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Abstract
This work deals with general linear conservative neutron transport semigroups without spec-
tral gaps in L1(T n ×R

n) where T n is the n-dimensional torus. We study the mean ergodicity
of such semigroups and their strong convergence to their ergodic projections as time goes to
infinity. Systematic functional analytic results are given.
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1 Introduction

This paper is a continuation of a previous work devoted to conservative neutron transport
equations on the torus with spectral gaps [35]. The lack of spectral gaps leads to two key
open problems which are the main concern of this paper: the existence of an invariant den-
sity and the strong convergence of neutron transport semigroups to their ergodic projections
as time goes to infinity. The role of positivity in nuclear reactor theory was emphasized very
early by Garrett Birkhoff (see e.g. [10–13]) and, since then, has not ceased to be taken into
account in the mathematical literature on neutron transport. It turns out that peripheral spec-
tral theory, the heart of asymptotics of discrete or continuous semigroups, is well established
for positive operators on Banach lattices (see e.g. [7, 39]).

We show here how positivity, combined to compactness arguments, allows to build a gen-
eral theory of qualitative time asymptotics for L1-conservative neutron transport equations
without spectral gaps; we provide systematic functional analytic results. While our analysis
is purely qualitative, a simpler situation on the torus with space homogeneous cross sections
is dealt with in a paper devoted to the delicate problem of (algebraic) rates of convergence
to equilibrium [24]. We mention that a quantitative version of the present paper relying on a
different construction is given in a forthcoming work [26].
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Note that beyond neutron transport theory, time asymptotics have been intensively ana-
lyzed the last two decades in different areas of kinetic theory. We cannot comment on a con-
siderable literature which deals with so many kinetic models (different vector fields or scat-
tering operators, different boundary conditions, L1-conservative models or L2-dissipative
models, bounded or unbounded geometries etc.) with quantitative or just qualitative con-
vergence results relying on different mathematical tools, mainly spectral, hypocoercivity or
entropy methods. For information only, and without claiming to be complete, we refer e.g.
to the following works which provide us with a sample of linear kinetic problems involved
in time asymptotics [2, 5, 6, 8, 15–20, 23–25, 27–30, 32–38, 41, 42].

In [35], we characterized the existence of a spectral gap, i.e. the strict inequality

ωess < ω,

for a general class of conservative neutron transport semigroups (W(t))t≥0 on the n-
dimensional torus, where ω and ωess are respectively the type and the essential type of
(W(t))t≥0, (see the definition below). This characterization is based upon two ingredients:
the computation of the type of collisionless (i.e. advection) kinetic semigroups and a general
L1-compactness theorem implying a stability of essential type of perturbed semigroups. The
presence of a spectral gap provides us automatically with an invariant density from which
we can derive, by standard functional analytic arguments (see e.g. [7, 39]), the exponential
trend of such semigroups to the spectral projection associated to the zero eigenvalue of their
generators.

Our aim here is to analyze this class of kinetic equations in the absence of spectral gap,
i.e. when

ωess = ω.

The lack of spectral gap leads to two open problems which are the subject matter of this
paper. Before explaining the nature of such problems and outlining our main results, we
need to review quickly some results from [35]. Let n ∈N and let

T n := R
n/(Z)n

be the n-dimensional torus. We will identify any function

p : x ∈ T n → p(x) ∈ R

to a [0,1]n-periodic function on R
n.

We are concerned with time asymptotics of conservative neutron transport equations

∂f

∂t
+ v.

∂f

∂x
+ σ(x, v)f (t, x, v) =

∫
V

k(x, v, v′)f (t, x, v′)μ(dv′) (1)

on

L1(T n × V ) (n ≥ 1)

where V is the support of a σ -finite measure μ(dv) on R
n such that

the affine hyperplanes have zero μ-measure (2)
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even if this assumption is not necessary in all our statements (while a key compactness
result needs a stronger assumption; see below). The conservativity assumption refers to the
condition

σ(x, v) =
∫

V

k(x, v′, v)μ(dv′). (3)

Here L1(T n × V ) is identified isometrically to the space of measurable and [0,1]n-periodic
(with respect to x ∈ R

n) functions

ϕ :Rn × V � (x, v) → ϕ(x, v) ∈R

with finite norm
∫

[0,1]n×V

|ϕ(x, v)|dxμ(dv).

We refer to σ(., .) as the collision frequency and assume (for simplicity) that

σ ∈ L∞(T n × V ).

The partial integral operator

K : L1(T n × V ) � ϕ(., .) →
∫

V

k(x, v, v′)ϕ(x, v′)μ(dv′) ∈ L1(T n × V )

is called the scattering (or collision) operator; we refer to its kernel k(., ., .) as the scattering
kernel. We note that (3) implies that K is a bounded operator.

For each v ∈ V , σ(., v) is identified to a [0,1]n-periodic function on R
n. Similarly, for

each v, v′ ∈ V, k(., v′, v) is identified to a [0,1]n-periodic function on R
n. The “collision-

less” equation on T n × V

∂f

∂t
+ v.

∂f

∂x
+ σ(x, v)f (t, x, v) = 0, f (0, x, v) = f0(x, v)

is solved explicitly by the method of characteristics by means of a weighted shift C0-
semigroup (U(t))t≥0 acting as

L1(T n × V ) � ϕ → e− ∫ t
0 σ(x−sv,v)dsϕ(x − tv, v) ∈ L1(T n × V ) (t ≥ 0). (4)

We denote by T its generator. The type (or growth bound) of (U(t))t≥0, i.e.

ω(U) := lim
t→+∞

ln(‖U(t)‖)

t
,

is equal to

ω(U) = − lim
t→+∞ inf

(x,v)∈T n×V
t−1

∫ t

0
σ(x + sv, v)ds,

(see [35] Theorem 1). In particular

ω(U) < 0
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if and only if there exist C1 > 0 and C2 > 0 such that

∫ C1

0
σ(x + sv, v)ds ≥ C2 a.e. on T n × V, (5)

(see [35] Corollary 2; see also [8] for an earlier result in this direction).
The full dynamics (1) on L1(T n × V ) is governed by a C0-semigroup (W(t))t≥0 gener-

ated by

A := T + K, D(A) = D(T ). (6)

We note that under (3)
∫
T n×V

Aϕ = 0, ∀ϕ ∈ D(A)

so

d

dt

∫
T n×V

W(t)ϕ =
∫
T n×V

AW(t)ϕ = 0 (t ≥ 0)

for all ϕ ∈ D(A) and (by a density argument)
∫
T n×V

W(t)ϕ =
∫
T n×V

ϕ (t ≥ 0)

for all ϕ ∈ L1(T n × V ). Thus (W(t))t≥0 is a stochastic (or Markov) semigroup, i.e. W(t) is
mass-preserving on the positive cone

‖W(t)ϕ‖ = ‖ϕ‖ ∀ϕ ∈ L1
+(T n × V ),

in particular its type is equal to zero

ω(W) = 0.

This perturbed semigroup (W(t))t≥0 is given by a Dyson-Phillips series

W(t) =
∞∑

j=0

Uj(t) (7)

where

U0(t) = U(t) and Uj+1(t) =
∫ t

0
U(t − s)KUj(s)ds (j ≥ 0). (8)

We recall that any C0-semigroup (Z(t))t≥0 in a Banach space X admits a type ω(Z) such
that

r(Z(t)) = eω(Z)t (t > 0)

(r(Z(t)) is the spectral radius of Z(t)) and an essential type ωess(Z) such that

ress(Z(t)) = eωess (Z)t (t > 0)
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where

ress(Z(t)) := sup {|λ| ; λ ∈ σess(Z(t))}
is the essential spectral radius of Z(t) and σess(Z(t)) is the essential spectrum of Z(t); in
particular

ωess(Z) ≤ ω(Z).

