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Abstract
Under the framework given by a growth condition, a Lyapunov property and some continuity
assumptions, the present work shows the existence of lower semicontinuous solutions to the
Shapley equation for zero-sum semi-Markov games with Borel spaces, weakly continuous
transition probabilities and possible unbounded payoff. It is also shown the existence of
stationary optimal strategies for the minimizing player and stationary ε-optimal strategies
for the maximizing player. These results are proved using a fixed-point approach. Moreover,
it is shown the existence of a deterministic stationary minimax strategy for a minimax semi-
Markov inventory problem under mild assumptions on the demand distribution.

Keywords Semi-Markov games · Average payoff · Lyapunov conditions · Shapley
equation · Fixed-point approach

Mathematics Subject Classification 91A15 · 91A50

1 Introduction

This paper deals with zero-sum (ratio) average payoff semi-Markov games with Borel
spaces, weakly continuous transition probabilities and unbounded lower semicontinuous
payoff function. It is shown the existence of solutions to the Shapley equation and the exis-
tence of an optimal stationary strategy for the minimizing player and an ε-optimal stationary
strategy for the maximizing one assuming that the game model satisfies a growth and Lya-
punov conditions besides some continuity properties. The framework settled by these con-
ditions was already used in several previous works dealing with Markov and semi-Markov
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decision processes (for strongly continuous transition probabilities–in the control variable–
see references [4, 6, 7, 21]; for weakly continuous transition probabilities–in the state-action
pair–see references [9, 12, 13, 16, 24]) as well as with Markov and semi-Markov games (for
strongly continuous transition probabilities see [8, 22]; for the weakly continuous case see
[10, 11]). See also references [2, 17] for applications in communications systems. In fact,
the present work extends the fixed-point approach of references [21, 24] to zero-sum aver-
age semi-Markov games with weakly transition probabilities and provides an application to
a minimax semi-Markov inventory problem under fairly weak assumptions on the demand
distributions. The readers are referred to reference [15] for a review on zero-sum stochastic
games in discrete time. It is worth mentioning that zero-sum average payoff semi-Markov
games were seemingly studied first by Tanaka and Wakuta [20],1 who considered compact
state and action spaces and assumed that the payoff function is continuous (thus, bounded),
the transition law is weakly continuous among other conditions.

Concerning reference [10] some comments are in order. Jaśkiewicz [10] shows similar
results to the present work under similar conditions but there are, of course, some important
differences. To begin, to take advantage of the contraction property implied by the Lyapunov
condition, she directly “smooths” functions–that are not lower semicontinuous–by taking
liminf pointwise, which makes the proof of the validity of the Shapley equation somewhat
technically involved. The present work gives a simpler proof of this result by using lower
semicontinuous envelopes of functions and defining a suitable contraction operator. More-
over, the Lyapunov conditions of the present paper are weaker than those used in [10]. A
second difference regards with the regularity property of the controlled processes, which is
guaranteed in [10] by imposing essentially the standard condition on the holding time distri-
bution (see, for instance, [19, Prop. 5.1(a), p. 88.]). Recall that the regularity property states
that the involved stochastic processes experience finitely many transitions in bounded time
intervals. This property, together the Lyapunov condition, plays an important role to guar-
antee that the ratio average payoff is well defined and finite-valued and also to show that
the Shapley equation yields the existence of optimal or almost optimal stationary strategies
for the players. These two latter facts are given by granted and not discussed explicitly by
Jaśkiewicz [10]. In contrast, the present work does not impose any probabilistic condition
additional to the Lyapunov condition; instead, in order to ensure that the ratio average pay-
off criterion is well defined, it is assumed that the admissible action sets for both players are
compact sets. (Jaśkiewicz [10] supposes that the admissible action sets for one player are
compact sets, while for the other player the admissible action sets are complete spaces.) In
fact, the mentioned Lyapunov condition implies that the semi-Markov processes induced by
stationary policies are regular (see [23, Theorem 18.3.4 and Remark 18.3.6.]). On the other
hand, Jaśkiewicz [10] illustrates her results with a minimax Markov inventory problem with
a finite number of possible distributions for the random demands, while the present work
considers a minimax semi-Markov inventory problem assuming only that the first and sec-
ond moments belong to bounded intervals. For additional results on minimax (or robust)
control problems see references [3, 14, 16].

The remainder of the paper is organized as follows. Section 2 introduces the zero-sum
semi-Markov game and the (ratio) average payoff performance index besides some standard
concepts and notation. Section 3 states the assumptions and the main result (Theorem 3.4);
its proof is given in Sect. 5. Section 4 shows the existence of a deterministic stationary
minimax policy for a semi-Markov minimax inventory problem (see Theorem 4.2); the proof
is given in Sect. 5.

1The authors thank to the referee for bringing their attention to this paper.
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2 Zero-Sum Average Payoff Semi-Markov Games

The following standard concepts and notation are used throughout the paper. For a Borel
space S–that is, a subset of a complete and separable metric space–B(S) denotes the Borel
σ -algebra; any statement about “measurability” should be meant as measurability with re-
spect to B(S). The family of probability measures on S is denoted by P(S). Given two Borel
spaces S and S ′, a kernel K(·|·) on S given S ′ is a mapping such that K(·|s ′) is a measure
on S for each s ′ ∈ S ′, and K(B|·) is a measurable function on S ′ for each subset B ∈ B(S).
The kernel K(·|·) is called stochastic kernel if K(·|s ′) ∈ P(S) for all s ′ ∈ S ′.

Let K(·|·) be a kernel on S given S ′. For an arbitrary measurable function u : S →R, let

Ku(s ′) :=
∫
S

u(s)K(ds|s ′), s ′ ∈ S ′,

whenever the integral is well defined. Similarly, for a measure ν ∈ P(S), set

ν(u) :=
∫
S

u(s)ν(ds).

Given a measurable function w : S → [1,∞), Bw(S) stands for the family of functions
u on S with finite w-norm, which is defined as

||u||w := sup
s∈S

|u(s)|
w(s)

.

By Lw(S) denote the class of lower semicontinuous functions belonging to Bw(S). The
normed space (Bw(S), || · ||w) is a Banach space while (Lw(S), dw) is a complete metric
space, where dw is the metric induced by the w-norm. The space of continuous bounded
functions defined on S is denoted as Cb(S).

The subset of nonnegative real numbers is denoted by R+ and the positive (nonnegative,
resp.) integers subset by N (N0, resp.).

The game model. We are interested in zero-sum semi-Markov games with the (ratio)
average cost criterion given below (6). This kind of games is specified by a semi-Markov
game model given by the collection

(X,A,B,KA,KB, q, c), (1)

where the Borel spaces X,A,B denote the state space of the game, and the action or control
subsets for player 1 and player 2, respectively. The constraint sets KA and KB belongs to
B(X × A) and B(X × B), respectively. The x-sections

A(x) := {a ∈ A : (x, a) ∈KA}
B(x) := {b ∈ B : (x, b) ∈KB}

stand for the admissible action or control subsets for players 1 and 2, respectively, when the
game is in state x ∈ X. The set

K := {(x, a, b) : x ∈ X, a ∈ A(x), b ∈ B(x)}
is a Borel subset of the Cartesian product X × A × B (see [18, Lemma 1.1]). The stochastic
kernel q(·|·, ·, ·) on X×R+ given K is the transition law of the game. Finally, the measurable
function c : K×R+ →R is the payoff function of the game.



9 Page 4 of 27 Ó. Vega-Amaya et al.

The game is played over an infinite horizon as follows: at time t = 0, both players observe
the game in some state, say, x0 = x ∈ X, and independently choose admissible controls
a0 = a ∈ A(x) and b0 = b ∈ B(x). Then, the game remains in state x0 = x for a nonnegative
random time �1 and, at this time, it moves to a new state x1 = x ′ ∈ X according to the
probability measure q(·|x, a, b), that is,

q(B × D|x, a, b) = Pr[(x1,�1) ∈ B × D|x0 = x, a0 = a, b0 = b], (2)

for B ∈ B(X),D ∈ B(R+). Immediately after the transition occurs, player 1 pays the amount
c(x, a, b,�1) to player 2, and they choose new controls, say, a1 = a′ ∈ A(x ′) and b1 = b′ ∈
B(x ′), and the above process repeats over and over again.

