity. For the term
� in the second equation of (1.1) represents the buoyancy forcing generated due to the
temperature variation.
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Let

u = U − U 0, θ = � − �0,π = π − π0.

Then (u, θ,π) obeys

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu1 + u · ∇u1 − μ∂22u1 + ∂1π = 0, (x, t) ∈ R2 × (0,∞),

∂tu2 + u · ∇u2 − κ∂11u2 + ∂2π = θ, (x, t) ∈ R2 × (0,∞),

∂t θ + u · ∇θ − η∂11θ = −u2, (x, t) ∈ R2 × (0,∞),

∇ · u = 0, (x, t) ∈ R2 × (0,∞),

u|t=0 = u0, θ |t=0 = θ0, x ∈ R2,

(1.2)

where

U 0 = 0, �0 = x2, π0 = 1

2
x2

2 (1.3)

is the steady solution of (1.1). Many geophysical flows such as atmospheric fronts and
ocean circulations can be modeled by the Boussinesq equations. Recently, the stability and
large time behavior issues on the Boussinesq equations have gained more and more interests
and become the center of mathematic investigation. In the last thirty years, a considerable
amount of literature has been published on the stability problem concerning the Boussinesq
equations. Some of them focus on the stability of 2D Boussinesq equations with various
partial dissipation (see e. g. [1], [2], [4], [5], [8], [9], [10], [11]). In 2019, Ji, Li, Wei and
Wu [6] obtained the stability of the 2D Boussinesq eqution (1.2) under the assumption that
H 1-norm of initial data is small. However, they didn’t give the large time behavior of the
system (1.2). Very recently, Lai, Wu and Zhong [7] have established the global existence
and stability of 2D Boussinesq equations with partial dissipation and temperature damping
in the Sobolev space H 2(R2). In addition, the large-time behavior of ‖∇u‖L2 and ‖∇θ‖L2

is also obtained via energy methods. Motivated by [1], [9] and [7], the purpose of this paper
is to address large time behavior of the solution to the system (1.2) and decay estimates of
linearized equation of system (1.2). Our results are stated as follows.

Theorem 1.1 Let (u0, θ0) ∈ H 2(R2) and ∇ · u0 = 0. If

‖u0‖H 2 + ‖θ0‖H 2 ≤ ε, (1.4)

holds for sufficiently small ε > 0, then, the system (1.2) admits a unique global smooth
solution satisfying

‖u(t)‖2
H 2 + ‖θ(t)‖2

H 2 + 2
∫ t

0
μ‖∂2u1(τ )‖2

H 2 + κ‖∂1u2(τ )‖2
H 2 + η‖∂1θ(τ )‖2

H 2dτ ≤ Cε2

(1.5)

for all t > 0 and C = C(μ,κ,η) is a positive constant. Moreover,

‖∂1u2(t)‖L2 → 0, ‖∂2u1(t)‖L2 → 0, ‖∂1θ(t)‖L2 → 0, as t → ∞. (1.6)
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Remark 1.2 Compared with Theorem 1.1 in [6], we obtain the stability under the H 2-norm
of the initial data (u0, θ0) is small because the achievement of large time behavior of the
solution (u, θ) to system (1.2) is heavily dependent on the uniform estimate (1.5).

Applying the ∂1 and ∂2 to (1.2)1 and (1.2)2, respectively, to conclude

π = 
−1∂2θ − 
−1∇ · ∇ · (u ⊗ u) + μ
−1∂1∂22u1 + κ
−1∂2∂11u2. (1.7)

Then, the equation (1.2) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu1 + u · ∇u1 − μ∂22u1 + ∂1

−1∂2θ − ∂1


−1∇ · ∇ · (u ⊗ u)

+ μ∂1

−1∂1∂22u1 + κ∂1


−1∂2∂11u2 = 0,

∂tu2 + u · ∇u2 − κ∂11u2 − ∂1∂1

−1θ − ∂2


−1∇ · ∇ · (u ⊗ u)

+ μ∂2

−1∂1∂22u1 + κ∂2


−1∂2∂11u2 = 0,

∂t θ + u · ∇θ − η∂11θ = −u2.

(1.8)

The linearized equations of (1.8) is

⎧
⎪⎪⎨

⎪⎪⎩

∂tu1 − 
−1(μ∂4
2 + κ∂4

1 )u1 + ∂1∂2

−1θ = 0,

∂tu2 − 
−1(μ∂4
2 + κ∂4

1 )u2 − ∂1∂1

−1θ = 0,

∂t θ − η∂11θ = −u2.

(1.9)

The following theorem gives the explicit decay rates of the solution of (1.9).

