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Abstract
In this paper, we prove the Liouville type theorem for stable W

1,p

loc solutions of the weighted
quasilinear problem

−div

(
w1(x)

(
s2 + |∇u|2) p−2

2 ∇u

)
= w2(x)f (u) in R

N,

where s ≥ 0 is a real number, f (u) is either eu or −e
1
u and w1(x),w2(x) ∈ L1

loc

(
R

N
)

be
nonnegative functions so that w1(x) ≤ C1|x|m and w2(x) ≥ C2|x|n when |x| is big enough.
Here we need n > m.

Keywords Stable solutions · Liouville theorem · Gelfand nonlinearity · Singular
nonlinearity

Mathematics Subject Classification (2010) Primary 35J62 · Secondary 35A01 · 35B08 ·
35B53

1 Introduction

In this work, we aim to study the nonexistence of stable solutions of weighted quasilinear
equation

−div

(
w1(x)

(
s2 + |∇u|2) p−2

2 ∇u

)
= w2(x)f (u) in R

N . (1.1)

About the principal part of the equation, the special case is s = 0, which yields the p-Laplace
operator with weight.

We focus on the equations with two kinds of nonlinear terms. One is the so-called
Gelfand nonlinearity with f (u) = eu, and another is the singular nonlinearity with f (u) =
−e1/u as the solution converges to 0. Because of the degenerate nature of the term |∇u|p−2
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when p > 2, solutions to (1.1) must be understood in the weak sense. Moreover, solutions
to elliptic equations with Hardy potentials may possess singularities. To overcome this dif-
ficulty, we need to define the weak solutions in a suitable weighted Sobolev space. On this
account, for ∀ ϕ ∈ C∞

c

(
R

N
)
, let us define

‖ϕ‖w1 =
(∫

RN

w1(x)|∇ϕ|pdx

) 1
p

, w1 > 0.

Because w1 is strictly positive, it is obvious that the positive definiteness and positive
homogeneity of the norm are satisfied. For subadditivity, we calculate

‖ϕ1 + ϕ2‖w1 =
(∫

RN

w1(x)|∇ϕ1 + ∇ϕ2|pdx

) 1
p

=
(∫

RN

|w1(x)
1
p ∇ϕ1 + w1(x)

1
p ∇ϕ2|pdx

) 1
p

≤
(∫

RN

|w1(x)
1
p ∇ϕ1|pdx

) 1
p

+
(∫

RN

|w1(x)
1
p ∇ϕ2|pdx

) 1
p

= ‖ϕ1‖w1 + ‖ϕ1‖w2 ,

the above inequality holds on account of Minkowski’s inequality. In conclusion, ‖ · ‖w1 is a
norm.

Denote by W
1,p

0

(
RN,w1

)
the closure of C∞

c (RN) with respect to the ‖ · ‖w1 -norm. Re-

mark that for w1 ∈ L1
loc

(
RN

)
we have C1

c

(
R

N
) ⊂ W

1,p

0

(
RN,w1

)
and u ∈ W

1,p

loc

(
RN,w1

)
means that if for any ϕ ∈ C∞

c

(
R

N
)
, there holds uϕ ∈ W

1,p

0

(
RN,w1

)
.

We find the corresponding energy functional of (1.1) is

E(u) =
∫

RN

w1(x)

p

[
(s2 + |∇u|2) p

2 − sp

]
− w2(x)F (u)dx, (1.2)

where F(u) = ∫ u

0 f (t)dt .
Intuitively, a system is in a stable state if it can recover from perturbations, a small change

will not prevent the system from returning to equilibrium. Place a marble at the center of a
smooth bowl and tap it slightly. After some rolling back and forth, the marble will return to
its stable position. If instead you turned the bowl over and put the marble carefully on top
at the center, then it would be in a rather unstable equilibrium, a slight breeze would suffice
to make it fall. In particular, readers can find out about the physical motivation and recent
development on the topic of stable solutions in monograph [10] by Dupaigne and references
therein.

The above physical phenomena show that the minimum solution is a stable solution.
Accordingly, thinking of solutions of PDEs as critical points of an energy functional, we say
that a solution is stable when the second variation of energy functional is nonnegative. We
do the first and second variations of the energy functional E(u) as follows.

i ′(τ ) = E′(u + τϕ) =
∫

RN

w1(x)(s2 + |∇(u + τϕ)|2) p−2
2 ∇(u + τϕ)∇ϕ

− w2(x)F ′(u + τϕ)ϕdx,



Liouville Type Theorem for Stable Solutions to Weighted Quasilinear. . . Page 3 of 20 5

i ′′(τ ) = E′′(u + τϕ) = (p − 2)

∫
RN

{
w1(x)(s2 + |∇(u + τϕ)|2) p−4

2 (∇(u + τϕ),∇ϕ)2

+
∫

RN

w1(x)(s2 + |∇(u + τϕ)|2) p−2
2 |∇ϕ|2 − w2(x)F ′′(u + τϕ)ϕ2dx

}
.

Finally, let i ′(τ )|τ=0 = 0 and i ′′(τ )|τ=0 ≥ 0, then we have the following Definition 1.1
and 1.2

Definition 1.1 A function u ∈ W
1,p

loc

(
R

N,w1

)
is said to be a weak solution of (1.1), if

w2(x)f (u) ∈ L1
loc

(
R

N
)

and

∫
RN

w1(x)
(
s2 + |∇u|2) p−2

2 (∇u,∇ϕ)dx =
∫

RN

w2(x)f (u)ϕdx, (1.3)

for all ϕ ∈ C1
c

(
R

N
)
.

Definition 1.2 We say a weak solution u of (1.1) is stable if

∫
RN

w2(x)f ′(u)ϕ2dx ≤
∫

RN

w1(x) (p − 2)
(
s2 + |∇u|2) p−4

2 (∇u,∇ϕ)2 dx

+
∫

RN

w1(x)
(
s2 + |∇u|2) p−2

2 |∇ϕ|2dx, (1.4)

for all ϕ ∈ C1
c

(
R

N
)
.

