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Abstract
This paper study the type of integrability of differential systems with separable variables
ẋ = h(x)f (y), ẏ = g (y), where h, f and g are polynomials. We provide a criterion for the
existence of generalized analytic first integrals of such differential systems. Moreover we
characterize the polynomial integrability of all such systems.

In the particular case h(x) = (ax + b)m we provide necessary and sufficient conditions
in order that this subclass of systems has a generalized analytic first integral. These results
extend known results from Giné et al. (Discrete Contin. Dyn. Syst. 33:4531–4547, 2013) and
Llibre and Valls (Discrete Contin. Dyn. Syst., Ser. B 20:2657–2661, 2015). Such differential
systems of separable variables are important due to the fact that after a blow-up change of
variables any planar quasi-homogeneous polynomial differential system can be transformed
into a special differential system of separable variables ẋ = xf (y), ẏ = g (y), with f and g

polynomials.

Mathematics Subject Classification (2010) Primary 37C10 · Secondary 34A34 · 37J35

Keywords Polynomial systems · Generalized analytic integrability · Polynomial first
integrals · Residue

1 Introduction and the main results

Planar polynomial differential systems play an important role in the qualitative theory of dy-
namical systems due to their many applications in physics, chemist, biology, economics, . . . .
Nowadays the qualitative theory has gained wide development for polynomial systems. For
a planar differential system, the existence of a first integral determines completely its global
dynamical behavior. So a natural problem arises: Given a polynomial differential system in
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R
2 or C2, how to decide if this system has a first integral? For general polynomial differ-

ential systems this problem is very difficult to solve. During the past three decades many
mathematicians investigated the integrability of different classes of polynomial differential
systems, such as Liénard systems [5, 13, 15, 16], Lotka-Volterra systems [7, 8, 10–12], and
quasi-homogeneous polynomial systems [1–4, 6, 17], etc.

Let C be the set of complex numbers and C[x] be the ring of all complex polynomials in
the variable x. We consider the following complex polynomial differential systems

ẋ = h(x)f (y) , ẏ = g (y) , (1)

where h ∈ C [x] and f,g ∈C [y] are coprime. The associated vector field of this system is

X = h(x)f (y)
∂

∂x
+ g (y)

∂

∂y
. (2)

The integer d = max {deg hf,deg g} is the degree of the vector field X .
Let U be an open set of C2. A non-locally constant function H : U → C is called a first

integral of system (1) if it is constant along any solution curve of system (1) contained in U .
If H (x,y) is differentiable, then H is a first integral of system (1) if and only if

XH = h(x)f (y)
∂H

∂x
+ g (y)

∂H

∂y
= 0 (3)

in U .
System (1) has an analytic first integral if there exists a first integral H (x,y) which is an

analytic function in the variables x and y. A function of the form ϕ(y) = a
∏k

i=1 (y − αi)
γi

is called a product function with αj , γj ∈ C and a ∈ C \ {0}. The polynomial function ϕ (y)

is square-free if it can be written as ϕ (y) = a
∏k

i=1 (y − αi) with a ∈ C \ {0}, αi �= αj for
i, j = 1, . . . , k and i �= j . We say that system (1) has a generalized analytic first integral if
there exists a first integral H (x,y) which is an analytic function in the variable x whose
coefficients are product functions in the variable y.

Let

F (z) =
∞∑

n=−∞
an (z − z0)

n

be a Laurent expansion at a point z0. The coefficient a−1 = Res [F (z) , z0] is the residue of
F (z) at z0.

Differential system (1) of separable variables has a lot of applications. For example Giné
et al. in Lemma 2.2 of [6] proved that any planar quasi-homogeneous polynomial differential
system can be transformed into a polynomial differential system (1) of the form

ẋ = xf (y) , ẏ = g (y) , (4)

with f (y) , g (y) ∈ C [y]. Hence the study of the type of integrability of the quasi-
homogeneous polynomial systems can be reduced to study the type of integrability of their
corresponding polynomial systems (4). Note that the polynomial differential systems (4) is
a subclass of polynomial differential systems (1). In this paper we generalize some known
facts for the systems (4) to systems (1), and provide other new results.