Theorem 1.3 Let (u, θ) be the corresponding solution of (1.9). Then we have the following
two conclusions:

(i) Let σ > 0. Assume initial data (u0, θ0) with ∇ · u0 = 0 satisfying

‖�−σ
1 u0‖L2 + ‖�−σ

1 θ0‖L2 + ‖�−(σ+2)

1 θ0‖L2 ≤ ε (1.10)

for some ε small enough. Then (u, θ) obeys the following decay estimate

‖u(t)‖L2 + ‖θ(t)‖L2 ≤ Cεt−
σ
2 , (1.11)

where C > 0 is a constant independent of ε and t.
(ii)Let m > 0. Assume initial data (u0, θ0) with ∇ · u0 = 0 satisfying

‖u0‖L2 + ‖θ0‖L2 + ‖�−2
1 θ0‖L2 ≤ ε (1.12)

for some ε small enough. Then (u, θ) obeys the following decay estimate

‖∂m
1 u(t)‖L2 + ‖∂m

1 θ(t)‖L2 ≤ Cεt−
m
2 , (1.13)

where C > 0 is a constant independent of ε and t .
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Remark 1.4 By taking the time derivative on (1.9) and making several substitutions, the
system (1.9) turns into the following degenerate wave equations with damping:

⎧
⎪⎪⎨

⎪⎪⎩

∂ttu1 + (μR2
2∂

2
2 + κR2

1∂
2
1 − η∂11)∂tu1 − (R2

1 + μηR2
1∂

4
2 + κηR2

1∂
4
1 )u1 = 0,

∂ttu2 + (μR2
2∂

2
2 + κR2

1∂
2
1 − η∂11)∂tu2 − (R2

1 + μηR2
1∂

4
2 + κηR2

1∂
4
1 )u2 = 0,

∂ttθ + (μR2
2∂

2
2 + κR2

1∂
2
1 − η∂11)∂t θ − (R2

1 + μηR2
1∂

4
2 + κηR2

1∂
4
1 )θ = 0,

(1.14)

where Ri = ∂i(−
)− 1
2 with i = 1,2 denotes the standard Resiz transform. Compared with

the wave equations in [1], this system is more complex. The upper bounds for the kernel
function G1 and G2, which is presented in Sect. 4, are more sophisticated to handle than
that in [1]. These upper bounds play a crucial role in achieving the decay estimate in Theo-
rem 1.3.

Remark 1.5 Now we explain why we cannot obtain the decay rate of the system (1.8). The
methods of proving Theorem 1.3 heavily depends on the spectral analysis of the wave equa-
tions (1.14). Unfortunately, it is very difficult for us to decouple the system (1.8). Conse-
quently, we cannot build the decay estimates of system (1.8) via spectral methods. It is of
great interest to address this problem.

The rest of this paper is organized as follows. Some crucial lemmas are presented in
Sect. 2. We first build a priori estimates and exploy the bootstrap argument to establish H 2-
stability in Sect. 3. The large time behavior of the solution to system (1.1) is also obtained
in Sect. 3. The proof of Theorem 1.3 can be found in Sect. 4.

Notation We recall the definition of the fractional Laplacian, ̂
�

β

i f (ξ) = |ξi |β f̂ (ξ), for any
real number β and i = 1,2, ξ = (ξ1, ξ2).

2 Several Useful Lemmas

For the convenience, we first recall the following version of the two dimensional anisotropic
inequalities in the whole space R2. Lemma 2.1 is due to Cao and Wu [3].

Lemma 2.1 Assume f , g, h, ∂1g and ∂2h are in L2(R2), then, for a constant C,
∫

R2
|fgh|dx ≤ C‖f ‖L2(R2)‖g‖ 1

2
L2(R2)

‖∂1g‖ 1
2
L2(R2)

‖h‖ 1
2
L2(R2)

‖∂2h‖ 1
2
L2(R2)

. (2.1)

Lemma 2.2 Let f = f (t), with t ∈ [0,∞) be nonnegative continuous function. Assume f is
integrable on [0,∞),

∫ ∞

0
f (t)dt < ∞.

Assume that for any δ > 0, there is ρ > 0 such that, for any 0 ≤ t1 < t2 with t2 − t1 ≤ ρ,
either f (t2) ≤ f (t1) or f (t2) ≥ f (t1) and f (t2) − f (t1) ≤ δ. Then

f (t) → 0, as t → ∞. (2.2)

This Lemma can be found in [7].
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3 Proofs of Theorem 1.1

3.1 H 2-Stability

For the sake of conciseness, we construct a suitable energy functional:

E(t) = sup
0≤τ≤t

(‖u(τ)‖2
H 2 + ‖θ(τ )‖2

H 2)

+ 2
∫ t

0
μ‖∂2u1(τ )‖2

H 2 + κ‖∂1u2(τ )‖2
H 2 + η‖∂1θ(τ )‖2

H 2dτ. (3.1)