According to the Cauchy-Schwarz inequality, we know that if u is a stable solution of
(1.1), then we have

∫
RN

w2(x)f ′(u)ϕ2dx ≤
∫

RN

w1(x) (p − 2)
(
s2 + |∇u|2) p−4

2 |∇u|2|∇ϕ|2dx

+
∫

RN

w1(x)
(
s2 + |∇u|2) p−2

2 |∇ϕ|2dx, (1.5)

for all ϕ ∈ C1
c

(
R

N
)
.

Remark 1.3 Since w2(x)f (u) is nonnegative, by density arguments, we know Definition 1.1,
1.2 and formula (1.5) hold for any test function ϕ ∈ W

1,p

0

(
RN,w1

)
.

We recall that a Liouville type theorem addresses the nonexistence of nontrivial solution
in the entire Euclidean space R

N . Not only weak and positive solutions, convex solutions,
periodic solutions but also other types of solutions, such as stable solutions have been widely
studied by many scholars. In the past few years, Laplace’s equation is the most studied and
relatively well-studied equation with respect to stable solutions, which can be referred to the
references [3, 8, 11, 12]. Liouville type theorems for stable solutions of nonlinear elliptic
equations are usually guaranteed in low dimensional case. We should point out the work
[13] by Farina for Gelfand equation

−�u = eu in R
N,
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where he proved that the equation has no stable classical solutions for 2 ≤ N ≤ 9. After-
wards, this nonexistence result was extended to stable C1 solutions of the p-Laplace equa-
tion −�pu = eu when N <

p(p+3)

p−1 in [18].
The weighted Laplace equations of Gelfand type are

−div(w(x)∇u) = f (x)eu in R
N .

The weighted p-Laplace equations of Gelfand type are

−div(w(x)|∇u|p−2∇u) = f (x)eu in R
N .

They both have been studied recently by many authors. In [6] several Liouville type theo-
rems for classical stable solutions of this equation were established under different assump-
tions on w and f . Wang and Ye [23] deal with more specific equation −�u = |x|beu but for
weak stable solutions, which covers solutions having singularities. Later, the result in [23]
was extended to equation −div(|x|α∇u) = |x|γ eu in [16] and equation −�pu = f (x)eu in
[4].

Liouville type theorems were also established for elliptic equations with other type of
nonlinearity, such as singular nonlinearity, Lane-Emden nonlinearity, MEMS nonlinearity
and so on. In order to better understand the existence of stable solutions for elliptic equations
with singular nonlinear terms, we can refer to the study of problems related to this type of
equations, such as [2, 7, 17] for zero Dirichlet boundary value problem. For the nonexistence
of stable solutions in the whole space, Ma-Wei [21] studied the equation

�u = u−δ in R
N, ∀ δ > 0. (1.6)

They showed there are no stable positive solutions to (1.6) provided 2 ≤ N < 2 + 4
1+δ

(δ +√
δ2 + δ). Guo and Mei [15] extended that result to the p-Laplace equation

�pu = u−δ in R
N . (1.7)

Furthermore, they showed the nonexistence of stable solution for some range of δ > 0 and
2 ≤ p < N among their results. Chen et al. [4] studied the problem

�pu = f (u)u−δ in R
N,

for some f ∈ L1
loc such that f behaves like a radial function for large enough x. This was

recently generalized by Le et al. [20] for the weighted p-Laplace equation. Reader may also
find the paper by Du and Guo [9] a good read related to singular problems.

In the latest paper [14], they studied the Liouville theorem of following equation

−�pu = |u|p∗−2u

on the half space, the whole space and the bounded starshaped domain. It is worth putting
the results of this paper in communication with recent results on quasilinear PDEs under
higher order Morse index conditions.

For the critical points of the associated functional for (1.1), Silvia Cingolani et al. [5]
provided the estimates of the corresponding critical polynomial. In addition, when s = 1,
a priori estimates, existence and nonexistence of positive solutions for (1.1) in [22] was
studied. Since (1.1) is a generalization of p-laplace equation with weight, the past research
on the stable solution of p-laplace equation inspired us to study the stable solution of (1.1).
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Throughout this paper let us define ηR ∈ C1
c (R

N) to be a cut-off function such that:

ηR(x) =
{

1, |x| < R,

0, |x| > 2R,
(1.8)

which satisfies 0 ≤ ηR ≤ 1 in R
N and |∇ηR| ≤ C

R
in B2R\BR , for some positive constant C

independent of R.

2 Main Results

The main purpose of this paper is to obtain a Liouville type theorem for stable solutions of
class W

1,p

loc to equation (1.1) with two different nonlinear terms.
About the Gelfand nonlinear equation, the nonexistence of the stable solution is given,

while for the singular nonlinear equation, we only give the nonexistence of stable solutions
when ‖u‖L∞(

RN
) ≤ M .

For Gelfand-type nonlinear equation

−div

(
w1(x)

(
s2 + |∇u|2) p−2

2 ∇u

)
= w2(x)eu in R

N, (2.1)

we have the following nonexistence result for stable solution.

Theorem 2.1 Let u be a weak solution of (2.1). Suppose that for a.e. |x| ≥ R0, we have that
w1(x) ≤ C1|x|m and w2(x) ≥ C2|x|n, C1,C2,R0 > 0 and n > m.

(i) When 2 ≤ p < 4, there is no stable solution of equation (2.1) for N < 4√
2

4−p
(p−1)

(n −
m) − m.

(ii) When p ≥ 4, the same conclusion is established for N < 4√
2
p−4

(p−1)
(n − m) − m.

For singular nonlinear equation

−div

(
w1(x)

(
s2 + |∇u|2) p−2

2 ∇u

)
= −w2(x)e

1
u in R

N, (2.2)

we have the corresponding Liouville results for stable solutions:

Theorem 2.2 Let u be a weak solution of (2.2) such that ‖u‖L∞(
RN

) ≤ M for some positive
constant M . Suppose that for a.e. |x| ≥ R0, we have that w1(x) ≤ C1|x|m and w2(x) ≥
C2|x|n, C1,C2,R0 > 0 and n > m. If N < 4p(n − m) − m, then there is no stable solution
of (2.2) when 2 ≤ p ≤ m+n−1

4(1+n−m)
.

Remark 2.3 In the future, it would be interesting to replace the condition n > m with a more
general asymptotic assumption that may allow a slower decay.

