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Abstract
A novel approach to the exponential stability in mean square of stochastic functional differ-
ential equations and neutral stochastic functional differential equations with infinite delay is
presented. Consequently, some new criteria for the exponential stability in mean square of
the considered equations are obtained. Lastly, some examples are investigated to illustrate
the theory.
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1 Introduction

Stochastic functional differential equations (SFDEs) have drawn growing attentions owing
to their applications in physical, biological, medical and social sciences, as well as in eco-
nomics and finance, that is, in every where future states depend not only on the present state
but also on the past states. On the other hand, neutral stochastic delay differential equa-
tions (NSFDEs) are often used to describe the dynamical systems which not only involve
derivatives but also depend on present and past states. Neutral stochastic delay differential
equations have attracted the increasing attentions due to the wide applications in the dis-
tributed networks containing lossless transmission lines, processes including steam or water
pipes, heat exchanges, and other engineering systems and population ecology. For stochas-
tic functional differential equation, we refer the reader to the books [8, 12] by Mao, among
other things. For neutral stochastic functional differential equations, we refer to [2, 7, 19].

As particular interest, the stability is always one of the most important issues in the theory
of SFDEs. One of the most important approach to stability for stochastic functional differ-
ential equations is a stochastic version of the Lyapunov direct method. Lyapunov functions
and functionals have been successfully used to obtain the stability of stochastic differential
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equations ([1, 4, 5, 11, 18]). Another widely-used approach to stability of stochastic func-
tional differential equations is the Razumikhin-type theorem. Razumikhin-type theorems
for exponential stability of stochastic functional differential equations have been presented
in [6, 10, 17, 23]. A Razumikhin-type theorem for the asymptotic stability of stochastic
functional differential equations has been given in [9, 20, 22].

In fact, it is not easy to find a Lyapunov function or functional for stochastic differential
equations and the stability conditions obtained by the Lyapunov’s function method are often
given in terms of differential inequalities, matrix inequalities and so on. The given conditions
by Lyapunov function (functional) and Razumikhin-type theorems are not only a little bit
strong but also general implicit and not easy to examine.

Very recently, we also observe that several authors have established some criteria for the
exponential stability in mean square of solutions to stochastic differential equations by using
the different technique from Lyapunov direct method. For example, Ngoc [13] and Ngoc
and Hieu [15] presented some explicit criteria for the mean square exponential stability of
general non-linear stochastic delay differential equations based on a spectral property of
Metzler matrices; Ngoc [14] obtained some explicit criteria for the mean square exponential
stability of stochastic delay differential equations by a comparison principle. However, there
are still two faults in the above articles. First of all, although the conditions in [13–15] are
explicit, they are seemly a little strong and difficult to be satisfied in practical application.
Secondly, explicit criteria for the mean square exponential stability of stochastic functional
differential equations and neutral stochastic functional differential equations with infinite
delay are still an open question.

In this paper, we will present a novel approach to the exponential stability in mean square
of stochastic functional differential equations and neutral stochastic functional differential
equations with infinite delay. Our approach does not involve Lyapunov functions and com-
plex calculations. Our approach is based on a comparison principle and a proof by reductio
ad absurdum and our conditions are also feasible. Our results improve some known results.

The rest of this paper is organized as follows. In Sect. 2, we introduce some necessary
notations and preliminaries. In Sect. 3, we present some criteria for the exponential stability
in mean square of stochastic functional differential equations with infinite delay. In Sect. 4,
we present some criteria for the exponential stability in mean square of neutral stochastic
functional differential equations with infinite delay. In Sect. 5, we state some comparisons
with existing results and present some examples to illustrate the advantage of our results.

2 Preliminaries

Let (�,F,P) be a complete probability space equipped with some filtration {Ft }t≥0 satis-
fying the usual conditions, i.e., the filtration is right continuous and F0 contains all P-null
sets. Let | · | denote the Euclidean norm in R

n. If A is a vector or matrix, its transpose is
denoted by AT . If A is a matrix, its trace norm is denoted by |A| = √

trac(AT A). More-
over, let w(t) = (w1(t), . . . ,wm(t))T be an m-dimensional Brownian motion defined over
(�,F,P). Denote by BC((−∞,0];Rn) the family of all bounded, continuous functions ϕ

from (−∞,0] to R
n with the norm ‖ϕ‖BC = supθ≤0 |ϕ(θ)|.

Consider the following stochastic functional differential equation

dx(t) = f (t, xt )dt + g(t, xt )dw(t) (2.1)
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on t ≥ 0 with initial data x0 = ξ = {ξ(θ) : θ ≤ 0} ∈ BC((−∞,0];Rn), where xt = x(t + θ),
−∞ < θ ≤ 0 is regarded as a BC((−∞,0];Rn)-valued stochastic process, and

f :R+ × BC((−∞,0];Rn) →R
n, g :R+ × BC((−∞,0];Rn) → R

n×m.

An Ft -adapted process x(t) is said to be the solution of the equation (2.1) if it satisfies the
initial condition above and moreover for each t ≥ 0,

x(t) = ξ(0) +
∫ t

0
f (s, xs)ds +

∫ t

0
g(s, xs)dw(s), (2.2)

where the stochastic integral is in the Itô’s sense. The details on the existence and uniqueness
of the solution to (2.1), we can refer [3]. For example, when f , g, G are uniformly Lipschitz
continuous, or they are locally Lipschitz continuous and satisfy the linear growth condition,
Kolmanovskii and Nosov [3] proved that there is a unique continuous solution to (2.1),
and any moment of the solution is finite. For stability purpose, throughout the paper we
always suppose that equation (2.1) has a unique solution for arbitrarily given initial data ξ ∈
BC((−∞,0];Rn) and the solution is denoted by x(t, ξ), or simply x(t), when no confusion
is possible. For the purposes of stability, we shall assume that

f (t,0) ≡ 0, g(t,0) ≡ 0 for any t ≥ 0.

It is well-known that for a given ξ ∈ BC((−∞,0];Rn), equation (2.1) has a trivial solution
when ξ ≡ 0.