Step 1 L2-energy estimate. A standard energy method yields

‖u(t)‖2
L2 + ‖θ(t)‖2

L2 + 2
∫ t

0
μ‖∂2u1(τ )‖2

L2 + κ‖∂1u2(τ )‖2
L2 + η‖∂1θ(τ )‖2

L2dτ

≤ ‖u0‖2
L2 + ‖θ0‖2

L2 . (3.2)

Step 2 Ḣ 2-energy estimate. Applying 
 to both sides of the first, the second and the third
equation of (1.2), respectively, then taking the L2-inner product with (
u1,
u2,
θ) to
obtain

1

2

d

dt
(‖
u(t)‖2

L2 + ‖
θ(t)‖2
L2) + μ‖∂2
u1‖2

L2 + κ‖∂1
u2‖2
L2 + η‖∂1
θ‖2

L2

= −
∫

R2

(u · ∇u1)
u1 + 
(u · ∇u2)
u2dx +

∫

R2
(
θ
u2 − 
u2
θ)dx

−
∫

R2

(u · ∇θ)
θdx := I1 + I2 + I3. (3.3)

It is not difficult to check that I2 = 0. To estimate I1, we decompose I1 into the following
form:

I1 = −
∫

R2
∂11u · ∇u1∂11u1 + 2∂1u · ∇∂1u1∂11u1dx

−
∫

R2
∂22u · ∇u1∂22u1 + 2∂2u · ∇∂2u1∂22u1dx

−
∫

R2
∂11u · ∇u2∂11u2 + 2∂1u · ∇∂1u2∂11u2dx

−
∫

R2
∂22u · ∇u2∂22u2 + 2∂2u · ∇∂2u2∂22u2dx

:= I11 + I12 + I13 + I14. (3.4)
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Thanks to the fact that ∇ · u = 0 and the Sobolev embedding, one gets

I11 = − 3
∫

R2
(∂11u1)

2∂1u1dx −
∫

R2
∂11u2∂2u1∂11u1dx

− 2
∫

R2
∂1u2∂2∂1u1∂11u1dx

≤C‖∂1u1‖L2‖∂11u1‖2
L4 + C‖∂2u1‖L∞‖∂11u2‖L2‖∂11u1‖L2

+ C‖∂1u2‖L∞‖∂2∂1u1‖L2‖∂11u1‖L2

≤C‖u‖H 2(‖∂2u1‖2
H 2 + ‖∂1u2‖2

H 2). (3.5)

Similarly,

I12, I13, I14 ≤ C‖u‖H 2(‖∂2u1‖2
H 2 + ‖∂1u2‖2

H 2). (3.6)

Next, we split I3 into the following two parts:

I3 = −
∫

R2
∂11(u · ∇θ)∂11θ + ∂22(u · ∇θ)∂22θdx

= −
∫

R2
∂11u · ∇θ∂11θ + 2∂1u · ∇∂1θ∂11θdx

−
∫

R2
∂22u · ∇θ∂22θ + 2∂2u · ∇∂2θ∂22θdx

:=I31 + I32.

We can infer from the Hölder inequality and the Sobolev inequality

I31 = −
∫

R2
∂11u1∂1θ∂11θdx −

∫

R2
∂11u2∂2θ∂11θdx − 2

∫

R2
∂1u · ∇∂1θ∂11θdx

≤C‖∂11u1‖L2‖∂1θ‖L4‖∂11θ‖L4 + C‖∂11u2‖L4‖∂2θ‖L2‖∂11θ‖L4

+ C‖∂1u‖L2‖∇∂1θ‖L4‖∂11θ‖L4

≤C‖u‖H 2‖∂1θ‖2
H 2 + C‖θ‖H 2(‖∂1u2‖2

H 2 + ‖∂1θ‖2
H 2)

≤C(‖u‖H 2 + ‖θ‖H 2)(‖∂1u2‖2
H 2 + ‖∂1θ‖2

H 2). (3.7)

To handle I32, we write

I32 ≤C|
∫

R2
∂22u1∂1θ∂22θ + ∂2u1∂1∂2θ∂22θdx|

+ C|
∫

R2
∂22u2∂2θ∂22θdx| + C|

∫

R2
∂2u2(∂22θ)2dx|

:=I321 + I322 + I323.