In the past forty years, the related problems have been studied by many scholars. The
ideas of proving the theorem mainly come from article [1, 7, 18, 19]. In [1] the authors
studied the nonexistence of the stable solution of p-Laplace equation with weight

div(w1(x)|∇u|p−2∇u) = w2(x)f (u) in R
N . (2.3)
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The key of this paper is to select the appropriate cut-off function in Definition 1.1 and
1.2 to obtain the integral estimate of the solution of equation (1.1), that is, Proposition 3.2
and Proposition 3.3. When s �= 0, equation (1.3) and (1.5) contain more non-homogeneous
terms about |∇u|. Therefore, when doing the integral estimate of the solution of equation
(1.1), the case of s �= 0 is more difficult to deal with than that of s = 0.

We use the contradiction method to prove the main theorem of the paper. Firstly, the exis-
tence of stable solution is assumed. Then we choose appropriate test function in (1.3) and the
stability condition (1.5) to get an inequality, so that one side of the inequality only depend
on the cut-off function and the condition on weights. In the end, the contradiction is derived
by selecting suitable cut-off function. The difficulty of this paper is how to choose the test
function appropriately. We also point out here that the test function selected in Theorem 2.2
is quite different from what we used in Theorem 2.1.

3 Proof of Main Results

In the proof below, we always denote BR(0) to be the ball centered at 0 with radius R > 0,
C as a ordinary constant whose exact values may change from line to line or so much as in
the same line. If this constant relies on an arbitrary small number ε, then we may denote it
by C(ε). We are going to use Young inequality in the form ab ≤ εap + C(ε)bq for p,q > 1
satisfying 1

p
+ 1

q
= 1 in the later proof.

The proof of the theorem will be affected by different values of p. As a consequence, we
will need the following lemma to discuss those cases.

Lemma 3.1 x, y are non-negative numbers, then

(i) If 0 ≤ γ < 1, there hold 2γ−1(xγ + yγ ) ≤ (x + y)γ ≤ xγ + yγ .
(ii) If γ ≥ 1, there hold (xγ + yγ ) ≤ (x + y)γ ≤ 2γ−1(xγ + yγ ).

Proof (i) On the one hand, we obtain from the properties of concave functions that xγ +yγ

2 ≤
(

x+y

2 )γ , where 0 ≤ γ < 1. On the other hand

xγ + yγ

(x + y)γ
= (

x

x + y
)γ + (

y

x + y
)γ

≥ x

x + y
+ y

x + y

= 1,

that is (x + y)γ ≤ xγ + yγ .
(ii) According to the features of convex functions we have (

x+y

2 )γ ≤ xγ +yγ

2 . And when
x = 0, the left side of the inequality obviously holds. When x �= 0, set s := y

x
and let g(s) :=

(1 + s)γ , f (s) := 1 + sγ . We verify that g(0) = f (0) = 1 and g′(s) ≥ f ′(s) for all s ≥ 0,
thus we get the required inequality. �

The following propositions play an important role in proving Theorem 2.1. We use the
same cut-off functions as in [19].
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Proposition 3.2 Fix α and p to satisfy either of the following conditions: (i) 2 ≤ p < 4
and α ∈ (0, 4√

2
4−p

(p−1)
); or (ii) p ≥ 4 and α ∈ (0, 4√

2
p−4

(p−1)
). Let u be a stable solution of

equation (2.1). Then, there exists a positive constant C = C(p,α) for which there holds

∫
RN

w2(x)e(α+1)uηpdx ≤ C

[∫
RN

w1(x)α+1w2(x)−α

(
|∇η| p(α+1)

p−1 η
p2−pα−2p

p−1

+ η−pα|∇η|p(α+1) + ηp + ηp−2α−2|∇η|2(α+1)

)
dx

]
, (3.1)

for any η ∈ C1
c (R

N) with 0 ≤ η ≤ 1 and such that ∇η = 0 in a neighborhood of {x ∈ R
N :

w2(x) = 0}.

Proof We need pay more attention to W
1,p

loc solution, because u is not assumed to be bounded,
eβuη may not belong to W

1,p

0

(
R

N,w1
)

for any β > 0 even with η ∈ C1
c (�). The idea is to

truncate eβu in a small region. More specifically, for each k ∈ N, let us define positive C1(R)

functions

ak(u) =
{

e
αu
2 , u < k,

( α
2 (u − k) + 1)e

αk
2 , u ≥ k,

and

bk(u) =
{

eαu, u < k,

(α(u − k) + 1)eαk, u ≥ k.

Since u ∈ W
1,p

loc

(
R

N,w1
)
, ak(u) and bk(u) defined in this way are obviously W

1,p

loc

(
R

N,

w1
)

for k ∈ N. Then for any η ∈ C1
c

(
R

N
)
, we have ak(u)η

p
2 and bk(u)ηp belonging to

W
1,p

0

(
RN,w1

)
. Using Remark 1.3, it is easy to see that ak(u)η

p
2 and bk(u)ηp are legitimate

test function.
A direct computation shows that

bk(u) ≤ a2
k (u),

α

4
b′

k(u) = a′
k(u)2, ak(u)pa′

k(u)2−p, bk(u)pb′
k(u)1−p, a2

k (u) and

a′
k(u)2 ≤ Ceαu,

(3.2)

for all u ∈R, where C depend only on p and α.
Next we divide the proof of the proposition into two cases.

Case 1 When 2 ≤ p < 4, we select ϕ = bk(u)ηp as a test function in formula (1.3). Since

∇ϕ = b′
k(u)ηp∇u + pbk(u)ηp−1∇η ,

using Cauchy-Schwarz inequality we get
∫

RN

w1(x)(s2 + |∇u|2) p−2
2 b′

k(u)ηp|∇u|2dx

≤ p

∫
RN

w1(x)(s2 + |∇u|2) p−2
2 bk(u)ηp−1|∇u||∇η|dx
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+
∫

RN

w2(x)eubk(u)ηpdx. (3.3)

In the (i) of Lemma 3.1, we set x := s2, y := |∇u|2 and γ := p−2
2 , then we have

the left side of (3.3) ≥
∫

RN

w1(x)2
p−4

2 (sp−2 + |∇u|p−2)|∇u|2b′
k(u)ηpdx,

and

the right side of (3.3) ≤ p

∫
RN

w1(x)(sp−2 + |∇u|p−2)|∇u||∇η|bk(u)ηp−1dx

+
∫

RN

w2(x)eubk(u)ηpdx.

