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Abstract
In this article, we consider a one-dimensional thermoelastic porous system with microtem-
peratures. Based on the energy method we show in the case of zero thermal conductivity that
the dissipation given only by the microtemperatures is strong enough to produce an expo-
nential stability irrespective of the wave speeds of the system or any other condition on the
coefficients. The result of this paper is new and improves previous results in the literature.
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1 Introduction

In this paper, we consider the following one-dimensional thermoelastic porous system with
microtemperatures

⎧
⎪⎪⎨

⎪⎪⎩

ρutt = μuxx + bϕx − γ θx, in (0,1) × (0,∞) ,

Jϕtt = δϕxx − bux − ξϕ − dwx + mθ, in (0,1) × (0,∞) ,

cθt = −γ utx − mϕt − k1wx, in (0,1) × (0,∞) ,

αwt = k2wxx − k3w − k1θx − dϕtx, in (0,1) × (0,∞) ,

(1)

under the boundary conditions

u (0, t) = u (1, t) = ϕx (0, t) = ϕx (1, t) = 0, t > 0,

θx (0, t) = θx (1, t) = w (0, t) = w (1, t) = 0, t > 0,
(2)

and the initial conditions

u (x,0) = u0 (x) , ut (x,0) = u1 (x) , ϕ (x,0) = ϕ0 (x) , x ∈ (0, 1) ,

ϕt (x,0) = ϕ1 (x) , w (x,0) = w0 (x) , θ (x,0) = θ0 (x) , x ∈ (0, 1) ,
(3)
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where the functions u, ϕ, θ , w represent, respectively, the displacement of the solid elastic
material, the volume fraction, the temperature difference and the microtemperature vector.
The parameters ρ and J which are assumed to be strictly positive constants, are the mass
density and product of the mass density by the equilibrated inertia respectively. The coeffi-
cients c, μ, δ, γ , ξ , m, d , k1, k2, k3, α are positive constants in which their physical meaning
is well known such that

μξ > b2, (4)

where b is a real number different from zero and the initial data u0, u1, ϕ0, ϕ1, w0, θ0

belongs to the suitable functional space.
The system (1) was constructed by considering the following basic evolution equations

of the one-dimensional porous materials theory with temperature and microtemperature

ρutt = Tx, Jϕtt = Hx + G, ρηt = qx, ρEt = Px − Q, (5)

where T is the stress tensor, H is the equilibrated stress vector, G is the equilibrated body
force, q is the heat flux vector, η is the entropy, P is the first heat flux moment, Q is the
mean heat flux and E is the first moment of energy. The constitutive equations T , H , G, E,
η, P and Q take the following forms

⎧
⎪⎪⎨

⎪⎪⎩

T = μux + bϕ − γ θ, H = δϕx − dw,

G = −bux − ξϕ + mθ,

ρη = γ ux + cθ + mϕ, q = −k1w,

ρE = −αw − dϕx, P = −k2wx, Q = −k3w − k1θx,

(6)

and by substituting Eq. (6) into Eq. (5), we obtain the system (1).
In 1972, Goodman and Cowin [10] have given an extension of the classical elasticity

theory to porous media by introducing the concept of a continuum theory of granular ma-
terials with interstitial voids into the theory of elastic solids with voids. In addition, Nun-
ziato and Cowin [8] have presented a nonlinear theory for the behavior of porous solids
in which the skeletal or matrix material is elastic and the interstices are void of material.
In this theory the bulk density is written as the product of two fields, the matrix material
density field and the volume fraction field. Furthermore, this representation introduces an
additional degree of kinematic freedom. The intended applications of the theory of elastic
materials with voids are to geological materials like rocks and soils and to manufactured
porous materials. In [11], Grot has developed a theory of thermodynamics of elastic ma-
terials with inner structure whose microelements, in addition to microdeformations of the
string, possess microtemperatures which represent the variation of the temperature within a
microvolume. Later, many works has been released in this direction (for example [12–14]
and the references therein).

The first investigation concerning the study of temporal asymptotic behavior of the so-
lutions for a one-dimensional porous-elastic system was started by the work of Quintanilla
[19], in which he considered a damping through porous-viscosity and he proved that the sys-
tem is not decay exponentially with this complementary control. In [3, 4], Apalara showed
that the same system considered in [19] is exponentially stable for the case of equal speeds
of wave propagation, i.e.