According to the Hölder inequality, it deduces

I321 ≤C(‖∂22u1‖L4‖∂1θ‖L4 + ‖∂2u1‖L4‖∂1∂2θ‖L4)‖∂22θ‖L2

≤C‖θ‖H 2(‖∂2u1‖2
H 2 + ‖∂1θ‖2

H 2). (3.8)
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Integrating by parts and the Hölder inequality give rise to

I322 ≤C|
∫

R2
∂1∂2u1∂2θ∂22θdx|

≤C|
∫

R2
∂2u1(∂1∂2θ∂22θ + ∂2θ∂22∂1θ)dx|

≤C‖∂2u1‖L4(‖∂1∂2θ‖L4‖∂22θ‖L2 + ‖∂2θ‖L4‖∂1∂22θ‖L2)

≤C‖θ‖H 2(‖∂2u1‖2
H 2 + ‖∂1θ‖2

H 2). (3.9)

Form Lemma 2.1 and the Young inequality, one can follow that

I323 ≤C|
∫

R2
∂1u1(∂22θ)2dx|

≤C|
∫

R2
u1∂1∂22θ∂22θdx|

≤C‖∂1∂22θ‖L2‖∂22θ‖ 1
2
L2‖∂1∂22θ‖ 1

2
L2‖u1‖

1
2
L2‖∂2u1‖

1
2
L2

≤C(‖u‖H 2 + ‖θ‖H 2)(‖∂2u1‖2
H 2 + ‖∂1θ‖2

H 2). (3.10)

Combining the estimates from (3.5) to (3.10) and integrating over [0, t], we can obtain

‖
u(t)‖2
L2 + ‖
θ(t)‖2

L2 + 2
∫ t

0
μ‖∂2
u1‖2

L2 + κ‖∂1
u2‖2
L2 + η‖∂1
θ‖2

L2dτ (3.11)

≤‖
u0‖2
L2 + ‖
θ0‖2

L2 + C

∫ t

0
(‖u‖H 2 + ‖θ‖H 2)(‖∂2u1‖2

H 2 + ‖∂1u2‖2
H 2 + ‖∂1θ‖2

H 2)dτ.

Adding (3.2) and (3.11) leads to

‖u(t)‖2
H 2 + ‖θ(t)‖2

H 2 + 2
∫ t

0
μ‖∂2u1‖2

H 2 + κ‖∂1u2‖2
H 2 + η‖∂1θ‖2

H 2dτ

≤C0(‖u0‖2
H 2 + ‖θ0‖2

H 2) + C1 sup
0≤τ≤t

(‖u(τ)‖H 2 + ‖θ(τ )‖H 2)

×
∫ t

0
(‖∂2u1‖2

H 2 + ‖∂1u2‖2
H 2 + ‖∂1θ‖2

H 2)dτ, (3.12)

which along with the definition of E(t) ensures

E(t) ≤ C0E(0) + C1E
3
2 (t). (3.13)

To apply the bootstrapping argument, we make the ansatz

E(t) ≤ 1

4C2
1

. (3.14)

We choose ε suitable small such that the initial H 2-norm E(0) sufficiently small, namely,

E(0) := ‖u0‖2
H 2 + ‖θ0‖2

H 2 ≤ ε2 := 1

4C2
1C0

. (3.15)
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In fact, when (3.14) and (3.15) holds, (3.13) implies

E(t) ≤ 1

4C2
1

+ 1

2
E(t).

Therefore, the bootstrapping argument then concludes that, for all t > 0

E(t) ≤ 1

8C2
1

≤ C0

2
ε2,

which gives the desired inequality (1.5).

3.2 Large Time Behavior of the Boussinesq equation (1.2)

Now we pay our attention to show the inequality (1.6). Applying ∂2 to (1.8)1 and ∂1 to
(1.8)2, then taking the L2-inner product with ∂2u1 and ∂1u2, respectively. After performing
L2-inner product on both side of (1.8)3 with ∂1θ , we add them to get

1

2

d

dt
(‖∂2u1(t)‖2

L2 + ‖∂1u2(t)‖2
L2 + ‖∂1θ(t)‖2

L2) + μ‖∂22u1‖2
L2 + κ‖∂11u2‖2

L2 + η‖∂11θ‖2
L2

= −
∫

R2
∂2u · ∇u1∂2u1 + ∂1u · ∇u2∂1u2dx

−
∫

R2
∂2∂1∂2


−1θ∂2u1 − ∂1∂1∂1

−1θ∂1u2dx

+
∫

R2
∂2∂1


−1∇ · ∇ · (u ⊗ u)∂2u1dx +
∫

R2
∂1∂2


−1∇ · ∇ · (u ⊗ u)∂1u2dx

−
∫

R2
∂1u · ∇θ∂1θdx −

∫

R2
∂1u2∂1θdx

+
∫

R2
(μ∂1


−1∂1∂22u1 + κ∂1

−1∂2∂11u2)∂2u1dx

+
∫

R2
(μ∂2


−1∂1∂22u1 + κ∂2

−1∂2∂11u2)∂1u2dx

:=J1 + J2 + J3 + J4 + J5 + J6 + +J7 + J8. (3.16)

Thanks to the fact ∇ · u = 0, it’s not hard to see that

J1 = −
∫

R2
(∂2u1)

2∂1u1 + ∂2u2(∂2u1)
2 + ∂1u1(∂1u2)

2 + (∂1u2)
2∂2u2dx

= 0.