We recall also that (U(t))t≥0 and (W(t))t≥0 have the same essential type provided that some
Uj(t) is a compact operator for all t > 0, (see [31] Theorem 2.10); in this case, ωess(W), the
essential type of (W(t))t≥0 is such that

ωess(W) ≤ ω(U).

In particular, if ω(U) < 0 (or equivalently if (5) is satisfied) then

ωess(W) < 0 = ω(W)

i.e. (W(t))t≥0 exhibits a spectral gap and 0 is an isolated eigenvalue of T + K with finite
algebraic multiplicity. If (W(t))t≥0 is irreducible then 0 is algebraically simple and is as-
sociated to a unique positive normalized eigenfunction u, i.e. a unique invariant density. In
this case, there exist ε > 0 and C > 0 such that for any density ϕ

‖W(t)ϕ − u‖ ≤ Ce−εt (t ≥ 0).

Let us recall the so-called regular scattering operators used in [35]. Since a scattering oper-
ator is local in the space variable, we may regard it as a bounded mapping

K : T n � x → K(x) ∈ L(L1(V ))

acting on L1(T n × V ) as

Kϕ = K(x)ϕ(x)

where we identify L1(T n × V ) to L1(T n; L1(V )). In this case

‖K‖L(L1(T ×V )) = sup
x∈T n

‖K(x)‖L(L1(V )) .

The main feature of a regular scattering operator K is that the family of operators

L1(V ) � ϕ →
∫

V

k(x, v, v′)ϕ(v′)μ(dv′) ∈ L1(V )

(indexed by the space variable x ∈ T n) is collectively weakly compact, i.e.

{
k(x, ., v′); (x, v′) ∈ T n × V

}
is relatively weakly compact in L1(V ).

For instance, a sufficient condition for K to be regular is the existence of p ∈ L1+(V ) such
that

k(x, v, v′) ≤ p(v).



8 Page 6 of 32 M. Mokhtar-Kharroubi

Finally, we used a general class of measures μ(dv) defined by the existence of α > 0 such
that for any bounded set S ⊂ V there exists cS > 0 and

sup
e∈Sn−1

dμ ⊗ dμ
{
(v, v′) ∈ S × S; ∣∣(v − v′).e

∣∣ < ε
} ≤ cSε

α. (9)

This assumption is stronger than (2) but is satisfied by the Lebesgue measure on R
n or on

spheres (i.e. for multigroup models). We showed that if the scattering operator K is regular
and if the measure μ(dv) satisfies (9) then there exists an integer ĵ depending on α such
that

Uj(t) is a compact operator, (t ≥ 0) (j ≥ ĵ )

(see [35] Theorem 13). Thus, if the scattering operator is regular and if the measure μ(dv)

satisfies (9) then the semigroups (W(t))t≥0 exhibits a spectral gap if and only if

lim
t→+∞ inf

(x,v)∈T n×V
t−1

∫ t

0
σ(x + sv, v)ds > 0.

The purpose of this paper is to deal with the critical case

lim
t→+∞ inf

(x,v)∈T n×V
t−1

∫ t

0
σ(x + sv, v)ds = 0. (10)

We are thus faced with two key open questions:

(i) Does (W(t))t≥0 admit an invariant density or more generally is (W(t))t≥0 mean er-
godic?

(ii) If so, does (W(t))t≥0 converge strongly to its ergodic projection as t → +∞?

A systematic functional analytic treatment of these problems is provided. We deal mainly
with the relevant case corresponding to non trivial scattering operators, i.e.

K = 0, (11)

and will comment briefly on the case K = 0 in Sect. 10.
We point out that apart from the special case of kinetic equations obeying a detailed

balance principle where the existence of an invariant density is obtained for free (see Re-
mark 26), no existence result in kinetic theory is available up to now. We note also that
our construction is based on many preliminary results of independent interest. As far as we
know, most of our results are new and appear here for the first time. The author thanks the
referees for useful remarks and suggestions.

1.1 The General Strategy for the Existence of an Invariant Density

The existence of an invariant density is the cornerstone of this work. To deal with this key
question, our strategy consists in approximating the semigroup (W(t))t≥0 by a sequence{(

Wj(t)
)
t≥0

}
j

of stochastic semigroups with spectral gaps. To this end, we choose non

trivial f ∈ L1+(V ) and g ∈ L∞+ (V ) with

η := infg > 0
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where inf refers to the essential infimum. We will define in Sect. 2 a compact set 
 ⊂ V

(see (26)) such that μ(
c) > 0 where 
c is the complement of 
 in V . We choose f such
that

f = 0 a.e. on a neighborhood of 
. (12)

Let

kj (x, v, v′) := k(x, v, v′) + 1

j
f (v)g(v′) (13)

and let

σj (x, v) :=
∫

V

kj (x, v′, v)μ(dv′) = σ(x, v) + 1

j

(∫
V

f (v′)μ(dv′)
)

g(v). (14)

Note that

σj (x, v) ≥ σ(x, v) (j ∈N).

We consider the C0-semigroup
(
Uj(t)

)
t≥0

of contractions on L1(T n × V )

L1(T n × V ) � ϕ → e− ∫ t
0 σj (x−sv,v)dsϕ(x − tv, v) ∈ L1(T n × V ) (t ≥ 0)

and denote by Tj its generator. Let
(
Wj(t)

)
t≥0

be the perturbed stochastic semigroup gen-
erated by

Aj := Tj + Kj (15)

where Kj is the scattering operator with kernel kj (x, v, v′). Since

σj (x, v) ≥ η ‖f ‖L1

j

then the type ωj of
{
Uj(t); t ≥ 0

}
is negative

ωj ≤ −η ‖f ‖L1

j
.

In particular 0 belongs to the resolvent set of Tj

0 ∈ ρ(Tj ).

We note that Kj is also a regular scattering operator. According to the theory given in [35],(
Wj(t)

)
t≥0

is a conservative semigroup having a spectral gap so there exists a non trivial
nonnegative eigenfunction ϕj of Tj + Kj relative to the isolated eigenvalue 0

Tjϕj + Kjϕj = 0

or equivalently

(0 − Tj )
−1Kjϕj = ϕj .
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A key result of the paper is that, under a suitable assumption on the scattering operator
(see below), the normalized sequence

{
ϕj

}
j

is compact and then a convergent subsequence
provides us with an invariant density. This compactness property follows from a fundamental
collective compactness theorem (see below).

We note that beyond kinetic equations (i.e. in the general setting of abstract per-
turbed substochastic semigroups in L1-spaces), K (λ − T )−1 (λ > 0) is a contraction. Since
(0,+∞) � λ → (λ − T )−1 is nonincreasing then a strong limit limλ→0+ K (λ − T )−1 ex-
ists we denote symbolically by K (0+ − T )−1 even if 0 ∈ σ(T ). There exists a connec-
tion between the fact that 0 is an eigenvalue of A and the fact that 1 is an eigenvalue of
K (0+ − T )−1 [36]; (see also [9] for more results in this direction). We follow here a differ-
ent strategy which exploits fully the properties of kinetic equations.

1.2 The Results

Our main results are the existence of an invariant density and the strong convergence of
(W(t))t≥0 to its ergodic projection as t → +∞ (see Theorem 19 and Theorem 24). However,
to state them understandably, we need to explain first several facts. The lack of a spectral
gap steems from a degeneracy of the collision frequency, i.e. when σ vanishes on suitable
sets. In order to avoid additional technicalities when V is unbounded, we assume in this case
that

lim inf
|v|→∞

(
ess- inf

x∈T n
σ (x, v)

)
> 0. (16)

Despite the restriction (16) when V is unbounded, we build a very rich mathematical theory
for stochastic kinetic semigroups without spectral gaps.