μ

ρ
= δ

J
.
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In [6], Casas and Quintanilla considered the following one-dimensional porous system in
the presence of the usual thermal effect and the microtemperature damping

⎧
⎪⎪⎨

⎪⎪⎩

ρutt = μ∗uxx + bϕx − βθx, in (0,π) × (0,∞) ,

Jϕtt = αϕxx − bux − ξϕ − dwx + mθ, in (0,π) × (0,∞) ,

cθt = κθxx − γ utx − lϕt − k1wx, in (0,π) × (0,∞) ,

δwt = k∗
4wxx − k2w − k3θx − dϕtx, in (0,π) × (0,∞) .

They used the semi-group approach to prove the exponential stability of the solutions regard-
less to the speeds of wave propagations. In [7], the same authors proved that the combination
of porous-viscosity and thermal effects (temperature and microtemperatures) provokes ex-
ponential stability of solutions. In [17], Magańa and Quintanilla showed that viscoelasticity
damping and temperature produced slow decay in time and when the viscoelasticity is cou-
pled with porous damping or with microtemperatures, the system decays in an exponential
way. In [5], Apalara proved that the unique dissipation given by the finite memory is strong
enough to stabilize exponentially the system for the case of equal speeds of wave propaga-
tion. In [1], Apalara showed that the memory term together with the heat effect are strong
enough to stabilize exponentially the system irrespective of the wave speeds.

Interestingly, Apalara [2] proved that the dissipation given only with the microtempera-
tures is sufficient to get an exponential stability for the case of equal speeds of wave prop-
agation. Furthermore, if the speeds of wave propagation are non-equal, he showed that the
system is polynomially stable. In [9], Dridi and Djebabla studied the porous thermoelas-
tic system in case of zero thermal conductivity with temperatures and microtemperatures
effects

⎧
⎪⎪⎨

⎪⎪⎩

ρutt = μuxx + bϕx − γ θx, in (0,1) × (0,∞) ,

Jϕtt = δϕxx − bux − ξϕ − dwx + mθ − τϕt , in (0,1) × (0,∞) ,

cθt = −γ utx − mϕt − k1wx, in (0,1) × (0,∞) ,

αwt = k2wxx − k3w − k1θx − dϕtx, in (0,1) × (0,∞) ,

with the following Dirichlet (on ϕ, θ )-Neumann (on u, w) boundary conditions, and prove
the exponential stability without any condition on the coefficients of the system.

In [21], Saci and Djebabla studied a porous-elastic system with dissipation only due to
microtemperatures effect

⎧
⎪⎪⎨

⎪⎪⎩

ρutt = μuxx + bϕx − γ θx, in (0,1) × (0,∞) ,

Jϕtt = δϕxx − bux − ξϕ − dwx + mθ, in (0,1) × (0,∞) ,

cθt = −γ utx − mϕt − k1wx, in (0,1) × (0,∞) ,

αwt = k2wxx − k3w − k1θx − dϕtx, in (0,1) × (0,∞) ,

(7)

with the Dirichlet (on ϕ, θ )-Neumann (on u, w) boundary conditions. They introduced a
new stability number and proved that the unique dissipation due to the microtemperatures is
strong enough to drive the system to the equilibrium state in an exponential manner.

In [20], Saci et al. investigated the porous-elastic system where two kinds of dissipation
processes were considered: the frictional damping acting on the elasticity equation and the
microtemperatures dissipation. The authors showed that these both dissipation terms guaran-
tees an exponential stability of the solutions. In [16] Liu et al. considered a one-dimensional
porous-elastic system with finite memory term acting on the porous equation. They showed
a general decay of the solutions under the assumptions of non-equal wave speeds propaga-
tions and positive semidefinite energy.
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Recently, Lacheheb et al. in [15] studied a porous-elastic system with thermoelasticity
of type III and based on the energy method, they obtained an exponential decay result for
the case of equal wave speeds. In the opposite one, they proved a polynomial decay result.
Moreover, they used some numerical approximations to validate the theoretical result. In
[22] the authors showed the existence of global and exponential attractors for a nonlinear
porous-elastic system subjected to a delay-type damping.

