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Abstract

This work presents the existence of local in time solutions for the generalized Magneto-
hydrodynamics equations in Sobolev-Gevrey (and Sobolev) spaces. Moreover, we establish
the behavior of these solutions at potential blow-up times. In addition, if the initial data is
assumed to be small enough, this paper proves the existence of global in time solutions,
which are stable, in these same type of spaces.
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1 Introduction

In this paper, we study the existence and behavior of solutions for the following gener-
alized incompressible Magnetohydrodynamic (GMHD) equations in Sobolev-Gevrey (and
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Sobolev) spaces:

w+u-Vu+V(p+3bP) + pn(=A) =b-Vb, xeR’ >0,
by+u-Vob+v(=A)Pb =b-Vu, xeR) >0,

divu =divb =0, xeR3} >0,

u(x,0) = uo(x), b(x,0) = by(x), xeR3,

ey

where u(x,t) = (u;(x, 1), us(x, 1), u3(x, t)) € R? denotes the incompressible velocity field,
b(x,1) = (bi(x,1), ba(x, 1), b3(x, 1)) € R? the magnetic field and p(x, ) € R the hydrostatic
pressure. The positive constants 1 and v are associated with specific properties of the fluid:
The constant y is the kinematic viscosity and v~! is the magnetic Reynolds number. Here
a and S belong to (%, %). The initial data for the velocity and magnetic fields, given by ug
and by in (1), are assumed to be divergence free, i.e., divuy = div by = 0.

The system (1) is of interest for many reasons. In fact, physically, the GMHD equa-
tions (1) describe the dynamics of electrically conducting fluids in the presence of magnetic
fields and has broad applications in applied sciences such as astrophysics, geophysics and
plasma physics. More specifically, some applications are the following: the machinery of the
sun, black holes with the formation of extragalactic jets, interstellar clouds, and planetary
magnetospheres (we refer to [12, 14, 27, 28] for more details). Despite their wide physical
applicability, the GMHD equations are of great interest in Mathematics as well. It is also
worth to emphasize that the GMHD equations become the famous Magnetohydrodynamics
(MHD) equations if « = 8 = 1. Moreover, the GMHD equations also present as particular
cases the generalized Navier-Stokes (GNS) equations whether b = 0, and the usual Navier-
Stokes (NS) equations if it is assumed that b = 0 and o = 1. In order to refer some papers,
see [1-8, 11-29] and references therein.

Let us list our main results as follows (for the essential notations and definitions, see
Section 2 and footnotes throughout the paper).

Our first theorem presents an extension for the local solution obtained by J. Lorenz,
W.G. Melo, and N.F. Rocha [23] from the MHD equations to the GMHD system (1) (see
also [1, 3-5, 7, 8, 24-27, 29] and references therein).

Theorem 1.1 Assume that a >0, 0 > 1, o > %, B> % and max{% — 2a,% — 28,0} <
s < 2. Let (ug,bg) € Ha‘a such that divug = divby = 0. Then, there exist an instant
T =Ty 0,0.0.8u,u0,b > 0 and a unique solution (u,b) € CT(I-.I;’U)fOr the GMHD equations

().

The second theorem establishes improvements as well as generalizations for some re-
sults obtained by H. Orf [26] (see also [1, 3-5, 7, 8, 11, 16-21, 25, 27, 29] and references
included).

Theorem 1.2 The following statements hold:

i) Assume thata > 0,0 > 1, % <a=f< %,andoz— % <5< 3_T"‘.Let (ug, bp) € I-'I‘f:f,‘
such that divuy = divby = 0. There exists a constant Cs, > 0 such that if the initial

data (ug, by) satisfies the inequality || (uo, b0)||H;.g < Cy o min{u, v}; then, we obtain a

C s+ . 53
unique solution (u,b) € L3 (Hb};z) N L4 (Hy ¢ ), forall T > 0, for the GMHD equa-
tions (1) that satisfies

4
Jul’,

4
g 1B,
F(Hao?) L3(

4 4 4
ey o B e < CuliGo. bo) e

2 4,0y 2 4 0y 2 a,o
Hﬂﬂ ) LT(Ha,(r ) LT(Ha,a )
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Moreover, we have

(5—4a) p+da

(M»b)ECT(H;,g)ﬂCT(HaZa mLP(H””mLP(HMZ" ). ¥p=2. (2

ii) Conszderthata>0 a>1 —<cx—/3<§,andot—%<s<3;°‘ Let(uo,bo)eI:I”

gy > 0 and a

,,,,,,

unique solution (u,b) € L‘%(Ha,,, n L47( 0.t )for the GMHD equations (1). More-
over, we have

(5—4a) p+da

(u,b>ecT<H;,amc7(H,fa mL"(HMPmLHHM“’ ). Vp=2.

iii) Let a >0, 0 > 1, % <a=8< 1,a—1§s<%—2oc, and (uo,bo)el-'lj,a,wizh
divug = divby = 0. There exists a constant Cy g 5.0, 10,v > 0 such thatif||(u0,bo)||HA <

Ca.o.5.a.1.vs then, we obtain a unique solution (u,b) € L, = (HS+1 YN Ly = (H”z“ b,
forall T > 0, for the GMHD equations (1) that satlsﬁes

IIMIILz_a + 161 2o +llull 2o + 1161l

T—a (Hg;l—a) L;—a (ng;l—a) L;—a (ng;Za 1 LI 01 (Hv+20( l)

= Cuvall(o, bo)ll g, -

Furthermore, one infers

2a

(u,b) € Cr(H: )N LI(Hyy?), Vp>2. 3)

Below, we present new blow-up criteria for the local solution obtained in Theorem 1.2
(see also [1, 5,7, 8, 16, 23-26] and references therein).

Theorem 1.3 Assume that a > 0, o > 1, 1<a—,3<— andot—%<s<—lf(ng

or —1<s< LT“ provided that a < % Let (ug, by) € H;g such that divuy = divby = 0.

. .5 oy
Assume that (u,b) € C([0,T*); H; ) N C([0, T™); H?, > ) is the solution for the GMHD
equations (1) in the maximal time interval 0 <t < T* given in Theorem 1.2. If T* < oo,
then the following statements hold:

i) llmsup (e, DY e, = 00;
NI

T* 1
ii) / AT @ HOIET dr = co;

iy e @ Bl > Cpupa(T* — 1) %57,

W) 1@ DOl , = CapsalT* =075
o)’ »

VBN 520 = CappuaT* =175
(«/_)"

1

a00+jcp. V,S,0,0,0 b aC, by

\V,8,0,0,00,U0,bo .v,0,8,00,u0,bg . . 2
(a—D[2(so+0g)+1] p Da—1 =< ||(u, b)(l)”Hai_a’ lf(MOs bO) eL 5
(T* — l‘) 6ao (T* — [) Bao

vi)

1 ’
. a’tzC aC
vii) L L0 L <l YD 3 o, i (o, bo) € L2,
5 20—1 20 0, Y0
(2a—l)[2((7—2a)6+60)+l] (T* _ t)w a Y
(T* — [) 600 :
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forallt € [0, T*),n € N. Here 20y is the integer part of 20 max{2, 4 — a}.

We also establish a study on the properties at potential blow-up times satisfied by solution
obtained in Theorem 1.1. The theorem below extends the blow-up criteria obtained by J.
Lorenz, W.G. Melo, N.F. Rocha [23] from the MHD equations to the GMHD system (1)
(see also [1, 5, 7, 8, 16, 24-26] and references therein).

Theorem 1.4 Assume thata > 0,0 > 1,a >1,8>1and max{— —201 —28,0}<s < %
Let (ug, by) € H;,o such that divuy = divby = 0. Assume that (u, b) € C([O, T"); H;qg) is
the solution for the GMHD equations (1) in the maximal time interval 0 <t < T* given in

Theorem 1.1. If T* < o0, then the following statements hold:

i) thUPH(M DDlgs = 00;
(fﬂ” n?

T*
i) / e @ H@IET + 1™ @ B @I T1dr = o0

— 17 — —h e =~ o _
iii) fle-m " @, b)(z>||2 T e T @ROITT = Cap (T =07

28
W) 1 OOIET 1 OOIS = Compnnas T =07
Wor? o’

1 ’
a00+2Cp,uvaaaou0ho acp,uavauobo
s Vyo,1,0, ’ ’ . . 2
V) (2a—1)[2(so+og)+1] p 2a—1 = ”(M, b)([)”H(f,a’ lf (MO’ bO) €L 5 and
(T*—1) 6o (T* —t) 30
oa=p,

forallt €[0,T*),n € N. Here 20y is the integer part of 20 2oc — 1).