This procedure engenders a stochastic process {(xn, an, bn,�n+1)}, where, for each n ∈
N0, xn is the state of the game, an and bn are the control variables for players 1 and 2,
respectively, and �n+1 is the time the game spends in state xn; thus, the random time �n+1

is called holding or sojourn time at state xn. Note that the random variable

Tn := Tn−1 + �n, n ∈N, and T0 := 0,

is the time of the nth jump of the game. Thus, if xn = x, an = a and bn = b, according to
(2), the conditional marginal

Q(B|x, a, b) := q(B ×R+|x, a, b) (3)

rules the state toward the game moves in the next transition irrespective of the time it takes
to occur. Similarly, the conditional marginal

F(D|x, a, b) := q(X × D|x, a, b), D ∈ B(R+),

rules the time at which the next transition happens irrespective the state toward which the
system moves out; thus, it is called the holding time distribution. Then,

τ(x, a, b) :=
∫
R+

tF (dt |x, a, b) (4)

is the mean holding or sojourn time, while

C(x, a, b) :=
∫
R+

c(x, a, b, t)F (dt |x, a, b) (5)

is the mean payoff that player 1 makes to player 2.
Strategies. Let H0 := X and Hn := K×R+ × Hn−1 for n ∈ N. Thus, for n ∈ N, each

element

hn = (x0, a0, b0,�1, . . . , xn−1, an−1, bn−1,�n, xn) ∈ Hn

is the history of the game up to the nth transition, which occurs in the time Tn. A strategy
for player 1 is a sequence π1 = {π1

n } of stochastic kernels on A given Hn that satisfy the
constraint

π1
n (A(xn)|hn) = 1 ∀hn ∈ Hn,n ∈N0.
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The class of all strategies for player 1 is denoted by �1. Now, for each x ∈ X, let A(x) :=
P(A(x)) and denote by 	1 the class of stochastic kernels on A given X such that φ1(·|x) ∈
A(x) for each x ∈ X. A policy π1 = {π1

n } is called stationary if

π1
n (·|hn) = φ1(·|xn) ∀hn ∈ Hn,n ∈ N0

for some stochastic kernel φ1 ∈ 	. In this case, as usual, strategy π1 = {π1
n } is identified

with the stochastic kernel φ1 and the class of all stationary strategies with 	1. A stationary
policy φ1 for player 1 is called deterministic stationary if there exists a measurable function
f : X → A satisfying that f (x) ∈ A(x) for all x ∈ X and such that φ1(·|x) is concentrated
at f (x) for each x ∈ X; the set of deterministic stationary policies for player 1 is denoted by
F

1. The sets of strategies �2, 	2 and F
2 for player 2 are defined similarly but considering

B(x) and B(x) in lieu of A(x) and A(x), respectively.
Throughout of the remainder of the present work is used the following standard notation:

for a measurable function u on K, x ∈ X and probability measures γ 1 ∈ A(x), γ 2 ∈ B(x),
let

uγ 1,γ 2(x) :=
∫

B(x)

∫
A(x)

u(x, a, b)γ 1(da)γ 2(db).

Similarly, for a stationary strategy pair (φ1, φ2) ∈ 	1 × 	2 and x ∈ X, set

uφ1,φ2(x) :=
∫

B(x)

∫
A(x)

u(x, a, b)φ1(da|x)φ2(db|x).

Thus, in particular,

Cφ1,φ2(x) =
∫

B(x)

∫
A(x)

C(x, a, b)φ1(da|x)φ2(db|x),

τφ1,φ2(x) =
∫

B(x)

∫
A(x)

τ (x, a, b)φ1(da|x)φ2(db|x),

and also

Qφ1,φ2(·|x) =
∫

B(x)

∫
A(x)

Q(·|x, a, b)φ1(da|x)φ2(db|x).

The average payoff performance index. Let � := (K×R+)∞ and F the corresponding
product σ -algebra. For each strategy pair (π1,π2) ∈ �1 × �2 and probability measure ν on
X there exist a probability measure P (π1,π2)

ν and a stochastic process {(xn, an, bn,�n+1)}
defined on the sample space (�,F) with the following properties:

(i) P (π1,π2)
ν [x0 ∈ B] = ν(B);

(ii) P (π1,π2)
ν [(an, bn) ∈ C1 × C2|hn] = π1

n (C1|hn)π
2
n (C2|hn);

(iii) P (π1,π2)
ν [(xn+1,�n+1) ∈ B × D|hn, an, bn] = q(B × D|xn, an, bn);

for all B ∈ B(X), C1 ∈ B(A),C2 ∈ B(B),D ∈ B(R+), hn ∈ Hn,n ∈N.
The expectation operator with respect to P (π1,π2)

ν is denoted as E(π1,π2)
ν . According to

property (i), the probability measure ν is called initial distribution. If the initial distribution
ν is concentrated at some state x ∈ X, we shall write P (π1,π2)

x and E(π1,π2)
x instead of P (π1,π2)

ν

and E(π1,π2)
ν , respectively.
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If the players use a stationary strategy pair (φ1, φ2) ∈ 	1 ×	2, by property (iii), the state
process {xn} is a Markov chain with one-step transition probability Qφ1,φ2(·|·). In this case,
the n-step transition probability is denoted by Qn

φ1,φ2(·|·) for n ∈ N0, where Q0
φ1,φ2(·|x) is

the Dirac measure concentrated at x ∈ X. Thus, for a measurable function u : X →R,

Qn

φ1,φ2u(x) =
∫

X
u(y)Qn

φ1,φ2(dy|x) = E(φ1,φ2)
x u(xn) ∀x ∈ X,

whenever these quantities are well defined.
The (ratio) expected average payoff (EAP) for a strategy pair (π1,π2) ∈ �1 × �2 and

initial state x ∈ X is defined as

J (π1,π2, x) := lim sup
n→∞

E(π1,π2)
x

∑n−1
i=0 c(xi, ai, bi,�i+1)

E
(π1,π2)
x Tn

. (6)

Since the equalities

E(π1,π2)
x �i+1 = E(π1,π2)

x τ (xi, ai, bi), (7)

E(π1,π2)
x c(xi, ai, bi,�i+1) = E(π1,π2)

x C(xi, ai, bi) (8)

hold for all strategy pair (π1,π2) ∈ �1 ×�2, state x ∈ X and i ∈N0, the performance index
(6) can be re-written as

J (π1,π2, x) = lim sup
n→∞

E(π1,π2)
x

∑n−1
i=0 C(xi, ai, bi)

E
(π1,π2)
x

∑n−1
i=0 τ(xi, ai, bi)

. (9)

Roughly speaking, the goal of player 1 (player 2, resp.) is to minimize (maximize, resp.)
(9). This leads to the lower and upper value functions

L(·) := sup
π2∈�2

inf
π1∈�1

J (π1,π2, ·) and U(·) := inf
π1∈�1

sup
π2∈�2

J (π1,π2, ·),

respectively. Observe that, in general, L(·) ≤ U(·). Thus, if L(·) = U(·), it is said that the
game has a value and the common value of these functions, which is denoted as V (·), is
called the value of the game.

If the game has value V (·), a policy π1∗ ∈ �1 is said to be EAP-optimal for player 1 if

sup
π2∈�2

J (π1
∗ ,π2, ·) = V (·);

similarly, a policy π2∗ ∈ �2 is said to be EAP-optimal for player 2 if

inf
π1∈�1

J (π1,π2
∗ , ·) = V (·).

If πi∗ is EAP-optimal for player i (i = 1,2), then the pair (π1∗ ,π2∗ ) is called EAP-optimal
pair or saddle point. Observe that (π1∗ ,π2∗ ) is an EAP-optimal pair if and only if

J (π1
∗ ,π2, ·) ≤ J (π1

∗ ,π2
∗ , ·) ≤ J (π1,π2

∗ , ·) ∀π1 ∈ �1,π2 ∈ �2.
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Remark 2.1 An important particular case of semi-Markov games are Markov games, which
come out when the holding time distribution is concentrated at some positive constant c, say
c = 1, that is

F({1}|x, a, b) = 1 ∀(x, a, b) ∈K.