In this paper, we consider the same porous-elastic system (7) with temperature and
microtemperatures, but with different boundary conditions, i.e., the Dirichlet (on u, w)-
Neumann (on ϕ, θ ) boundary conditions. Based on the energy method, we show in case of
zero thermal conductivity that the dissipation given only by the microtemperatures is strong
enough to produce an exponential stability irrespective of the wave speeds of the system or
any other condition on the coefficients.

In view of the boundary conditions, our system can have solutions (uniform in the vari-
able x), which do not decay. To avoid such case and also to be able to use Poincaré’s in-
equality, we perform the following transformation:

By using (1)2, (1)3, and the boundary conditions, we observe that

⎧
⎪⎨

⎪⎩

J
d2

dt2

∫ 1
0 ϕ (x, t) dx + ξ

∫ 1
0 ϕ (x, t) dx = m

∫ 1
0 θ (x, t) dx,

c
d

dt

∫ 1
0 θ (x, t) dx = −m

d

dt

∫ 1
0 ϕ (x, t) dx.

(8)

The system (8) is equivalent to
⎧
⎪⎨

⎪⎩

J
d2

dt2

∫ 1
0 ϕ (x, t) dx + τ2

∫ 1
0 ϕ (x, t) dx − τ1 = 0, τ2 > 0,

∫ 1
0 θ (x, t) dx = −m

c

∫ 1
0 ϕ (x, t) dx + τ1

m
,

(9)

where τ2 = ξ + m2

c
and τ1 = m

∫ 1
0 θ0 (x) dx + m2

c

∫ 1
0 ϕ0 (x) dx.

By introducing the following change of variable

z (t) = τ2

∫ 1

0
ϕ (x, t) dx − τ1, (10)

the differential equation (9)1 becomes

z′′ (t) + τ2

J
z (t) = 0. (11)

So, by solving (11) and using the initial data, we obtain

z (t) =
(

τ2

(∫ 1

0
ϕ0 (x) dx

)

− τ1

)

cos

(√
τ2

J
t

)

+ √
Jτ2

(∫ 1

0
ϕ1 (x) dx

)

sin

(√
τ2

J
t

)

.

We deduce from (10), (9)2 that

∫ 1

0
ϕ (x, t) dx =

((∫ 1

0
ϕ0 (x) dx

)

− τ1

τ2

)

cos

(√
τ2

J
t

)
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+
√

J

τ2

(∫ 1

0
ϕ1 (x) dx

)

sin

(√
τ2

J
t

)

+ τ1

τ2
,

∫ 1

0
θ (x, t) dx = −m

c

((∫ 1

0
ϕ0 (x) dx

)

− τ1

τ2

)

cos

(√
τ2

J
t

)

− m

c

√
J

τ2

(∫ 1

0
ϕ1 (x) dx

)

sin

(√
τ2

J
t

)

+ τ1

(
1

m
− m

cτ2

)

.

Consequently, if we let

ϕ̄ (x, t) = ϕ (x, t) −
((∫ 1

0
ϕ0 (x) dx

)

− τ1

τ2

)

cos

(√
τ2

J
t

)

−
√

J

τ2

(∫ 1

0
ϕ1 (x) dx

)

sin

(√
τ2

J
t

)

− τ1

τ2
,

and

θ̄ (x, t) = θ (x, t) + m

c

((∫ 1

0
ϕ0 (x) dx

)

− τ1

τ2

)

cos

(√
τ2

J
t

)

+ m

c

√
J

τ2

(∫ 1

0
ϕ1 (x) dx

)

sin

(√
τ2

J
t

)

− τ1

(
1

m
− m

cτ2

)

,

we obtain
∫ 1

0
ϕ̄ (x, t) dx =

∫ 1

0
θ̄ (x, t) dx = 0. (12)

Henceforth, we work with ϕ̄, θ̄ instead of ϕ̄, θ̄ but write ϕ and θ for simplicity of notation.