Our last result proves the existence of stable global solutions for the GMHD equations
(1). The next theorem is our extended version for the equivalent study presented by H. Orf
[26] (see also [1-8, 11, 15-21, 23, 25, 29] and references included).

Theorem1.5Assumethatazo,azl,—<oz_,3<—,andoz—%<s<3’T”.Let

(o, bo) € HS® such that divuy = divbo = 0. Assume that (u,b) € C([0,T*); H: ) N
.3 (5—2a) p—4a

C([0, T*); Haza YN LP([0, T*); Ha 0” YN LP([0,T*); Hyp " ), for all p > 2, is the

solution for the GMHD equations (1) in the maximal time interval 0 <t < T* given in

Theorem 1.2. Then, the following statements hold:

T*
i) If T < o0, we obtain/ |G, b) (D)2 e g dt =
0

ii) There is a constant Cy o > 0 such that lfthe initial data (ug, by) satisfies || (ug, bo) || Ae <
Ci.olpt +v], we conclude that T* = co. Moreover, we have

I, YOI} w+[l/«+‘)]/ llu, b)Y ()17 Ht,,df<||(uo,bo)|| oy V1205

iii) Let (vy, wp) € H;;g such that div vy = divwg = 0. Consider that T* = co. Then, there
are constants Cs 4, C;’a > 0 such that if (ug, by) and (vy, wo) verify the inequality

[ (o, bo) — (o, wo)llﬁg;g
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< Cs$a[u+V]46XP{—C§,Q[M+V]73/O (I, b)(OII* it + @@ 5 s=a 1dT},

Haa

we conclude that the GMHD equations (1) admit global solution (v, w), with initial
data (vy, wy), that satisfies

I, b) — (v, w1 W+—/ I, b) = (v, w)(D)|1? ngt

< a0, bo) = (o, wo) 350 eXP{C o L1t + V]~ /0 [ b) = @ )OI g

+ 11, b) = @, IO 55 1d7),

Hg o

forallt > 0.

Remark 1.6 In this observation, our goal is to expose the reason why we have chosen the
ranges for a, 0, o, § and s presented in Theorems 1.1, 1.2, 1.3, 1.4 and 1.5. It is important
to emphasize that all the explanations presented below are related to the technics and the
preliminary results applied in this paper. Thus, let us examine the hypotheses of our main
results one by one.

e In the proof of Theorem 1.1, we applied Lemma 2.3, and resolved the elementary integral
obtained in (17) that made us assume the conditions for the values a, o, «, 8 and s given
in this same result. More specifically, in order to utilize Lemma 2.3 (with s; =5, =5, 51 <
%, 5, s1+ 5, >0,a>0and o > 1), we were obligated to consider that 0 < s < %
(for more details, see the inequality (17)). Furthermore, it was necessary to suppose that
s > % — 2« to calculate the integral established in (17). Similarly, we had to admit that
s > % — 28 (see (19)). Therefore, our assumptions for s in Theorem 1.1 are the following:
max{% — 2, % —28,0} <s < % Notice that these last two inequalities involving s only
make sense if o > % and 8 > %

Notice that if we observe the proof established for Theorem 1.1, in order to prove this
result, by using the same technics and considering o = 5, one would have in (16) the fol-

lowing:

Sy <

23

1B1((w, v), (7, @D Dl g,

(ST

< [[( [ pepeemngpont Fuey - pe e de) i

scﬂfa—r) Nw®y — ¢ @ vl e
0

a,o

(See Lemma 2.6.) Then, by Lemma 2.9 in [23], one would obtain

1B1((w. v). (7. ) Oy, < Consaraal W, )Lty 1 D) /O (-0 dr.

However, this last integral is not finite. That is the reason why we have not done the case
a = 5 in Theorem 1.1 so far.
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e In the proof of Theorem 1.2 i) and ii), we used Lemma 2.3 (with s; = 5723“, =s5s+73,
s; < %, S < %, s1+ 5 >0,a>0and o > 1) in (24). Thus, it was assumed that o > %
and o — % <s < 3’T“ Moreover, we needed to consider that o < % since Lemma 2.3 (with
3 g1 <3 <3 s1+5>0,a>0ando > 1) was utilized in (25) as well
Therefore, by summarizing, one infers a > 0,0 > 1,2 ;<ac< 5 and o — % <s<=%In
addition, Theorem 1.2 iii) was established by applying Lemma 2.5. That is the reason we
supposeda > 0,0 > landa — 1 <s < % — 2a. Besides, by analyzing (34), the reader can

notice where we needed to take % <a<l.
Now, let us clarify why we have chosen o = $ in Theorem 1.2. Thus, the absence of
the case more general in our paper is due to some technical issues. More precisely, in this

general situation, by following the proof of Theorem 1.2 i) and ii), we would have, for
i
instance, the term [|¢ ® v| jo+1-0 (With ¢, v € L4(H, HZ (R*) N L4 (H, (R3))) in (23).

A similar difficulty was found in Theorem 1.2 iii) (see (33)). Therefore, in order to apply
Lemmas 2.3 and 2.5, and by observing the proof of Theorem 1.2, we decided to consider

oa=p.

S =85 =

e In Theorems 1.3 and 1.4, we supposed at first that @ >0, 0 > 1, « > 1, § > 1 and
-1 <s5 < % due to the use of Lemmas 2.2 and 2.1 i) (see, for example, (43), (44)
and (46) for more details) in their proofs. Thereby, because of the hypotheses of The-
orems 1.1 and 1.2, we assumed @ > 0,0 > 1, | <a =<3 and o — 2 <5 < 352 if

3 2
o 2% or —1<s< 3_7"‘ provided that o <% in Theorem 1.3, and also a > 0, 0 > 1,

a>1,8>1and max{Z —2a,2 — 2,0} <s < 3 in Theorem 1.4. Specifically, by apply-
ing Dominated Convergence Theorem to Theorem 1.4 iii), we would have

Crvap(T* =7 < (@, b)(t)ll TH@, b)(t)ll . Viel0,T7).

(Compare with (65).) Thus, by following a analogous process as in the proof of Theorem
1.4 iii), one would deduce

Yol
u,v,rr,.r.a,ﬁ.uo,bo

(a C )k
Cu,v,:,a,ﬁ,uo,bo (T*—z)% < [/ (2a|§| )k
= .

GBI e @ By pae |

ﬁ
2p—

1
Qalg]7)* o
+| | i@ horag )T
R3 k
forall r € [0, T*) and k > 20 (2 — 1) in N (see (68)). Here ¢ = max{ 35, %} ifa<l,
and ¢ = min{5 ", 2;;_1} if a > 1. Thereby, we decided to consider &« = 8 in order to sum
over the set {k € N; k > 20 (2a — 1)} and proceed with the proof of Theorem 1.4 iii) as it is
done in this paper. Moreover, Theorem 1.3 assumes o = 8 because of Theorem 1.2.

e The solution obtained in Theorem 1.2 ii) was studied in Theorem 1.5; as a result, all the
conditions given for the value of a, 0, s, o« and /3 in Theorem 1.2 also must hold in Theorem
1.5. Thus, it was supposed thata > 0,0 > 1, 3 <a =g < 3,and o — 3 <s < 332 in this

2
last result.

Remark 1.7 1t is important to point out that our results consider the usual Laplacian operator
as well (it is enough to take « = 8 = 1). In addition, Theorems 1.2, 1.3, and 1.5 determine

@ Springer
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new information even in the critical case s = % — 2. Moreover, our main results still hold

for the MHD and Navier-Stokes equations. Lastly, let us emphasize that Theorems 1.1, 1.2,
and 1.5 take into account the usual Sobolev spaces (by assuming a = 0) (see [1-8, 11-29]
and references included).

2 Notations, Definitions and Preliminary Results

This section presents the most important notations, definitions and lemmas that will play
important roles throughout our paper.

Primordial notations and definitions:

o Fractional Laplacian' (—A)%, « € R, is defined by F[(—A)* f1(£) = S f(é). R
e Leta>0,0 >1 and s € R. Sobolev-Gevrey space is defined by H;, = {feS:fe

Lo . .
L,loc, ng |E|> 217 | £ (£)]2 dE < o0). H] ,-norm and H;  -inner product are given, re-
spectively, by

TR 1
£ W, = (fR 6217 | F(©)Pd) ", and
PN
8y, = fR NEEET f6) - 26 d,

. . . L3 X
e Leta>0,0 > 1,5 € R, and @ € R. We consider the spaces H}'S := H} , N H..» * which
are endowed with the norms

. 2 2 1
1 g = O0F Iy, 112 5,0
' Hy.

o

e Let T > 0. Assuming that (X, || - || x) is a normed space and / C R is an interval, we define
C(I; X)={f :1 — X continuous function}. C(/; X)-norm is given by

I fllzeoqsx) == Su?{llf(t)llx}.