Section 2 and Sect. 4 are devoted to the characterization of the lack of spectral gap and
to various related technical results. The lack of spectral gap is due to the non emptiness of
the set

� := {(x, v) ∈ T n × V ;σt (x, v) = 0, t > 0}
where

σt : T n × V � (x, v) →
∫ t

0
σ(x + sv, v)ds.

We show that if

σt : T n × V � (x, v) →
∫ t

0
σ(x + sv, v)ds is continuous (t > 0)

then � consists of

{(x, v) ∈ T n × V ; σ(x + sv, v) = 0 a.e. s > 0}
and (if 0 ∈ V ) of

{(x,0); x ∈ T n; σ(x,0) = 0} ,

(see Corollary 3).
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Let 
 be the projection of � on V along T n, i.e.


 := {v ∈ V ; ∃ (x, v) ∈ �} .

We show that if the C0-semigroup (W(t))t≥0 is irreducible and has an invariant density then
(U(t))t≥0 must be strongly stable, i.e.

U(t)ϕ → 0 (t → +∞), ϕ ∈ L1(T n × V ),

(see Theorem 11). Thus the strong stability of (U(t))t≥0 appears as a prerequisit of our
construction. It turns out that this strong stability is characterized by

∫ +∞

0
σ(x + sv, v)ds = +∞ a.e.

(see Theorem 12). It follows that if (2) is satisfied, i.e. if the hyperplanes of Rn have zero
μ-measure, and if

∫
T n

σ (x, v)dx > 0 μ-a.e.

then (U(t))t≥0 is strongly stable (see Corollary 14). We show that if (U(t))t≥0 is strongly
stable then

� has zero dx ⊗ μ(dv) measure,

(see Theorem 15).
We show that if K = 0 then 
 cannot be of full measure, i.e.

μ(
c) > 0

is always true where 
c is the complement of 
 in V , (see Proposition 27). We note that
a priori the μ-measure of the compact set 
 need not be zero. However, for the sake of
simplicity, we restrict ourselves to the case

μ(
) = 0. (17)

Remark 1 If μ(
) > 0, we need to assume additionally that

k(x, v, v′) = 0 a.e. on T n × 
 × V.

In this case, (W(t))t≥0 leaves invariant the closed subspace L1(T n × 
c) of

L1(T n × V ) = L1(T n × 
c) ⊕ L1(T n × 
)

and the construction of this paper can be done in L1(T n ×
c) while the action of (W(t))t≥0

on L1(T n × 
) reduces to a shift semigroup. We did not try to elaborate on this point here.

We show also the key result that for any closed set

 ⊂ 
c,
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the restriction
(
U(t)

)
t≥0

of the advection semigroup (U(t))t≥0 to the closed subspace

L1(T n × ) (which is invariant under (U(t))t≥0) has a negative type, i.e.

c := lim
t→+∞ inf

(x,v)∈T n×
t−1

∫ t

0
σ(x + sv, v)ds > 0

or equivalently there exists t > 0 such that

t−1
∫ t

0
σ(x + sv, v)ds ≥ c

2
∀(x, v) ∈ T n ×  (∀t ≥ t), (18)

(see Proposition 4). Thus, the unbounded function

� : T n × 
c � (x, v) →
∫ +∞

0
e− ∫ t

0 σ(x+sv,v)dsdt

(note that �(., .) = +∞ on � ⊂ T n × 
) is such that for any closed set  ⊂ 
c

�(x, v) ≤ t + 2

c

∀(x, v) ∈ T n × ,

i.e. �(x, v) gets large near T n × 
 only.
In Sect. 3, we give a general sufficient criterion of irreducibility of (W(t))t≥0, (see Propo-

sition 7).
Our proof of the existence of an invariant density is based on the key assumption

sup
(y,v′)∈T n×V

(∫
{v; 0<dist (v,
)<ε}

�(y, v)k(y, v, v′)μ(dv)

)
→ 0 (ε → 0) (19)

which expresses, in a suitable way, that

“k(y, v, v′) → 0” uniformly in (y, v′) as dist (v,
) → 0.

The main statement of this paper is:

Main Theorem Let the type of (U(t))t≥0 be equal to zero, i.e. (10). We assume that (W(t))t≥0

is irreducible and that (17) (19) are satisfied. Then (W(t))t≥0 has an invariant density and
converges strongly to its ergodic projection as t → +∞.

This result follows from a series of preliminary results scattered in the different sections.
In Sect. 5, we show that under (19) and (9) there exists N ∈N such that the sequence

((
(0 − Tj )

−1Kj

)N
)

j

is collectively compact in L(L1(T n × V )), (see Theorem 18) in the sense that the image by(
(0 − Tj )

−1Kj

)N
of the unit ball of L1(T n × V ) is included in a compact set independent

of j ∈N. This important theorem is based on a key technical result (see Lemma 17).
In Sect. 6, we show the existence of an invariant density under (19) and (9), (see Theo-

rem 19). The proof follows from the above collective compactness theorem.
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Section 7 is devoted to the analysis of the key assumption (19) when the degeneracy of
the collision frequency “is not spatial” in the sense that

σ̂ (v) := inf
x∈T n

σ (x, v) > 0 a.e.

and infv∈V σ̂ (v) = 0. In this case, (19) holds provided that

∫
V

k̂(v, v′)
σ̂ (v)

dv < +∞

(where k̂(v, v′) := supx∈T n k(x, v, v′)) and the convergence of this integral is uniform in
v′ ∈ V (see Proposition 20).

In Sect. 8, we give two results for space homogeneous cross sections. Indeed, under an
irreducibility condition, we show that the invariant density (if any) must be space homoge-
neous; we show also how to derive from the previous results the existence of an invariant
density for space homogeneous equations i.e. φ ∈ L1+(V ) such that

−σ(v)φ(v) +
∫

V

k(v, v′)φ(v′)μ(dv′) = 0,

(see Theorem 22). Section 9 is devoted to time asymptotics when (W(t))t≥0 is irreducible. If
an invariant density exists (i.e. the kernel of the generator is not trivial), the one-dimensional
ergodic projection is given by

P : L1(T n × V ) � h →
(∫

T n×V

h

)
ϕ.

In this case, it is well known that an irreducible substochastic semigroup having an invariant
density is mean ergodic, i.e. the Cesaro convergence

1

t

∫ t

0
W(s)ϕds → Pϕ (t → +∞) ∀ϕ ∈ L1(T n × V )

holds (see e.g. [3] Chap. 4). In fact, we show here the stronger result

W(t)ϕ → Pϕ (t → +∞) ∀ϕ ∈ L1(T n × V ),

by means of a general functional analytic result, relying on a 0-2 law for C0-semigroups,
given in [36]; (see Theorem 24).

We note that if the detailed balance principle holds, i.e. there exists M ∈ L1(V ) such that
M(v) > 0 a.e. and

k(x, v′, v)M(v) = k(x, v, v′)M(v′), (20)

(this may occur e.g. in nuclear reactor theory where M is typically a Maxwellian function,
see e.g. [1, 44]) then an invariant density is given for free. Indeed, it is easy to see that

(∫
V

M

)−1

M
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is an invariant density of (W(t))t≥0 since (20) and (3) imply

AM = T M + KM = −σ(x, v)M(v) +
∫

V

k(x, v, v′)M(v′)dμ(v′) = 0.

In this case, under the assumption that (W(t))t≥0 is irreducible, (W(t))t≥0 converges
strongly (as t → +∞) to its ergodic projection without Assumption (19).

Finally, Sect. 10 is devoted to some comments related to K = 0. In particular, in this case
(W(t))t≥0 is nothing but the translation semigroup

L1(T n × V ) � ϕ → ϕ(x − tv, v) ∈ L1(T n × V ) (t ≥ 0).