Moreover, by Young inequality, (3.3) becomes

∫
RN

w1(x)|∇u|pb′
k(u)ηpdx

≤ 2
4−p

2

[
p

∫
RN

w1(x)

(
sp−2bk(u)ηp−1|∇u||∇η| + |∇u|p−1bk(u)ηp−1|∇η|

)
dx

+
∫

RN

w2(x)eubk(u)ηpdx

]
−

∫
RN

w1(x)sp−2b′
k(u)ηp|∇u|2dx

≤ ε

∫
RN

w1(x)|∇u|pb′
k(u)ηpdx + C(p, ε)

(∫
RN

w1(x)b′
k(u)1−pbk(u)p|∇η|p)dx

+
∫

RN

w1(x)(bk(u)
p

p−1 b′
k(u)

− 1
p−1 η

p(p−2)
p−1 |∇η| p

p−1 dx

)

+ 2
4−p

2

∫
RN

w2(x)eubk(u)ηpdx.

It implies for any ε ∈ (0,1), any k ∈ N and any nonnegative function η ∈ C1
c (R

N), there
exists a constant C(p, ε) > 0 such that

(1 − ε)

∫
RN

w1(x)|∇u|pb′
k(u)ηpdx

≤ 2
4−p

2

∫
RN

w2(x)eubk(u)ηpdx

+ C(p, ε)

(∫
RN

w1(x)b′
k(u)

1
1−p bk(u)

p
p−1 |∇η| p

p−1 η
p(p−2)

p−1 dx

+
∫

RN

w1(x)bk(u)pb′
k(u)1−p|∇η|pdx

)
. (3.4)

We take advantage of the stability assumption (1.5) with ϕ = ak(u)η
p
2 , note that

∇ϕ = a′
k(u)η

p
2 ∇u + p

2
ak(u)η

p−2
2 ∇η,
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from equation (1.5) and Lemma 3.1, we can obtain

∫
RN

w2(x)eua2
k (u)ηpdx

≤
∫

RN

w1(x) (p − 1)
(
s2 + |∇u|2) p−2

2 |a′
k(u)η

p
2 ∇u + p

2
ak(u)η

p−2
2 ∇η|2dx

≤
∫

RN

w1(x) (p − 1)
(
sp−2 + |∇u|p−2

) |a′
k(u)η

p
2 ∇u + p

2
ak(u)η

p−2
2 ∇η|2dx

≤ (p − 1)

∫
RN

w1(x)

[
sp−2

(
a′

k(u)2ηp|∇u|2 + pak(u)a′
k(u)ηp−1|∇u||∇η|

+ p2

4
a2

k (u)ηp−2|∇η|2
)

+ a′
k(u)2ηp|∇u|p + pak(u)a′

k(u)ηp−1|∇u|p−1|∇η|

+ p2

4
a2

k (u)ηp−2|∇η|2|∇u|p−2

]
dx. (3.5)

Now we concentrate on the right side of (3.5). Firstly, according to Young inequality we
have

(p − 1)

∫
RN

sp−2w1(x)

(
a′

k(u)2ηp|∇u|2 + p|ak(u)|a′
k(u)ηp−1|∇u||∇η|

)
dx

≤ ε

4

∫
RN

w1(x)a′
k(u)2ηp|∇u|pdx + C(p, ε)

∫
RN

w1(x)a′
k(u)2ηpdx

+ ε

4

∫
RN

w1(x)a′
k(u)2ηp|∇u|pdx

+ C(p, ε)

∫
RN

w1(x)(a′
k(u))

p−2
p−1 ak(u)

p
p−1 η

p(p−2)
p−1 |∇η| p

p−1 dx.

By the same way, we conclude that

p(p − 1)

∫
RN

w1(x)

(
ak(u)a′

k(u)|∇u|p−1ηp−1|∇η| + p

4
a2

k (u)ηp−2|∇u|p−2|∇η|2
)

dx

≤ ε

4

∫
RN

w1(x)a′
k(u)2ηp|∇u|pdx + C(p, ε)

∫
RN

w1(x)(a′
k(u))2−pak(u)p|∇η|pdx

+ ε

4

∫
RN

w1(x)a′
k(u)2ηp|∇u|pdx + C(p, ε)

∫
RN

w1(x)(ak(p))p|∇η|pa′
k(u)2−pdx.

Putting these two estimates into the right side of (3.5), we obtain that for any ε ∈ (0,1), any
k ∈ N and any nonnegative function η ∈ C1

c (R
N), there exists a constant C(p, ε) > 0 such

that
∫

RN

w2(x)euak
2
(u)ηpdx ≤ (p − 1 + ε)

∫
RN

w1(x)a′
k(u)2ηp|∇u|pdx

+ C(p, ε)

[∫
RN

w1(x)

(
a′

k(u)2ηp + a′
k(u)2−pak(u)p|∇η|p
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+ a′
k(u)

p−2
p−1 ak(u)

p
p−1 η

p(p−2)
p−1 |∇η| p

p−1

)
dx

]

+ p2(p − 1)

4

∫
RN

w1(x)sp−2a2
k (u)ηp−2|∇η|2dx. (3.6)

Substitute the first term of the right side of (3.6) by (3.4), and with the help of (3.2) we
obtain

∫
RN

w2(x)eua2
k (u)ηpdx

≤ α(p − 1 + ε)

4(1 − ε)
2

4−p
2

∫
RN

w2(x)eubk(u)ηpdx

+ p2(p − 1)

4

∫
RN

w1(x)sp−2a2
k (u)ηp−2|∇η|2dx

+ C(p, ε)

[∫
RN

w1(x)

(
bk(u)

p
p−1 b′

k(u)
1

1−p η
p(p−2)

p−1 |∇η| p
p−1 + b′

k(u)1−pbk(u)|p∇η|p

+ a′
k(u)2−pak(u)p|∇η|p + a′

k(u)2ηp + a′
k(u)

p−2
p−1 ak(u)

p
p−1 η

p(p−2)
p−1 |∇η| p

p−1

)
dx

]