Definition 2.1 The trivial solution x(t, ξ) of (2.1) is said to be exponentially stable in mean
square, if for any initial value ξ , there exists a pair of positive constants λ > 0 and C such
that for all t ≥ 0

E|x(t, ξ)|2 ≤ C‖ξ‖BCe−λt ,

or, equivalently,

lim sup
t→∞

1

t
log E|x(t, ξ)|2 ≤ −λ.

Definition 2.2 The trivial solution x(t, ξ) of (2.1) is said to be almost surely exponentially
stable if there exists a constant λ > 0 such that there is a finite random variable β such that
for all t ≥ 0

|x(t, ξ)| ≤ βe−λt a.s.

3 Exponential Stability for SFDEs with Infinite Delay

To state the main result of this section, let us define some functions. Let ηi(t, θ) : R+ ×
(−∞,0] → R, (i = 1,2) be non-decreasing in θ for each t ∈ R+. Furthermore, ηi(t, θ) is
normalized to be continuous from the left in θ on (−∞,0]. Assume that

Li(t, φ) :=
∫ 0

−∞
φ(θ)d[ηi(t, θ)], t ∈ R+, i = 1,2, (3.1)

is a locally bounded Borel-measurable function in t for each φ ∈ BC((−∞,0];Rn). Here,
the integral in (3.1) is the Riemann-Stieltjes integral.
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Theorem 3.1 Let γ (·) : R+ → R be a locally bounded Borel-measurable function such that
for any t ∈R+, ϕ ∈ BC(−∞,0];Rn),

2E
(
ϕT (0)f (t, ϕ)

)
≤ γ (t)E|ϕ(0)|2 +

∫ 0

−∞
E|ϕ(θ)|2d[η1(t, θ)], (3.2)

and

E

(
trac[gT (t, ϕ)g(t, ϕ)]

)
≤

∫ 0

−∞
E|ϕ(θ)|2d[η2(t, θ)]. (3.3)

If there exists β > 0 such that for any t ∈ R+,

γ (t) +
∫ 0

−∞
e−βθd[η1(t, θ)] +

∫ 0

−∞
e−βθd[η2(t, θ)] ≤ −β, (3.4)

then the trivial solution of (2.1) is exponentially stable in mean square. In particular,
E|x(t, ξ)|2 exponentially decays with the rate β for any ξ ∈ BC((−∞,0];Rn).

Proof Fix K > 1 and let ξ ∈ BC((−∞,0];Rn) such that E‖ξ‖2
BC > 0. For the sake of

simplicity, we denote x(t) := x(t, ξ), where x(t, ξ) is the solution to (2.1). Let Z(t) :=
Ke−βt

E‖ξ‖2
BC , t ≥ 0. Then, we deduce that from K > 1 and E‖ξ‖2

BC > 0 that X(t) :=
E|x(t)|2 ≤ Z(t), t ∈ (−∞,0]. We will show

E|x(t)|2 ≤ Z(t), ∀t ≥ 0. (3.5)

Assume on the contrary that there exists t1 > 0 such that X(t1) > Z(t1). Let t∗ := inf{t > 0 :
X(t) > Z(t)}. By continuity of X(t) and Z(t),

X(t) ≤ Z(t), t ∈ [0, t∗], X(t∗) = Z(t∗), (3.6)

and

E|x(tm)|2 > Ke−βtmE‖ξ‖2
BC,

for some tm ∈ (t∗, t∗ + 1
m
), m ∈N.

Applying the Itô’s formula to the function V (t, x) = eαt |x(t)|2, (3.2)–(3.3) and the Fu-
bini’s theorem, we have

E(eαt |x(t)|2)

= E|ξ(0)|2 +E

∫ t

0
αeαs |x(s)|2ds + 2E

∫ t

0
eαsxT (s)f (s, xs)ds

= +E

∫ t

0
eαs trac[gT (s, xs)g(s, xs)]ds

≤ E|ξ(0)|2 +E

∫ t

0
αeαs |x(s)|2ds +

∫ t

0
γ (s)eαs

E|x(s)|2ds

+
∫ t

0
eαs

(∫ 0

−∞
E|x(s + θ)|2d[η1(s, θ)]

)
ds

+
∫ t

0
eαs

(∫ 0

−∞
E|x(s + θ)|2d[η2(s, θ)]

)
ds.
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Let K1 := KE‖ξ‖2
BC . Since η1(s, θ) and η2(s, θ) are increasing in θ on (−∞,0], we derive

that from (3.6)

∫ 0

−∞
E|x(s + θ)|2d[η1(s, θ)] ≤ K1e

−βs

∫ 0

−∞
e−βθd[η1(s, θ)],

and
∫ 0

−∞
E|x(s + θ)|2d[η2(s, θ)] ≤ K1e

−βs

∫ 0

−∞
e−βθd[η2(s, θ)],

for any s ≤ t∗. Then, it follows that

eαt∗E|x(t∗)|2

≤E|ξ(0)|2 +
∫ t∗

0
eαse−βs(K1α + K1γ (s))ds

+
∫ t∗

0
eαsK1e

−βs

∫ 0

−∞
e−βθd[η1(s, θ)]ds +

∫ t∗

0
eαsK1e

−βs

∫ 0

−∞
e−βθd[η2(s, θ)]ds

=E|ξ(0)|2 +
∫ t∗

0
K1e

αse−βs ·
[
α + γ (s) +

∫ 0

−∞
e−βθd[η1(s, θ)] +

∫ 0

−∞
e−βθd[η2(s, θ)

]
ds.

Taking (3.4) into account, we get

eαt∗E|x(t∗)|2 ≤E|ξ(0)|2 +
∫ t∗

0
eαsK1e

−βs(α − β)ds

=E|ξ(0)|2 + K1(e
αt∗e−βt∗ − 1)

=E|ξ(0)|2 − K1 + K1e
αt∗e−βt∗

=E|ξ(0)|2 − KE‖ξ‖2
BC + Keαt∗e−βt∗E‖ξ‖2

BC

<Keαt∗e−βt∗E‖ξ‖2
BC,

which conflicts with (3.6). Therefore

E|x(t)|2 ≤ Ke−βt
E‖ξ‖2

BC, t ≥ 0.