Under (2) (W(t))t≥0 is mean ergodic with infinite rank ergodic projection

ψ ∈ L1(T n × V ) → Pϕ =
∫
T n

ψ(x, v)dx ∈ L1(V )

but (W(t))t≥0 does not converge strongly in L1(T n × V ) as t → +∞.

2 Characterization of Lack of Spectral Gap

Since ω(U) < 0 if and only if there exist two constants C1 > 0 and C2 > 0 such that

∫ C1

0
σ(x + sv, v)ds ≥ C2 a.e. on T n × V (21)

then, at least formally, ω(U) = 0 if and only if σ vanishes (almost everywhere) on some
characteristic curve, i.e.

(σ (x + sv, v) = 0 a.e. s > 0 (v = 0),

or on a point of the form (x,0), i.e.

σ(x,0) = 0 (if 0 ∈ V ).

This can be shown rigorously if σ is “smooth” in a suitable sense. Indeed, we have the
following results which improve some ones given in [35].

Proposition 2 We assume that V is either bounded or is unbounded and

lim inf
|v|→∞

(
ess- inf

x∈T n
σ (x, v)

)
> 0. (22)

(i) If

σt : T n × V � (x, v) :=
∫ t

0
σ(x + sv, v)ds is lower semi continuous (23)

and if ω(U) = 0 then there exists (x, v) ∈ T n × V such that v = 0 and

σ(x + sv, v) = 0 a.e. s > 0

(or there exists x ∈ T n such that σ(x,0) = 0 if 0 ∈ V ).
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(ii) If

σt : T n × V � (x, v) :=
∫ t

0
σ(x + sv, v)ds is upper semi continuous

and if ω(U) < 0 then there exist no (x, v) ∈ T n × V such that v = 0 and σ(x +
sv, v) = 0 a.e. s > 0 (and there exist no x ∈ T n such that σ(x,0) = 0 if 0 ∈ V ).

Proof (i) Suppose that ω(U) = 0 or equivalently for any constant C > 0

ess inf
∫ C

0
σ(x + sv, v)ds = 0.

Then there exists a sequence ((xk, vk))k ⊂ T n × V such that

∫ k

0
σ(xk + svk, vk)ds ≤ k−1.

It follows that any t > 0

σt (xk, vk) :=
∫ t

0
σ(xk + svk, vk)ds ≤ k−1 ∀k ≥ t.

Note that {vk}k is always bounded. Indeed, if V is unbounded and if a subsequence of {vk}k

tends to infinity then this last estimate is not compatible with (22). Hence there exists a
subsequence

(
(xϕ(k), vϕ(k))

)
k

converging to some (x, v). By passing to the limit in

0 ≤ σt (xϕ(k), vϕ(k)) ≤ ϕ(k)−1

and using the lower semicontinuity of σt we get

0 ≤ σt (x, v) ≤ lim inf
k→∞

σt (xϕ(k), vϕ(k)) = 0

whence

(0,+∞) � s → σ(x + sv, v)

vanishes almost everywhere.
(ii) Suppose there exists some (x, v) ∈ T n × V such that

(0,+∞) � s → σ(x + sv, v)

vanishes almost everywhere. Then, for any t > 0 we have σt (x, v) = 0. Hence, by the upper
semicontinuity of σt , for any ε > 0 there exists a neighborhood V(x, v) of (x, v) on which
σt (x, v) ≤ ε, i.e.

∫ t

0
σ(x + sv, v)ds ≤ ε (x, v) ∈ V(x, v)

so

ess- inf
(x,v)

∫ t

0
σ(x + sv, v)ds ≤ ε (∀ε > 0)
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i.e.

ess- inf
(x,v)

∫ t

0
σ(x + sv, v)ds = 0 (∀t > 0).

This contradicts (21) so ω(U) = 0. �

Corollary 3 If

σt : T n × V � (x, v) :=
∫ t

0
σ(x + sv, v)ds is continuous (t > 0) (24)

(in particular if σ is continuous) then ω(U) = 0 if and only if there exists (x, v) ∈ T n × V

such that v = 0 and

σ(x + sv, v) = 0 a.e. s > 0

or there exists x ∈ T n such that σ(x,0) = 0 if 0 ∈ V .

We introduce the set (of “curves”)

� ⊂ T n × V (25)

consisting of those (x, v) ∈ T n × V such that

σ(x + sv, v) = 0 a.e. s > 0.

Note that the set � contains also “stationary points”

�0 := {(x,0); σ(x,0) = 0} (if 0 ∈ V ).

We define the set


 := {v ∈ V ; ∃ (x, v) ∈ �} . (26)

We note that if K = 0 then

μ(
c) > 0,

(see Proposition 27). We note that under (23)

{(x, v) ∈ T n × V ; σt (x, v) = 0} = ∩n∈N
{
(x, v) ∈ T n × V ; σt (x, v) ≤ n−1

}

and

{(x,0); σ(x,0) = 0} = ∩n∈N
{
(x,0); σ(x,0) ≤ n−1

}

are closed sets so that the set � is closed too since

� = ∩t>0 {(x, v) ∈ T n × V ; σt (x, v) = 0} ∪ {(x,0); σ(x,0) = 0} .
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This set is also bounded if we assume (22) when V is not bounded. For the sake of defi-
niteness, we will assume in all the paper that (23) is satisfied as well as (22) when V is not
bounded (even if such assumptions are not necessary in all our statements). Thus

� is a compact subset of T n × V.

It follows that


 is a compact subset of V.

Since the lack of spectral gap for (W(t))t≥0 is due to the vanishing of the collision frequency
σ on the set �, it is essential to have as much information as possible on this set. Note that
the compact set � ⊂ T n ×V is the union of the characteristic curves on which the collision
frequency vanishes so that a priori

� ⊂ {(x, v) ∈ T n × V ; σ(x, v) = 0} (27)

where the inclusion may be proper.
Let Vd be the set of velocities v whose coordinates are rationally dependent and let

V̂ = {v ∈ V ; v /∈ Vd}

be the set of velocities v whose coordinates are rationally independent. The set � may be
decomposed into at most three disjoint parts

� = �0 ∪ �1 ∪ �2

where

�1 := {(x, v); v ∈ Vd; σ(x + sv, v) = 0 a.e. s > 0}

and

�2 := {
(x, v); v ∈ V̂ ; σ(x + sv, v) = 0 a.e. s > 0

}
.

Since we assume in all the paper that the hyperplanes have zero μ-measure then

�0 ∪ �1 has zero dxμ(dv)-measure.

Indeed

�0 ∪ �1 ⊂ (T n × {0}) ∪ (T n × Vd)

and

μ(Vd) = μ({0}) = 0

because any velocity v ∈ V with rationally dependent coordinates belongs to some hyper-
plane

Hξ := {v; v.ξ = 0}
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with ξ ∈Q
n and therefore

μ(Vd) ⊂ μ(∪ξ∈QnHξ ) = 0

since μ(Hξ) = 0 and Q
n is countable. We end this section with a key observation.

Proposition 4 We have

� ⊂ T n × 
. (28)

We assume that (22) is satisfied and for all t > 0

σt : T n × 
c � (x, v) :=
∫ t

0
σ(x + sv, v)ds is lower semi continuous (29)

(e.g. σ is continuous on T n × 
c). Then, for any closed set  ⊂ 
c the advection semi-
group (4) leaves invariant the closed subspace L1(T n × ) and the type of its restriction to
L1(T n × ) is negative, i.e.

c := lim
t→+∞ inf

(x,v)∈T n×
t−1

∫ t

0
σ(x + sv, v)ds > 0.

Proof Note that we identify L1(T n × ) to the elements of L1(T n × V ) vanishing a.e. on
T n × c so the fact that (U(t))t≥0 leaves invariant L1(T n × ) is clear. We denote by(
U(t)

)
t≥0

the restriction of (U(t))t≥0 to L1(T n × ) whose type is given by

ω(U) := − lim
t→+∞ inf

(x,v)∈T n×
t−1

∫ t

0
σ(x + sv, v)ds.