By Lp- boundedness of the Riesz transform and the Hölder inequality, we get

J2 ≤C‖R22∂1θ‖L2‖∂2u1‖L2 + C‖R11∂1θ‖L2‖∂1u2‖L2

≤C‖∂1θ‖L2(‖∂2u1‖L2 + ‖∂1u2‖L2)

≤C‖u‖H 2‖θ‖H 2 .
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Thanks to Lp- boundedness of the Riesz transform and Sobolev’s embedding, one arrives at

J3 ≤C‖R2R1(∂1(u · ∇u1) + ∂2(u · ∇u2))‖L2‖∂2u1‖L2

≤C‖∂1(u · ∇u1) + ∂2(u · ∇u2)‖L2‖∂2u1‖L2

≤C‖∂1u · ∇u1 + u · ∇∂1u1 + ∂2u · ∇u2 + u · ∇∂2u2‖L2‖∂2u1‖L2

≤C(‖∂1u‖L4‖∇u1‖L4 + ‖u‖L∞‖∇∂1u1‖L2 + C‖∂2u‖L4‖∇u2‖L4)‖∂2u1‖L2

≤C‖u‖3
H 2 .

Similarly,

J4 ≤C‖u‖3
H 2 .

Applying the Hölder inequality to get

J5 ≤C‖∂1u‖L4‖∇θ‖L4‖∂1θ‖L2 ≤ C‖u‖H 2‖θ‖2
H 2 ,

and

J6 ≤C‖∂1u2‖L2‖∂1θ‖L2 ≤ C‖u‖H 2‖θ‖H 2 .

Integrating by parts and the Lp- boundedness of the Riesz transform give rise to

J7 + J8 ≤C‖u‖2
H 2 .

Inserting the estimate from J1 to J6 into (3.16) and integrating over [s, t] with 0 < s < t < ∞
to obtain

(‖∂2u1(t)‖2
L2 + ‖∂1u2(t)‖2

L2 + ‖∂1θ(t)‖2
L2)

− (‖∂2u1(s)‖2
L2 + ‖∂1u2(s)‖2

L2 + ‖∂1θ(s)‖2
L2) ≤ C(ε2 + ε3)(t − s). (3.17)

Thanks to (1.5), one has

∫ ∞

0
‖∂2u1(τ )‖2

L2 + ‖∂1u2(τ )‖2
L2 + ‖∂1θ(τ )‖2

L2dτ ≤ Cε2.

Therefore, as a result of Lemma 2.2, we conclude that

‖∂1u2(t)‖L2 → 0, ‖∂2u1(t)‖L2 → 0, ‖∂1θ(t)‖L2 → 0, as t → ∞.

This helps us to complete the proof of Theorem 1.1.

4 Proofs of Theorem 1.3

Lemma 4.1 Assume that φ satisfies the follow equation in R2,

∂ttφ + (μR2
2∂

2
2 + κR2

1∂
2
1 − η∂11)∂tφ − (R2

1 + μηR2
1∂

4
2 + κηR2

1∂
4
1 )φ = 0, (4.1)
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with the initial conditions

φ(x,0) = φ0(x), ∂tφ(x,0) = φ1(x).

Then the solution φ to (4.1) can be explicitly represented as

φ(x, t) = G1

(

φ1 − 1

2
(
−1(μ∂4

2 + κ∂4
1 ) + η∂11)φ0

)

+ G2φ0, (4.2)

where G1 and G2 are given as follows,

Ĝ1(ξ, t) = eλ2t − eλ1t

λ2 − λ1
, Ĝ2(ξ, t) = 1

2
(eλ1t + eλ2t ), (4.3)

with λ1 and λ2 being the roots of the characteristic equation

λ2 +
(

μξ 4
2 + κξ 4

1

|ξ |2 + ηξ 2
1

)

λ + ξ 2
1 + ηξ 2

1 (μξ 4
2 + κξ 4

1 )

|ξ |2 = 0,

or

λ1 = −1

2

(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1

)

− 1

2

√
�, (4.4)

λ2 = −1

2

(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1

)

+ 1

2

√
�, (4.5)

here

� =
(

μξ 4
2 + κξ 4

1

|ξ |2 + ηξ 2
1

)2

− 4ξ 2
1 + 4ηξ 2

1 (μξ 4
2 + κξ 4

1 )

|ξ |2 . (4.6)

Proof Applying the Fourier transform on the space variable x to both sides of (4.1), we
obtain

∂ttφ̂ +
(

μξ 4
2 + κξ 4

1

|ξ |2 + ηξ 2
1

)

∂t φ̂ + ξ 2
1 + ηξ 2

1 (μξ 4
2 + κξ 4

1 )

|ξ |2 φ̂ = 0,

namely,

(∂t − λ2)(∂t − λ1)φ̂ = 0 or (∂t − λ1)(∂t − λ2)φ̂ = 0.