We denote C7(X) = C([0, T]; X) and || - llzgecxry = Il - oo o, 710

e Letl <p<ooand T > 0. Assuming that (X, || - ||x) is a normed space and / C R is an
interval, we define L?(I; X) = {f : I — X mensurable function: f[ ||f(t)||§ dt < o0}.
L?(I; X)-norm is given by

1
W flleex) == (/1 ||f(t)||§dt) "

We denote L] (X) = L?([0, T]; X).

o Constants that appear in this paper may change their values from line to line without
change of notation. Thus, C, will denote constants that depend on g, for example. Here
C is always an absolute positive constant. Other notations and definitions are given in
footnotes throughout the paper.

IHere S is the space of tempered distributions, F(f)(§) = f(é) = fR3 e*’f"‘f(x) dx,and F~! () x):=
Q)73 [a 'SV g(§) dé.
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4 Page80f30 R.H. Guterres et al.

Auxiliary lemmas:
The lemma below establishes interpolation inequalities related to Sobolev-Gevrey
(Sobolev) spaces.

Lemma21 Leta>0,0>1,5seR, w €R, p>2,and 6 > 1. The following inequalities
hold:

D A fllgser < IIfIIHf’IIfIIHﬁe,
_2
ii) |If|| s _IIfIIHJ”IIfIIHHrr

Proof Note that Holder’s inequality implies that

R -4 1 5
11y < (/ £ o alel? |f<s>|2ds> (/R £ P20 a1 |f<s>|2ds>

)
= IIfIIHA -’ IIfIIHHe

This proves i). Similarly, by Holder’s inequality once more, we have

1 -3 1 7
||f||2,_v+sz = (/R &> 281 |f(€)|2d§> (/R |&| 2527 g2l |f($)|2d$)
Ha,a P 3 3

2(1-
=1l " ||f||Hs+w
This proves ii). U

The lemma below is the key point in the proofs of Theorems 1.3 and 1.4.

Lemma22 Leta>0,0 > 1, —]<s<%,azl,andﬂz1.Foreveryf€H;,UﬂH;:;"‘

and g € H;,a N H;;ﬂ, we have that fg € Htjj,l. More precisely, we have

-1 1
/8l gzt < Caousll f 1l A g IS ]

a,o

||g||,,£‘ ||g||f‘v+,} + ligll

a,0

Proof By Cauchy-Schwarz’s inequality, one infers

ap i o~ ?
le117 Al < / (£ 2 Elel? ds / £ 20817 | 7] als)2 =: Caosl fllgg,
)

where Ca s = m% (T is the standard gamma function). Consequently, by applying

Lemma 2.9 in [23], (4) and Lemma 2.1, we deduce

*II‘T

1£8llser = Cs [le7" o Flign gl gzt 4 lle ™ ool f 1l ]

= Caosllf g, gl gesr + N8l , 1A 1 gas1]
< Caoslll fIIH;,,IIgIIH;ﬂ IIgIIﬂWe +lgllag, fIIHs“ IIfIIHHa
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This completes the proof. ]
Another important product estimate is added as follows.

Lemma 2.3 (see[5,10]) Leta >0, 0 > 1 and (sy, s,) € R? such that s; < % and 51+ s, > 0.
Then, there exists a positive constant Cs, , such that, for all f, g € H)' (RY) N HY% (R?),
we have

||fg||H;?:,v27% < Csl.,sz(||f||gg}ﬂ(R3)||g||H;_26(R3) + ”f”Hj?r,(]R%||g||H§L,(R3))~

(R3)

If sy < %, §y < % and s\ + s, > 0, then there is a positive constant Cy, , such that

781 sy = o g o 18 s
a,o

Proof For details, see Lemma 2.2 in [5] and Lemma 2.8 in [10]. O
Motivated by H. Orf [26], the next result will be useful in the proof of Theorem 1.2.

Lemma24 Leta>0,0 > 1,0 e R, w>0,T > 0and s € R. Assume that f € LZT(H(j‘_;a)
and vy € H? . Consider that v € Cr(8) solves the system

a,o’

{vf+w(—A)9v=f; )

v(-,0) = vo.

. L5+ 20
Then, we have v € Cy(H} ) N L[T,(H;:: P, for all p > 2. Moreover, we obtain

1 3 1
. 25 2alE|T ~ _\2 2 . L .
1) </1Rs 1§17 e Ossggt{lv(f)l }df) < llvoll g, + ml|f||L;<H;;9)aforallt €[0,T];

2
=3

1 1 2
i) [lv]l w20 Z[lvollgs, + —= I/ ll;2 =01 lvollgs, + =1 F 1l 2 g0y 17 -
B o T 2w L2(HSSD) N io T L2135

P
7\Wa,o

Proof By applying ¢=*~92" (with 0 < ¢ <t < 1), Fourier transform to the system (5),
and integrating over [0, t] the result obtained, we deduce that

~ wrlE?? ~ LIPS RN - 1 o~
[0(r)| < e " |U0|+/ e okl |f(Q)|dQ§|Uo|+E|E| NFE 20
0
vt €[0, 1], (6)

where we have used Cauchy-Schwarz’s inequality. Now, multiply the inequality above by
1
|€]°e?€1” and take L?(R3)-norm to get

) :
([ eree® sup (0 1dE)” < g, + viel0.71. ()

0<t<t

1
E”JCHLIZ(H(;;G),

This proves i). Moreover, since v € C7(S’), then by applying Dominated Convergence The-
orem and (7) we can conclude that v € C7(H, ).
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4 Page100f30 R.H. Guterres et al.

1
On the other hand, by multiplying (6) (with © = t) by |£|*+?e?¥!” | taking L2([0, T])-
norm, and using Young’s inequality, we deduce

T 1 %
(/ |§|2(S+9)eza|§|0 |U(t)|2dt)
0

1 L Lo e ~
< —— 117 Dol + &1 e Il  x [LF O 20,7

V2w
< g eI [Ty 4 [l (/T Forar)
P e v, — e .
V2w T 0
Apply L?(R?)-norm in order to obtain
1 1
IWllig ey = = lvollig, + S g ez ®)

Therefore, by using Lemma 2.1, (7) and (8), it yields that

T
2 2
Wl < / @I o)1, dr
0 a,o a,0

LY (Hyo ')

£-1
1 2
2s 2 3 -~ 2 2
< </ |§1** 17 sup {[0(7)] }dé’) (L] PPy
]R3 T\Ha,o

0<t<T

_ 1 1
= Uvollag, + =131 1= luollag, + 5 115 g -

s+
This proves ii). As a result, we can conclude that v € L;(Ha,g P, for all p > 2, since f €

L2(H:,?) and vo € H . O
The next lemma will be useful in the proof of Theorem 1.2 iii).

L.emmaZ.S Let a>0,0 >1, a < %, a—1§s<%—2a. Iff,geHjj‘“(R%ﬂ
H ;;2"‘_1 (R?), then there exists a positive constant C, 4.5 Such that

”fg”].‘[[j;l—a(R% = Ca,o,a,s[||f||[i[5“;1—“(]]§3) ||g||H[j’$2a—1(R3) + ”f”[.']éj;z“—l(RS) ”g”H,ft,l_“(R%]'

Proof Notice that, by applying Lemma 2.9 in [23], we deduce that

apF ~ a
1 £ gl ass1-e sy < Coall £ 1 gs-a gy le? 17 &l s, + lle!

a,o

o~

||L1(R3) ||g||1:15}17w(R3)]-

(C))

1
|0

By Cauchy-Schwarz’s inequality, we have

1

a1l T ~ —5— a_ clf — c% ~
1?17 &1 s, < (/Jéﬁ“ S0kl d&) (/3|s|2“+2‘” Vel |g(s>|2d5)
R’ R

drol(o(5 —2s —4a)) )
= T oG N8 Gss2a—t g3y
[Z(Cl — ;)]0(5 2s—4a) H Y (R3)

(10)
and, consequently, the desired result follows from (9) and (10). O
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Finally, we present a result which comes from Calculus.
Lemma 2.6 (see [23]) Lera,b > 0. Then, A%¢"* < a® (eb)™ for all 1 > 0.
Proof For details, see Lemma 2.10 in [23] (and references therein). a

As follows, we shall prove our main results.