2 Well-Posedness

In this section, we give the existence and uniqueness of solutions for the system (1)-(3) using
semigroup theory. Introducing the vector function U = (u, v,ϕ,ψ, θ,w)T , where v = ut ,
and ψ = ϕt , the system (1) can be rewritten as follows:

{
Ut +AU = 0, t > 0,

U (x,0) = U0 (x) = (u0, u1, ϕ0, ϕ1, θ0,w0)
T ,

where the operator A is defined by

AU =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−v

−μ

ρ
uxx − b

ρ
ϕx + γ

ρ
θx

−ψ

− δ
J
ϕxx + b

J
ux + ξ

J
ϕ + d

J
wx − m

J
θ

γ

c
vx + m

c
ψ + k1

c
wx

− k2
α
wxx + k3

α
w + k1

α
θx + d

α
ψx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (13)
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We consider the following spaces

H 1
∗ (0,1) = H 1 (0,1) ∩ L2

∗ (0,1) ,

L2
∗ (0,1) =

{

φ ∈ L2 (0,1) :
∫ 1

0
φ (x)dx = 0

}

,

H 2
∗ (0,1) = {

� ∈ H 2 (0,1) : �x (0) = �x (1) = 0
}
.

Let H be the energy space given by

H=H 1
0 (0,1) × L2 (0,1) × H 1

∗ (0,1) × L2
∗ (0,1) × L2

∗ (0,1) × L2 (0,1) ,

and for any U = (u, v,ϕ,ψ, θ,w)T ∈ H, Ũ = (ũ, ṽ, ϕ̃, ψ̃, θ̃ , w̃)T ∈ H, we equip H with the
inner product

〈
U, Ũ

〉

H
= ρ

∫ 1

0
vṽdx + μ

∫ 1

0
uxũxdx + J

∫ 1

0
ψψ̃dx + b

∫ 1

0
(uxϕ̃ + ũxϕ) dx

+ ξ

∫ 1

0
ϕϕ̃dx + δ

∫ 1

0
ϕxϕ̃xdx + α

∫ 1

0
ww̃dx + c

∫ 1

0
θ θ̃dx. (14)

It is easy to see that (14) defines an inner product. In fact, from (14), we have

〈U,U〉H = ρ

∫ 1

0
v2dx + μ

∫ 1

0
u2

xdx + J

∫ 1

0
ψ2dx + 2b

∫ 1

0
uxϕdx

+ ξ

∫ 1

0
ϕ2dx + δ

∫ 1

0
ϕ2

xdx + α

∫ 1

0
w2dx + c

∫ 1

0
θ2dx.

Since μξ > b2, we deduce that

μu2
x + 2buxϕ + ξϕ2 >

1

2

[(

μ − b2

ξ

)

u2
x +

(

ξ − b2

μ

)

ϕ2

]

.

Consequently,

〈U,U〉H >

∫ 1

0

{
ρv2 + μ1u

2
x + Jψ2 + ξ1ϕ

2 + +δϕ2
x + αw2 + cθ2

}
dx,

where

μ1 = 1

2

(

μ − b2

ξ

)

> 0, ξ1 = 1

2

(

ξ − b2

μ

)

> 0. (15)

Hence, we conclude that
〈
U, Ũ

〉

H
defines an inner product on H and the associated norm

‖.‖H is equivalent to the usual one.
The domain of A is

D (A) = {
U ∈ H | u ∈ H 2

0 (0,1) ∩ H 1
0 (0,1) ; v ∈ H 1

0 (0,1) ;
ϕ ∈ H 2

∗ (0,1) ∩ H 1
∗ (0,1) ; ψ ∈ H 1

∗ (0,1) ; θ ∈ H 1
∗ (�);
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w ∈ H 2
0 (0,1) ∩ H 1

0 (0,1)
}
.

Clearly, D (A) is dense in H. Moreover, by using the inner product (14), it follows that, for
any U ∈ D(A)

〈AU,U〉H = k3

∫ 1

0
w2dx + k2

∫ 1

0
w2

xdx ≥ 0, (16)

which implies that A is a monotone operator. By using the Lax–Milgram Lemma and clas-
sical regularity arguments, it can be proved that I + A is surjective. Hence, using Lumer–
Phillips theorem (see [18]), we deduce that A is an infinitesimal generator of a C0-semigroup
on H. Consequently, we have the following well-posedness result.

Theorem 1 Let U0 ∈ H, then there exists a unique solution U ∈ C (R+,H) of problem (1).
Moreover, if U0 ∈ D(A), then

U ∈ C (R+, D(A)) ∩ C1 (R+,H) .