So, we know that the trivial solution to (2.1) is exponentially stable in mean square and
E|x(t, ξ)|2 exponentially decays with the rate β . The proof is complete. �

Corollary 3.1 Let ϒ1(·, ·),ϒ2(·, ·) : R+ × (−∞,0] → R+, γi(·), ζi(·), hi(·) : R+ → R,
i = 0,1,2, . . . n with 0 := h0(t) ≤ h1(t) ≤ h2(t) ≤ · · · ≤ hn(t) < +∞, t ∈ R+, be locally
bounded Borel measurable functions such that for any t ∈R+, ϕ ∈ BC((−∞,0];Rn),

2E
(
ϕT (0)f (t, ϕ)

)
≤

n∑

i=0

γi(t)E|ϕ(−hi(t))|2 +
∫ 0

−∞
ϒ1(t, s)E|ϕ(s)|2ds, (3.7)

E

(
trac[gT (t, ϕ)g(t, ϕ)]

)
≤

n∑

i=0

ζi(t)E|ϕ(−hi(t))|2 +
∫ 0

−∞
ϒ2(t, s)E|ϕ(s)|2ds. (3.8)
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If there exists β > 0 such that for any t ∈ R+,

n∑

i=0

eβhi (t)γi(t)+
∫ 0

−∞
e−βsϒ1(t, s)ds +

n∑

i=0

eβhi (t)ζi(t)+
∫ 0

−∞
e−βsϒ2(t, s)ds ≤ −β, (3.9)

then the trivial solution of (2.1) is exponentially stable in mean square. In particular,
E|x(t, ξ)|2 exponentially decays with the rate β for any ξ ∈ BC((−∞,0];Rn).

Proof Define the following functions for t ≥ 0, s ∈ (−∞,0]

ui(t, s) :=
{

0, if s ∈ (−∞,−hi(t)],
γi(t), if s ∈ (−hi(t),0],

η1(t, s) :=
n∑

i=1

ui(t, s) +
∫ s

−∞
ϒ1(t, r)dr,

and

vi(t, s) :=
{

0, if s ∈ (−∞,−hi(t)],
ζi(t), if s ∈ (−hi(t),0],

η2(t, s) :=
n∑

i=1

vi(t, s) +
∫ s

−∞
ϒ2(t, r)dr.

By the properties of the Riemann-Stieltjes integrals, one has for each i = 1,2 that

∫ 0

−∞
φ(s)d

[∫ s

−∞
ϒi(t, r)dr

]
=

∫ 0

−∞
φ(s)ϒi(t, s)ds, t ∈ R+,

for any φ(·) ∈ BC((−∞,0];Rn). Then for any t ∈R+, φ(·) ∈ BC((−∞,0];Rn),

∫ 0

−∞
φ(s)d[η1(t, s)] =

n∑

i=1

γi(t)φ(−hi(t)) +
∫ 0

−∞
φ(s)ϒ1(t, s)ds,

∫ 0

−∞
φ(s)d[η2(t, s)] =

n∑

i=1

ζi(t)φ(−hi(t)) +
∫ 0

−∞
φ(s)ϒ2(t, s)ds.

Therefore, (3.7)–(3.8) imply that (3.2)–(3.3) hold and (3.9) ensures that (3.4) holds. By the
Theorem 3.1 we can obtain our desired results. The proof is complete. �

4 Exponential Stability for NSFDEs with Infinite Delay

Consider the following neutral stochastic functional differential equation with infinite delay

d[x(t) − G(xt )] = f (t, xt )dt + g(t, xt )dw(t) (4.1)

on t ≥ 0 with initial data x0 = ξ = {ξ(θ) : θ ≤ 0} ∈ BC((−∞,0];Rn), where

G : BC((−∞,0];Rn) →R
n, f :R+ × BC((−∞,0];Rn) →R

n,
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g :R+ × BC((−∞,0];Rn) → R
n×m.

An Ft -adapted process x(t), −∞ < t < +∞ is said to be the solution of the equation (4.1)
if it satisfies the initial condition above and moreover for each t ≥ 0,

x(t) − G(xt ) = ξ(0) − G(x0) +
∫ t

0
f (s, xs)ds +

∫ t

0
g(s, xs)dw(s), (4.2)

where the stochastic integral is in the Itô’s sense. The details on the existence and uniqueness
of the solution to (4.1), we can refer to [3]. For example, when f , g, G are uniformly
Lipschitz continuous, or they are locally Lipschitz continuous and satisfy the linear growth
condition, Kolmanovskii and Nosov [3] proved that there is unique continuous solution to
(4.1), and any moment of the solution is finite. For stability purpose, throughout the paper
we always suppose that equation (4.1) has a unique solution for arbitrarily given initial
data ξ ∈ Cb

F0
([−τ,0];Rn) and the solution is denoted by x(t, ξ), or simply x(t), when no

confusion is possible. For the purposes of stability, we shall assume that

G(0) ≡ 0, f (t,0) ≡ 0, g(t,0) ≡ 0 for any t ≥ 0.

It is well-known that for a given ξ ∈ BC((−∞,0];Rn), equation (4.1) has a trivial solution
when ξ ≡ 0.

We assume that there is a constant k ∈ (0,1) such that for all ϕ ∈ BC((−∞,0];Rn)

E|G(ϕ)|2 ≤ k sup
−∞<θ≤0

E|ϕ(θ)|2. (4.3)

Lemma 4.1 Let (4.3) hold with 0 < k < 1 and ρ ≥ 0, δ > 0, K > 1. If

eδt
E|x(t) − G(xt )|2 ≤ K sup

−∞<θ≤0
E|x(θ)|2 (4.4)

for all 0 ≤ t ≤ ρ, then

eδt
E|x(t)|2 ≤ K

(1 − √
k)2

sup
−∞<θ≤0

E|x(θ)|2.

Proof Let k < ε < 1. For 0 ≤ t ≤ ρ, we have

E|x(t) − G(xt )|2 ≥E|x(t)|2 − 2E(|x(t)||G(xt )|) +E|G(xt )|2

≥ (1 − ε)E|x(t)|2 − (ε−1 − 1)E|G(xt )|2.
Then, by (4.3) we have

E|x(t)|2 ≤ 1

1 − ε
E|x(t) − G(xt )|2 + k

ε
sup

−∞<θ≤0
E|x(t + θ)|2.