3 Proof of Theorem 1.1

The proof of Theorem 1.1 was motivated by [23]. Thus, by applying e #¢~DC2% (with
7 € [0,1]) to the first equation in (1), and integrating the result obtained over [0, t], we
deduce?

t
u(r) = e My — / e MDA Py vy — b Vb)dr.
0

It is known that this operator satisfies

f&) ¢

T £, VEeR:. (11)

FIP(HIE) = F (&) —

—v(t—1)(—A)P

Analogously, apply e (with T € [0, t]) to the second equation in (1), and integrate

the result obtained to get

t
b(t) = e by — f e N Y b bVl dr.
0

Therefore, one has

W, b)(1) = (7" ug, e by) + B((u, b), (u, b)) (1), (12)
where
B((w,v), (v, 9) (1) = (Bi((w, v), (¥, $)) (1), B2((w, v), (v, $))(1)) 13)
with
By ((w, ), (v, $)) (1) = — /Ot e MDENTP(y .V —v - Vo) dr (14)
and also
By((w, v), (v, ) (1) = — /OI e TN . Vg — v - Vydr, 15)

for all w,v,y,¢ € Cr (H‘f’a) (T > 0 will be determined as follows). It is easy to check that
B:Cr (H;,U) xCT(H;U) — Cr (H;’U) is a bilinear operator. Thus, our imminent goal is to
prove that this operator is also continuous.

2P is Helmholtz’s projector (see [22]).
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4 Page120f30 R.H. Guterres et al.

As a consequence of (11) and Lemma 2.6, we deduce’

1Bi(w, ). (7. Oy,

t 1 1
< / (/ e PR | Fw @y — g @ 0)(©)PdE ) dr
0 R3

= [( [ 10 e
0 3

< wa/(r—ﬂ / E19 2 | Fw ® y — 6 ©0)E©) ds) dr

1 1
e | Fw ey — ¢ @ u)E)Lds)” de

< Cs,,w/ (t— r)‘% Mw®y —¢& v](f)llﬂzs,g dr. (16)
O a,o

By Lemma 2.3, it follows that

t
5-2s
1B (. v), (. ) Dl g, < Copnall W, )L 0sig ) |2 Dl / (t—1) % dr
0

(I7)
2v+40( 5
= Cs,;/,,aT Il (w, U)||L°°(H‘U)”(y7 ¢)||L7°9(H(;‘_o)’ (18)
for all ¢ € [0, T']. Analogously, we can write
1B2((w, v), (v, 2Ol s, = Cs, u;sT II(w Oy ) 1V P lze iy (19
forall t € [0, T]. By (13), (18) and (19), one infers
IB((w. v), (v, $) Ol is,
25+4a—5 25+4B—5
< Coppnapl T3 T @ ) o | D iy, (20)

forallz € [0, T].
On the other hand, it is easy to check that

o o L
e 2 w2, = / T HER | 2 2T i ()2 dE < luoll, , Vie[0, T (21)
a,o ]R3 a,o

Similarly, we deduce
NN
le™" " boll gy < Ibollg,. Vielo,TI.
Therefore, we have shown that

™ g, e bg) |y < I (uo, bo)ll gz, YVt €l[0,T].

a,o

) [mln{2v+4a -5 2A+4;5 5)]
Choose 0 < T < min{l, [8C ;. ,.a.8 (1o, b())”Hs 1 B }, where Cs ;i y.a8

is given in (20), in orde;r to obtain, by Lemma 2. 1 in [25] (for more details, see [9]), a unique
solution (u, b) € Cr(H, ,) for the equation (12). O

3The tensor product is given by f ® g:=(g1f, 821 83f)-
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4 Proof of Theorem 1.2

The proof of Theorem 1.2 was motivated by [23, 26]. Thus, by observing (13), (14) and (15)
(with = B), we have

OB+ pu(=A)*B=—=P(y -Vw —v-V¢);
B1(0)=0

{3sz+V(—A)"Bz=—[w-V¢—v-VJ/]; 22)

By (0) =

Now, assume that 7 > 0. Thus, by using (11), Lemma 2.3 and Hoélder’s inequality, one
obtains*

T
IP(y -V =0 V)5 e < / lw ® yll gyei-a + 16 ® vl jos1-«1* dt (23)

2 2 2 2
<Csa/ [||w|| s 7 vy T P17 se IV Ha]df
Hy o I‘Ia,7

24

2 2
S CS,D([”w” 5-3cx ”)’” .H»%
L, r ) Ly(Heo

2
+ llgll s VNP
= L4

L} (Hao® )

< Coall W, 2, 1, DI, -

.&+
o)

Analogously, we can write
lw-Ve —v- V)/HLZ (HS Y ) < Csoll(w, U)”ZT Iy, 4’)”27
and also

[P(y-Vw—v- V¢)II iy lw-Vé—v- VVII H”*”)<C allw, V)lIz, 1y, D)z »

T T
(25)
for all (w, v), (¥, ¢) € Zr. As a consequence, one has’
I1P(y-Vw—=v-V@)lly,, lw-Vd—v-Vyly, < Coull(w, )z, Iy, Pl z;»
V(w,v), (v, ¢) € Zr. (26)
5—3a
4Let Zp = LA (Ha (,2) N LY (Hyd ). where | -3 =1 -|* +1-1* 5.5, - Moreover,
T T+2 .
T(Haa ) LYy (Hao? )
4 4
e, )IIL4<1 ) = HL4([ x>+” ||L4(, ) and (5 OliZ, =1l || Tz,
2 2 3
SDenote Y7 = LT(H(f,aa) n LT(Haza ), where | - H v =1 HL2 (B2 +1- 12 5y Moreover,
L2HZ, )
2 = .
G, *)Ile(l ) =|- ”L2(1 X + ”*“Lz(, X and ¢, Wy, =l HYT + H*IIYT
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4 Page 14 0f 30 R.H. Guterres et al.

By applying Lemma 2.4 ii) (with p =4) to the systems in (22) and using (26), we deduce

”B((wﬁv)?()/’ ¢))”ZT SCS,LXS‘_%“(va)”ZT ||(y!¢)|IZTa V(wav)t(y5¢) GZT7 (27)

where ¢ = min{x, v}. On the other hand, it is easy to check that

: T 1 1
—pt(—A)® 25ta 2alE|T |7 2 —dpr|g| > 2 2
el g = ([ e mep( [ e ar) ag)
L4 (Hao?) R3 0

_1
= Cp *Huoll gse- (28)

Similarly, we obtain

—ut(—=A)*

-1
le ugll - spe < Cu” 3 lluoll e

7Wa,o

—vi(=A) —vi(=A)¥ -1 .
lle b0||L4(.S+% and |le boll , _@)ECV Hboll e

T\ a,o 7\WHa,o

and also
(=AY _1 —VE(—A)Y _1
le S ugllz, < Cu™* llugll g, and e A byl 2, < Cv™ 4 |lbo|l e
As a consequence, we have

a (AN _1
(e ug, e bg) | 2, < Cs ™[ (uo, bo) | e - (29)

Assume that || (uo, bo) || e < (where C and C;, are given in (29) and (27), respec-

tively) in order to get, by Lemma 2.1in [25] (for more details, see [9]), a unique solution

(u, b) € Zy for the equation (12) (with & = §) such that

_1
G, B)llz, =2Cs™* (o, bo) |l -
Analogously to (26) and by applying Lemma 2.4 to the systems (see (1))

u, + u(—=A)*u = —Plu-Vu — b-Vb], by + v(—A)*b =b-Vu —u-Vb,
u(-,0) = uo, b(-,0) = by,

we conclude that (2) holds. This proves i).
Now, let us prove the item ii) (we shall assume that the initial data may be large). Thus,
as (ug, by) € H>%; then, for € > 0 there is pp > 0 such that

a,o’

/ £ P27 (@, o) (&) 2 dE <, and / E P27 @, Bo) E)P dE <e.
|&]1>p0 1&1>p0
(30)

Define Uy = F~! {X{11<po) 0} Thereby, we deduce

1
—pt(—A) 2 —2ut|EP | £ 2540 2alE|T |~ 2 —pt (=AY 2
le™ S ug | a=f e Mg P i) d + e T ol g
1€1>po

-S+7

a,0 a,o

3D
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for all ¢ € [0, T']. On the other hand, by (30) (similarly to (28)), one infers

r 1 2
[ ([ emmegpecnt mepd) ar < e
0 1€1>po

and, moreover,

T 1 2
—ut (=0 77 4 _ 25+a 2alE|T —4urle® |~ g2 )
le Uonﬁmﬁ%)—/0 (/ JE 217 o 6 2 dg ) di
7(Ha, o 1E1<p0
< PR Tlluolly, -
Therefore, by taking L*([0, T])-norm in (31), one concludes

—pt(—A) 4 2 2 4
le™ N ugll* L < Culle® + PR T ol

7\Wa,o

Analogously, we can write

— —A)¥ 4 2 2 4
lle=# Ay | s3a < Cule” + 0" Tlluoll sl
L(Hao? ) “7

and, consequently,
— —A)¥ g 1
le ™ ugllz, < Cul/e + pg THllugll 2], and

ot (=AY .1
le™ " boliz, < Colve+ pg THlboll el

As a result, one has
(=AY (=AY z 1
e ™ g, e bo) . < Crunlv/e + pd T4 o, bo) . (32)

Now, choose 0 < € < [8C, 4¢3 C,i, 172 and 0 < T < [8C, 453 Cpuvpld 1o, bo) |l a1
(where C,,, and Cy 4 are given in (32) and (27), respectively) in order to get, by Lemma 2.1
in [25] (for more details, see [9]), a unique solution (u, b) € Z for the equation (12) (with
o= B).