3 Exponential Stability

In this section, we use the energy method to establish the exponential stability of the system
(1). To achieve our goal we state and prove the following lemmas.

Lemma 2 Let (u,ϕ, θ,w) be a solution of (1)-(3). Then, the energy functional E (t), defined
by

E (t) = 1

2

∫ 1

0

(
ρu2

t + Jϕ2
t + μu2

x + δϕ2
x + cθ2 + ξϕ2 + αw2

+2bϕux) dx, (17)

satisfies

E′ (t) = −k3

∫ 1

0
w2dx − k2

∫ 1

0
w2

xdx ≤ 0. (18)

Proof Multiplying (1)1, (1)2, (1)3, (1)4 by ut , ϕt , θ , w respectively, integrating over (0,1)

and summing them up, we obtain

d

2dt

∫ 1

0

(
ρu2

t + Jϕ2
t + μu2

x + δϕ2
x + cθ2 + ξϕ2 + αw2 + 2bϕux

)
dx

= −k2

∫ 1

0
w2

xdx − k3

∫ 1

0
w2dx. � (19)

Remark 3 The energy E(t) defined by (17) is non-negative. In fact, as in the second section,
we can easily show that

E(t) >
1

2

∫ 1

0

(
ρu2

t + Jϕ2
t + μ1u

2
x + δϕ2

x + cθ2 + ξ1ϕ
2 + αw2

)
dx,

where μ1 and ξ1 are given in (15). Therefore, E(t) is non-negative.
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Lemma 4 Let (u,ϕ, θ,w) be a solution of (1)-(3). Then, the functional

I1(t) = γ

4

∫ 1

0
utudx − c

∫ 1

0
θ

(∫ x

0
ut (y) dy

)

dx, t ≥ 0,

satisfies, ∀t ≥ 0

I ′
1(t) ≤ −μγ

8ρ

∫ 1

0
u2

xdx − γ

4

∫ 1

0
u2

t dx + C0

∫ 1

0

(
ϕ2

t + ϕ2
x + θ2 + w2

x

)
dx (20)

Proof Differentiating I1(t) and integrating by parts, we get

I ′
1(t) = −3

4
γ

∫ 1

0
u2

t dx − μγ

4ρ

∫ 1

0
u2

xdx − bγ

4ρ

∫ 1

0
ϕuxdx +

(
γ 2

4ρ
− cμ

ρ

)∫ 1

0
θuxdx

+ γ c

ρ

∫ 1

0
θ2dx − cb

ρ

∫ 1

0
ϕθdx + m

∫ 1

0
ϕt

(∫ x

0
ut (y) dy

)

dx

+ k1

∫ 1

0
wx

(∫ x

0
ut (y) dy

)

dx. (21)

Using Young’s and Cauchy Schwarz inequalities,

m

∫ 1

0
ϕt

(∫ x

0
ut (y) dy

)

dx ≤ γ

4

∫ 1

0
u2

t dx + C0

∫ 1

0
ϕ2

t dx, (22)

k1

∫ 1

0
wx

(∫ x

0
ut (y) dy

)

dx ≤ γ

4

∫ 1

0
u2

t dx + C0

∫ 1

0
w2

xdx. (23)

Using Young’s inequality

(
γ 2

4ρ
− cμ

ρ

)∫ 1

0
θuxdx ≤ μγ

16ρ

∫ 1

0
u2

xdx + C0

∫ 1

0
θ2dx. (24)

Using Young’s and Poincaré inequalities

−cb

ρ

∫ 1

0
ϕθdx ≤ C0

∫ 1

0

(
θ2 + ϕ2

x

)
dx, (25)

−bγ

4ρ

∫ 1

0
ϕuxdx ≤ μγ

16ρ

∫ 1

0
u2

xdx + C0

∫ 1

0
ϕ2

xdx. (26)

By substituting (22)-(26) into (21), we get (20). �

Lemma 5 Let (u,ϕ, θ,w) be a solution of (1)-(3). Then, the functional

I2(t) = J

∫ 1

0
ϕtϕdx − bρ

μ

∫ 1

0
ut

(∫ x

0
ϕ (y)dy

)

dx, t ≥ 0,

satisfies, for any ε1 > 0,

I ′
2(t) ≤ − δ

2

∫ 1

0
ϕ2

xdx − 2ξ1

∫ 1

0
ϕ2dx + ε1

∫ 1

0
u2

t dx + C1

∫ 1

0

(
θ2 + w2

x

)
dx
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+ C1

(

1 + 1

ε1

)∫ 1

0
ϕ2

t dx, (27)

where ξ1 = 1

2

(

ξ − b2

μ

)

.