Using the condition (4.4), we derive that for all 0 ≤ t ≤ ρ

eδt
E|x(t)|2 ≤ K

1 − ε
sup

−∞<θ≤0
E|x(θ)|2 + k

ε
sup

−∞<θ≤0

[
eδt

E|x(t + θ)|2
]

≤ K

1 − ε
sup

−∞<θ≤0
E|x(θ)|2 + k

ε
sup

−∞<t≤ρ

[
eδt

E|x(t)|2
]
.
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Moreover, this holds for −∞ < t ≤ 0. Thus,

sup
−∞<t≤ρ

[
eδt

E|x(t)|2
]

≤ K

1 − ε
sup

−∞<θ≤0
E|x(θ)|2 + k

ε
sup

−∞<t≤ρ

[
eδt

E|x(t)|2
]
.

Since 1 > k
ε
, we can obtain

sup
−∞<t≤ρ

[
eδt

E|x(t)|2
]

≤ Kε

(1 − ε)(ε − k)
sup

−∞<θ≤0
E|x(θ)|2.

Lastly, letting ε = √
k we can obtain our desired result. The proof is complete. �

Theorem 4.1 Assume that (4.3) holds with 0 < k < 1. Let γ (·) : R+ → R be a locally
bounded Borel-measurable function such that for any t ∈R+, ϕ ∈ BC((−∞,0];Rn),

2E
(
(ϕ(0) − G(ϕ))T f (t, ϕ)

)
≤ γ (t)E|ϕ(0)|2 +

∫ 0

−∞
E|ϕ(θ)|2d[η1(t, θ)], (4.5)

and

E

(
trac[gT (t, ϕ)g(t, ϕ)]

)
≤

∫ 0

−∞
E|ϕ(θ)|2d[η2(t, θ)]. (4.6)

If there exists β > 0 such that for any t ∈ R+,

γ (t) +
∫ 0

−∞
e−βθd[η1(t, θ)] +

∫ 0

−∞
e−βθd[η2(t, θ)] ≤ −(1 − √

k)2β, (4.7)

then the trivial solution of (4.1) is exponentially stable in mean square. In particular,
E|x(t, ξ)|2 exponentially decays with the rate β for any ξ ∈ BC((−∞,0];Rn).

Proof Fix K > 1 sufficient large and let ξ ∈ BC((−∞,0];Rn) such that E‖ξ‖2
BC > 0. For

the sake of simplicity, we denote x(t) := x(t, ξ), where x(t, ξ) is the solution to (4.1).
Let Z(t) := Ke−βt

E‖ξ‖2
BC , t ≥ 0. Then, we deduce that from K > 1 sufficient large and

E‖ξ‖2
BC > 0 that X(t) := E|x(t) − G(t, xt )|2 ≤ Z(t), t ∈ (−∞,0]. We will show

E|x(t) − G(t, xt )|2 ≤ Z(t), ∀t ≥ 0. (4.8)

Assume on the contrary that there exists t1 > 0 such that X(t1) > Z(t1). Let t∗ := inf{t > 0 :
X(t) > Z(t)}. By continuity of X(t) and Z(t),

X(t) ≤ Z(t), t ∈ [0, t∗], X(t∗) = Z(t∗), (4.9)

and

E|x(tm) − G(xtm)|2 > Ke−βtmE‖ξ‖2
BC,

for some tm ∈ (t∗, t∗ + 1
m
), m ∈N.
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Applying the Itô’s formula to the function V (t, x) = eαt |x(t) − G(xt )|2, (4.5)–(4.6) and
the Fubini’s theorem, we have

E(eαt |x(t) − G(xt )|2)

=E|ξ(0) − G(ξ)|2 +E

∫ t

0
αeαs |x(s) − G(xs)|2ds

+ 2E
∫ t

0
eαs(x(s) − G(xs))

T f (s, xs)ds +E

∫ t

0
eαs trac[gT (s, xs)g(s, xs)]ds

≤E|ξ(0) − G(ξ)|2 +E

∫ t

0
αeαs |x(s) − G(xs)|2ds +

∫ t

0
γ (s)eαs

E|x(s)|2ds

+
∫ t

0
eαs

(∫ 0

−τ

E|x(s + θ)|2d[η1(s, θ)]
)
ds +

∫ t

0
eαs

(∫ 0

−τ

E|x(s + θ)|2d[η2(s, θ)]
)
ds.

Let K1 := KE‖ξ‖2
BC and K2 = K1

(1−√
k)2 . Since η1(s, θ) and η2(s, θ) are increasing in θ on

(−∞,0], we derive that from (4.9) and the Lemma 4.1

∫ 0

−∞
E|x(s + θ)|2d[η1(s, θ)] ≤ K2e

−βs

∫ 0

−∞
e−βθd[η1(s, θ)],

and
∫ 0

−∞
E|x(s + θ)|2d[η2(s, θ)] ≤ K2e

−βs

∫ 0

−∞
e−βθd[η2(s, θ)],

for any s ≤ t∗. Then, it follows that

eαt∗E|x(t∗) − G(xt∗)|2

≤E|ξ(0) − G(ξ)|2 +
∫ t∗

0
eαse−βs(K1α + K2γ (s))ds

+
∫ t∗

0
eαsK2e

−βs

∫ 0

−∞
e−βθd[η1(s, θ)]ds +

∫ t∗

0
eαsK2e

−βs

∫ 0

−∞
e−βθd[η2(s, θ)]ds

=E|ξ(0) − G(ξ)|2 +
∫ t∗

0
K1e

αse−βs

·
[
α + 1

(1 − √
k)2

(
γ (s) +

∫ 0

−∞
e−βθd[η1(s, θ)] +

∫ 0

−∞
e−βθd[η2(s, θ)

)]
ds.