Now, observe that

{ e, b)) + (W(=A)u,v(=A)*b)=(P(b-Vb—u-Vu),b-Vu —u - Vb);
(u! b)(vo) = (uo,bo).

Therefore, analogously to (26), by using the fact that (ug, by) € H;;g and (u,b) € Zr, and
applying Lemma 2.4, the proof of ii) is given.

Now, we re ready to verify iii). Thus, similarly to (24); however, by using Lemma 2.5, it
follows from Holder’s inequality that®

T
2 2
IP(y-Vw—v- V¢)||L2T(H5;a) 5/0 Hw @yl gssi-o + 16 @ vl gasi-a]"dt (33)
2a 1 20 i~
®Denote X7 = Ly “ (Hyb'™®) n LET(HSH™), where | - Gy =117 5 +

Lrlfot (I_'Igirflfot)

2
-1 o .
L%u—l (1_'15‘4{720:—1)
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T
2 2 2 2 2 2
S Ca‘a,s.a /(; [||w||HJJ{717a ||V ”H(.f}Za—l + ||)’ ”H(ff,li(x ||U) ||H(.f$2afl + ||¢||Hl.§:r’17a ”U”Hg:r’hf]
2 2
F Il -e 1012 1d

< Cugsalllw, V)? 20 I, DI 2

LTlfa (1_'[’}:,48170() LTZa—l (1_'[{.;4;20(—])

2 2
HIV DI 20 [ (w, V)" 2 1 (34)
L7l_—o( (H(: l—oz) LTfot—l (1_'1;’#(;21171)

< Caosall W, V)15, |1 (7, DI, - (35)

Likewise, we conclude that
lw- V¢ —v-Vyl2 e < CaosallW, V)llx; 1(v, @) llxs (36)

for all (w, v), (¥, ¢) € Xr. By applying Lemma 2.4 ii) (for the following the values of p:

i—“a and 2§”j] ) to the systems in (22) and, by using (35) and (36), we reach

I1B((w, v), (v, D) lx; < Caosaps W, V)x, 17, Pllxs,  V(w,v), (v, d) € Xr. (37)

On the other hand, by Minkowski’s inequality, one infers

1-a

T N E
—pt(— A - 204220 2alE7 |7 (£1(2 e dr) ¢ ag)’
lle uoll 2o =( [, &l e [0 (8)] e T« dt §
R3 0

Ly (HiE' ™)

=< Cﬂ,a”uO”H‘V .

a,o

Similarly, we obtain

— —A)¥
lle =8 uo| 22 si2uml EC;L,aHMOHI-‘Il;‘YJ
L2 b
le ™ A bo|| 2 and e TV byl 2 < Coallboll g
L71~_a (Hé:gl—ot) L%a—l (Hé:thx—l) )
Therefore, one concludes that
_ —A) vt (=AY
1™ g, e % bo) [1x, < Cpovall o bo) s, - (38)
1

Finally, it is enough to assume that || (uo, bo) |l g3 , (where C,, , o and

-——

4Cu,v,otca,a.s,otp..v
Ca.0,5,au,v are given in (38) and (37), respectively) and follow the arguments established in
the proof of i) to determine the veracity of iii). ]

5 Proofs of Theorems 1.3 and 1.4

In this section, motivated by [23, 26], we are going to prove Theorems 1.3 and 1.4. Due
to their similarities, we have decided to establish the proof of Theorem 1.4 and show the
specificities of the proof of Theorem 1.3 in between parenthesis. Let us point out that the
proofs below extend the respective particular cases established in [23] and, thus, part of them
are similar. Nevertheless, for the convenience of the reader, we will argue Theorems 1.3 and
1.4 exposing their details.
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Proofs of Theorems 1.3 i) and 1.4 i) withn = 1 Suppose, by contradiction, that limsup ||(u,
(T*
b))l g, < oo (respectively, limsup || (u, b)(?)|| 3.« < 00). By Theorem 1.1 (respectively,
’ t /T ’

Theorem 1.2), there exists a positive constant C, ,
16t DYOllgs, < Caerss V1[0, T7). (39)
(Respectively, we infer

||(M, b)(l‘)”Hgg =< Ca,a,sv Vte [0, T*)) (40)

On the other hand, by taking H, + o-inner product of the first equation of (1) with u(¢), one
deduces

——IIM(I)IIHY +u||u(t)||Hq+a<|(u w-Vuygs |+, b-Vbyg, | (41)

Analogously, by applying I-'Ij’g-inner product to the second equation with b(¢), it follows
that

%%nbmn;ﬁﬂ H VIO s < 1By VB) g |+ 1B, b - Vi) g - 42)
By (41) and (42), we infer that
d 2 2 2
5 @ DO+ mlu@ Py + VIO,
< Nl g, e @ el gesr + el gy, 16 ® bl e
+ 101y, N0 @ ull o + 1B gy, e @ bl - (43)
By applying the proof of Lemma 2.2 and Lemma 2.1 i), we conclude

d
5 1@ DOI A+ ulu@O P +VIBOI,.

1 _

<Cilfle?! laA”L‘ + e 7Bl b)IIHA"IIMIIHW
ol (U3 b)ll . ”b”Ber,B] (44)

By Young’s inequality, one deduces

H"

d
TN DOIF, A+ wlu®le +VIBO1 e < Coappnlller 7@

%A rrA % 7’5
e B 1T + [l 7 Gl + 17 Bl 1 TG, b (45)
On the other hand, by (4), one infers
||€’”"(u D)1 < Caos i, b)llgg, - (46)
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Now, integrate over [0, ¢] the inequality (45) and apply (39) (respectively, (40)) and (46) to
obtain

t t
I DO, +n /0 () + v fo 1@, d7
=< ”(uOs bO)”il,;[, + Cs.a,a,u,v,a,ﬁT*v

for all t € [0, T*). Consequently,

t t
,LL/ ”M(t)”i'lﬁadr + U/ ”b(t)”ifﬂ‘f dT = Cx,a,a.p,,u,m,ﬁ,uoﬁbO,T*7 Vte [07 T*) (47)
0 a,o 0 a,o

(Respectively, if « = 8, we have

t
1, YOIy + 1+ V] / e, DYy e T < (000, b) 1 5ys + Coaopva T
5 0 a,o a,o

In particular, it follows that

t
I, DY 5, + [+ v]/ I, YOI 5, dr <o, b 5 ,, + CavpvaT™-
Htlz.J 0 H2 2

a,o Hio

As a result, we obtain

t t
/ ”(M, b)(r)”ilﬁ—adr +/ ||(M, b)(r)Hz %72,1 dt =< Ca,(r,,LLA,I),a,uo,bo,T*? Vte [07 T*))
0 o 0 Hiy
(48)

On the other hand, denote by (k,),en a sequence such that 0 < «, < T* and «, /' T*. We
shall prove that

Jlim b)) = (@ B) k) g, = 0. (49)

(Respectively, we are going to show that
im0, 5) () = (. B) () g = 0. (50)
By (12), (13), (14) and (15), one obtains
(u,b) (k) — (u, b) (k) =11 + b + I, (5D
where
I = (I, Tip) = ([T A" — g Oy [omnCA gm0 ) - (52)

and

L= (I, In) = (/ [e Htm=DEAT _ pmnla=D A Py Yy — b - Vb dr,
0
/ [e~"bn—DEA _ b= =0 1 yp _p. Vu)a’r), (53)
0
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and also

L= _(/ e M= Pl gy — b Vbl dr, / e g b Vu)dr).