In this case,

P (π1,π2)
x [Tn = n] = 1 ∀x ∈ X, (π1,π2) ∈ �1 × �2, n ∈N,

and τ = 1. Thus, the performance index (9) becomes

J (π1,π2, x) = lim sup
n→∞

1

n
E(π1,π2)

x

n−1∑
i=0

C(xi, ai, bi).

Remark 2.2 The performance index (9) depends on the kernel q only through its marginal
distribution measures Q and F , which enter in the computation in a “decoupled” way. Thus,
one can assume without loss of generality that

q(B × D|x, a, b) = F(D|x, a, b)Q(B|x, a, b)

for all (x, a, b) ∈K,B ∈ B(X),D ∈ B(R+). A second consequence is that the mean holding
time distribution F can be replaced by an exponential distribution with parameter τ−1, that
is, by the distribution

F ′(D|x, a, b) := τ−1(x, a, b)

∫
D

e−τ−1(x,a,b)t dt

under the assumption that τ > 0. In other words, the semi-Markov game model (1) can be
replaced without loss of generality by the model (X,A,B,KA,KB, q ′,C) where

q ′(B × D|x, a, b) := F ′(D|x, a, b)Q(B|x, a, b),

Q is the transition kernel (3) and C is the cost function (8). It is worth mentioning that this
could not be the case for a discounted performance index.

3 Solutions to the Shapley Equation and Optimal Stationary Strategies

The main result of the present work, Theorem 3.4 below, extends to semi-Markov games
with weak continuous transition probabilities the analysis given in [24] for Markov decision
processes with continuous transition probabilities. Specifically, it is shown the existence of
lower semicontinuous solutions to the Shapley equation under Assumptions 1, 2 and 3 given
below. As commented in the Introduction, the framework settled by these conditions has
became quite standard for the study of average payoff optimization problems and used, for
instance, for Markov and semi-Markov decision processes in [4, 6, 7, 9, 12, 13, 16, 21, 24],
and for Markov and semi-Markov games in [10, 11, 15, 22]. See reference [5] for further
comments and discussion on such kind of conditions.



9 Page 8 of 27 Ó. Vega-Amaya et al.

Assumption 1 The following conditions hold for all (x, a, b) ∈K:
(a) τ(x, a, b) > 0;
(b) there exist a measurable function W ≥ 1 on X and a constant k > 0 such that

max{τ(x, a, b), |C(x, a, b)|} ≤ kW(x).

Assumption 2 There exist a measurable nonnegative function s on K, a nontrivial measure
ν on X, and a constant λ ∈ (0,1) such that the following properties hold:

(a) ν(W) < ∞;
(b) Q(B|x, a, b) ≥ s(x, a, b)ν(B) for all (x, a, b) ∈K;
(c) QW(x,a, b)) ≤ λW(x) + ν(W)s(x, a, b) for all (x, a, b) ∈ K;
(d) ν(sφ1,φ2) > 0.

The key point is that Assumption 2 entails a contraction property. To see this, let

Q̂(B|x, a, b) := Q(B|x, a, b) − s(x, a, b)ν(B), (x, a, b) ∈ K,B ∈ B(X).

Then, Assumption 2(b) implies that Q̂ is a nonnegative kernel, while Assumption 2(c) leads
to the inequality

sup
(x,a,b)

|Q̂u(x, a, b)|
W(x)

≤ λ||u||W ∀u ∈ BW(X).

The results in the next proposition are proved in [21] using this contraction property.

Proposition 3.1 Suppose that Assumption 2 holds and let (φ1, φ2) ∈ 	1 ×	2 be an arbitrary
stationary strategy pair. Then:

(a) the transition probability Qφ1,φ2 is positive Harris recurrent; thus, it admits a unique
invariant probability measure μφ1,φ2 and ν is an irreducibility measure;

(b) μφ1,φ2(W) is finite and

1 ≤ μφ1,φ2(W) ≤ 1

1 − λ

ν(W)

ν(X)
;

moreover,

μφ1,φ2(sφ1,φ2) ≥ θ := 1 − λ

ν(W)
;

(c) for any u ∈ BW(X), μφ1,φ2(|u|) < ∞ and

lim
n→∞

1

n
E(φ1,φ2)

x

n−1∑
i=0

u(xi) = μφ1,φ2(u) ∀x ∈ X;

hence,

lim
n→∞

1

n
E(φ1,φ2)

x u(xn) = 0.



Zero-Sum Average Cost Semi-Markov Games. . . Page 9 of 27 9

Remark 3.2 Thus, for each pair (φ1, φ2) ∈ 	1 × 	2, Assumptions 1 and 2 imply that the
constant

ρ(φ1, φ2) := μφ1,φ2(Cφ1,φ2)

μφ1,φ2(τφ1,φ2)
, (10)

is well defined and finite, and also that the operator

Tφ1,φ2u := Cφ1,φ2 − ρ(φ1, φ2)τφ1,φ2 + Q̂φ1,φ2u

is a contraction map from BW(X) into itself with modulus λ. Since (BW(X), || · ||W) is a
Banach space, it follows that there exists a unique function hφ1,φ2 ∈ BW(X) such that

hφ1,φ2 = Tφ1,φ2hφ1,φ2

= Cφ1,φ2 − ρ(φ1, φ2)τφ1,φ2 + Q̂φ1,φ2hφ1,φ2 . (11)

Now an integration of both sides of the above equation with respect to the probability mea-
sure μφ1,φ2 leads to equality

0 = ν(hφ1,φ2)μφ1,φ2(sφ1,φ2),

which implies, by Proposition 3.1(b), that ν(hφ1,φ2) = 0. Hence, hφ1,φ2 is the unique function
on BW(X) that satisfies the (semi-Markov) Poisson equation

hφ1,φ2 = Cφ1,φ2 − ρ(φ1, φ2)τφ1,φ2 + Qφ1,φ2hφ1,φ2

and the condition ν(hφ1,φ2) = 0. Then, by iterating this equation, one can see that

J (φ1, φ2, x) = lim
n→∞

E(φ1,φ2)
x

∑n−1
i=0 Cφ1,φ2(xi)

E
(φ1,φ2)
x

∑n−1
i=0 τφ1,φ2(xi)

= ρ(φ1, φ2) (12)

for all x ∈ X.

It is worth mentioning that reference [21] proves Proposition 3.1 using similar arguments
to those displayed above to show the existence of solutions to the Poisson equation (11).

Now, to pass from the Poisson equations to the Shapley equation, it is assumed that the
model game satisfies the following compactness and continuity conditions.

Assumption 3 (a) C is lower semicontinuous on K;
(b) the mapping x → A(x) is lower semicontinuous and compact-valued;
(c) the mapping x → B(x) is upper semicontinuous and compact valued;
(d) τ is continuous;
(e) the state transition law Q is weakly continuous on K, that is, the mapping

(x, a, b) →
∫

X
u(y)Q(dy|x, a, b)

is continuous for all u ∈ Cb(X);
(f) W and QW are continuous functions.
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Notice that Remark 3.2 shows that the average payoff criterion is well defined and finite-
valued whenever the players use stationary strategies. The next theorem extends this asser-
tion to all admissible strategies.

Theorem 3.3 Under Assumptions 1, 2 and 3, the performance criterion (9) is well defined
and finite-valued.

The next theorem states the main results of the present work.