Taking (4.7) into account, we get for sufficient large K ,

eαt∗E|x(t∗) − G(xt∗)|2 ≤E|ξ(0) − G(ξ)|2 +
∫ t∗

0
eαsK1e

−βs(α − β)ds

=E|ξ(0) − G(ξ)|2 + K1(e
αt∗e−βt∗ − 1)

=E|ξ(0) − G(ξ)|2 − K1 + K1e
αt∗e−βt∗

=E|ξ(0) − G(ξ)|2 − KE‖ξ‖2
BC + Keαt∗e−βt∗E‖ξ‖2

C

<Keαt∗e−βt∗E‖ξ‖2
BC,
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which conflicts with (4.9). Therefore

E|x(t) − G(xt )|2 ≤ Ke−βt
E‖ξ‖2

BC, t ≥ 0.

So, by applying the Lemma 4.1, we know that the trivial solution to (4.1) is exponentially
stable in mean square and E|x(t, ξ)|2 exponentially decays with the rate β . The proof is
complete. �

Corollary 4.1 Assume that (4.3) holds with 0 < k < 1. Let ϒ1(·, ·),ϒ2(·, ·) : R+ ×
(−∞,0] → R+, γi(·), ζi(·), hi(·) : R+ → R, i = 0,1,2, . . . n with 0 := h0(t) ≤ h1(t) ≤
h2(t) ≤ · · · ≤ hn(t) < +∞, t ∈ R+, be locally bounded Borel measurable functions such
that for any t ∈ R+, ϕ ∈ BC((−∞,0];Rn),

2E
(
(ϕ(0) − G(ϕ))T f (t, ϕ)

)
≤

n∑

i=0

γi(t)E|ϕ(−hi(t))|2 +
∫ 0

−∞
ϒ1(t, s)E|ϕ(s)|2ds, (4.10)

E

(
trac[gT (t, ϕ)g(t, ϕ)]

)
≤

n∑

i=0

ζi(t)E|ϕ(−hi(t))|2 +
∫ 0

−∞
ϒ2(t, s)E|ϕ(s)|2ds. (4.11)

If there exists β > 0 such that for any t ∈ R+,

n∑

i=0

eβhi (t)γi(t) +
∫ 0

−∞
e−βsϒ1(t, s)ds +

n∑

i=0

eβhi (t)ζi(t) +
∫ 0

−∞
e−βsϒ2(t, s)ds

≤ −(1 − √
k)2β, (4.12)

then the trivial solution of (4.1) is exponentially stable in mean square. In particular,
E|x(t, ξ)|2 exponentially decays with the rate β for any ξ ∈ BC((−∞,0];Rn).

Proof Define the following functions for t ≥ 0, s ∈ (−∞,0]

ui(t, s) :=
{

0, if s ∈ (−∞,−hi(t)],
γi(t), if s ∈ (−hi(t),0],

η1(t, s) :=
n∑

i=1

ui(t, s) +
∫ s

−∞
ϒ1(t, r)dr,

and

vi(t, s) :=
{

0, if s ∈ (−∞,−hi(t)],
ζi(t), if s ∈ (−hi(t),0],

η2(t, s) :=
n∑

i=1

vi(t, s) +
∫ s

−∞
ϒ2(t, r)dr.

By the properties of the Riemann-Stieltjes integrals, one has for each i = 1,2 that

∫ 0

−∞
φ(s)d

[∫ s

−∞
ϒi(t, r)dr

]
=

∫ 0

−∞
φ(s)ϒi(t, s)ds, t ∈ R+,
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for any φ(·) ∈ BC((−∞,0];Rn). Then for any t ∈R+, φ(·) ∈ BC((−∞,0];Rn),

∫ 0

−∞
φ(s)d[η1(t, s)] =

n∑

i=1

γi(t)φ(−hi(t)) +
∫ 0

−∞
φ(s)ϒ1(t, s)ds,

∫ 0

−∞
φ(s)d[η2(t, s)] =

n∑

i=1

ζi(t)φ(−hi(t)) +
∫ 0

−∞
φ(s)ϒ2(t, s)ds.

Therefore, (4.10)–(4.11) imply that (4.5)–(4.6) hold and (4.12) ensures that (4.7) holds. By
the Theorem 4.1 we can obtain our desired results. The proof is complete. �

5 Comparison with Existing Results and Some Examples

Now, we state some comparisons with existing results to illustrate the advantage of our
results.

Consider the following stochastic differential equation with distributed delay of the form

dx(t) =F
(
t, x(t),

∫ 0

−∞
k1(s)x(t + s)ds, . . . ,

∫ 0

−∞
kr(s)x(t + s)ds

)
dt

+ G
(
t, x(t),

∫ 0

−∞
k1(s)x(t + s)ds, . . . ,

∫ 0

−∞
kr(s)x(t + s)ds

)
dw(t)

(5.1)

on t ≥ 0 with initial data x0 = ξ ∈ BC((−∞,0];Rn), where ki(s) ∈ L((−∞,0];R+) for
i = 1,2, . . . , r and F :R+ ×R

n ×R
n×r →R

n, G :R+ ×R
n ×R

n×r → R
n×m satisfy the local

Lipschitz condition and the linear growth condition and F(t,0, . . . ,0) ≡ 0, G(t,0, . . . ,0) ≡
0.

By using the general Razumikhin-type theorem, Yang et al. [21] established the following
criterion for the exponential stability in mean square of (5.1) (see the Corollary 4.2 in [21]).

Proposition 5.1 Assume that there are λ > 0 and nonnegative constants αi , βi , i =
0,1,2, . . . , r such that

∫ 0

−∞
ki(s)ds = 1, k̄i :=

∫ 0

−∞
e−λski(s)ds < ∞, (5.2)

ϕT (0)F (t, ϕ(0),0, . . . ,0) ≤ −λ|ϕ(0)|2, (5.3)

∣∣∣F(t,ψ(0),0, . . . ,0) − F
(
t, ϕ(0),

∫ 0

−∞
k1(s)ϕ(s))ds, . . . ,

∫ 0

−∞
kr(s)ϕ(s))ds

)∣∣∣

≤α0|ϕ(0) − ψ(0)| +
r∑

i=1

αi

∣∣∣
∫ 0

−∞
ki(s)ϕ(s)ds

∣∣∣,

(5.4)

and

∣∣∣G
(
t, ϕ(0),

∫ 0

−∞
k1(s)ϕ(s))ds, . . . ,

∫ 0

−∞
kr(s)ϕ(s))ds

)∣∣∣
2

≤β0|ϕ(0)|2 +
r∑

i=1

βi

∣∣∣
∫ 0

−∞
ki(s)ϕ(s)ds

∣∣∣
2
,

(5.5)
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for all t ≥ 0, ϕ,ψ ∈ BC((−∞,0];Rn). If

λ >
1

2
β0 + 1

2

r∑

i=1

αi + 1

2

r∑

i=1

(αi + βi)k̄i , (5.6)

then the trivial solution of (5.1) is exponentially stable in mean square.