(54)

Thus, it is easy to check that
2 vk |E2B _VTHIERP 2 25 2 L~ 5
A O e L T
' R

Since by € Hcf »» Dominated Convergence Theorem implies that lim |[/2]|zs = 0. Simi-
> n,m—00 a,0

larly, we have lim |1yl =0. Asaresult, lim | /]l = 0. (Respectively, we have
n,m—o0 ’ n,m— 00 ’

lim ;]| 5, =0.)
n,m— 00 Haz,c
By applying (11) and Cauchy-Schwarz’s inequality, we obtain
1

™ * o 1 2
2l g, < T(/ /3[1 — e T )P 12| £ 25 20617 | Fyy VY — b - Vb](§)|2d§dt)2.
0 R-

Observe that, by using Lemma 2.2, (39) (respectively, (40)), Holder’s inequality, and (47)
(respectively, (48)), we have

T*
/ lu-Vu—b-Vb|3, dr
0 a,o
T*
< [ Ul + 16 @ bl e
A , ,

T* 1 1
o B 2
= Ca,a,s,a.ﬁ/ [||u||;'1x+a + ”b”ﬁwﬁ] dt
0 a,0 Hy o

- CNR| L B 1=
= Covsan|( [ Mulpede) " @8+ ([ 101 pdr)” (' 7]
0 a,o 0 a,o
=< Ca,ms.a,ﬂ,uo.bo.T* < 0. (55)

Thus, by applying Dominated Convergence Theorem, one obtains that Lim |[/y]lgs  =0.
Analogously, we have lim |[Ix| g5 = 0. Therefore, lim |1 Hgg’: 0. (Respectively,
n,m— 00 ’ n,m— 00 4
weobtain lim L] s_,, =0.)
n,m—oQ H2

Now, note that, by aili;)lying (11), Lemma 2.2, (39) (respectively, (40)), Holder’s inequal-
ity, and (47) (respectively, (48)), one gets

Kn
il < [ e S PGV~ Vbl de

m

+/ e €A 4 Vb — b Vi) g de

T* 1
2 20 1—L
< Ca,a.s,a,ﬂ[(f ||u||1_-1g+ad‘[) (T* - Km) 2
0 @
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+(/0 112 Hﬁdr)i"( o) |

1 _ L
=< Ca,a,s,a,ﬁ,uo,bo,T*[(T* - Km)l_ﬂ + (T* - Km)] 2 ]

This implies that lim 1531l g5 , = O (respectively, we deduce lim ||13|| e =0). Thus,

we have proved (49) (respectlvely, (50)) that is, we have shown that ((u b)(K,,)),,EN is a
Cauchy sequence in Banach space H, , (respectively, H +o). Therefore, there is (11, b)) €

H;  (respectively, H 9) with

hm G, D) (kcn) — (e, byl s

a,o

(Respectively, lim [|(u, b)(k,) — (uy, by)llgse = 0.) Tt is true that (u;, b;) is independent
n—00 g

on the sequence (k,),en. In fact, suppose that (p,).en < (0, T*) satisfies p, /' T* and

hm G, b)(pn) — (w2, b2) |l 5 . = O (respectively, nlirgo I, D)(pn) — (U2, b2) |l g3« = 0) for

some (us, by) € HaY.a (respectively, H;:g’). It is easy to notice that (uz, by) = (uy, by).
Indeed, let (Gy)uenw < (0,7*) be defined by ¢, =k, and 2,1 = pn, fqr all n € N.
As a consequence, one concludes ¢, / T and there exists (u3,b3) € H, , (respec-

tively, H;g) with lim ||(u, b)(g,) — (u3,b3)||gs = 0 (respectively, lim |[(u, b)(s,) —
’ n—00 @0 n— 00
(us, bs)llyg;g = 0). Therefore, (u;, b;) = (u3, b3) = (uz, by). All the proof above establishes
that 1/1'1’71"1 | (e, DY(2) — (w1, by)|l s = O (respectively, 1/1'1’71”1 | (u, b)(t) — (uy, by)| gs« = 0).
t * a,o t * a,o

Thereby, consider the GMHD equations (1) (with the initial data (u;, b;)) and apply
Theorem 1.1. As usual, we can put the two solutions together to get a solution for (1) that
is defined beyond 7*. This is an absurd. Therefore, the proofs of Theorems 1.3 i) and 1.4 1)
with n =1 are given. |

Proofs of Theorems 1.3 i) and 1.4 i) withn =1 Consider 0 <t < T < T* and apply Gron-
wall’s inequality to (45) in order to obtain

[l (e, b)(T)IIHA < Il (u, b)(t)llHt eXp{Cwﬂ,w/ {[||e—llou(r)||L1 + “e‘_HUb(‘[)“LI]Z"‘ 1

+eEHT R 1 + le# 7 Byl 17 ) d).
(In particular, one deduces

I, DY 5,
2

Toa ko ap it~ 20
5||(u,b)(t)||2_%,2aeXP{Ca.,t,v/ eo """ @@l + llew"7 b(r) [l 11%T dr}.)
Hi s t

Passing to the limit superior, as T 7 T*, Theorem 1.4 1) (with n = 1) implies that

1 1

1 a F~ 2B
{[Ile_”au(f)llL1 +11et 17 B(D) | 15T + [l H”M(f)llu +1les "7 b(r)ll 1 17T Y dT
:OO,

for all ¢ € [0, T*). This completes the proofs of Theorems 1.3 ii) and 1.4 ii) withn=1. O
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Proofs of Theorems 1.3 iii) and 1.4iii) withn = 1 By applying Fourier transform to the first
equation of (1) and taking the scalar product in C3 with #(¢) of the result obtained, one
infers

[JNPS ey ==
§3r|u(t)|2+ul‘§|2“|u|2§Iu-u~Vu|+|u~b~Vb|- (56)

For 6 > 0 arbitrary, it is easy to check that

. R
IVIEOPE+5+ 1 <|u-Vu|+1b- Vb|.
VI +s

By integrating from ¢ to T (where 0 <t < T < T* < 00), one obtains

= ! |u<r>|2
VIRDP + 6+l |
ViR +

@) +5+/ [ - Vi) ()| + |(b - VB)(0) [ d.

t

a l . . .
Passing to the limit, as § — 0, multiplying by e~ ¥!” and integrating over & € R?, we obtain

T
||e"'”u(T)||L1+l‘/ le#117 Fl(— M) ul(@)l1 dr < 17 a0,

T 1 — —
+/ / e E17 [ - Vu) ()| + |(b - Vb)(7) |1 dEdT.
t JR3

Similarly, we deduce

o b T, PN
llew" ab(T)”L]Jf_v/ e " FL(=AYPBIO) |1 dT < llea "7 b(@)|l 1

T
+/ /365‘5‘}’[I(u-Vb)(r)l+|(b-Vu)(f)|]dEdf.
t R

Consequently, one obtains

1 T
et 17 ()|l + lem 7 BT |1 + u/ lesH17 F(— A)'ul(0)| 1 dt

T 1
v f 15 FL (=AY bID)
T B 1 P o
<||e-"“u<r>||u+||e-"“b<r)||u+f / 56 [ V) (1) + 1B VB)()|
]R3

T (- VD)D) + (B - Va) () [] dEd-.

By applying (17) in [1], and Young and Holder’s inequalities, we obtain
a é o a 0 a U
/363'5‘ (- VB)(E)|dE < 2m) > [I[e7 V7 (@] [e7 "7 |VB|1]|
R
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1 1 o
<o) e @ 1 lem " Vbl

1
< @m)les 1@ i fler " B bll = les" ‘”]’[( A)ﬁb]ll
(57)
Consequently, by Young’s inequality, one deduces

1

1 r .1
I|€“"°M(T)||Ll + e BTl +%/ e FL(=A)*ul(t) |1 dT
t

v T
+5/ 1511 FL(— A1), d

1 1

Elle”””u(t)llu+||6" 7D (t)||L]+C//.vaﬂ [Ilea ‘”u(f)llu+lle" D)l

1

X{[IIE""’M(T)IILI+||e’”°b(T)IIL1]2“ +[||67"°M(T)IIL1+II6" b (T)”L‘]zﬂ 7Tldrt.