Theorem 3.4 If Assumptions 1, 2, 3 hold, then:
(a) there exist h∗ ∈ LW(X) and ρ∗ ∈R that satisfy the Shapley equation

h∗(x) = inf
γ 1∈A(x)

sup
γ 2∈B(x)

[Cγ 1,γ 2(x) − ρ∗τγ 1,γ 2(x) + Qγ 1,γ 2h∗(x)]

= sup
γ 2∈B(x)

inf
γ 1∈A(x)

[Cγ 1,γ 2(x) − ρ∗τγ 1,γ 2(x) + Qγ 1,γ 2h∗(x)]

for all x ∈ X;
(b) there exists φ1∗ ∈ 	1 such that

h∗(x) = sup
γ 2∈B(x)

[Cφ1∗ ,γ 2(x) − ρ∗τφ1∗ ,γ 2(x) + Qφ1∗ ,γ 2h
∗(x)] ∀x ∈ X;

(c) for each ε > 0 there exists φ2
ε ∈ 	2 such that

h∗(x) ≤ inf
γ 1∈A(x)

[Cγ 1,φ2
ε
(x) − ρ∗τγ 1,φ2

ε
(x) + Qγ 1,φ2

ε
h∗(x)] + ε ∀x ∈ X.

(d) the constant ρ∗ is the value of the game, the stationary policy φ1∗ is optimal for player
1; for each ε > 0, the stationary policy φ2

ε′ is ε-optimal for player 2 with ε′ = ν(W)lε/(1 −
λ) where l is a fixed constant (this is given below in Lemma 5.3);

(e) moreover,

ρ∗ = inf
φ1∈	1

sup
φ2∈	2

ρ(φ1, φ2) = sup
φ2∈	2

inf
φ1∈	1

ρ(φ1, φ2),

The proof of Theorem 3.4 is given in Sect. 4.

Remark 3.5 Assumption 3(d) trivially holds for Markov games (see Remark 2.1). Moreover,
as can be checked in the proof of Theorem 3.4, instead of the compactness property in
Assumption 3(c), it suffices to assume the completeness of the sets B(x), x ∈ X. In fact, the
compactness property is used only to prove the existence of a positive constant γ such that

lim inf
m→∞

1

m

m−1∑
i=0

E(π1,π2)
x τ (xi, ai, bi) ≥ γ

for all initial state x ∈ X and strategy pair (π1,π2) ∈ �1 ×�2 (see Corollary 5.5 in Sect. 5).
This latter inequality clearly holds for Markov games.
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4 A Minimax Semi-Markov Inventory Problem

A controller seeks to minimize the cost of operating a single-item inventory system without
backlog, for which the decision epochs form a nondecreasing stochastic processes Tn,n ∈
N0. The demand process {wn} is formed by independent nonnegative random variables with
wn being the quantity of product demanded between the decision epochs Tn and Tn+1. The
controller knows that the expected demands lie in a bounded interval and that its second
moments are bounded above, but she/he does not know the demand distribution themselves.
To state these assumptions formally, for p ∈ P([0,∞)), let

μp :=
∫ ∞

0
sp(ds) and s2

p :=
∫ ∞

0
s2p(ds).

Assumption 4 The demand distributions belong to the class

B : = {b ∈ P(R+) : z∗ ≤ μb ≤ z∗, s2
b ≤ s∗},

where z∗, z∗ and s∗ are constants such that z∗ > z∗ > 0 and s∗ ≥ 0.

In what follows it is assumed that B is metrized with any metric compatible with the
topology of weak convergence of probability measures.

The inventory evolves as follows: at the nth decision epoch, which is given by the time Tn,
the controller observes the inventory level xn = x ∈ X : = R+ and orders a product quantity
an = a ∈ A : = [0, â] for facing the (nonnegative) product demand wn = w accumulated
between times Tn and Tn+1; the constant â is positive and it is assumed that the replenishing
quantity an is immediately supplied. Thus, the controller incurs in the cost

c1(1 − δ0(a)) + c2a + c3(x + a) + c4(w − x − a)+

where δ0(a) is the delta of Kronecker and the nonnegative constants ci, i = 1, . . . ,4, stand
for the cost for putting an order, the production cost, the holding cost and the penalizating
cost for unmet demand, respectively, per unit of product.

Then, the expected payoff (or one step cost) is

C(x, a, b) := c1(1 − δ0(a)) + c2a + c3(x + a) + c4Eb(w − x − a)+ (13)

for (x, a, b) ∈ K, with A(x) := A and B(x) := B for all x ∈ X, and where Eb denotes the
expectation with respect to the distribution b ∈ B. Notice that K =X × A × B.

At time Tn+1 the inventory changes according to the recursive equation

xn+1 = (xn + an − wn)
+, n ∈N0, (14)

where r+ := max(r,0) for r ∈R, which leads to the stochastic kernel

Q(B|x, a, b) := b([w ≥ 0 : (x + a − w)+ ∈ B]), B ∈ B(X), (x, a, b) ∈K. (15)

Since the distribution of the product demand is unknown, the controller wants to hedge
himself against the worse possible scenario; then, she/he approaches the problem as a game
against “nature”, who choses the distribution bn ∈ B for the product demand wn. Thus,
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the controller goal is to find a minimax policy, that is, a policy π1∗ ∈ �1 that satisfies the
condition

sup
π2∈�2

J (π1
∗ ,π2, x) = inf

π1∈�1
sup

π2∈�2
J (π1,π2, x) ∀x ∈ X. (16)

Notice that a minimax policy is no other than an optimal policy for the controller when the
inventory system is seen as a game against nature and this game has a value.

Jaśkiewicz [10] considers a minimax Markov inventory problem, that is, a minimax in-
ventory problem for which Tn = n for all n ∈ N; moreover, she assumes that the set B of
possible distributions for the demand is finite. Reference [16] also follows the minimax ap-
proach to study a class of semi-Markov inventory system but assuming that the holding time
distribution depends on an unknown parameter and that the demand distribution is com-
pletely known.

The main result of this section, Theorem 4.2 given below, shows the existence of a de-
terministic stationary minimax policy for the inventory system (13)-(15) under Assumption
4 and Assumptions 5 and 6, which are given next. Assumption 5 is also related to the distri-
butions of the product demands.

Assumption 5 The inequality z∗ > â holds.

It is shown in Lemma 6.1, Sect. 6, that Assumptions 4 and 5 imply that there exists a
constant r > 0 such that

λ := sup
b∈B

	b(r) < 1, (17)

where

	p(t) :=
∫
R+

et (̂a−s)p(ds), t ≥ 0,p ∈ P(R+). (18)

This inequality plays a key role in proving that the inventory system satisfies Assumption 2.
In fact, Lemma 6.2 shows that the constant λ in (17), the functions

W(x) := exp(rx) and s(x, a, b) := b((x + a,∞)), (x, a, b) ∈K, (19)

and the Dirac measure at zero ν(·) satisfy Assumption 2.
The next condition concerns with the mean holding time distribution. In order to be

specific, it is assumed that it has an exponential density where the parameter κ−1 is a positive
continuous function dominated by the function W ; such condition is formally stated below.
However, it should be noted that it can be considered any other class of distributions as long
as Assumption 1 holds (see Remark 2.2).

Assumption 6 The mean holding time distribution is given as

F([0, t]|x, a, b) = κ−1(x, a, b)

∫ t

0
e−κ−1(x,a,b)sds

for all t ≥ 0 and (x, a, b) ∈ K, where κ : K → (0,∞) is a continuous function such that
κ(·, ·, ·) ≤ k1W(·) for some positive constant k1.
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Thus, according to Remark 2.2, the semi-Markov kernel can be taken without loss of
generality as

q(B × [0, t]|x, a, b) = [1 − e−κ−1(x,a,b)t ]b([w ≥ 0 : (x + a − w)+ ∈ B])
for all t ≥ 0, (x, a, b) ∈K and B ∈ B(R+).

Remark 4.1 Observe that Assumption 4 implies the inequality

0 ≤ C(x, a, b) ≤ M + c3x ∀(x, a, b) ∈K,

where M := c1 + (c2 + c3)̂a + c4z
∗. For the other hand, Assumption 6 implies that

0 < τ(x, a, b) = κ(x, a, b) ≤ k1W(x) ∀(x, a, b) ∈K.

Thus, one can choose a constant k ≥ k1 > 0 such that

max{τ(x, a, b), |C(x, a, b)|} ≤ kW(x),

for all (x, a, b) ∈K. Notice that this latter inequality shows that Assumption 1(b) holds.

Next, it is the main result of this section.