Proof By differentiating I2(t), we obtain

I ′
2(t) = J

∫ 1

0
ϕttϕdx + J

∫ 1

0
ϕ2

t dx − bρ

μ

∫ 1

0
ut

(∫ x

0
ϕt (y) dy

)

dx

− bρ

μ

∫ 1

0
utt

(∫ x

0
ϕ (y)dy

)

dx.

Now, by using integration by parts together with the boundary conditions, we get

I ′
2(t) = −δ

∫ 1

0
ϕ2

xdx −
(

ξ − b2

μ

)∫ 1

0
ϕ2dx + J

∫ 1

0
ϕ2

t dx

− d

∫ 1

0
wxϕdx − bρ

μ

∫ 1

0
ut

(∫ x

0
ϕt (y) dy

)

dx

+
(

m − bγ

μ

)∫ 1

0
θϕdx. (28)

Using Young’s and Cauchy Schwarz inequalities, we get

−bρ

μ

∫ 1

0
ut

(∫ x

0
ϕt (y) dy

)

dx ≤ ε1

∫ 1

0
u2

t dx + C1

ε1

∫ 1

0
ϕ2

t dx. (29)

Young’s and Poincaré inequalities leads to

−d

∫ 1

0
wxϕdx ≤ δ1

4

∫ 1

0
ϕ2

xdx + C1

∫ 1

0
w2

xdx, (30)

(

m − bγ

μ

)∫ 1

0
θϕdx ≤ δ1

4

∫ 1

0
ϕ2

xdx + C1

∫ 1

0
θ2dx. (31)

Inserting (29)-(31) in (28) and letting δ1 = δ

2
, we obtain (27). �

Lemma 6 Let (u,ϕ, θ,w) be a solution of (1)-(3). Then, the functional

I3(t) = cα

∫ 1

0
θ

(∫ x

0
w (y)dy

)

dx − α

∫ 1

0
w

(∫ x

0
ϕt (y) dy

)

dx

+ γ Jα0

2β0

∫ 1

0
ϕ2

t dx + bcα0

β0

∫ 1

0
θϕdx + γ bα0

β0

∫ 1

0
uxϕdx

+ α0γ0

2β0

∫ 1

0
ϕ2dx + γ δα0

2β0

∫ 1

0
ϕ2

xdx,
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where α0 = dc + k1, β0 = γm + bc, γ0 = γ ξ + mb, satisfies, for any ε2, ε3, ε4 > 0, the
following estimate

I ′
3(t) ≤ −k1c

4

∫ 1

0
θ2dx − d

4

∫ 1

0
ϕ2

t dx + ε2

∫ 1

0
u2

t dx + 2ε3

∫ 1

0
ϕ2

xdx + ε4

∫ 1

0
u2

xdx

+ C2

∫ 1

0
w2

xdx + C2

(

1 + 1

ε2
+ 1

ε3
+ 1

ε4

)∫ 1

0
w2dx. (32)

Proof By differentiating I3(t), integrating by parts and using (12), we obtain

I ′
3 (t) = −k1c

∫ 1

0
θ2dx − d

∫ 1

0
ϕ2

t dx +
(

αk1 + αd

J

)∫ 1

0
w2dx

+ αγ

∫ 1

0
wutdx +

(

k2 − γ dα0

β0

)∫ 1

0
wxϕtdx

+ αb

J

∫ 1

0
wudx + k2c

∫ 1

0
wxθdx +

(
k1α0b

β0
− αδ

J

)∫ 1

0
wϕxdx

− k3c

∫ 1

0
θ

(∫ x

0
w (y)dy

)

dx − αm

∫ 1

0
ϕt

(∫ x

0
w (y)dy

)

dx

+ k3

∫ 1

0
w

(∫ x

0
ϕt (y) dy

)

dx − αm

J

∫ 1

0
w

(∫ x

0
θ (y)dy

)

dx

+ αξ

J

∫ 1

0
w

(∫ x

0
ϕ (y)dy

)

dx. (33)