According to Proposition 2 (i), ω(U) = 0 would imply the existence of (x, v) ∈ T n × 

such that

(0,+∞) � s → σ(x + sv, v) = 0 a.e. s > 0

so (x, v) ∈ �. On the other hand, (28) implies that v ∈ 
 which is a contradiction. �

Remark 5 Proposition 4 is an important ingredient of the proof of the key collective conver-
gence result given in Lemma 17.

3 An Irreducibility Criterion for (W(t))t≥0

We start with:

Definition 6 We say that (W(t))t≥0 is irreducible if there is no non trivial closed subspace
L1(�) ⊂ L1(T n × V ) invariant under (W(t))t≥0.

Note that L1(�) is identified to the elements of L1(T n × V ) vanishing a.e. on �c where
�c is the complement of � in T n × V . We have the sufficient criterion:
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Proposition 7 We assume that for any measurable set � ⊂ T n ×V such that � and �c have
positive dyμ(dv)-measure we have

∫
T n

[∫
{v; (x,v)∈�c}×{

v′; (x,v′)∈�
} k(x, v, v′)μ(dv)μ(dv′)

]
dx > 0. (30)

Then (W(t))t≥0 is irreducible.

Proof According to ([39] Proposition 3.3, p. 307) it suffices to show that K is irreducible.
Let us check that K is irreducible if and only if (30) holds for any measurable set � ⊂
T n × V such that � and �c have positive dyμ(dv)-measure. If K is not irreducible then
there exists a non trivial subspace L1(�) ⊂ L1(T n × V ) invariant under K . Let ϕ ∈ L1(�),
i.e. ϕ vanishes a.e. on �c , then

Kϕ(x, v) =
∫

V

k(x, v, v′)ϕ(x, v′)μ(dv′)

=
∫

{
v′; (x,v′)∈�

} k(x, v, v′)ϕ(x, v′)μ(dv′).

Since Kϕ ∈ L1(�), i.e. Kϕ vanishes a.e. on �c , then

∫
�c

[∫
{
v′; (x,v′)∈�

} k(x, v, v′)ϕ(x, v′)μ(dv′)

]
dxμ(dv) = 0

i.e.
∫
T n

[∫
{v; (x,v)∈�c}×{

v′; (x,v′)∈�
} k(x, v, v′)ϕ(x, v′)μ(dv)μ(dv′)

]
dx = 0

or

χ{v; (x,v)∈�c}χ{
v′; (x,v′)∈�

}k(x, v, v′)ϕ(x, v′) = 0 a.e.

By choosing ϕ > 0 a.e. on � one sees that

χ{v; (x,v)∈�c}χ{
v′; (x,v′)∈�

}k(x, v, v′) = 0 a.e.

which contradicts (30). Thus (30) implies that K is irreducible. Conversely, let there exists
a measurable subset � ⊂ T n × V such that � and �c have positive dyμ(dv)-measure and

∫
T n

[∫
{v; (x,v)∈�c}×{

v′; (x,v′)∈�
} k(x, v, v′)μ(dv)μ(dv′)

]
dx = 0

or equivalently

χ{v; (x,v)∈�c}χ{
v′; (x,v′)∈�

}k(x, v, v′) = 0 a.e.

This implies that for any ϕ ∈ L1(�)

Kϕ(x, v) =
∫

V

k(x, v, v′)ϕ(x, v′)μ(dv′) =
∫

V

χ{
v′; (x,v′)∈�

}k(x, v, v′)ϕ(x, v′)μ(dv′)

vanishes a.e. on �c , i.e. Kϕ ∈ L1(�) and therefore K is not irreducible. �
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Remark 8 In particular, (W(t))t≥0 is irreducible if k(x, v, v′) > 0 a.e.

We give now a simple case where (W(t))t≥0 is not irreducible.

Proposition 9 Let there exist � ⊂ V such that μ(�) > 0, μ(�c) > 0 and

∫
�c

μ(dv′)
∫

�

k(x, v, v′)μ(dv′) = 0 (x ∈ T n).

Then (W(t))t≥0 is not irreducible.

Proof For any ψ ∈ L1(T n × �) (i.e. ψ vanishes on T n × �c) we have

Kϕ(x, v) =
∫

V

k(x, v, v′)ϕ(x, v′)μ(dv′) =
∫

�

k(x, v, v′)ϕ(x, v′)μ(dv′)

so that the restriction of Kϕ to T n × �c vanishes since

k(x, v, v′) = 0 on T n × �c × �

Hence K leaves invariant the closed subspace L1(T n ×�). On the other hand L1(T n ×�) is
trivially invariant under (U(t))t≥0. It follows easily, e.g. from the Dyson-Phillips expansion
(7) and (8), that L1(T n × �) is invariant under (W(t))t≥0. �

4 On Strong Stability of Advection Semigroups

We first recall some basic notions on mean ergodic semigroups we can find e.g. in [4]
Chap. 4, p. 261. A C0-semigroup of contractions (Z(t))t≥0 with generator A on a Banach
space X is said to be mean ergodic if for any x ∈ X,

lim
t→+∞

1

t

∫ t

0
Z(s)xds exists

for the norm of X. In this case, this limit is a projection (the so-called ergodic projection)
P on Ker(A) along R(A) where R(A) is the range of A. In particular

X = Ker(A) ⊕ R(A) (direct sum).

Remark 10 A sufficient condition of mean ergodicity of a positive contraction C0-semigroup
(Z(t))t≥0 on L1(ν)-space is the existence of some ϕ ∈ L1(ν) such that ϕ > 0 a.e. and
Z(t)ϕ ≤ ϕ (t ≥ 0), (see e.g. [4] Proposition 4.3.14).

We observe first if (W(t))t≥0 is irreducible then the existence of an invariant density (or
equivalently the ergodicity of (W(t))t≥0) implies a specific constraint on (U(t))t≥0.

Theorem 11 Let K = 0 and let (W(t))t≥0 be irreducible. If (W(t))t≥0 is ergodic then
(U(t))t≥0 is strongly stable, i.e.

lim
t→+∞ ‖U(t)ϕ‖L1(T n×V ) = 0 ∀ϕ ∈ L1(T n × V ).
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Proof Note that

0 ≤ U(t) ≤ W(t) (t ≥ 0)

so that the ergodicity of (W(t))t≥0 implies the ergodicity of (U(t))t≥0, (see [3] Thm. 1.1).
Since K = 0 then

(U(t))t≥0 = (W(t))t≥0 .

If (W(t))t≥0 is irreducible then the kernel of T ′ (the dual of T ) must be trivial (see
[3] Thm. 1.3). Since (U(t))t≥0 is ergodic (with ergodic projection P ) then for any ϕ ∈
L1+(T n × V )

lim
t→+∞

1

t

∫ t

0
U(s)ϕds = Pϕ.

In particular

lim
t→+∞

1

t

∥∥∥∥
∫ t

0
U(s)ϕds

∥∥∥∥ = ‖Pϕ‖ .

By the additivity of the norm on the positive cone L1+(T n × V )

∥∥∥∥
∫ t

0
U(s)ϕds

∥∥∥∥ =
∫ t

0
‖U(s)ϕ‖ds

whence

lim
t→+∞

1

t

∫ t

0
‖U(s)ϕ‖ds = ‖Pϕ‖ .

Since

[0,+∞[ � t → ‖U(t)ϕ‖ is non increasing

((U(t))t≥0 is a contraction semigroup) then

lim
t→+∞‖U(t)ϕ‖ exists

and therefore

lim
t→+∞‖U(t)ϕ‖ = ‖Pϕ‖ .