Theorem 4.2 Suppose that Assumptions 4, 5 and 6 hold. Then there exists a function h∗ ∈
LW(X), a constant ρ∗ and a deterministic stationary policy f 1∗ ∈ F

1 for player 1 such that
the equalities

h∗(x) = inf
a∈A

sup
b∈B

[C(x, a, b) − ρ∗τ(x, a, b) +
∫

X
h∗(y)Q(dy|x, a, b)]

= sup
b∈B

[C(x,f 1
∗ (x), b) − ρ∗τ(x,f 1

∗ (x), b) +
∫

X
h∗(y)Q(dy|x,f 1

∗ (x), b)]

hold for all x ∈ X. Moreover, f 1∗ is a minimax policy and

ρ∗ = sup
π2∈�2

J (f 1
∗ ,π2, x) = inf

π1∈�1
sup

π2∈�2
J (π1,π2, x) ∀x ∈ X.

5 Proof of Theorems 3.3 and 3.4

The proof relies on a number of preliminary results, which are collected in several proposi-
tions and lemmas. In Proposition 5.1, it is used the concept of lower semicontinuous enve-
lope of functions, which is introduced below together with some related properties.

Let (S, d) be a metric space. For each function u : S →R define

ue(s) := sup
r>0

inf
s′∈Br (s)

u(s ′),

where Br(s) is the ball with center at s ∈ S and radius r > 0. Function ue is the largest
lower semicontinuous function dominated by u, that is: (i) ue is lower semicontinuous; (ii)
u ≥ ue; (iii) if v is lower semicontinuous and u ≥ v, then ue ≥ v. Thus, ue is called the lower
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semicontinuous envelope of the function u. Clearly, u is lower semicontinuous if and only
if u = ue; moreover, if u ≥ v, then ue ≥ ve . Additionally, if w : S →[1,∞) is a continuous
function, then

||ue − ve||w ≤ ||u − v||w ∀u,v ∈ Bw(S).

In what follows is assumed that Assumptions 1, 2, 3 hold.

Proposition 5.1 Let S := se. Then:
(a) Q(B|x, a, b) ≥ S(x, a, b)ν(B) for all (x, a, b) ∈K;
(b) QW(x,a, b) ≤ λW(x) + ν(W)S(x, a, b) for all (x, a, b) ∈K;
(c) μφ1,φ2(Sφ1,φ2) ≥ θ > 0 for all pair (φ1, φ2) ∈ 	1 × 	2.

Proof Property (a) follows directly from the definition of lower semicontinuous envelope.
To prove (b), note that ν(W)s ≥ QW − λW and recall that QW and W are continuous
functions; then

ν(W)S = (ν(W)s)e ≥ (QW − λW)e = QW − λW,

which proves (b). Now, note that part (b) yields for each pair of stationary strategies (φ1, φ2)

the inequality

Qφ1,φ2W ≤ λW + ν(W)Sφ1,φ2 .

Thus, the inequality resulting by integrating with respect to μφ1,φ2 at both sides implies that

μφ1,φ2(Sφ1,φ2) ≥ (1 − λ)
μφ1,φ2(W)

ν(W)
≥ 1 − λ

ν(W)
= θ,

which proves part (c). �

Proposition 5.2 For all strategy pair (π1,π2) ∈ �1 × �2, x ∈ X and u ∈ BW(X):

lim
n→∞

1

n
E(π1,π2)

x u(xn) = 0.

Proof This result follows directly after noting that Assumption 1(b) and Assumption 2(c)
imply that

1 ≤ E(π1,π2)
x W(xn) ≤ λnW(x) + ν(W)

(1 − λ)ν(X)
∀n ∈N0. (20)

�

Lemma 5.3 There exists a constant l > 0 such that

E(π1,π2)
x τ (xk, ak, bk) ≥ lE(π1,π2)

x s(xk−1, ak−1, bk−1)

for all x ∈ X, (π1,π2) ∈ �1 × �2, k ∈ N.

Proof Fix x ∈ X, (π1,π2) ∈ �1 × �2, k ∈N0. Now, observe that

τ ∗(x) := min
(a,b)∈A(x)×B(x)

τ (x, a, b) > 0.
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Next consider the subsets

Xn := {x ∈ X : τ ∗(x) ≥ 1/n}
and notice that Xn ↑ X. Thus, for some N ∈N, ν(XN) > 0 since ν(Xn) ↑ ν(X) > 0. Then,

E(π1,π2)
x τ (xk, ak, bk) = E(π1,π2)

x E(π1,π2)
x [τ (xk, ak, bk)|hk−1, ak−1, bk−1]

= E(π1,π2)
x

∫
X

∫
A

∫
B
τ (y, a, b)π1

k (da|hk)π
2
k (db|hk)Q(dy|xk−1, ak−1, bk−1)

≥ E(π1,π2)
x

∫
XN

∫
A

∫
B

1

N
π1

k (a|hk)π
2
k (db|hk)Q(dy|xk−1, ak−1, bk−1)

= 1

N
E(π1,π2)

x Q(XN |xk−1, ak−1, bk−1)

≥ 1

N
ν(XN)E(π1,π2)

x s(xk−1, ak−1, bk−1);

which proves the desired result with l := ν(XN)/N . �

Lemma 5.4 The following inequality holds for all x ∈ X, (π1,π2) ∈ �1 × �2:

lim inf
m→∞

1

m
E(π1,π2)

x

m−1∑
k=0

s(xk, ak, bk) ≥ 1 − λ

ν(W)
.

Proof Let x ∈ X, (π1,π2) ∈ �1 × �2 be fixed but arbitrary. It follows from Assumption
2(c) that

E(π1,π2)
x s(xk−1, ak−1, bk−1) ≥ 1

ν(W)
E(π1,π2)

x [QW(xk−1, ak−1, bk−1) − λW(xk−1)]

= 1

ν(W)
E(π1,π2)

x [W(xk) − W(xk−1) + (1 − λ)W(xk−1)].

Then,

1

m

m∑
k=1

E(π1,π2)
x s(xk−1, ak−1, bk−1) ≥ 1

ν(W)

1

m

(
[E(π1,π2)

x W(xm) − W(x)]

+(1 − λ)E(π1,π2)
x

m∑
k=1

W(xk−1)

)
.

The last inequality implies that

lim inf
m→∞

1

m

m∑
k=1

E(π1,π2)
x s(xk−1, ak−1, bk−1) ≥ 1 − λ

ν(W)
lim inf
m→∞

1

m

m∑
k=1

E(π1,π2)
x W(xk−1)

≥ 1 − λ

ν(W)
,

proving the desired inequality. �
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The next corollary is a direct consequence of the two previous lemmas and Proposition
5.2.

Corollary 5.5 Suppose Assumptions 1 and 2 hold. Then, for all (π1,π2) ∈ �1 × �2, x ∈ X,
the following inequality holds:

lim inf
m→∞

1

m

m−1∑
k=0

E(π1,π2)
x τ (xk, ak, bk) ≥ (1 − λ)l

ν(W)
.

Therefore,

∞∑
k=0

E(π1,π2)
x τ (xk, ak, bk) = ∞

and

lim
m→∞

E(π1,π2)
x u(xm)∑m−1

i=0 E
(π1,π2)
x τ (xi, ai, bi)

= 0

for all u ∈ BW(X).

Proof of Theorem 3.3 Fix an arbitrary strategy pair (π1,π2) ∈ �1 × �2 and an arbitrary ini-
tial state x ∈ X. Assumption 1(b) and inequality (20) imply that

lim sup
n→∞

1

n
E(π1,π2)

x

n−1∑
i=0

|C(xi, ai, bi)| ≤ lim sup
n→∞

k

n
E(π1,π2)

x

n−1∑
i=0

W(xi)

≤ lim
n→∞

k

n
[1 − λn

1 − λ
+ nν(W)

(1 − λ)ν(X)
]W(x)

= k

lν(X)

(
ν(W)

1 − λ

)2

W(x).