According to (5.3) and (5.4), we know that for all t ≥ 0, ϕ ∈ BC((−∞,0];Rn)

2ϕT (0)F
(
t, ϕ(0),

∫ 0

−∞
k1(s)ϕ(s))ds, . . . ,

∫ 0

−∞
kr(s)ϕ(s))ds

)

=2ϕT (0)F (t, ϕ(0),0, . . . ,0) + 2ϕT (0)
(

− F(t, ϕ(0),0, . . . ,0)

+ F
(
t, ϕ(0),

∫ 0

−∞
k1(s)ϕ(s))ds, . . . ,

∫ 0

−∞
kr(s)ϕ(s))ds

))

≤ − 2λ|ϕ(0)|2 + 2|ϕT (0)|
r∑

i=1

αi

∣∣∣
∫ 0

−∞
ki(s)ϕ(s)ds

∣∣∣

≤ − 2λ|ϕ(0)|2 +
( r∑

i=1

αi

∫ 0

−∞
ki(s)ds

)
|ϕ(0)|2 +

r∑

i=1

αi

∫ 0

−∞
ki(s)|ϕ(s)|2ds.

(5.7)

On the other hand, from (5.5) and the Hölder’s inequality, we have for all t ≥ 0, ϕ ∈
BC((−∞,0];Rn)

∣∣∣G
(
t, ϕ(0),

∫ 0

−∞
k1(s)ϕ(s))ds, . . . ,

∫ 0

−∞
kr(s)ϕ(s))ds

)∣∣∣
2

≤β0|ϕ(0)|2 +
r∑

i=1

βi

∫ 0

−∞
ki(s)ds ·

∫ 0

−∞
ki(s)|ϕ(s)|2ds,

(5.8)

which means that (3.7) holds with hi(t) = 0, γi(t) = ∑r

i=1 αi

∫ 0
−∞ ki(s)ds,−2λ,

ϒ1(t, s) = ∑r

i=1 αiki(s) and (3.8) holds with hi(t) = 0, ζi(t) = β0, ϒ2(t, s) =
∑r

i=1 βi

(∫ 0
−∞ ki(s)ds

)
ki(s).

Thus, we deduce that (5.3)–(5.5) are indeed stronger than (3.7) and (3.8). Moreover, by
the Corollary 3.1, we deduce that the trivial solution of (5.1) is exponentially stable in mean
square if (5.3)–(5.5) are satisfied and there exists a constant β > 0 such that

−2λ +
r∑

i=1

αi

∫ 0

−∞
ki(s)ds +

r∑

i=1

αi

∫ 0

−∞
ki(s)e

−βsds + β0

+
r∑

i=1

βi

∫ 0

−∞
ki(s)ds ·

∫ 0

−∞
ki(s)e

−βsds < −β. (5.9)

Besides, we note that the condition (5.2) is not required by using our Corollary 3.1. But,
if (5.2) is satisfied, then (5.9) reduce to

−2λ +
r∑

i=1

αi +
r∑

i=1

αi

∫ 0

−∞
ki(s)e

−βsds + β0 +
r∑

i=1

βi

∫ 0

−∞
ki(s)e

−βsds < −β. (5.10)
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We remark that the condition (5.10) is weaker than (5.6). Indeed, if (5.6) holds with k̄i :=∫ 0
−∞ e−λski(s)ds, then

−2λ + β0 +
r∑

i=1

αi +
r∑

i=1

(αi + βi)k̄i < 0.

Therefore, by the continuity

−2λ +
r∑

i=1

αi +
r∑

i=1

αi

∫ 0

−∞
ki(s)e

−λs+(−β+λ)sds + β0 +
r∑

i=1

βi

∫ 0

−∞
ki(s)e

−λs+(−β+λ)sds

< −β (5.11)

for some β > 0 sufficient small such that −β + λ > 0, which implies that (5.10) holds for
some β > 0 sufficient small such that −β + λ > 0.

Now, we consider the following stochastic functional differential equation with time
varying infinite delay

dx(t) =F(t, x(t), x(t − δ1(t)), . . . , x(t − δr (t)))dt

+ G(t, x(t), x(t − δ1(t)), . . . , x(t − δr(t)))dw(t)
(5.12)

on t ≥ 0 with initial data x0 = ξ ∈ BC((−∞,0];Rn), where δi(s) : R+ → R+ for i =
1,2, . . . , r and F : R+ × R

n × R
n×r → R

n, G : R+ × R
n × R

n×r → R
n×m satisfy the local

Lipschitz condition and the linear growth condition and F(t,0, . . . ,0) ≡ 0, G(t,0, . . . ,0) ≡
0.

To compare with the results of [16], let us introduce the following definitions on both
p-th moment and almost surely stability with a certain rate.

Definition 5.1 Let the function λ(t) ∈ C(R+;R+) be strictly increasing and λ(t) ↑ ∞ as
t → ∞. Then, the trivial solution of equation (2.1) is said to be p-th moment stable with
decay λ(t) of order γ if there exists a pair of constants γ > 0 and c(ξ) > 0 such that

E|x(t, ξ)|p ≤ c(ξ)λ−γ (t), t ≥ 0

holds for any ξ ∈ BC((−∞,0];Rn). The trivial solution of equation (2.1) is said to be almost
surely stable with decay λ(t) of order γ if

lim sup
t→∞

ln|x(t, ξ)|
lnλ(t)

≤ −γ, a.s.

By using the general Razumikhin-type theorem, Pavlović and Janković [16] established
the following criterion for stability in mean square of (5.12) (see the Corollary 3.1).