We decompose any ϕ ∈ L1(T n × V ) into positive and negative parts

ϕ = ϕ+ − ϕ− ∈ L1(T n × V )

so ∫
T n×V

U(t)ϕ = 〈U(t)ϕ+,1〉L1, L∞ − 〈U(t)ϕ−,1〉L1, L∞

= 〈ϕ,U ′(t)1〉L1, L∞

= ‖U(t)ϕ+‖ − ‖U(t)ϕ−‖ → ‖Pϕ+‖ − ‖Pϕ−‖
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i.e.

ζ := lim
t→∞U ′(t)1 exists in weak star topology

and

lim
t→∞

∫
T n×V

U(t)ϕ = 〈ϕ, ζ 〉L1, L∞ .

The fact that

U ′(s)ζ = U ′(s) lim
t→∞U ′(t)1 = lim

t→∞U ′(t + s)1 = lim
t→∞U ′(t)1 = ζ ∀s ≥ 0

implies

ζ ∈ D(T ′) and T ′ζ = 0

and then ζ = 0 because the kernel of T ′ is trivial. Finally, for any ϕ ∈ L1(T n × V )

‖U(t)ϕ‖ ≤ ‖U(t) |ϕ|‖ =
∫
T n×V

U(t) |ϕ| → 〈|ϕ| , ζ 〉L1, L∞ = 0. �

We characterize now the strong stability of (U(t))t≥0 in terms of properties of the colli-
sion frequency.

Theorem 12 (U(t))t≥0 is strongly stable if and only if

∫ +∞

0
σ(y + sv, v)ds = +∞ a.e. (y, v) ∈ T n × V. (31)

Proof Let ϕ ∈ L1(T n × V ). Then, the monotone convergence theorem and

‖U(t)ϕ‖L1(T n×V ) =
∫

V ×T n

e− ∫ t
0 σ(y+sv,v)ds |ϕ(y, v)|dyμ(dv)

show that

lim
t→+∞ ‖U(t)ϕ‖L1(T n×V ) =

∫
V ×T n

e− ∫ +∞
0 σ(y+sv,v)ds |ϕ(y, v)|dyμ(dv).

Thus (31) is sufficient for the strong stability. Conversely, if

∫ +∞

0
σ(y + sv, v)ds < +∞

on a measurable set � ⊂ T n × V of positive measure then

lim
t→+∞ ‖U(t)ϕ‖L1(T n×V ) ≥

∫
�

e− ∫ +∞
0 σ(y+sv,v)ds |ϕ(y, v)|dyμ(dv) > 0

for any non trivial ϕ ∈ L1(�). �
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Remark 13 Another characterization of the strong stability of (U(t))t≥0 is that the strong
limit limλ→0+ K (λ − T )−1 is a stochastic operator, (see [43] Theorem 3.6).

A practical condition of strong stability is given by:

Corollary 14 Let the affine hyperplanes have zero μ-measure. If
∫
T n

σ (x, v)dx > 0 μ-a.e. (32)

then (31) is satisfied.

Proof We know that the set of velocities v ∈ V with rationally dependent coordinates is
a μ-null set. On the other hand, if v ∈ V has rationally independent coordinates then the
ergodicity of the flow shows that

1

t

∫ t

0
σ(y + sv, v)ds →

∫
T n

σ (x, v)dx > 0 (t → +∞),

(see e.g. [35]). It follows that

lim
t→+∞

∫ t

0
σ(y + sv, v)ds = lim

t→+∞

(
1

t

∫ t

0
σ(y + sv, v)ds

)
t = +∞.

This shows (31). �

We note that in full generality Assumption (31) implies a condition on the set of charac-
teristic curves.

Theorem 15 Let (24) be satisfied. If (U(t))t≥0 is strongly stable then

{(y, v); v = 0, σ (y + sv, v) = 0, s > 0 } has zero dxμ(dv)-measure.

Proof We note that

lim
t→+∞ ‖U(t)ϕ‖L1(T n×V ) =

∫
V ×T n

e− ∫ +∞
0 σ(y+sv,v)ds |ϕ(y, v)|dyμ(dv)

≥
∫

{(y,v); σ(y+sv,v)=0, s>0 }
|ϕ(y, v)|dyμ(dv)

≥
∫

{(y,v); v =0, σ (y+sv,v)=0, s>0 }
|ϕ(y, v)|dyμ(dv).

Thus, the strong stability of (U(t))t≥0 implies that the set

{(y, v); v = 0, σ (y + sv, v) = 0, s > 0 }
has zero dxμ(dv)-measure. This ends the proof. �

Remark 16 Note that in the case 0 ∈ V , the strong stability of (U(t))t≥0 provides no infor-
mation on the dx-measure of the set of equilibrium points

{y ∈ T n; σ(y,0) = 0}
unless μ {0} > 0 which was excluded from the beginning.
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5 A Collective Compactness Theorem

We need first a key collectively uniform convergence result. Let Tj and Kj be the approxi-
mate operators defined in Sect. 1.1. We recall that

T n × 
c � (y, v) → �(y, v) :=
∫ +∞

0
e− ∫ t

0 σ(y+sv,v)dsdt.

Lemma 17 Let 
 be the set defined by (26) and let

ε := {v; dist (v,
) ≥ ε} .

If

sup
(y,v′)∈T n×V

(∫
c

ε

�(y, v)k(y, v, v′)μ(dv)

)
→ 0 (ε → 0) (33)

then

lim
λ→0

(
λ − Tj

)−1
Kj exists in L

(
L1(T n × V )

)

uniformly in j ∈N.

Proof Step 1: Let ε > 0 and Pε be the restriction operator

ϕ ∈ L1(T n × V ) → 1εϕ ∈ L1(T n × V ).

Let us show first that for any ε > 0

lim
λ→0

Pε

(
λ − Tj

)−1
Kj exists in L

(
L1(T n × V )

)
uniformly in j ∈N. (34)

Since Kj → K (j → ∞) in operator norm, it suffices to show that

lim
λ→0

Pε

(
λ − Tj

)−1
exists in L

(
L1(T n × V )

)
(ε > 0) uniformly in j ∈N.

To this end, we note first that

lim
λ→0

Pε (λ − T )−1 = Pε (0 − T )−1 exists in L
(
L1(T n × V )

)
(ε > 0)

because Pε (λ − T )−1 is identified to (λ − T ε)−1 where T ε is nothing but the transport op-
erator on L1(T n × ε) and we know by Proposition 4 that 0 /∈ σ(T ε) and

(λ − T ε)
−1 → (0 − T ε)

−1 in L
(
L1(T n × ε)

)
(λ → 0).

Since σj (.) ≥ σ(.) then the spectral bounds

s(T ε
j ) := sup

{
Reλ, λ ∈ σ(T ε

j )
}
, s(T ε) := sup {Reλ, λ ∈ σ(T ε)}

of T ε
j and T ε are such that

s(T ε
j ) ≤ s(T ε) < 0
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so 0 /∈ σ(T ε
j ). Thus

1ε

(
0 − Tj

)−1
ϕ − 1ε

(
λ − Tj

)−1
ϕ

= 1ε

∫ +∞

0

(
1 − e−λt

)
e− ∫ t

0 σj (x−sv,v)dsϕ(x − tv, v)dt

and ∥∥∥1ε

(
0 − Tj

)−1
ϕ − 1ε

(
λ − Tj

)−1
ϕ

∥∥∥
L1(T n×V )

≤
∫

ε

μ(dv)

∫
T n

dx

∫ +∞

0

(
1 − e−λt

)
e− ∫ t

0 σj (x−sv,v)ds |ϕ(x − tv, v)|dt

≤
∫

ε

μ(dv)