Then, from the above inequality and Corollary 5.5, it follows that

|J (π1,π2, x)| ≤ lim supn→∞
1
n
E(π1,π2)

x

∑n−1
i=0 |C(xi, ai, bi)|

lim infn→∞ 1
n
E

(π1,π2)
x

∑n−1
i=0 τ(xi, ai, bi)

≤ k(ν(W))2

l(1 − λ)2ν(X)
W(x) < ∞, (21)

which is the desired result. �

Lemma 5.6 For all stationary strategy pair (φ1, φ2) ∈ 	1 × 	2:

|ρ(φ1, φ2)| ≤ k

lν(X)

(
ν(W)

1 − λ

)2

.

Hence, the constants

ρl := sup
φ2∈	2

inf
φ1∈	1

ρ(φ1, φ2) and ρu := inf
φ1∈	1

sup
φ2∈	2

ρ(φ1, φ2)
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are well defined and finite; notice that ρu ≥ ρl .

Proof It follows from (10), Proposition 3.1, Corollary 5.5 and Assumption 1(b) that

|ρ(φ1, φ2)| ≤ μφ1,φ2(|Cφ1,φ2 |)
μφ1,φ2(τφ1,φ2)

≤ kν(W)

l(1 − λ)
μφ1,φ2(W)

≤ k

lν(X)

(
ν(W)

1 − λ

)2

,

which is the result to be proven. �

Now, to show the existence of solutions to the Shapley equation define the nonnegative
kernel

Q̃(B|x, a, b) := Q(B|x, a, b) − S(x, a, b)ν(B)

for (x, a, b) ∈K,B ∈ B(X), and consider the operators on BW(X) given by

Lu(x, a, b) := C(x, a, b) − ρlτ (x, a, b) + Q̃u(x, a, b),

Leu(x, a, b) := (Lu)e(x, a, b),

T u(x) := sup
γ 2∈B(x)

inf
γ 1∈A(x)

(Leu)γ 1,γ 2(x)

for (x, a, b) ∈K,B ∈ B(X). Notice that Q̃ ≥ 0 and also that

sup
(x,a,b)∈K

|Q̃u(x, a, b)|
W(x)

≤ λ||u||W ∀u ∈ BW(X).

Lemma 5.7 The operator T is a contraction operator from LW(X) into itself with modulus
λ. Thus, by the Banach fixed-point theorem, there exists a unique function h∗ ∈ LW(X) such
that h∗ = T h∗. Moreover:

(a) T h∗(x) = infγ 1∈A(x) supγ 2∈B(x)(L
eu)γ 1,γ 2(x) for all x ∈ X;

(b) there exists φ1∗ ∈ 	1 such that

h∗(x) = sup
γ 2∈B(x)

(Leh∗)φ1∗ ,γ 2(x) ∀x ∈ X;

(c) for each ε > 0 there exists φ2
ε ∈ 	2 such that

h∗(x) − ε ≤ inf
γ 1∈A(x)

(Leh∗)γ 1,φ2
ε
(x) ∀x ∈ X

Proof Let u be an arbitrary function in LW(X). It follows from Assumption 1 that |Lu| ≤
MW , where M := (k +|ρl|k +λ||u||W ). Then, since W is continuous, |Leu| ≤ MW , which
in turn implies that |(Leu)γ 1,γ 2 | ≤ MW for all measures γ 1 ∈ A(x), γ 2 ∈ B(x). For the
other hand, (Leu)γ 1,γ 2 is a lower semicontinuous function on X; hence, (Leu)γ 1,γ 2 ∈ LW(X)
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for all measures γ 1 ∈ A(x), γ 2 ∈ B(x). Now, combining the above facts with the minimax
theorem [10, Lemma 3.3], it follows that T u ∈ LW(X) and also that

T u(x) = inf
γ 1∈A(x)

sup
γ 2∈B(x)

(Leu)γ 1,γ 2(x) ∀x ∈ X.

For the other hand, for u,v ∈ BW(X), notice that

||T u − T v||W = sup
x∈X

|T u(x) − T v(x)|
W(x)

≤ sup
x∈X

sup
a∈A(x)

sup
b∈B(x)

|Leu(x, a, b) − Lev(x, a, b)|
W(x)

≤ sup
x∈X

sup
a∈A(x)

sup
b∈B(x)

|Lu(x, a, b) − Lv(x, a, b)|
W(x)

≤ sup
x∈X

sup
a∈A(x)

sup
b∈B(x)

|Q̃(u − v)(x, a, b)|
W(x)

≤ λ||u − v||W .

Hence, T is a contraction operator from LW(X) into itself with modulus λ. So, there exists
a unique function h∗ ∈ LW(X) such that

h∗(x) = T h∗(x) = inf
γ 1∈A(x)

sup
γ 2∈B(x)

(Leh∗)γ 1,γ 2(x) ∀x ∈ X.

The last two assertions follows from the minimax theorem [10, Lemma 3.3]. �

Lemma 5.8 ν(h∗) = 0 and ρl = ρu.

Proof First it is shown that ν(h∗) ≤ 0 and that ρl = ρu; after this, it is proved that ν(h∗) ≥ 0,
completing thus the proof.

For each ε > 0, by Lemma 5.7(b), there exists φ2
ε ∈ 	2 such that

h∗ ≤ Cφ1,φ2
ε
− ρlτφ1,φ2

ε
+ Qφ1,φ2

ε
h∗ − ν(h∗)Sφ1,φ2

ε
+ ε ∀φ1 ∈ 	1.

Then, integrating with respect to the invariant probability measure μφ1,φ2
ε

in both sides of
the above inequality, it follows after a rearrangement of terms that

ρl ≤ ρ(φ1, φ2
ε ) + ε − ν(h∗)μφ1,φ2

ε
(Sφ1,φ2

ε
)

μφ1,φ2
ε
(τφ1,φ2

ε
)

∀ε > 0, φ1 ∈ 	1.

Now suppose that ν(h∗) > 0 and take ε ∈ (0, ν(h∗)θ), where θ = (1 − λ)/ν(W) (see
Proposition 3.1(b)). Then

ρl ≤ ρ(φ1, φ2
ε ) + [ε − ν(h∗)θ ]ν(W)

1 − λ
∀φ1 ∈ 	1,

which, taking infimum over φ1, yields

ρl ≤ inf
φ1∈	1

ρ(φ1, φ2
ε ) + [ε − ν(h∗)θ ]ν(W)

1 − λ
< ρl.
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Therefore, ν(h∗) ≤ 0.
Recall that C and S are lower semicontinuous and τ is continuous. Moreover, Qu is

lower semicontinuous for each u ∈ LW(X). Now, since ν(h∗) ≤ 0, the function Lh∗ is lower
semicontinuous too. Hence,

Leh∗(x, a, b) = Lh∗(x, a, b)

= C(x, a, b) − ρlτ (x, a, b) + Qh∗(x, a, b) − ν(h∗)S(x, a, b)

for all (x, a, b) ∈K. From Lemma 5.7(b), there exists φ1∗ ∈ 	1 such that

h∗(x) = sup
γ 2∈B(x)

Lh∗
φ1∗ ,γ 2(x)

≥ Cφ1∗ ,φ2(x) − ρlτφ1∗ ,φ2(x) + Qφ1∗ ,φ2h
∗(x) − ν(h∗)Sφ1∗ ,φ2(x)

≥ Cφ1∗ ,φ2(x) − ρlτφ1∗ ,φ2(x) + Qφ1∗ ,φ2h
∗(x) (22)

for all x ∈ X, φ2 ∈ 	2. Integrating with respect to μφ1∗ ,φ2 , it follows that

ρl ≥ ρ(φ1
∗, φ

2) ∀φ2 ∈ 	2.

Thus,

ρl ≥ sup
φ2∈	2

ρ(φ1
∗, φ

2) ≥ inf
φ1∈	1

sup
φ2∈	2

ρ(φ1, φ2) = ρu.

Therefore, ρu = ρl .
Next it is shown that ν(h∗) ≥ 0. Since ρu = ρl , the inequality (22) implies that

ν(h∗)μφ1∗ ,φ2(Sφ1∗ ,φ2)

μφ1∗ ,φ2(τφ1∗ ,φ2)
≥ ρ(φ1

∗, φ
2) − inf

φ1∈	1
sup

φ2∈	2
ρ(φ1, φ2) ∀φ2 ∈ 	2;

thus,

sup
φ2∈	2

ν(h∗)μφ1∗ ,φ2(Sφ1∗ ,φ2)

μφ1∗ ,φ2(τφ1∗ ,φ2)
≥ sup

φ2∈	2
ρ(φ1

∗, φ
2) − inf

φ1∈	1
sup

φ2∈	2
ρ(φ1, φ2) ≥ 0.