It is not difficult to rewrite the wave equation into two different systems,

(∂t − λ2)φ̂ = f̂ , (4.7)

(∂t − λ1)f̂ = 0, (4.8)

or

(∂t − λ1)φ̂ = ĝ, (4.9)

(∂t − λ2)ĝ = 0. (4.10)
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By taking the difference of (4.9) and (4.7), it deduces

φ̂(ξ, t) = (λ2 − λ1)
−1(ĝ − f̂ ). (4.11)

Then, (4.8) and (4.10) yield

f̂ (ξ, t) = eλ1t f̂ (ξ,0) = eλ1t (φ̂1 − λ2φ̂0), (4.12)

ĝ(ξ, t) = eλ2t ĝ(ξ,0) = eλ2t (φ̂1 − λ1φ̂0). (4.13)

Inserting (4.12) into (4.11) leads to

φ̂(ξ, t) = (λ2 − λ1)
−1

(

(eλ2t − eλ1t )φ̂1 + (λ2e
λ1t − λ1e

λ2t )φ̂0

)

= eλ2t − eλ1t

λ2 − λ1
(φ̂1 − λ2φ̂0) + eλ2t φ̂0

= eλ2t − eλ1t

λ2 − λ1

(

φ̂1 + 1

2
(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1 )φ̂0

)

+ 1

2
(eλ1t + eλ2t )φ̂0

= Ĝ1

(

φ̂1 + 1

2
(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1 )φ̂0

)

+ Ĝ2φ̂0, (4.14)

where we used the definition of λ2 in the third inequality. This completes the proof of
Lemma 4.1. �

Due to the fact that Ĝ1(ξ, t) and Ĝ2(ξ, t) have a strong dependence on frequency, we
need to be divided frequency space into several subdomains to obtain the optimal upper
bound of Ĝ1(ξ, t) and Ĝ2(ξ, t).

Lemma 4.2 Let R2 = S1 ∪ S2. Here

S1 =
{

ξ ∈ R2 : � =
(

μξ 4
2 + κξ 4

1

|ξ |2 + ηξ 2
1

)2

− 4ξ 2
1 + 4ηξ 2

1 (μξ 4
2 + κξ 4

1 )

|ξ |2

≤ 1

4

(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1

)2}

,

S2 = R2\S1.
Then Ĝ1(ξ, t) and Ĝ2(ξ, t) satisfy the following estimates:
(a) ∀ξ ∈ S1,

Reλ1 ≤ −1

2

(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1

)

, Reλ2 ≤ −1

4

(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1

)

,

|Ĝ1(ξ, t)| ≤ te
− 1

4 (
μξ4

2 +κξ4
1

|ξ |2 +ηξ2
1 )t

, (4.15)

|Ĝ2(ξ, t)| ≤ Ce− η
4 ξ2

1 t .

(b) ∀ξ ∈ S2,

λ1 ≤ −3

4

(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1

)

, λ2 ≤ −c0ξ
2
1 ,
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|Ĝ1(ξ, t)| ≤ C

μξ4
2 +κξ4

1
|ξ |2 + ηξ 2

1

(

e
− 3

4 (
μξ4

2 +κξ4
1

|ξ |2 +ηξ2
1 )t + e−c0ξ2

1 t

)

,

|Ĝ2(ξ, t)| ≤ Ce−cξ2
1 t .

(4.16)

Proof (a) For ξ ∈ S1, we divide S1 into the following two regions:

S11 =
{

ξ ∈ S1 : 0 ≤ � ≤ 1

4

(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1

)2
}

,

S12 = {ξ ∈ S1 : � < 0} .

For any ξ ∈ S11, according to the definition of λ1 and λ2 in (4.4) and (4.5), λ1 and λ2 are
real roots and satisfy

λ1 ≤ −1

2

(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1

)

,

λ2 ≤ −1

4

(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1

)

.

By the mean-value theorem, we know

|Ĝ1(ξ, t)| ≤ teλ2t ≤ te
− 1

4 (
μξ4

2 +κξ4
1

|ξ |2 +ηξ2
1 )t

,

|Ĝ2(ξ, t)| ≤ Ce
− 1

4 (
μξ4

2 +κξ4
1

|ξ |2 +ηξ2
1 )t

.