∫
T n

dx

∫ +∞

0

(
1 − e−λt

)
e− ∫ t

0 σ(x−sv,v)ds |ϕ(x − tv, v)|dt

= ∥∥1ε (0 − T )−1 |ϕ| − 1ε (λ − T )−1 |ϕ|∥∥
L1(T n×V )

≤ ∥∥1ε (0 − T )−1 − 1ε (λ − T )−1
∥∥
L(L1(T n×V ))

‖ϕ‖L1(T n×V )

hence ∥∥∥Pε

(
0 − Tj

)−1 − Pε

(
λ − Tj

)−1
∥∥∥
L(L1(T n×V ))

≤ ∥∥Pε (0 − T )−1 − Pε (λ − T )−1
∥∥
L(L1(T n×V ))

→ 0 (λ → 0)

ends the proof of (34).
Step 2. Let us show that

lim
ε→0

∥∥∥(I − Pε)
(
λ − Tj

)−1
Kj

∥∥∥
L

(
L1(T n×V )

) = 0

uniformly in λ ≥ 0 and j ∈N. We recall that

kj (x, v, v′) := k(x, v, v′) + 1

j
f (v)g(v′)

and f = 0 a.e. on a neighborhood of 
. We write Kj = K + K̂j where the kernel of K̂j is
given by 1

j
f (v)g(v′) i.e.

K̂jϕ = 1

j
f (v)

∫
V

ϕ(x, v′)g(v′)μ(dv′)

Consider first the part
∥∥∥(I − Pε)

(
λ − Tj

)−1
K̂jϕ

∥∥∥
L1(T n×V )

≤
∫
T n×c

ε

∫ +∞

0
e−λt e− ∫ t

0 σ(x−sv,v)dsK̂j |ϕ| (x − tv, v)dt

≤
∫

c
ε

μ(dv)

∫
T n

dx

∫ +∞

0
e− ∫ t

0 σ(x−sv,v)dsK̂j |ϕ| (x − tv, v)dt
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=
∫

c
ε

μ(dv)

∫
T n

dy

∫ +∞

0
e− ∫ t

0 σ(y+sv,v)dsK̂j |ϕ| (y, v)dt

= 1

j

∫
c

ε

f (v)μ(dv)

∫
T n

dy

∫ +∞

0
e− ∫ t

0 σ(y+sv,v)ds

(∫
V

|ϕ| (y, v′)g(v′)μ(dv′)
)

dt

≤
∫

c
ε

f (v)μ(dv)

∫
T n

dy

∫ +∞

0
e− ∫ t

0 σ(y+sv,v)ds

(∫
V

|ϕ| (y, v′)g(v′)μ(dv′)
)

dt = 0

because f vanishes in a neighborhood of 
 in particular on c
ε for ε small enough. Consider

now ∥∥∥(I − Pε)
(
λ − Tj

)−1
Kϕ

∥∥∥
L1(T n×V )

≤ ∥∥(I − Pε) (λ − T )−1 K |ϕ|∥∥
L1(T n×V )

=
∫

c
ε

μ(dv)

∫
T n

dy

(∫ +∞

0
e− ∫ t

0 σ(y+sv,v)dsdt

)
K |ϕ| (y, v)

=
∫

c
ε

μ(dv)

∫
T n

�(y, v)K |ϕ| (y, v)dy

=
∫

c
ε

μ(dv)

∫
T n

�(y, v)

(∫
V

k(y, v, v′)
∣∣ϕ(y, v′)

∣∣μ(dv′)
)

dy

=
∫
T n×V

(∫
c

ε

�(y, v)k(y, v, v′)μ(dv)

)∣∣ϕ(y, v′)
∣∣dyμ(dv′)

≤ sup
(y,v′)∈T n×V

(∫
c

ε

�(y, v)k(y, v, v′)μ(dv)

)
‖ϕ‖L1(T n×V ) .

This ends the proof. �

We are ready to show:

Theorem 18 Let (9) (33) be satisfied. Then there exists N ∈ N such that the sequence of

operators
((

(0 − Tj )
−1Kj

)N
)

j
is collectively compact in L

(
L1(T n × V )

)
.

Proof This perturbed semigroup
(
Wj(t)

)
t≥0

with generator Tj + Kj is given by a Dyson-
Phillips series

Wj(t) =
∞∑

n=0

U(j)
n (t) (35)

where

U
(j)

0 (t) = Uj(t) and U
(j)

n+1(t) =
∫ t

0
Uj(t − s)KjU

(j)
n (s)ds (n ≥ 0). (36)

Since Kj is a regular scattering operator then there exists an integer n̂ independent of j such
that

U(j)
n (t) is a compact operator, (t ≥ 0) (n ≥ n̂),
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(see [35] Theorem 13). It follows that for n ≥ n̂ + 1

t → U(j)
n (t)

is continuous in operator norm, (see [31] Corollary 2.2). Since the following integral

∫ ∞

0
e−λtU(j)

n (t)dt =
((

λ − Tj

)−1
Kj

)n (
λ − Tj

)−1
(λ > 0)

converges in operator norm then

((
λ − Tj

)−1
Kj

)n (
λ − Tj

)−1
is a compact operator (n ≥ n̂ + 1).

The choice N = n̂ + 1 shows that
((

λ − Tj

)−1
Kj

)N

is a compact operator. By Lemma 17

lim
λ→0

((
λ − Tj

)−1
Kj

)N

exists in L
(
L1(T n × V )

)
uniformly in j and consequently the set of operators

{((
λ − Tj

)−1
Kj

)N

, j ∈N, 0 < λ ≤ 1

}

is collectively compact. A simple calculation shows that
((

(0 − Tj )
−1Kj

)N
)

j
is also col-

lectively compact in L
(
L1(T n × V )

)
. �

6 Existence of an Invariant Density

The main theorem in this paper is:

Theorem 19 Let (9) (33) be satisfied. Then (W(t))t≥0 has an invariant density.

Proof To show that (W(t))t≥0 admits an invariant density, as noted in the introduction, we
introduce the approximate semigroup

(
Wj(t)

)
t≥0

with generator (15) corresponding to ap-

proximate scattering kernel (13) and approximate collision frequency (14). Since
(
Wj(t)

)
t≥0

is conservative semigroup and has a spectral gap then there exists a nonnegative eigenfunc-
tion ϕj of Tj + Kj relative to the isolated eigenvalue 0

Ajϕj = Tjϕj + Kjϕj = 0 (j ≥ 1) (37)

or equivalently

(0 − Tj )
−1Kjϕj = ϕj (j ≥ 1) (38)

since ω(Uj ) < 0. We normalize
{
ϕj

}
j

as

∫
T n×V

ϕj = 1 (j ≥ 1). (39)
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According to Theorem 18
((

(0 − Tj )
−1Kj

)N
)

j
is collectively compact

i.e.

∪j∈N
(
(0 − Tj )

−1Kj

)N
B is relatively compact in L1(T n × V ) (40)

where B is the unit ball of L1(T n × V ). It follows from (38) that

(
(0 − Tj )

−1Kj

)N
ϕj = ϕj (j ≥ 1)

and (40) implies that
(
ϕj

)
j

is contained in a compact set and then has a subsequence con-
verging in norm toward ϕ with norm one. For the simplicity of notations, we still denote it
by

(
ϕj

)
j
, so

ϕj → ϕ (j → ∞) in L1(T n × V ).

On the other hand

Kjϕj = (0 − Tj )ϕj = −Tjϕj = v.
∂ϕj

∂x
+ σj (x, v)ϕj

and (14) show that

v.
∂ϕj

∂x
→ Kϕ − σ(x, v)ϕ.