≤ α(p − 1 + ε)

4(1 − ε)
2

4−p
2

∫
RN

w2(x)eua2
k (u)ηpdx

+ p2(p − 1)

4

∫
RN

w1(x)sp−2eαuηp−2|∇η|2dx

+ C(p, ε)

[∫
RN

w1(x)

(
eαuη

p(p−2)
p−1 |∇η| p

p−1 + eαu|∇η|p + eαuηp

)
dx

]
. (3.7)

We denote βε = 1 − α(p−1+ε)

4(1−ε)
2

4−p
2 , then limε→0+ βε = 1 − α(p−1)

4 2
4−p

2 > 0 for α ∈
(0, 4√

2
4−p

(p−1)
). Hence there exists an ε > 0 small enough, depending on p and α, such

that βε > 0. In that way, (3.7) is transformed into

βε

∫
RN

w2(x)eua2
k (u)ηpdx

≤ C(p, ε,α)

[∫
RN

w1(x)

(
eαuη

p(p−2)
p−1 |∇η| p

p−1 + eαu|∇η|p + eαuηp

)
dx

]

+ p2(p − 1)

4

∫
RN

w1(x)sp−2eαuηp−2|∇η|2dx.

Let k → ∞, by Fatou’s lemma, these exists a constant C = C(p,α) > 0 such that for any
nonnegative function η ∈ C1

c (R
N) we have

∫
RN

w2(x)e(α+1)uηpdx ≤ C

∫
RN

w1(x)eαu

(
|∇η| p

p−1 η
p(p−2)

p−1 + |∇η|p + ηp + ηp−2|∇η|2
)

dx.

(3.8)
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Using Young inequality, we obtain

∫
RN

w2(x)e(α+1)uηpdx ≤ C

[∫
RN

w1(x)α+1w2(x)−α

(
|∇η| p(α+1)

p−1 η
p2−pα−2p

p−1

+ η−pα|∇η|p(α+1) + ηp + ηp−2α−2|∇η|2(α+1)

)
dx

]

+ 1

2

∫
RN

w2(x)e(α+1)uηpdx. (3.9)

Hence, (3.1) follows at once.

Case 2 When p ≥ 4, as in case 1, we choose ϕ = bk(u)ηp as the test function in (1.3) and
obtain formula (3.3). Set x := s2, y := |∇u|2 and γ := p−2

2 in (ii) of Lemma 3.1, we have

the left side of (3.3) ≥
∫

RN

w1(x)(sp−2 + |∇u|p−2)|∇u|2b′
k(u)ηpdx,

and

the right side of (3.3) ≤
∫

RN

√
2

p−4
pw1(x)(sp−2 + |∇u|p−2)|∇u||∇η|bk(u)ηp−1dx

+
∫

RN

w2(x)eubk(u)ηpdx.

Therefore,
∫

RN

w1(x)|∇u|pb′
k(u)ηpdx ≤ p

∫
RN

w1(x)(
√

2)p−4sp−2|∇u||∇η|bk(u)ηp−1dx

+
∫

RN

w2(x)eubk(u)ηpdx

+ p

∫
RN

w1(x)(
√

2)p−4|∇u|p−1|∇η|bk(u)ηp−1dx.

Furthermore using Young inequality, it yields

∫
RN

w1(x)|∇u|pb′
k(u)ηpdx

≤ C(ε,p)

[∫
RN

w1(x)|∇η| p
p−1 b′

k(u)
− 1

p−1 bk(u)
p

p−1 η
p(p−2)

p−1 dx

+
∫

RN

w1(x)|∇η|pbk(u)pb′
k(u)1−pdx

]
+

∫
RN

w2(x)eubk(u)ηpdx

+ ε

∫
RN

w1(x)|∇u|pb′
k(u)ηpdx,

which implies

(1 − ε)

∫
RN

w1(x)|∇u|pb′
k(u)ηpdx
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≤
∫

RN

w2(x)eubk(u)ηpdx + C(ε,p)

(∫
RN

w1(x)b′
k(u)

1
1−p bk(u)

p
p−1 |∇η| p

p−1 η
p(p−2)

p−1 dx

+
∫

RN

w1(x)bk(u)pb′
k(u)1−p|∇η|pdx

)
. (3.10)

We apply the test function ϕ = ak(u)η
p
2 in the stability assumption (1.5) and get

∫
RN

w2(x)eua2
k (u)ηpdx ≤ (

√
2)p−4(p − 1)

[∫
RN

w1(x)

(
p|∇u|p−1ak(u)|a′

k(u)||∇η|ηp−1

+ p2

4
|∇u|p−2a2

k (u)ηp−2|∇η|2 + |∇u|pa′
k(u)2ηp

)
dx

+
∫

RN

w1(x)sp−2

(
a′

k(u)2ηp|∇u|2 + pak(u)a′
k(u)ηp−1|∇u||∇η|

+ p2

4
a′

k(u)ηp−2|∇η|2
)

dx

]
.

By Young inequality, it is true that

∫
RN

w2(x)euak(u)2ηpdx ≤ C(ε,p)

[∫
RN

w1(x)

(
|a′

k(u)|2−p|∇η|p|ak(u)|p + a′
k(u)2ηp

+ a′
k(u)

p−2
p−1 ak(u)

p
p−1 η

p(p−2)
p−1 |∇η| p

p−1

)
dx

]

+ p2

4
(
√

2)p−4(p − 1)

∫
RN

w1(x)sp−2ak(u)2ηp−2|∇η|2dx

+ ((
√

2)p−4(p − 1) + ε)

∫
RN

w1(x)a′
k(u)2ηp|∇u|pdx. (3.11)

Combining (3.10), (3.11) and (3.2), we obtain

∫
RN

w2(x)eua2
k (u)ηpdx ≤ C(ε,p)

[∫
RN

w1(x)

(
|∇η| p

p−1 b′
k(u)

− 1
p−1 bk(u)

p
p−1 η

p(p−2)
p−1

+ |∇η|pbk(u)pb′
k(u)1−p + |a′

k(u)|2−p|∇η|pak(u)p

+ a′
k(u)2ηp + a′

k(u)
p−2
p−1 ak(u)

p
p−1 η

p(p−2)
p−1 |∇η| p

p−1

)
dx

]

+ p2

4
(
√

2)p−4(p − 1)

∫
RN

w1(x)sp−2a2
k (u)ηp−2|∇η|2dx

+ (
√

2
p−4

(p − 1) + ε)α

4(1 − ε)

∫
RN

w2(x)eubk(u)ηpdx.