For any ξ ∈ S12, λ1 and λ2 are a pair of complex conjugate roots, then one has

Ĝ1(ξ, t) = e
− 1

2 (
μξ4

2 +κξ4
1

|ξ |2 +ηξ2
1 )t e

i
√−�

2 t − e− i
√−�

2 t

i
√−�

,

= e
− 1

2 (
μξ4

2 +κξ4
1

|ξ |2 +ηξ2
1 )t 2 sin(

√−�

2 t)√−�
.

We can infer from | sinx| ≤ |x| that

|Ĝ1(ξ, t)| ≤ te
− 1

2 (
μξ4

2 +κξ4
1

|ξ |2 +ηξ2
1 )t

,

|Ĝ2(ξ, t)| ≤ 1

2
(etReλ1 + etReλ2) ≤ Ce

− 1
2 (

μξ4
2 +κξ4

1
|ξ |2 +ηξ2

1 )t
.

(b) For ξ ∈ S2, λ1 and λ2 are real roots, we have

λ1 ≤ −3

4

(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1

)

,

and

λ2 = −1

2

(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1 − √

�

)



Stability and Large-Time Behavior of the 2D Boussinesq Equations Page 13 of 16 6

= −1

2

|ξ |−2(4ξ 2
1 + 4ηξ 2

1 (μξ 4
2 + κξ 4

1 ))

|ξ |−2(μξ 4
2 + κξ 4

1 ) + ηξ 2
1 + √

�

≤ −|ξ |−2(ξ 2
1 + ηξ 2

1 (μξ 4
2 + κξ 4

1 ))

|ξ |−2(μξ 4
2 + κξ 4

1 ) + ηξ 2
1

.

In order to control λ2, we further divide S2 into the following two regions:

S21 = {ξ ∈ S2 : |ξ1| ≥ |ξ2|} ,

S22 = {ξ ∈ S2 : |ξ1| < |ξ2|} .

For ξ ∈ S21, we obtain

λ2 ≤ − 1 + η(μξ 4
2 + κξ 4

1 )

μξ 4
2 ξ−2

1 + κξ 2
1 + η|ξ |2 ≤ − 1 + η(μξ 4

2 + κξ 4
1 )

μξ 2
2 + κξ 2

1 + η|ξ |2

≤ −1 + η(μξ 4
2 + κξ 4

1 )

(μ + κ + 2η)ξ 2
1

≤ − ηκ

μ + κ + 2η
ξ 2

1 .

For ξ ∈ S22, one has

λ2 ≤ −ξ 2
1 + ηξ 2

1 (μξ 4
2 + κξ 4

1 )

μξ 4
2 + κξ 4

1 + ηξ 2
1 |ξ |2 ≤ −ξ 2

1 + ηξ 2
1 (μξ 4

2 + κξ 4
1 )

(μ + κ + 2η)ξ 4
2

≤ − ημ

μ + κ + 2η
ξ 2

1 .

Let c0 = min{ ηκ

μ+κ+2η
,

ημ

μ+κ+2η
}. Then we have

λ2 ≤ −c0ξ
2
1 , when ξ ∈ S2.

Thanks to ξ ∈ S2, we have

λ2 − λ1 = √
� >

1

2

(
μξ 4

2 + κξ 4
1

|ξ |2 + ηξ 2
1

)

.

Consequently, we can easily obtain the upper bounds for Ĝ1(ξ, t) and Ĝ2(ξ, t) where c =
min{ 3

4 η, c0}. This completes the proof of Lemma 4.2. �

Now we are ready to prove Theorem 1.3 according to Lemma 4.1 and Lemma 4.2.

Proof Applying Lemma 4.1 to (1.14) leads to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(x, t) = G1

(

∂tu(x,0) − 1

2
(
−1(μ∂4

2 + κ∂4
1 ) + η∂11)u0

)

+ G2u0,

θ(x, t) = G1

(

∂tθ(x,0) − 1

2
(
−1(μ∂4

2 + κ∂4
1 ) + η∂11)θ0

)

+ G2θ0.

(4.17)

Setting t = 0 in the linearized equations (1.9), we get

⎧
⎪⎪⎨

⎪⎪⎩

∂tu1(x,0) = 
−1(μ∂4
2 + κ∂4

1 )u10 − ∂1∂2

−1θ0,

∂tu2(x,0) = 
−1(μ∂4
2 + κ∂4

1 )u20 + ∂1∂1

−1θ0,

∂t θ(x,0) = η∂11θ0 − u20.