By Gronwall’s inequality, it follows that

apd Lo 2 ap b 47 R
Ulee 1" @(T) 11 + e BT) | 1175 + [les 1" @(T) |1 + lle? 7 B(T)|| 1]
1 _

<{[||60"”u(t)||u +1les 17 Do) |17 [IIeg””u(t)IILl +lles" Fb(t)llu]l %)

1

T
xexp{cﬂ,u,m,g {[||e€"'”u<r)||y+||ea 7 (T)||L1]2“‘+[|Ie’””u(f)llu

1 _

+[les " (T)IlLl]zf’ 7-T}dr},

forall0 <t <T < T*, that is,

L

d T 1 | 2u
it P Crap [ (113 0 + 181 By 117
t

1 1 o
+[||€7"”u(f)||u+||€” ' (T)llLl]Zf‘3 Jdt}] < [IIef”UM(t)IlLI-l-||€5“‘”b(t)||y]2§7*1

a g,\ aj s~ 28
+ e @l + e be) 17T

Integrate over [, fo] (with 0 <t <ty < T™) to obtain

0 RSN ap il
Culvaﬂexp{_cu.v,a,ﬁ/ {[Ile"”"A(r)llLlﬂLlle”" B@) 1117 + [le? 17 @)l
t

1

FIEP BT + Cl g = (11081 2O+ 116717 Doy 1,115
LS @@ o+ 117 B 17T Yo — 1)

By passing to the limit, as ¢ty /' T*, and using Theorem 1.4 ii) with n = 1 (respectively,
Theorem 1.3 ii) with n = 1), we have

L _

C,:wﬁ_{[||ev*"“u<r>||u+||efv‘ 7B 17
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e @ + IedH7 Bl 17Ty T — 1),
for all ¢ € [0, T*). This completes the proofs of Theorems 1.3 iii) and 1.4 iii) forn=1. 0O

Proofs of Theorem 1.3 iv) and v), and Theorem 1.4 iv) withn =1 It is a fact that ch',(, —
H‘YL , (since o > 1). More precisely, we have || - || gs < || - llgs . Therefore, we
NG a_ . a,0

o o’

conclude that (u,b) € C([0,T}), H% )7 (respectively, (u,b) € C([0,T}), H%, ) N
Vo NC

3 o . .
C(0,T;), H 2[_120 )). As a consequence, we obtain 7% > T,°. Moreover, by applying The-
=

G N
orem 1.4 iii) with n =1 (respectively, Theorem 1.3 iii) with n = 1) and Cauchy-Schwarz’s
inequality (analogously to (46)), it follows that

Crvap(T; =17 < IIea"G(u b)(t)llz"‘ ‘ +||e”"”(u b)(t)llz‘8 1

2a
< Caoaplll @, XN +||(u,b><r>||i-,‘i;‘ 1, (58)

V7 Vol

forall ¢ € [0, T,"). (Respectively, we have
20—1
Cuna (T —1)" % < Cyoall(u,b)®)] R vt e[0,T)).) (59)
ﬁ,o

This proves Theorem 1.3 iv) and v), and Theorem 1.4 iv) with n = 1. |

Proofs of Theorem 1.3 i), ii), iii), iv) and v), and Theorem 1.4 i), ii), iii) and iv) withn > 1 First of
all, (58) implies that

2f
timsupl (. BYOIZ T+ YOI 1= 0. (60)
t Ty «/(71 ﬁ,a

(Respectively, by applying (59), one concludes

limsup || (u, b)(@) || 5o = 00.) (61)
t TS HL -
N
Notice that (60) implies directly that
lim sup | (u, b)(t)”Hr = 00. (62)

This proves Theorems 1.3 i) and 1.4 i) with n = 2. By following the process that we have
done so far, one obtains

28
+||eaf“ @ @I 1dr =00, Vie[0,T)).

T*
/ ler" @ Byl

7From now on T;5 < 0o denotes the first blow- up time for the solution (u, b) € C([0, T}); H, (,) (respec-

tively, (u, b) € C(10, T.0); HS ») N C([0, T2); Haig %)), where o > 0.
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This proves Theorem 1.3 ii) and 1.4 ii) with n =2 and Theorem 1.3 iii) and 1.4 iii) with
n = 2 follows analogously to the case n = 1. As an immediate consequence of (62) (and

respectively, (61)), one obtains that 7,7 > T _. As a result, we infer that 7 = T7_. Con-
Vo v
sequently, rewriting the arguments above with f instead of a, we obtain, analogously to

(58), that

28
Crvap(T; =07 < Ca,a,s,a,ﬁ[”(uab)(t)nz' = ot Il (e, b)(t)llzﬂ Yl Veel0,T)). (63)
(Respectively, analogously to (59), one infers

. _2a-1
Cu.v,a,ﬁ (Ta - [) o < Ca,a,ot ||(M, b)([)”H

s YT E[O0,T)).) (64)

.0

QR

Thus, (63) (and respectively, (64)) completes the proofs of Theorem 1.3 iv) and v),

and Theorem 1.4 iv) with n = 2. By passing to the limit, as ¢ / T, we deduce that

limsup || (u, b) (0)]| HA @) = 0. Consequently, Theorem 1.4 i) holds with n = 3. Notice
t Ty

that, replacing a by % U5 one obtains that 7" = T% = T . Therefore, inductively, one con-

NG

cludes that 7)) = T* for all n € NU {0}. Theorem 1.3 i), ii), iii), iv) and v), and Theorem
1.4 1), ii), iii) and 1V) hold foralln > 1. O
Proofs of Theorem 1.3 vi) and vii), and Theorem 1.4 v) First of all, by applying Dominated

Convergence Theorem to Theorem 1.4 iii) with @ = § (respectively, Theorem 1.3 iii)), one
obtains

Crva (T =) 5 < |@ DY), V1[0, T (65)

Choose § =5 + %, with k € N and k > 20 2« — 1) (respectively, k > 20 max{%, 4 — a}),
and §p = s + 2« — 1 (respectively, §o = s + max{%, 4 — «}). By using Lemma 2.1 in [1],
Lemma 2.4 in [23], and (65), we obtain

(v+ Zo'

CronaT* =) 5 <@ DDl < Cill(u, b)(z)HLz 2 . HOI

On the other hand, by taking L?-inner product of the first and second equations of (1), with
u and b, respectively, and integrating the results obtained over [0, 7], we have

G, YO N2 < 1o, bo)ll 2, YO<t<T". (66)

Asa consequence,

k
C V,8,0,U ,vovotub
= ZY;;;’OU ( L ) <lw.nOI,, . - (67)
(T* —1) T+ —n%= s
o a)*
Multiplying (67) by —»one concludes that

k
2aC;/4 v,0,5,a, u[) bo .
—\k
Cu,v,s,mu[),b() (T*—t) 3fXU (261 |E | o )
25Qa—1)

251 (A 2
e i o 1§17 [(u, b) (1) d§. (68)
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Finally, if we define

200 g

fo=le-y %][x*@fw”e*%], Vx € (0, 00),

k=0

where 20y is the integer part of 20 (2o — 1) (respectively, 20 max{ %, 4 — «}), then there is a
positive constant C,, with f(x) > C,, for all x > 0 (for more details, see [23]). Therefore,
by summing over the set {k € N; k > 20 (2o — 1)} (respectively, {k € N; k > 20 max{%, 4 —
a}}) and applying Monotone Convergence Theorem to (68), one obtains

aer0+l C

@, YOI, >

Qa—D[2(so+00)+1] 20—1
3ao

(T* — [) 3a0

T*

aC,
MsV,8,8,0,00,U0,D0 exp: M,V,0,8,0,U() ()}’ VtG[O,T*).

(Respectively, we have

20()+1C aC’

a \0,,0,00,U0,b Jv,0,0,u0,b

I HOP s, = v, 0.0 exp! proeindo b gy g o, 7))
H,

Qa—D[2((3 ~2a)0+00)+1] 2a—1
o (Tr—n) e (T* —1) 5

The proofs of Theorem 1.3 vi) and vii), and Theorem 1.4 v) are given. O

6 Proof of Theorem 1.5
The proof of Theorem 1.5 was motivated by [23, 26].

T*
Proof of Theorem 1.5i) Suppose, by contradiction, that / Il (u, b)(t)llz' a2 AT < 00.
0
Thus, for € > 0 there is T € (0, T*) such that

Hyg 2

T*
[ 1wne . dr<e. (©9)
T

HII.U
By applying (41) and (42) (with « = ), we have
1d 2 )
5 I BYO A+ A1 YOy < - Vaig |+ 1 b Vb g |

+ (b Vb) s |+ (bl Vi) s .
(70)

By applying Cauchy-Schwarz’s inequality, we have

LN
(b, u-Vb)ps | < /% 161717 [b]| Flu - Vb d&
R

1
INPN 2 1
5(/ |5|2<S+“)e2”‘5‘”|b|2ds> (/ Iélz“’“)ez"““”If[u-Vb]|2d5>
R3 R3

< 1Bl gz 1D @ ull g1 (71)

1

2
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By Lemma 2.3, we infer that

16 @ ull gss1-a < Coalllbligg, llull ,,a+||b|| s-ollullgg, ]

a o Ha o

< CsallGe, D)l gy, 1, DY (72)