We set βε = 1 − (
√

2
p−4

(p−1)+ε)α

4(1−ε)
. Since α ∈ (0, 4√

2
p−4

(p−1)
), then limε→0+ βε = 1 −

√
2
p−4

(p−1)α

4 > 0. Thus we can find some ε > 0 small enough, depending on p and α, such
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that βε > 0. Hence

βε

∫
RN

w2(x)eua2
k (u)ηpdx ≤ C(ε,p,α)

[∫
RN

w1(x)eαu

(
η

p(p−2)
p−1 |∇η| p

p−1 + |∇η|p + ηp

)
dx

]

+ p2

4
(
√

2)p−4(p − 1)

∫
RN

w1(x)eαusp−2ηp−2|∇η|2dx. (3.12)

Let k → ∞, by Fatou’s lemma we obtain (3.8), and in combination with Young inequality,
we get formula (3.1). �

Now we prepare to prove the first main result.

Proof of Theorem 2.1 By contradiction, we assume that equation (2.1) exists a stable solution
u. Because we finally get the Liouville theorem by making R → ∞, we can choose R large
enough so that BR(0) contains the set V := {x ∈R

N |w2(x) = 0}. According to the selection
of ηR in equation 1.8, we know that when |x| < R, we have ∇ηR = 0. That is, ∇ηR = 0 in a
neighbourhood of V := {x ∈R

N |w2(x) = 0}.
(i) When 2 ≤ p < 4, N < 4√

2
4−p

(p−1)
(n − m) − m, we apply cut-off function ηR(x) de-

fined in (1.8) to (3.1). Consequently, for all R > R0 there exists a constant C independent of
R such that ∫

BR

w2(x)e(α+1)udx ≤ CRmα+m−nα+N . (3.13)

Since limα→ 4√
24−p

(p−1)

N + (α + 1)m − nα < 0, we may find some α ∈ (0, 4√
2

4−p
(p−1)

), such

that N + (α +1)m−nα < 0. Letting R → ∞ in (3.13), we can get
∫

RN w2(x)e(α+1)udx = 0,
this is a contradiction.

(ii) While p ≥ 4, we suppose that (2.1) admits a stable solution u in dimension N <
4√

2
p−4

(p−1)
(n − m) − m. Then we apply cut-off function (1.8) to Proposition 3.2. There

exists a constant C independent of R making inequality (3.13) true for all R > R0, we may
find some α ∈ (0, 4√

2
p−4

(p−1)
) such that mα + m − nα + N < 0. Letting R → ∞, we obtain∫

RN w2(x)e(α+1)udx = 0, a contradiction. �

This completes the proof of Theorem 2.1.
For the proof of Theorem 2.2, we need another proposition substituting Proposition 3.2.

Proposition 3.3 Suppose that u is a stable solution of equation (2.2). Then there exists a
constant C = C(p,α) > 0 such that for any function η ∈ C1

c (R
N) with 0 ≤ η ≤ 1, ∇η = 0

in a neighborhood of {x ∈R
N : w2(x) = 0}, there hold

∫
RN

w2(x)(
1

u
)4p+1ηpdx

≤ C

[∫
RN

w1(x)
4p+1

3 w2(x)
2−4p

3 η
4p2−7p−2

3 |∇η| 8p+2
3 dx

+
∫

RN

w1(x)
4p+1
p+1 w2(x)

−3p
p+1 |∇η| 4p2+p

p+1 dx +
∫

RN

w1(x)4p+1w2(x)−4pη4p2+pdx

+
∫

RN

w1(x)
4p2−3p−1

2p−1 w2(x)
−4p2+5p

2p−1 η
(p2−2p)(4p+1)

2p−1 |∇η| 4p2+p
2p−1 dx

]
.
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Proof Since the nonlinear part contains singular term, the truncation functions ak(u) and
bk(u) which we picked in the proof of Theorem 2.1 are no longer valid. By the fact that u ∈
W

1,p

loc

(
R

N,w1
)

is a positive stable bounded solution of equation (2.2), then ρ(u) = u1−2p ,

σ(u) = 1
1−4p

u1−4p are obviously W
1,p

loc

(
R

N,w1

)
. According to Remark 1.3, we know that

ρ(u)η
p
2 and σ(u)ηp are legitimate test function.

It is straightforward to figure out that

|σ ′(u)|1−p|σ(u)|p = C1u
−3p, |σ ′(u)| 1

1−p |σ(u)| p
p−1 = C2u

−4p2+5p
p−1 ,

ρ ′(u)2 = (1 − 2p)2σ ′(u),

(3.14)

and furthermore

|ρ ′(u)|2−p|ρ(u)|p = C3u
−3p, |ρ ′(u)| p−2

p−1 |ρ(u)| p
p−1 = C4u

−4p2+5p
p−1 , (3.15)

where C1,C2,C3,C4 are positive constants depending only on p.
Step 1 Let η ∈ C1

c

(
R

N
)

and select ϕ = σ(u)ηp be nonnegative as a test function in (1.3).
Since

∇ϕ = σ ′(u)ηp∇u + pσ(u)ηp−1∇η,

using Cauchy-Schwarz inequality we obtain
∫

RN

w1(x)(s2 + |∇u|2) p−2
2 σ ′(u)ηp|∇u|2dx

≤ p

∫
RN

w1(x)(s2 + |∇u|2) p−2
2 σ(u)ηp−1|∇u||∇η|dx

−
∫

RN

w2(x)e
1
u σ (u)ηpdx. (3.16)

When 2 ≤ p < 4, in the (i) of Lemma 3.1, we set x := s2, y := |∇u|2 and γ := p−2
2 , then we

have

the left side of (3.16) ≥
∫

RN

w1(x)2
p−4

2 (sp−2 + |∇u|p−2)|∇u|2σ ′(u)ηpdx,

and

the right side of (3.16) ≤ p

∫
RN

w1(x)(sp−2 + |∇u|p−2)|∇u||∇η|σ(u)ηp−1dx

−
∫

RN

w2(x)e
1
u σ (u)ηpdx.