Using Young’s inequality, we find

k2c

∫ 1

0
wxθdx ≤ k1c

4

∫ 1

0
θ2dx + C2

∫ 1

0
w2

xdx, (34)

(

k2 − γ dα0

β0

)∫ 1

0
wxϕtdx ≤ d

4

∫ 1

0
ϕ2

t dx + C2

∫ 1

0
w2

xdx, (35)

+αγ

∫ 1

0
wutdx ≤ ε2

∫ 1

0
u2

t dx + C2

ε2

∫ 1

0
w2dx, (36)

(
k1α0b

β0
− αδ

J

)∫ 1

0
wϕxdx ≤ ε3

∫ 1

0
ϕ2

xdx + C2

ε3

∫ 1

0
w2dx. (37)

Using Young’s and Poincaré inequalities, we have

αb

J

∫ 1

0
wudx ≤ ε4

∫ 1

0
u2

xdx + C2

ε4

∫ 1

0
w2dx. (38)

Using Young’s and Cauchy Schwarz inequalities

−k3c

∫ 1

0
θ

(∫ x

0
w (y)dy

)

dx ≤ k1c

4

∫ 1

0
θ2dx + C2

∫ 1

0
w2dx, (39)
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−αm

J

∫ 1

0
w

(∫ x

0
θ (y) dy

)

dx ≤ k1c

4

∫ 1

0
θ2dx + C2

∫ 1

0
w2dx, (40)

−αm

∫ 1

0
ϕt

(∫ x

0
w (y)dy

)

dx ≤ d

4

∫ 1

0
ϕ2

t dx + C2

∫ 1

0
w2dx, (41)

k3

∫ 1

0
w

(∫ x

0
ϕt (y) dy

)

dx ≤ d

4

∫ 1

0
ϕ2

t dx + C2

∫ 1

0
w2dx. (42)

Using Young’s, Poincaré and Cauchy Schwarz inequalities

αξ

J

∫ 1

0
w

(∫ x

0
ϕ (y)dy

)

dx ≤ ε3

∫ 1

0
ϕ2

xdx + C2

ε3

∫ 1

0
w2dx. (43)

Estimate (32) follows by substituting (34)-(43) into (33). �

Now, we define the Lyapunov functional L(t) by

L(t) = NE(t) + I1 (t) + N1I2 (t) + N2I3 (t) , (44)

where N , N1, N2 are positive constants.

Theorem 7 Let (u,ϕ, θ,w) be a solution of (1)-(3). Then, there exist two positive constants
κ1 and κ2 such that the Lyapunov functional (44) satisfies

κ1E (t) ≤ L(t) ≤ κ2E (t) , ∀t ≥ 0, (45)

and

L′(t) ≤ −β1E(t), β1 > 0. (46)

Proof From (44), we have

|L(t) − NE (t)| ≤ γ

4

∫ 1

0
|utu|dx + c

∫ 1

0

∣
∣
∣
∣θ

(∫ x

0
ut (y) dy

)∣
∣
∣
∣dx

+ N1J

∫ 1

0
|ϕtϕ|dx + N1

|b|ρ
μ

∫ 1

0

∣
∣
∣
∣ut

(∫ x

0
ϕ (y)dy

)∣
∣
∣
∣dx

+ N2cα

∫ 1

0

∣
∣
∣
∣θ

(∫ x

0
w (y)dy

)∣
∣
∣
∣dx + N2α

∫ 1

0

∣
∣
∣
∣w

(∫ x

0
ϕt (y) dy

)∣
∣
∣
∣dx

+ N2
γ Jα0

2 |β0|
∫ 1

0
ϕ2

t dx + N2
|b| cα0

|β0|
∫ 1

0
|θϕ|dx + N2

γ |b|α0

|β0|
∫ 1

0
|uxϕ|dx

+ N2
α0 |γ0|
2 |β0|

∫ 1

0
ϕ2dx + N2

γ δα0

2 |β0|
∫ 1

0
ϕ2

xdx.