——u
arr

As a result, we can write

d
Eall(u,b)(t)ll s [+ v]li(u, b)(t)lleScsall(u D)l e Il e, DY gy N (s DI i
(73)
Similarly, we have

o
Haz_(7 a o Ha o

d
—— . DYDOI 5, + e+ V1w, bYON s < Cull,b)| WhMumW
2dt A2
and, consequently

II(M b)(t)IIHsa + [+ V]l u, b)(t)lle% < Csall, D)l gz II(M,b)IIZ,Ha,g (74)

a,o a,o

Consider that 0 < T <t <t < T*, integrate the inequality above over [T, 7], and use (69)
in order to obtain

meuwwa+2u+v/’mvawﬁwgm

< 11, D)D) [ 3y5.0 o+ Coo sup {ll(u, D)(N) e}

T<r<t

T*
X/ I, bYP)I 3+u_dr< 1Gt, YT Gpa + Coa€ sup {1l DY) ge)-
T

T<r<t
By taking 0 <€ < 5=— (where C; o 1s given in the inequality above), one concludes
1
meum@gstmaw@m+5sw{mevw@y,
’ ’ T<r<t

for all T € [T, t]. As a consequence, one infers

1
sup {1, D)D)} o) < I, b)(T) 35 + 5 sup {1, b))l g}

T<t<t T<r§t

Therefore, one has

1 1
sup (|, b)(D)ll ) < Z+[M+Mumwwsd = Cyavar. Yt[T.T

T<t<t

Now, let us denote M; ;4 5.0, 7 = MaxX{Cs 4.5.0,7, SUp {I[(u, b)(7)| zs«}}. Notice that M, ; s.o.7

a,.o
0<t<T

. L5
is finite since (u, b) € CT(H;’U) NCr(Hzs 2“). Thereby, we obtain

@, D)D)l gye < Msao0r, VTEO,TH). (75)
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On the other hand, by applying Lemma 2.1 ii) (with p =4) and (75), we have

T* T*
/ Il G, YOI s dt < sa”r/ [, BY(D)[I3510 dT < 00,
0 O a,.o

T*
Similarly, we deduce that/ G, YO 53, dT < 0o. Consequently, (4, b) € LA([0, T*);
0 Hy o’

Y+2) N L*([0, T*); Ha - ). Thus, for ¢ > 0 there is ¢y € (0, T*) such that

I o) e b su SE (76)
L4([ty, T* )H 2 L4([t0.T*); Hao? )

Now, consider the following system:

U +U-VU +V(P+%|B|2)+p,(—A)“U = B-VB,
B,+U-VB +v(—A)*B = B-VU,

divU = divB = 0,

U(x,0) = u(x,ty), Bx,0) = b(x,1).

(7"

Notice that U(x,t) = u(x,t + t9), B(x, t) =b(x,t+ 1) (and P(x t) = p(x,t+ 1)) solve

the system (77) in L*([0, T* — 1y); HM )N LA(0, T* — 1p); H,,U ) Moreover, by using
(76), it is easy to check that

4 4
U, B)I e T, B s
LA([0,7*~10); Hy o * ) LA4(0.T*~10): Hy ? )

4 4
=|(u, b)|l wy @, bl sga S€. (78)
LA([10.T*): Hy o' 2) LA4(10, T*):Hyo? )

By choosing 0 < ¢ < (where Cj, is given in (27)), we find, by applying (78) and

16C4
Lemma 2.1 in [25] (for more details, see [9]), a unique solution in the maximal interval

[0, T* — ty) which can be extended beyond T* — fy. In fact, it is enough to consider the
s .53
following solution for the system (77) in L*([0, T*); H, +2) NL4([0, T*); H, 2

o W B, 1 €0, T* — 1o);
(u’b)(t)_{(u,b)(t—(T*—to)), telT* — 1y, T*).

This is an absurd. O

Proof of Theorem 1.5 ii) By integrating (74) from 0 to ¢ (with 0 <t < T*), we obtain

G, DY) 1 5.0 +2[M+V]/ llu, b)Y (D) |I? Ht,,df<||(uo,bo)ll e T Coa

x/ 16 DO g 160 DXOIE g d
0

Hy o

5 1)} (where C;, is given in (74)).

tel0,T*) 0<t=<t s,

By applying the fact that || (uo, bo) || g3« < ‘”” ~ and (u,b) € C([0, T™); HS ) NC(0, T*);

Now, define T := sup { sup {||(u,b)(®)||gse} <

@ Springer



4 Page280f30 R.H. Guterres et al.

.5 oy
H}» > ), we have that T € (0, T*]. Thus, we conclude that

t
10 BYO g+ 14 0] [ DO g T < 0 by Ve €10.). (79)
! 0 a,o :

. L5 oy
Assume, by contradiction, that 7 < T*. Then, (u,b) € Cr (H; ,)N CT(H,IZ,(,2 ). Thereby,
by passing to the limit, as ¢t /' T in (79), we infer
n+v
e, BT e < o, bz < (80)

s,

_ R
Asresult, there is T € (T, T*) (by using (u, b) € C([0, T*); H: )NC([0, T*); H?» g ) once

more, (79) and (80)) such that sup {}|(u, b)()ll e} < L
0<r<T ’ s,

T = T* and, consequently, by (79), one has

. This is an absurd. Hence,

T 1 n—+v
| 10D g dr = bl < S < o0
0 ) a0

Hoy w+ Cy

By Theorem 1.5 i), we have that 7* = oo and, as a result, by (79), one deduces
t
G, DY) Fys0 + L1t + v] / 1@ DO g d7 < N0 bo)llye V120, O
’ 0 a,0 ’

Proof of Theorem 1.5 iii) By applying Theorem 1.2, the GMHD equations (1) (with initial
data (vg, wo)) admit maximal solution (v, w) € C ([0, T); H;qo) Ncqo,7T); H[;%;za). Thus,
let us prove that T = oo. B

Define u(x,t) =u(x,t)—v(x,1t) apd b(x,t)=b(x,t)—w(x,t) (and p(x,t) = p(x,t)—
pi(x,t)) for all x e R* and ¢ € [0, T). (Here p; is the pressure associated with (v, w).)

_ .. . L5
As a result, we conclude that (u,b) € C([0,T); H; ,) N C([0, T); Hls 20[) (since (u,b) €
. L5

C([0, 00); H; ,) N C([0, 00); H2, 2O()). Moreover, we have the following system:
U+ u-Vi+u-Vu+b-Vb+ V(P+3bP—Hw?) + n-=A)u
_ =u-Vi+b-Vb+Db-Vb, ~ ~ ~
bi+u-Vb+u-Vb+b-Vu + v(—=A)*b =u-Vb+b-Vu+ b-Vu, (81)
divii = divh = 0,
u(-,0) = up := uo(-) —vo(-), b(-,0) = by := bo(-) — wo(-).

On the other hand, analogously to (72), we obtain

(82)

16 @ull gsi-a < Coallbll srallull s—3e < Coall, D) v ||, D)  s-ze .
Lald Hu,az H, 2 H, 02 2

a,o ’ Ha,n
By applying (71) and (82) and arguing as in (74), one concludes

1d — _
5 7 1@ DY ONge + [+ VG DO, ..,

a,o

< Coall@ D sras NGB g o

g +
ST
Hy o

FNTDN oo g 10D v 3 1T g 5
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By Lemma 2.1 ii) (with p =4) and Young’s inequality, we deduce

1d - —
S @ DO e + VM@ HOIP .,

a,o

< Cyolll@, ) Wfll(u D)l

o
*2

+ 1, D)l s 3o |1, b)ll wgll(u b)llzw]<Cw[M+VJ_3[ll(u bl M,Il(u D)l e

ua

+ 1 u, b)ll g3 1, DI, m]+ S TcRoT ey

Hy o

By integrating the inequality above from 0 to ¢ (with 0 <t < T), we obtain

1@ DOy + 2 f 1@ BP0 dT = 1T, b1

u(7

+Coalnt o™ [1@DOIR, g
0 H

X 1@ bY@l g + 1@, YOI o 3 11, b)(r)lle] (83)

v+
Hy, a

4
Now, define T := sup { sup {]|(«, E)(t)||Hx,a} < M} (where C;, is given in (83)).

tef0,7) 0=t=t “o 4CS,D(
Thus, T € (0, T'] (see the proof of Theorem 1.5 ii) and our assumptions). Therefore, (83)

implies that

@, b)(t>||,,w+—/ @O g de = 1T, 5o

Hy o

+ Gl +v]™ 3f I, bY@)II* 1@, D) (D) |se dT, V1 €[0,T).  (84)

3a
T4

NIQ

Htla

By applying Gronwall’s inequality and our hypothesis, one infers

1@ D)0y + / GBI . e < 1o Bl
x exp(Coali + 117 / Tl hOF o, diy < LT (85)
, DOl 16C2,

for all # € [0, 7). Similarly to the proof of Theorem 1.5 ii), we conclude that T = T and,

consequently, f Il @, B) ()] e g dt < oo. By applying Theorem 1.5 i), we obtain that
0

T = co. Then, the result follows from (84). O
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