Moreover, by Young inequality, (3.16) becomes
∫

RN

w1(x)|∇u|pσ ′(u)ηpdx

≤ 2
4−p

2

[
p

∫
RN

w1(x)

(
sp−2σ(u)ηp−1|∇u||∇η| + |∇u|p−1σ(u)ηp−1|∇η|

)
dx
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−
∫

RN

w2(x)e
1
u σ (u)ηpdx

]
−

∫
RN

w1(x)sp−2σ ′(u)ηp|∇u|2dx

≤ ε

∫
RN

w1(x)|∇u|pσ ′(u)ηpdx + C(p, ε)

(∫
RN

w1(x)σ ′(u)1−pσ (u)p|∇η|p)dx

+
∫

RN

w1(x)(σ (u)
p

p−1 σ ′(u)
− 1

p−1 η
p(p−2)

p−1 |∇η| p
p−1 dx

)

− 2
4−p

2

∫
RN

w2(x)e
1
u σ (u)ηpdx.

When p ≥ 4, we set x := s2, y := |∇u|2 and γ := p−2
2 in (ii) of Lemma 3.1, we have

the left side of (3.16) ≥
∫

RN

w1(x)(sp−2 + |∇u|p−2)|∇u|2σ ′(u)ηpdx,

and

the right side of (3.16) ≤
∫

RN

√
2

p−4
pw1(x)(sp−2 + |∇u|p−2)|∇u||∇η|σ(u)ηp−1dx

−
∫

RN

w2(x)e
1
u σ (u)ηpdx.

Therefore,

∫
RN

w1(x)|∇u|pσ ′(u)ηpdx

≤ p

∫
RN

w1(x)(
√

2)p−4sp−2|∇u||∇η|σ(u)ηp−1dx −
∫

RN

w2(x)e
1
u σ (u)ηpdx

+ p

∫
RN

w1(x)(
√

2)p−4|∇u|p−1|∇η|σ(u)ηp−1dx.

Furthermore using Young inequality, it yields

∫
RN

w1(x)|∇u|pσ ′(u)ηpdx

≤ C(ε,p)

[∫
RN

w1(x)|∇η| p
p−1 σ ′(u)

− 1
p−1 σ(u)

p
p−1 η

p(p−2)
p−1 dx

+
∫

RN

w1(x)|∇η|pσ (u)pσ ′(u)1−pdx

]
−

∫
RN

w2(x)e
1
u σ (u)ηpdx

+ ε

∫
RN

w1(x)|∇u|pσ ′(u)ηpdx.

We finally get that for ε small enough, and any nonnegative function η ∈ C1
c (R

N), there
exists a constant C(p, ε) > 0 such that for any p ≥ 2, there have

(1 − ε)

∫
RN

w1(x)|∇u|pσ ′(u)ηpdx
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≤ C(p, ε)

[∫
RN

w1(x)σ ′(u)
1

1−p σ (u)
p

p−1 |∇η| p
p−1 η

p(p−2)
p−1 dx

+
∫

RN

w1(x)σ (u)pσ ′(u)1−p|∇η|pdx

]
. (3.17)

Step 2 Utilizing the stability assumption (1.5), we choose ϕ = ρ(u)η
p
2 as the test function,

note that

∇ϕ = ρ ′(u)η
p
2 ∇u + p

2
ρ(u)η

p−2
2 ∇η,

when 2 ≤ p < 4, we get

∫
RN

1

u2
w2(x)e

1
u ρ(u)2ηpdx

≤ (p − 1)

∫
RN

w1(x)

[
sp−2

(
ρ ′(u)2ηp|∇u|2 + pρ(u)ρ(u)′ηp−1|∇u||∇η|

+ p2

4
ρ(u)2ηp−2|∇η|2

)
+ ρ ′(u)2ηp|∇u|p + pρ(u)ρ ′(u)ηp−1|∇u|p−1|∇η|

+ p2

4
ρ(u)2ηp−2|∇η|2|∇u|p−2

]
dx.

By Young inequality, we have

∫
RN

1

u2
w2(x)e

1
u ρ(u)2ηpdx

≤ (p − 1 + ε)

∫
RN

w1(x)ρ ′(u)2ηp|∇u|pdx + C(p, ε)

[∫
RN

w1(x)

(
ρ ′(u)2ηp

+ ρ ′(u)2−pρ(u)p|∇η|p + ρ ′(u)
p−2
p−1 ρ(u)

p
p−1 η

p(p−2)
p−1 |∇η| p

p−1

)
dx

]

+ p2(p − 1)

4

∫
RN

w1(x)sp−2ρ(u)2ηp−2|∇η|2dx.

When p ≥ 4, we obtain

∫
RN

1

u2
w2(x)e

1
u ρ(u)2ηpdx ≤ (

√
2)p−4(p − 1)

∫
RN

w1(x)

[
sp−2

(
ρ ′(u)2ηp|∇u|2 + pρ(u)ρ(u)′ηp−1|∇u||∇η| + p2

4
ρ(u)2ηp−2|∇η|2

)

+ ρ ′(u)2ηp|∇u|p + pρ(u)ρ ′(u)ηp−1|∇u|p−1|∇η| + p2

4
ρ(u)2ηp−2|∇η|2|∇u|p−2

]
dx.

By Young inequality, we have

∫
RN

1

u2
w2(x)e

1
u ρ(u)2ηpdx
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≤ (
√

2)p−4(p − 1 + ε)

∫
RN

w1(x)ρ ′(u)2ηp|∇u|pdx + C(p, ε)

[∫
RN

w1(x)

(
ρ ′(u)2ηp

+ ρ ′(u)2−pρ(u)p|∇η|p + ρ ′(u)
p−2
p−1 ρ(u)

p
p−1 η

p(p−2)
p−1 |∇η| p

p−1

)
dx

]

+ (
√

2)p−4p2(p − 1)

4

∫
RN

w1(x)sp−2ρ(u)2ηp−2|∇η|2dx.