Proposition 5.2 Let λ(t) ∈ C1(R+;R+) be strictly increasing and λ(t) ↑ ∞ as t → ∞,
λ(0) = 1, and λ(s + t) ≤ λ(t)λ(s) for all t, s ≥ 0. Assume that there exist constants μ > 0,
ρ > 0, ν ≥ 1 and αi, βi ≥ 0, 0 ≤ i ≤ r such that

xT F (t, x,0, . . . ,0) ≤ −ρ
λ′(t)
λ(t)

|x|2, (5.13)
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|F(t, x,0, . . . ,0) − F(t, x̄, y1, . . . , yr ) ≤ λ′(t)
λ(t)

[
α0|x − x̄| + 1

ν

r∑

i=1

αiλ
−μ(δi(t))|yi |

]
,

(5.14)

|G(t, x, y1, . . . , yr )| ≤ λ′(t)
λ(t)

[
β0|x|2 + 1

ν

r∑

i=1

βiλ
−μ(δi(t))|yi |2

]
(5.15)

for all t ≥ 0 and x, x̄, y1, . . . , yr ∈R
n. If

ρ >
1

2
β0 + 1

ν

r∑

i=1

(
αi + 1

2
βi

)
, (5.16)

then the trivial solution of equation (5.12) is stable in mean square with the rate function

λ(t) of order γ = 2ρ − β0 − 2
ν

∑r

i=1

(
αi + 1

2βi

)
∧ μ.

By the Definition 2.1 and 5.1, we easily know that if the trivial solution of equation (5.12)
is exponentially stable in mean square, then the trivial solution of equation (5.12) is stable
in mean square with decay et of order λ, and if the trivial solution of equation (5.12) is
stable in mean square with decay et of order λ, then the trivial solution of equation (5.12) is
exponentially stable in mean square. In other word, exponential stability in mean square is
equivalent to the stability in mean square with decay et . So, the Proposition 5.2 is equivalent
to the following Proposition 5.3.

Proposition 5.3 Assume that there exist constants μ > 0, ρ > 0, ν ≥ 1 and αi, βi ≥ 0, 0 ≤
i ≤ r such that

xT F (t, x,0, . . . ,0) ≤ −ρ|x|2, (5.17)

|F(t, x,0, . . . ,0) − F(t, x̄, y1, . . . , yr ) ≤ α0|x − x̄| + 1

ν

r∑

i=1

αie
−μδi (t)|yi |, (5.18)

|G(t, x, y1, . . . , yr )| ≤ β0|x|2 + 1

ν

r∑

i=1

βie
−μδi (t)|yi |2 (5.19)

for all t ≥ 0 and x, x̄, y1, . . . , yr ∈R
n. If

ρ >
1

2
β0 + 1

ν

r∑

i=1

(
αi + 1

2
βi

)
, (5.20)

then the trivial solution of equation (5.12) is exponentially in mean square.
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In fact, by (5.17) and (5.18) we obtain for all t ≥ 0 and x, y1, . . . , yr ∈ R
n

2xT F (t, x, y1, . . . , yr )

=2xT F (t, x,0, . . . ,0) + 2xT (F (t, x, y1, . . . , yr ) − F(t, x,0, . . . ,0))

≤ − 2ρ|x|2 + 2|xT |1

ν

r∑

i=1

αie
−μδi (t)|yi |

≤ − 2ρ|x|2 + 1

ν

r∑

i=1

αie
−μδi (t)|x|2 + 1

ν

r∑

i=1

αie
−μδi (t)|yi |2.

Combining with (5.19), we can deduce that (3.7) and (3.8) hold. Therefore, by our Corol-
lary 3.1 we declare that the trivial solution of equation (5.12) is exponentially stable in mean
square if

−2ρ + β0 + 1

ν

r∑

i=1

αie
−μδi (t) + 1

ν

r∑

i=1

αie
−μδi (t)eβδi (t) + 1

ν

r∑

i=1

βie
−μδi (t)eβδi (t) ≤ −β (5.21)

holds for some β > 0. We remark that (5.21) is equivalent (5.20). Indeed, by (5.20) we have

−2ρ + β0 + 2

ν

r∑

i=1

αi + 1

ν

r∑

i=1

βi < 0. (5.22)

By the continuity and (5.22), we know that

−2ρ + β0 + 1

ν

r∑

i=1

αi + 1

ν

r∑

i=1

(αi + βi)e
−μδi (t)eβδi (t) < −β (5.23)

holds for some sufficient small 0 < β < μ, which means that (5.21) holds for some sufficient
small 0 < β < μ.

Now, we present some examples to illustrate the advantage of our results.
Consider the scalar linear time-varying stochastic differential equation with delay

d[x(t) − k(x(t − h0(t))] = (−a(t)x(t) + b(t)x(t − h1(t)))dt + c(t)x(t − h2(t))dw(t),

(5.24)

where 0 < k < 1, a(t), b(t), c(t) : R+ → R, h0(t), h1(t), h2(t) : R+ → R+ are continuous
functions, and w(t) is scalar Brownian motion.

We can deduce that (4.3) holds. Let

f (t, ϕ) := −a(t)ϕ(0) + b(t)ϕ(−h1(t)), g(t, ϕ) := c(t)ϕ(−h2(t))

for t ∈ R+, ϕ ∈ BC((−∞,0];R). Then, for all t ∈R+, ϕ ∈ BC((−∞,0];R) we have

2ϕ(0)f (t, ϕ) = − 2a(t)|ϕ(0)|2 + 2b(t)ϕ(0)ϕ(−h1(t)))

≤ − 2a(t)|ϕ(0)|2 + |b(t)|(ϕ2(0) + ϕ2(−h1(t))),
(5.25)

2G(ϕ)f (t, ϕ) ≤√
k[−a(t)|ϕ(0)| + b(t)ϕ(0)ϕ(−h1(t))]2 + √

k|ϕ(−h0(t))|2

≤2
√

k[a2(t)|ϕ(0)|2 + b2(t)ϕ2(−h1(t))] + √
k|ϕ(−h0(t))|2,

(5.26)
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and

g2(t, ϕ) = c2(t)ϕ2(−h2(t)). (5.27)

Then, by the Corollary 4.1 we deduce that if for any t ∈R+,

−2a(t) + |b(t)| + |b(t)|eβh1(t) + 2
√

k(a2(t) + b2(t)eβh1(t)) + √
keβh0(t) + c2(t)eβh2(t)

≤ −β, (5.28)

then the trivial solution of (5.24) is exponentially stable in mean square. In particular,
E|x(t, ξ)|2 exponentially decays with the rate β for any ξ ∈ BC((−∞,0];R).