By a closedness argument ϕ ∈ D(T ) and

T ϕ + Kϕ = 0

so ϕ is an invariant density. �

7 A Class of Cross-Sections

This section is devoted to the analysis of the key assumption (33) when the degeneracy of
the collision frequency “is not spatial” in the sense that

σ̂ (v) := inf
x∈T n

σ (x, v) > 0 a.e. (41)

and

inf
v∈V

σ̂ (v) = 0. (42)

We assume for simplicity that

σ̂ (.) is continuous (43)

so that


 = {v ∈ V ; σ̂ (v) = 0} .
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Proposition 20 Let (41) (42) (43) be satisfied. We set k̂(v, v′) := supx∈T n k(x, v, v′) and
assume that

∫
V

k̂(v, v′)
σ̂ (v)

dv < +∞

and the convergence of this integral is uniform in v′ ∈ V . Then (33) is satisfied.

Proof Under (41)

�(y, v) =
∫ +∞

0
e− ∫ t

0 σ(y+sv,v)dsdt ≤
∫ +∞

0
e−t σ̂ (v)dt = 1

σ̂ (v)
.

Hence condition (33) holds if

sup
(y,v′)∈T n×V

(∫
c

ε

�(y, v)̂k(v, v′)μ(dv)

)
→ 0 (ε → 0),

in particular if

sup
v′∈V

∫
c

ε

k̂(v, v′)
σ̂ (v)

μ(dv) → 0 (ε → 0).

This ends the proof. �

Remark 21 A typical illustration is the separable scattering kernel

k(x, v, v′) = α(x)̂k(v, v′)

where α(.) ∈ L∞+ (T n) is bounded away from zero. The analysis of spatial degeneracy is
more tricky and deserves further study.

8 On Space Homogeneous Cross Sections

In this section, we consider space homogeneous cross sections σ and k such that

σ(v) =
∫

V

k(v′, v)μ(dv′).

Theorem 22 Let the cross sections be space homogeneous and let (9) (33) be satisfied.
Then:

(i) there exists a nontrivial φ ∈ L1+(V ) such that

−σ(v)φ(v) =
∫

V

k(v, v′)φ(v′)μ(dv′). (44)

(ii) If (W(t))t≥0 is irreducible then the (unique) invariant density of (W(t))t≥0 is space
homogeneous.
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Proof (i) According to Theorem 19 there exists an invariant density ψ so

−v.
∂ψ

∂x
− σ(v)ψ + Kψ = 0

and consequently

φ(v) :=
∫
T n

ψ(x, v)dx

satisfies (44).
(ii) Let ψ be the invariant density of (W(t))t≥0 (given by Theorem 19). Note that

φ(v) :=
∫
T n

ψ(x, v)dx

is also an invariant density of (W(t))t≥0. Hence the irreducibility of (W(t))t≥0 implies the
uniqueness of the invariant density which must be space homogeneous. �

9 On Time Asymptotics

The object of this section is to show how to pass from Cesaro time asymptotics of (W(t))t≥0

to strong time asymptotics. To this end, we recall a particular version of a known abstract
result on L1(ν) spaces:

Theorem 23 ([36] Theorem 4) Let (U(t))t≥0 be a positive contraction C0-semigroup on
L1(ν) with generator T and let K ∈ L+(L1(ν)). Let (W(t))t≥0 be the C0-semigroup (gen-
erated by A = T + K) given by the Dyson-Phillips expansion

+∞∑
j=0

Uj(t) = W(t)

where U0(t) = U(t) and Uj(t) is defined inductively by (8). We assume that (W(t))t≥0 is a
contraction C0-semigroup, is irreducible with Ker(A) = {0} and denote by P its ergodic
projection on Ker(A). If there exists some positive integer m such that

(0,+∞) � t → Rm(t) =
+∞∑
j=m

Uj (t) ∈ L(L1(ν))

is continuous in operator norm, then

lim
t→+∞ W(t)f = Pf ∀f ∈ L1(ν).

This result is based on a 0-2 law for C0-semigroups by G. Greiner [22], (see also [39],
p. 346). We are ready to show:

Theorem 24 Let (9) (33) be satisfied and let (W(t))t≥0 be irreducible. Then (W(t))t≥0 ad-
mits a unique invariant density ϕ and

lim
t→+∞

∥∥∥∥W(t)ψ −
(∫

T n×V

ψ

)
ϕ

∥∥∥∥
L1(T n×V )

= 0 (45)

for any ψ ∈ L1(T n × V ).
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Proof According to Theorem 19, (W(t))t≥0 admits a unique invariant density ϕ. On the
other hand, for j large enough, Uj(t) (for all t ≥ 0) is a compact operator, (see [35] Theo-
rem 13). It follows that

[0,+∞[ � t → Uj(t) ∈ L(L1(T n × V ))

is continuous in operator norm (see [31] Corollary 2.2, p. 19 or [14]) and consequently so
is

[0,+∞[ � t → Rj(t) :=
∞∑

m=j

Um(t) ∈ L(L1(T n × V ))

because the series converges in operator norm uniformly in t bounded. Finally, the strong
convergence (45) follows from Theorem 23. �

Remark 25 We could prove Theorem 24 differently. Indeed, since for j large enough Uj(t)

(for all t ≥ 0) is a compact operator so is Rj(t). Hence Rj(t) is an integral operator (see
[21], p. 508). It follows that (W(t))t≥0 partially integral in the sense that W(t) dominates an
integral operator (W(t) ≥ Rj(t)). Finally, the conclusion follows from [40].

Remark 26 We noted in Sect. 1.2 that under the detailed balance condition (20), (W(t))t≥0

admits (automatically) an invariant density M̂ . By arguing as in the proof of Theorem 24,
we can show

∥∥∥∥W(t)ψ −
(∫

T n×V

ψ

)
M̂

∥∥∥∥
L1(T n×V )

→ 0 (t → +∞), ψ ∈ L1(T n × V )

under Assumption (9) only; Assumption (33) is no longer necessary.

10 Comments on Trivial Scattering Operators

We start with

Proposition 27 If K = 0 then μ(
c) > 0.

Proof Arguing by contradiction, if μ(
c) = 0, i.e. if μ(
) = μ(V ) then for almost all v ∈ V

there exists a characteristic curve

(0,+∞) � s → (x + sv, v) ∈ T n × V

on which σ(., .) vanishes. Since

lim
a→+∞

1

a

∫ a

0
σ(x + sv, v)ds =

∫
T n

σ (y, v)dy

for any v with rationally independent coordinates then
∫
T n

σ (x, v)dy = 0 a.e. v ∈ V

i.e. σ(., .) = 0. and then (3) implies that k(., ., .) = 0 i.e. K = 0. �
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We end this paper by some comments on the case

K = 0.

In this case σ(x, v) = 0 a.e. and then (W(t))t≥0 is nothing but the translation semigroup

L1(T n × V ) � ϕ → ϕ(x − tv, v) ∈ L1(T n × V ) (t ≥ 0).

One sees that

W(t)ϕ = ϕ ∀ϕ ∈ L1(V ).

According to Remark 10, (W(t))t≥0 is mean ergodic (and admits infinitely many invariant
densities, actually all the subspace L1(V )). If we assume that the hyperplanes have zero
μ-measure then the ergodic projection

P : L1(T n × V ) → L1(V )

is given by

Pψ := lim
t→+∞

1

t

∫ t

0
W(s)ψds = lim

t→+∞
1

t

∫ t

0
ψ(y − sv, v)ds =

∫
T n

ψ(x, v)dx.

We note that for any measurable subset � ⊂ V with positive μ-measure, the subspace
L1(T n × �) is invariant under (W(t))t≥0. Thus (W(t))t≥0 is not irreducible. Finally, we
observe that for any initial data ψ of the form

ψ(x, v) = e2iπk.xϕ(v)

(with a non zero ϕ ∈ L1(V ) and a non zero multiindex k ∈N
n),

W(t)ψ = e−2iπtk.vψ

does not converge in L1(T n × V ) as t → ∞.
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