Hence, for any p ≥ 2, there exists an ε small enough such that

∫
RN

w2(x)
1

u2
e

1
u ρ(u)2ηpdx

≤ C

∫
RN

w1(x)

[
ρ(u)2ηp−2|∇η|2 + ρ(u)pρ ′(u)2−p|∇η|p + ρ ′(u)2ηp

+ ρ ′(u)2ηp|∇u|p + ρ(u)
p

p−1 ρ ′(u)
p−2
p−1 η

p(p−2)
p−1 |∇η| p

p−1

]
dx. (3.18)

Step 3 For the fourth term on the right-hand side of equation (3.18), we use (3.14) and (3.17)
to get

∫
RN

w1(x)ρ ′(u)2ηp|∇u|pdx

≤ C

∫
RN

w1(x)

[
σ ′(u)

1
1−p σ (u)

p
p−1 |∇η| p

p−1 η
p(p−2)

p−1 + σ(u)pσ ′(u)1−p|∇η|p
]
dx. (3.19)

We combine (3.18) with (3.19) to obtain

∫
RN

w2(x)
1

u2
e

1
u ρ(u)2ηpdx

≤ C

∫
RN

w1(x)

[
ρ(u)2ηp−2|∇η|2 + ρ(u)pρ ′(u)2−p|∇η|p + ρ ′(u)2ηp

+ σ ′(u)
1

1−p σ (u)
p

p−1 |∇η| p
p−1 η

p(p−2)
p−1 + σ(u)pσ ′(u)1−p|∇η|p

+ ρ(u)
p

p−1 ρ ′(u)
p−2
p−1 η

p(p−2)
p−1 |∇η| p

p−1

]
dx. (3.20)

Now using the fact e1/u > 1
u

and employing (3.15) in the left side of inequality (3.20), it
yields

∫
RN

w2(x)u−4p−1ηpdx

≤ C

∫
RN

w1(x)

[
u−4p+2ηp−2|∇η|2 + u−3p|∇η|p + u−4pηp

+ u
−4p2+5p

p−1 η
p(p−2)

p−1 |∇η| p
p−1

]
dx. (3.21)
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By Young inequality we have for small ε that

∫
RN

w2(x)(
1

u
)4p+1ηpdx

≤ C

[∫
RN

w1(x)
4p+1

3 w2(x)
2−4p

3 η
4p2−7p−2

3 |∇η| 8p+2
3 dx

+
∫

RN

w1(x)
4p+1
p+1 w2(x)

−3p
p+1 |∇η| 4p2+p

p+1 dx

+
∫

RN

w1(x)4p+1w2(x)−4pη4p2+pdx

+
∫

RN

w1(x)
4p2−3p−1

2p−1 w2(x)
−4p2+5p

2p−1 η
(p2−2p)(4p+1)

2p−1 |∇η| 4p2+p
2p−1 dx

]
.

Then we complete the proof of Proposition 3.3. �

At last, we are going to prove the second main result.

Proof of Theorem 2.2 By contradiction, let us suppose that u is a bounded stable solution to
(2.2) such that 0 < u ≤ M in R

N . We have known that w1(x) ≤ C1|x|m and w2(x) ≥ C2|x|n
when |x| is large enough. Then by Proposition 3.3, we have

∫
RN

w2(x)(
1

u
)4p+1ηpdx

≤ C

[∫
RN

|x| (4p+1)m−(4p−2)n
3 η

4p2−7p−2
3 |∇η| 8p+2

3 dx +
∫

RN

|x| (4p+1)m−3pn
p+1 |∇η| 4p2+p

p+1 dx

+
∫

RN

|x|(4p+1)m−4pnη4p2+pdx +
∫

RN

|x| (4p2−3p−1)m−(4p2−5p)n
2p−1 η

(p2−2p)(4p+1)
2p−1 |∇η| 4p2+p

2p−1 dx

]
.

(3.22)

Choosing η = ηR in (3.19) and according to the conditions of the theorem, we have

∫
BR(0)

w2(x)(
1

u
)4p+1dx

≤ C

[
R

(4p+1)m−(4p−2)n−8p−2
3 +N + R

(4p+1)m−3pn−p(4p+1)
p+1 +N + R(4p+1)m−4pn+N

+ R
(4P 2−3p−1)m−(4p2−5p)n−p(4p+1)

2p−1 +N

]

≤ CR(4p+1)m−4pn+N. (3.23)

Therefore, letting R → ∞ in (3.23), we obtain

∫
RN

w2(x)(
1

u
)4p+1dx = 0,

which is a contradiction.
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At the end of the paper, we discuss the stable solution of equation (1.1) in special case.
In fact, let s = 0 and p = 2 in equation (1.1), and we consider the Hardy-Hénon equation

−div(|x|m∇u) = |x|neu in R
N . (3.24)

By solving ordinary differential equations, we find that

ū(x) = ln
(2 − m + n)(N + m − 2)

|x|2−m+n
, n > m − 2

is a radial solution of equation (3.24). Next, we verify the stability condition (1.5), for all
ϕ ∈ C1

c

(
R

N
)
, it holds

∫
RN

|x|m|∇ϕ|2 − |x|neūϕ2dx =
∫

RN

|x|m|∇ϕ|2 − (2 − m + n)(N + m − 2)
ϕ2

|x|2−m
dx

(3.25)

According to Lemma 2.1 in [16], for all ϕ ∈ C1
c

(
R

N
)
, we derive

∫
RN

|x|m|∇ϕ|2 ≥ (
N + m − 2

2
)2

∫
RN

ϕ2

|x|2−m
dx (3.26)

With the help of (3.25), (3.26) yields that

∫
RN

|x|m|∇ϕ|2 − |x|neūϕ2dx ≥ (N + m − 2)(N + 5m − 4n − 10)

4

∫
RN

ϕ2

|x|2 dx (3.27)

Under the assumption of N ≥ 10 − 5m + 4n, we have

∫
RN

|x|m|∇ϕ|2 − |x|neūϕ2dx ≥ 0 (3.28)

Therefore, when N ≥ 10−5m+4n, and n > m−2, ū is a stable solution of equation (3.24).
�
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