For simplicity, we consider the following stochastic scalar equation

dx(t) =
(

− a(t)x(t) +
∫ 0

−∞
x(t + s)d[η(s)]

)
dt + b(t)x(t)dw(t), (5.29)

for t ≥ 0, where η(t) is a function of bounded variation on (−∞,0] and a(t), b(t) are
continuous functions and w(t) the one-dimensional Brownian motion.

Let

f (t, ϕ) := −a(t)ϕ(0) +
∫ 0

−∞
ϕ(s)d[η(s)], g(t, ϕ) := b(t)ϕ(0),

for t ≥ 0, ϕ ∈ BC((−∞,0];R). Define V (s) := Var(−∞,s]η(·), s ∈ (−∞,0]. Then V (s) is
non-decreasing on (−∞,0]. By the properties of the Riemann-Stieltjes integral, we have

∣∣∣
∫ 0

−∞
ϕ(0)ϕ(s)d[η(s)]

∣∣∣ ≤
∫ 0

−∞
|ϕ(0)ϕ(s)|d[V (s)].

Thus,

2ϕ(0)f (t, ϕ) ≤ − 2a(t)ϕ2(0) + 2
∫ 0

−∞
|ϕ(0)ϕ(s)|d[V (s)]

≤
(

− 2a(t) +
∫ 0

−∞
d[V (s)]

)
ϕ2(0) +

∫ 0

−∞
ϕ2(s)d[V (s)].

By the Corollary 3.1, the trivial solution of (5.29) is exponentially mean-square stable if
there exists β > 0 such that

−2a(t) +
∫ 0

−∞
d[V (s)] +

∫ 0

−∞
e−βsd[V (s)] + b2(t) ≤ −β, (5.30)

for all t ≥ 0.
To illustrate further the effectiveness of the obtained result, we consider scalar stochastic

functional differential equation

dx(t) = −αx(t)dt +
(∫ 0

−∞
esx(t + s)ds

)
dt + x(t)dsdw(t), t ≥ 0, (5.31)

where α > 0 stands for a parameter and w(t) is the 1-dimensional Brownian motion.
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Clearly, (5.31) is the form of (5.29) with a(t) = α, η(t) = et , b(t) = 1. So, by the Corol-
lary 3.1, the trivial solution of (5.31) is exponentially mean-square stable if there exists
β > 0 such that

−2α +
∫ 0

−∞
esds +

∫ 0

−∞
e−βsesds + 1 ≤ −β. (5.32)

In other word, we can deduce that the zero solution of (5.31) is exponentially stable in mean
square if

α ≥ 3

2
.

But, by Yang et al. [21] we have the zero solution of (5.31) is exponentially stable in mean
square if

α > 1 + 1

2

∫ 0

−∞
e−αsesds,

which implies that by Yang et al. [21] we can not deduce that the zero solution of (5.31) is
exponentially stable in mean square if

3

2
≤ α <

√
2 + 2

2
.

References

1. Arnolda, L., Schmalfuss, B.: Lyapunov’s second method for random dynamical systems. J. Differ. Equ.
177, 235–265 (2001)

2. Hu, G., Wang, K.: Stability in distribution of neutral stochastic functional differential equations with
Markovian switching. J. Math. Anal. Appl. 385, 757–769 (2012)

3. Kolmanovskii, V.B., Nosov, V.R.: Stability of Functional Differential Equations. Academic Press, New
York (1986)

4. Li, X.D., Song, S.J., Wu, J.H.: Exponential stability of nonlinear systems with delayed impulses and
applications. IEEE Trans. Autom. Control 64, 4024–4034 (2019)

5. Liu, R., Mandrekar, V.: Stochastic semilinear evolution equations: Lyapunov function, stability and ulti-
mate boundedness. J. Math. Anal. Appl. 212, 537–553 (1997)

6. Liu, B., Marquez, H.J.: Razumikhin-type stability theorems for discrete delay systems. Automatica 43,
1219–1225 (2007)

7. Liu, K., Xia, X.: On the exponential stability in mean square of neutral stochastic functional differential
equations. Syst. Control Lett. 37, 207–215 (1999)

8. Mao, X.: Exponential Stability of Stochastic Differential Equations. Dekker, New York (1994)
9. Mao, X.: Razumikhin-type theorems on exponential stability of stochastic functional differential equa-

tions. Stoch. Process. Appl. 65, 233–250 (1996)
10. Mao, X.: Razumikhin-type theorems on exponential stability of neutral stochastic differential equations.

SIAM J. Math. Anal. 28, 389–401 (1997)
11. Mao, X.: Stability of stochastic differential equations with Markovian switching. Stoch. Process. Appl.

79, 45–67 (1999)
12. Mao, X.: Stochastic Differential Equations and Applications, 2nd edn. Horvood, Chichester (2007)
13. Ngoc, P.H.A.: Novel criteria for exponential stability in mean square of stochastic functional differential

equations. Proc. Am. Math. Soc. 148, 3427–3436 (2020)
14. Ngoc, P.H.A.: New criteria for mean square exponential stability of stochastic delay differential equa-

tions. Int. J. Control (2020). https://doi.org/10.1080/00207179.2020.1770334
15. Ngoc, P.H.A., Hieu, L.T.: A novel approach to mean square exponential stability of stochastic delay

differential equations. IEEE Trans. Autom. Control 66(5), 2351–2356 (2021). https://doi.org/10.1109/
TAC.2020.3005587

https://doi.org/10.1080/00207179.2020.1770334
https://doi.org/10.1109/TAC.2020.3005587
https://doi.org/10.1109/TAC.2020.3005587


8 Page 18 of 18 Z. Li, L. Xu
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