By using Young’s, Poincaré and Cauchy-Schwarz inequalities, we obtain

|L(t) − NE (t)| ≤ τE (t) ,
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which yields

(N − τ)E (t) ≤ L (t) ≤ (N + τ)E (t) ,

by choosing N (depending on N1, N2) sufficiently large we obtain (45). Now, by differ-

entiating L (t), exploiting (20), (27), (32) and setting ε1 = γ

16N1
, ε2 = γ

16N2
, ε3 = N1δ

8N2
,

ε4 = μγ

16N2
, we get

L′ (t) ≤ − μγ

16ρ

∫ 1

0
u2

xdx − γ

8

∫ 1

0
u2

t dx − 2ξ1N1

∫ 1

0
ϕ2dx

−
(

N2
k1c

4
− N1C1 − C0

)∫ 1

0
θ2dx

−
(

N1δ

4
− C0

)∫ 1

0
ϕ2

xdx

−
(

N2
d

4
− N1C1

(

1 + 16N1

γ

)

− C0

)∫ 1

0
ϕ2

t dx

−
(

Nk3 − N2C2

(

1 + 16N2

γ
+ 8N2

N1δ
+ 16N2

μγ

))∫ 1

0
w2dx

− (Nk2 − N2C2 − N1C1 − C0)

∫ 1

0
w2

xdx. (47)

Now, we select our parameters appropriately as follows:
First, we choose N1 large enough so that

N1δ

4
− C0 > 0.

Next, we select N2 large enough so that

N2
k1c

4
− N1C1 − C0 > 0,

and

N2
d

4
− N1C1

(

1 + 16N1

γ

)

− C0 > 0.

Finally, we choose N large enough (even larger so that (45) remains valid) such that
⎧
⎪⎪⎨

⎪⎪⎩

Nk3 − N2C2

(

1 + 16N2

γ
+ 8N2

N1δ
+ 16N2

μγ

)

> 0,

and
Nk2 − N2C2 − N1C1 − C0 > 0.

All these choices with the relation (47) leads to

L′(t) ≤ −α1

∫ 1

0

(
u2

x + u2
t + ϕ2 + θ2 + ϕ2

x + ϕ2
t + w2

)
dx, α1 > 0. (48)
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On the other hand, from Eq. (17) and by using Young’s inequality, we obtain

E (t) ≤ 1

2

∫ 1

0

(
ρu2

t + Jϕ2
t + (μ + |b|)u2

x + δϕ2
x + cθ2 + (ξ + |b|)ϕ2 + αw2

)
dx

≤ �1

(∫ 1

0

(
u2

t + ϕ2
t + u2

x + ϕ2
x + θ2 + ϕ2 + w2

)
dx

)

, �1 > 0,

which implies that

−
∫ 1

0

(
u2

t + ϕ2
t + u2

x + ϕ2
x + θ2 + ϕ2 + w2

)
dx ≤ −�2E (t) , �2 > 0. (49)

The combination of (48) and (49) gives (46). �

We are now ready to state and prove the following exponential stability result.

Lemma 8 Let (u,ϕ, θ,w) be a solution of (1)-(3) and assume that (4) holds. Then, for any
U0 ∈ D (A), there exist two positive constants λ1 and λ2 such that

E (t) ≤ λ2e
−λ1t , ∀t ≥ 0. (50)

Proof By using the estimation (46), we get

L′(t) ≤ −β1E(t), t ≥ 0,

having in mind the equivalence of E(t) and L(t) we infer that

L′(t) ≤ −λ1L(t), t ≥ 0, (51)

where λ1 = β1

κ2
> 0. A simple integration of (51) gives

L′(t) ≤ −L(0)e−λ1t , t ≥ 0,

which yields the serial result (50) and by using the other side of the equivalence relation
(45) again. The proof is complete. �
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14. Ieşan, D., Quintanilla, R.: On a theory of thermoelasticity with microtemperatures. J. Therm. Stresses

23(3), 199–215 (2000)
15. Lacheheb, I., Messaoudi, S.A., Zahri, M.: Asymptotic stability of porous-elastic system with thermoe-

lasticity of type III. Arab. J. Math., (Springer) 10(1), 137–155 (2021)
16. Liu, W., Chen, D., Messaoudi, S.A.: General decay rates for one-dimensional porous-elastic system with

memory: the case of non-equal wave speeds. J. Math. Anal. Appl. 482(2), 123552 (2020)
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