This inequality and Proposition 5.1(c) imply that ν(h∗) ≥ 0. Therefore, ν(h∗) = 0. �

Proof of Theorem 3.4 Parts (a), (b) and (c) follow from Lemmas 5.7 and 5.8 with ρ∗ = ρl =
ρu. Now to prove part (d), observe that (b) implies that

h∗(x) ≥ E(φ1∗ ,π2)

n−1∑
i=0

C(xi, ai, bi) − ρ∗E(φ1∗ ,π2)

n−1∑
i=0

τ(xi, ai, bi) + E(φ1∗ ,π2)h∗(xn)

for all x ∈ X,π2 ∈ �2. In turn, by Corollary 5.5, this inequality implies that

ρ∗ ≥ J (φ1
∗,π

2, x) ∀x ∈ X,π2 ∈ �2.

Hence,

ρ∗ ≥ sup
π2∈�2

J (φ1
∗,π

2, x) ≥ U(x) ∀x ∈ X.
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Similarly, part (c) implies that

h∗(x) ≤ E(π1,φ2
ε )

n−1∑
i=0

C(xi, ai, bi) − ρ∗E(π1,φ2
ε )

n−1∑
i=0

τ(xi, ai, bi) + E(π1,φ2
ε )h∗(xn) + nε

for all x ∈ X,π1 ∈ �1, which, together with Corollary 5.5, implies that

ρ∗ ≤ J (π1, φ2
ε , x) + ν(W)l

1 − λ
ε ∀x ∈ X,π1 ∈ �1,

where l is the constant in Lemma 5.3. Thus,

ρ∗ ≤ inf
π1∈�1

J (π1, φ2
ε , x) + ν(W)l

1 − λ
ε

≤ L(x) + ν(W)l

1 − λ
ε

for all x ∈ X. Hence, since this inequality holds for all positive ε, it follows that

U(x) ≤ sup
π2∈�2

J (φ1
∗,π

2, x) ≤ ρ∗ ≤ L(x) ∀x ∈ X.

Therefore, ρ∗ is the value of the game and φ1∗ is optimal for player 1.
Finally note that part (e) was already proved in Lemma 5.8. Thus, the proof of Theorem

3.4 is now complete. �

6 Proof of Theorem 4.2

The plan to prove Theorem 4.2 is to show that the inventory system satisfies all assumptions
of Theorem 3.4, namely, Assumptions 1, 2 and 3. The next lemma is essential for the proof
that Assumption 2 holds.

Lemma 6.1 Suppose that Assumptions 4 and 5 hold. Then, there exists r > 0 such that (17)
holds, that is, supb∈B 	b(r) < 1 where 	p(·) is as in (18).

Proof A twice integration by parts leaves to the equality

e−x = 1 − x + x2

2
− 1

2

∫ x

0
(x − s)2e−sds ∀x ≥ 0;

this implies that

e−x ≤ 1 − x + x2

2
∀x ≥ 0.

Let Z be a random variable with distribution b ∈ B. Then,

	p(t) = Ebe
t (̂a−Z) = etâEbe

−tZ
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The last inequality implies that

	p(t) ≤ etâEb(1 − tEbZ + t2

2
EbZ

2)

≤ etâ(1 − tz∗ + t2

2
s∗) ∀t ≥ 0 (23)

Now consider the function

h(t) := e−t â − 1 + tz∗ − t2

2
s∗, t ∈R,

and its derivative

h′(t) = −âe−t â + z∗ − ts∗.

Since h′ is continuous and h′(0) = z∗ − â > 0, there exists δ > 0 such that h′ > 0 on the
interval (0, δ). For each r ∈ (0, δ), by the mean value theorem, there exists t∗ ∈ (0, r) such
that

h(r) = h(r) − h(0) = h′(t∗)r > 0;
thus,

e−râ − 1 + rz∗ − r2

2
s∗ > 0,

which implies that

ρ := erâ(1 − rz∗ + r2

2
s∗) < 1.

This latter fact combined with (23) yields that 	b(r) ≤ ρ for all b ∈ B, which in turn implies
the desired result. �

Lemma 6.2 Suppose that Assumptions 4 and 5 hold. Let ν be the Dirac measure at 0. Thus,
the constant λ in Lemma 6.1, the measure ν and the functions W and s given in (19) satisfy
Assumption 2.

Proof First observe Assumption 2(a) holds since ν(W) = W(0). For the other hand,

∫
X

v(y)Q(dy|x, a, b) =
∫
R+

v((x + a − w)+)b(dw)

=
∫

[0,x+a]
v(x + a − w)b(dw) + v(0)b((x + a,∞)

for all measurable function v : X → R whenever these integrals exist. In particular, it holds
that

∫
X

W(y)Q(dy|x, a, b) = W(x)

∫
[0,x+a]

er(a−w)b(dw) + W(0)s(x, a, b)
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≤ 	b(r)W(x) + ν(W)s(x, a, b)

≤ λW(x) + ν(W)s(x, a, b),

which proves that Assumption 2(c) holds. Similarly, taking v = IB , it results that

Q(B|x, a, b) =
∫

[0,x+a]
IB(x + a − w)b(dw) + ν(B)b((x + a,∞))

≥ ν(B)s(x, a, b),

which is Assumption 2(b).
Finally, to prove the inequality ν(sφ1,φ2) > 0 for all stationary strategy pair (φ1, φ2),

observe that

ν(sφ1,φ2) ≥
∫

B
b((̂a,∞))φ2(db|0).

Next, note that b((̂a,∞)) > 0 because μb > â for all b ∈ B, which implies that
∫

B
b((̂a,∞))φ2(db|0) > 0 ∀b ∈ B.

Hence, ν(sφ1,φ2) > 0. �

Lemma 6.3 The payoff function C in (13) is lower semicontinuous.

Proof Suppose that (xn, an, bn) → (x, a, b) and define

hn(w) := (w − yn)
+, n ∈N,w ≥ 0,

h(w) := (w − y)+, w ≥ 0,

where yn := xn + an,n ∈ N, and y = x + a; since yn → y, then yn ≤ L for all n ∈ N for
some L > 0. These functions satisfy the following properties:

(i) {hn} is asymptotically uniformly integrable with respect to the sequence of probability
measures {bn}, which means that

lim
K→∞

lim sup
n→∞

∫ ∞

0
|hn(w)|IBK

n
(w)bn(dw) = 0,

where BK
n := {w ≥ 0 : |hn(w)| ≥ K}, n ∈ N,K > 0. In fact, note that

∫
R+

|hn(w)|IBK
n
(w)bn(dw) =

∫
R+

(w − yn)I(yn,∞)(w)I(yn+K,∞)(w)bn(dw)

≤
∫
R+

wI[K,∞)(w)bn(dw) − ynbn((L + K,∞)).

Thus, taking limsup as n goes to ∞, it results that

lim sup
n→∞

∫
R+

|hn(w)|IBK
n
(w)bn(dw) ≤

∫
R+

wI[K,∞)(w)b(dw) − yb((L + K,∞)),

from which the desired result follows.
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(ii) the sequence {hn} is equicontinuous; this property is verified directly.
(iii) {hn} converges to h in measure b; this follows because hn → h pointwise.

Hence, by [1, Corollary 5.2], it holds that

Eb(w − x − a)+ =
∫
R+

(w − x − a)+b(dw)

= lim
n→∞

∫
R+

(w − xn − an)
+bn(dw)

= lim
n→∞Ebn(w − xn − an)

+.

Therefore,

lim inf
n→∞ C(xn, an, bn) = lim inf

n→∞ [c1I(0,∞)(an) + c2an + c3(xn + an)

+ c4Ebn(w − xn − an)
+]

≥ C(x, a, b),

which proves that the cost function C is lower semicontinuous. �

Lemma 6.4 W and QW are continuous functions.