(4.18)



6 Page 14 of 16 D. Chen, Q. Liu

Then, inserting (4.18) into (4.17) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(x, t) = 1

2
G1

(


−1(μ∂4
2 + κ∂4

1 ) − η∂11

)

u10 − ∂1∂2

−1G1θ0 + G2u10,

u2(x, t) = 1

2
G1

(


−1(μ∂4
2 + κ∂4

1 ) − η∂11

)

u20 + ∂1∂1

−1G1θ0 + G2u20,

θ(x, t) = −1

2
G1

(


−1(μ∂4
2 + κ∂4

1 ) − η∂11

)

θ0 + G2θ0 − G1u20.

(4.19)

(i) To estimate ‖u1‖L2 , by Plancherel’s Theorem and dividing the spatial domain R2 as in
Lemma 4.2, we have

‖u1‖L2 = ‖û1‖L2 ≤1

2
‖
(

μξ 4
2 + κξ 4

1

|ξ |2 − ηξ 2
1

)

Ĝ1û10‖L2(S1) + ‖ξ1ξ2

|ξ |2 Ĝ1θ̂0‖L2(S1)

+ ‖Ĝ2û10‖L2(S1) + 1

2
‖
(

μξ 4
2 + κξ 4

1

|ξ |2 − ηξ 2
1

)

Ĝ1û10‖L2(S2)

+ ‖ξ1ξ2

|ξ |2 Ĝ1θ̂0‖L2(S2) + ‖Ĝ2û10‖L2(S2)

=K1 + K2 + K3 + K4 + K5 + K6.

Thanks to (4.15) and the fact that xne−x ≤ C(n) for any n ≥ 0 and x ≥ 0.

K1 ≤‖
(

μξ 4
2 + κξ 4

1

|ξ |2 + ηξ 2
1

)

te
− 1

4 (
μξ4

2 +κξ4
1

|ξ |2 +ηξ2
1 )t

û10‖L2(S1)

≤C‖e− 1
8 (

μξ4
2 +κξ4

1
|ξ |2 +ηξ2

1 )t
û10‖L2

≤C‖|ξ1|σ e− η
8 ξ2

1 t |ξ1|−σ û10‖L2

≤Ct−
σ
2 ‖�−σ

1 u10‖L2 ,

where σ > 0. By Lp-boundedness of the Riesz transform and (4.15), we get

K2 ≤‖Ĝ1θ̂0‖L2(S1)

≤‖te
− 1

4 (
μξ4

2 +κξ4
1

|ξ |2 +ηξ2
1 )t

θ̂0‖L2

≤‖te− η
4 ξ2

1 t θ̂0‖L2

≤C‖e− η
8 ξ2

1 t ξ−2
1 θ̂0‖L2

≤C‖|ξ1|σ e− η
8 ξ2

1 t ξ
−(σ+2)

1 θ̂0‖L2

≤Ct−
σ
2 ‖�−(σ+2)

1 θ0‖L2 .

From (4.15), one can follow that

K3 ≤C‖e− η
4 ξ2

1 t û10‖L2
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≤Ct−
σ
2 ‖�−σ

1 u10‖L2 .

Similarly, due to (4.16), one gets

K4 ≤C‖
(

μξ 4
2 + κξ 4

1

|ξ |2 − ηξ 2
1

)
1

μξ4
2 +κξ4

1
|ξ |2 + ηξ 2

1

(

e
− 3

4 (
μξ4

2 +κξ4
1

|ξ |2 +ηξ2
1 )t + e−c0ξ2

1 t

)

û10‖L2 ,

≤C‖e−cξ2
1 t û10‖L2

≤Ct−
σ
2 ‖�−σ

1 u10‖L2 ,

and

K5 ≤C‖ 1
μξ4

2 +κξ4
1

|ξ |2 + ηξ 2
1

(

e
− 3

4 (
μξ4

2 +κξ4
1

|ξ |2 +ηξ2
1 )t + e−c0ξ2

1 t

)

θ̂0‖L2 ,

≤C‖|ξ1|−2e−cξ2
1 t θ̂0‖L2

≤Ct−
σ
2 ‖�−(σ+2)

1 θ0‖L2 .

The estimates for K6 are similar to those for K4 and the bound is

K6 ≤C‖e−cξ2
1 t û10‖L2

≤Ct−
σ
2 ‖�−σ

1 u10‖L2 .

Combining the estimates from K1 and K6, we can obtain

‖u1‖L2 ≤Ct−
σ
2 (‖�−σ

1 u10‖L2 + ‖�−(σ+2)

1 θ0‖L2).

Similarly,

‖u2‖L2 ≤Ct−
σ
2 (‖�−σ

1 u20‖L2 + ‖�−(σ+2)

1 θ0‖L2),

and

‖θ‖L2 ≤Ct−
σ
2 ‖�−σ

1 θ0‖L2 .

(ii) The bound for ‖∂m
1 u‖L2 and ‖∂m

1 θ‖L2 are similar to case (i). This completes the proof of
Theorem 1.3. �
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