Proof Clearly, W is continuous. Now, to prove the second statement proceed as in the proof
of the above lemma; thus, consider a sequence (xn, an, bn) ∈ K, n ∈ N, that converges to
(x, a, b) ∈K. Next, define

ĥn(ω) := W((xn + an − w)+), n ∈N,w ≥ 0,

ĥ(ω) := W((x + a − w)+), w ≥ 0.

The following facts hold:

(i) {̂hn} is asymptotically uniformly integrable with respect to the sequence of probability
measures {bn}, which means that

lim
K→∞

lim sup
n→∞

∫
R+

|̂hn(w)|IBK
n
(w)bn(dw) = 0,

where BK
n := {w ≥ 0 : |̂hn(w)| ≥ K}. This is true because the sequence {̂hn} is uni-

formly bounded.
(ii) the sequence {̂hn} is equicontinuous; to prove this, let L be a bound for the sequence

{xn + an} and observe that the sequence of functions gn(w) := (xn + an − w)+, n ∈
N,w ≥ 0, is equicontinuous. Since W is uniformly continuous in [0,L], it follows that
the sequence ĥn, n ∈N, is equicontinuous too.

(iii) {̂hn} converges to ĥ in measure b; this follows from the pointwise convergence.

Hence, by [1, Corollary 5.2], it holds that

QW(x,a, b) =
∫
R+

ĥ(ω)b(dw)
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= lim
n→∞

∫
R+

ĥn(ω)bn(dw)

= lim
n→∞QW(xn, an, bn),

which proves the continuity of QW . �

Lemma 6.5 The transition law Q is weakly continuous.

Proof Let (xn, an, bn) ∈ K, n ∈ N, be a sequence that converges to (x, a, b) ∈ K; fix an
arbitrary bounded continuous function v : X →R and an arbitrary real number ε > 0. The
sequence bn,n ∈N, is tight since it is weakly convergent; thus, there exists a constant K1 > 0
such that

sup
n

bn([K1,∞)) < ε/4M

where M > 0 is a bound for the function v. For the other hand, since xn + an → x + a, there
exists r > 0 such that

0 ≤ xn + an < K2 := x + â + r ∀n ∈N.

Now, let K := max{K1,K2} and observe that

(xn + an − z)+ = 0 ∀z > K,n ∈N.

Moreover, since v is uniformly continuous on [0,K], there exists δ > 0 such that

|v(z1) − v(z2)| < ε/4

for all z1, z2 ∈ [0,K] with |z1 − z2| < δ.
Next consider the continuous bounded function

g(z) := v((x + a − z)+), z ∈ [0,∞),

and take N ∈N such that

|
∫ ∞

0
g(z)bn(dz) −

∫ ∞

0
g(z)b(dz)| < ε/4,

|(xn + an − z)+ − (x + a − z)+| < δ ∀z ∈ [0,∞)

hold for all n ≥ N , and put

An := |
∫

X
v(y)Q(dy|xn, an, bn) −

∫
X

v(y)Q(dy|x, a, b)|, n ∈ N.

Then,

An = |
∫ ∞

0
v((xn + an − z)+)bn(dz) −

∫ ∞

0
v((x + a − z)+)b(dz)|

≤ |
∫ ∞

0
v((xn + an − z)+)bn(dz) −

∫ K

0
v((xn + an − z)+)bn(dz)|+
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|
∫ K

0
v((xn + an − z)+)bn(dz) −

∫ K

0
v((x + a − z)+)bn(dz)|+

∣∣∣∣
∫ ∞

K

v((x + a − z)+)|bn(dz)

∣∣∣∣+

|
∫ ∞

0
v((x + a − z)+)bn(dz) −

∫ ∞

0
v((x + a − z)+)b(dz)|.

Thus, for all n ≥ N , it holds that

An ≤
∫ ∞

K

|v((xn + an − z)+)|bn(dz)+
∫ K

0
|v((xn + an − z)+) − v((x + a − z)+)|bn(dz)+

∫ ∞

K

|v((x + a − z)+)|bn(dz)+

|
∫ ∞

0
v((x + a − z)+)bn(dz) −

∫ ∞

0
v((x + a − z)+)b(dz)|,

which yields the inequality

An < 2Mbn([K,∞)) + εGn([0,K])/4 + ε/4 < ε ∀n ≥ N.

Hence, Q(·|xn, an, bn), n ∈N, converges weakly to Q(·|x, a, b). �

Lemma 6.6 The set of probability distribution B is sequentially compact.

Proof Notice that the following inequalities

z∗ ≥ μb ≥
∫

(k,∞)

sb(ds) ≥ kb((k,∞)) (24)

hold for all b ∈ B and k > 0. Hence, B is tight.
Now take a sequence {bn} ⊂ B. By Prohorov theorem, there exist b0 ∈ P(X) and a sub-

sequence {bnk
} that converges weakly to b0. Then,

z∗ ≥ lim inf
k→∞

∫ ∞

0
sbnk

(ds) ≥
∫ ∞

0
sb0(ds) = μb0

By (24), for each ε > 0 there exists k0 ∈ N such that

sup
b∈B

∫ ∞

0
sI(k0,∞)(s)b(ds) < ε.

Since the mapping s → sI[0,k] is upper semicontinuous and bounded from above, it follows
for m > k0 that

μb0 ≥
∫ ∞

0
sI[0,m](s)b0(ds)

≥ lim sup
n→∞

∫ ∞

0
sI[0,m](s)bnk

(ds)
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= lim sup
n→∞

(

∫ ∞

0
sbnk

(ds) −
∫ ∞

0
sI(m,∞)(s)bnk

(ds))

≥ z∗ − ε.

Because ε can be chosen arbitrarily, the last inequality implies that μb0 ≥ z∗.
Finally observe that

s∗ ≥ lim inf
k→∞

∫ ∞

0
s2bnk

(ds) ≥
∫ ∞

0
s2b0(ds).

Therefore, b0 ∈ B, which proves that B is sequentially compact. �

Proof of Theorem 4.2 As mentioned at the beginning of this section, the plan is to show that
the semi-Markov inventory system satisfies Assumptions 1, 2 and 3. Thus, first note that
Remark 4.1 and Lemma 6.2 prove that Assumptions 1 and 2 hold, respectively. Moreover,
Lemma 6.3 proves the lower semicontinuity of function C, which is Assumption 3(a). For
the other hand, Assumption 3(d) follows from Assumption 6 since τ = κ . Furthermore,
Lemma 6.5 shows that Q is weakly continuous, which is Assumption 3(e), while Lemma
6.4 shows that Assumption 3(f) holds. Finally, note that Assumptions 3(b) and (c) trivially
hold because A(x) = [0, â] and B(x) = B for all x ∈ X and, according to Lemma 6.6, B is
(sequentially) compact.

Next, consider a function v :K→ R and observe that

inf
a∈A

sup
b∈B

v(x, a, b) = inf
ν1∈A

sup
ν2∈B

v(x, ν1, ν2) ∀x ∈ X.

Thus, from Theorem 3.4, there exists a function h∗ in LW(X) such that

h∗(x) = inf
a∈A

sup
b∈B

[C(x, a, b) − ρ∗τ(x, a, b) + Qh∗(x, a, b)] ∀x ∈ X.

Now, notice that for each b ∈ B, the function

C(·, ·, b) − ρ∗τ(·, ·, b) + Qh∗(·, ·, b)

is lower semicontinuous. Then, the mapping

(x, a) → sup
b∈B

[C(x, a, b) − ρ∗τ(x, a, b) + Qh∗(x, a, b)]

is also lower semicontinuous. Hence, there exists f 1∗ ∈ F
1 such that

h∗(x) = sup
b∈B

[C(x,f 1
∗ (x), b) − ρ∗τ(x,f 1

∗ (x), b) +
∫

X
h∗(y)Q(dy|x,f 1

∗ (x), b)]

for all x ∈ X, which proves the first statement of Theorem 4.2. The other statements are
proved following standard arguments (as those given in the proof of Theorem 3.4(d) and
(e)). �
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