First we present a necessary condition for the existence of generalized analytic first inte-
grals of system (1).
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Theorem 1 Assume that α1, . . . , αk are the different roots of the polynomial g (y). If system
(1) has a generalized analytic first integral, then it must satisfy one of the following two
conditions.

(a) The polynomials h(x) and g (y) are square-free, and degf < degg.
(b) The roots of the polynomial h(x) are not simple and the Res [f (y) /g (y) ,αi] = 0 for

all i = 1, . . . , k.

The following result is due to Llibre and Valls, see Theorem 1.1 of [14].

Theorem 2 Let h(x) = x. Then the polynomial differential system (1) has a generalized
analytic first integral if and only if g (y) is square-free, and degf < degg.

In the next theorem we generalize Theorem 2 when h(x) = (ax + b)m, where a ∈ C\{0}
and m ∈N. As usual N denotes the set of positive integers.

Theorem 3 Let h(x) = (ax + b)m with a ∈ C \ {0} and m ∈ N. Assume that α1, . . . , αk are
the different roots of the polynomial g (y). The following statements hold.

(a) If m = 1, then system (1) has a generalized analytic first integral if and only if g (y) is
square-free, and degf < degg.

(b) If m ≥ 2, then system (1) has a generalized analytic first integral if and only if
Res [f (y) /g (y) ,αi] = 0 for all i = 1, . . . , k.

System (4) has a polynomial first integral if and only if g (y) is square-free, degf < degg

and Res
[
f (y) /g (y) ,αj

] ∈Q− for j = 1, . . . , k, see statement (viii) of Lemma 2.4 of [6].
For the more general polynomial differential system (1) we provide necessary and sufficient
conditions for its polynomial integrability in the following theorem.

Theorem 4 Let α1, . . . , αk be different roots of the polynomial g (y). System (1) has a poly-
nomial first integral if and only if the two following conditions hold.

(a) The polynomials h(x) = ax + b and g (y) is square-free, and degf < degg.
(b) a Res

[
f (y) /g (y) ,αj

] ∈Q
− for j = 1, . . . , k.

This paper is organized as follows. We present some preliminary results in Sect. 2. The
proofs of Theorems 1, 3 and 4 are given in Sect. 3. In Sect. 4 we illustrate our results with
some examples.

2 Preliminaries

In this section we introduce some necessary lemmas for the proof of Theorems 1, 3 and 4.
The following lemma can be found in many textbooks, as for instance in [9].

Lemma 5 Assume that F,G ∈ C [y] are coprime with degF < degG = w. Let p be the
coefficient of the monomial yw of the polynomial G(y) and q the one of the monomial yw−1

of the polynomial F (y).
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(a) If y1, y2, . . . , ys are the distinct roots of G(y) with multiplicity n1, n2, . . . , ns , respec-
tively, then

F (y)

G(y)
=

s∑

i=1

ni∑

j=1

ti,j

(y − yi)
j
, (5)

where ti,1 = Res [F (y) /G(y) , yi] and ti,ni
�= 0 for i = 1, . . . , s.

(b) If G(y) is square-free that is G(y) = ∏w

i=1 (y − yi), then

F (y)

G(y)
=

w∑

i=1

ti

y − yi

, (6)

where

ti = Res [F (y) /G(y) , yi] f or i = 1, . . . ,w and

w∑

i=1

ti = q/p. (7)

The rational function F (y) /G(y) is a square-free rational function if it satisfies state-
ment (b) of Lemma 5.

Lemma 6 The function ϕ (y) is a product function if and only if ϕ′ (y) /ϕ (y) is a square-free
rational function.

Proof Necessity. Assume that ϕ (y) is the product function ϕ (y) = a
∏k

i=1 (y − αi)
γi . Then

lnϕ (y) = lna +
k∑

i=1

γi ln (y − αi) . (8)

Derivating equation (8) with respect to y, we get that

ϕ′ (y)

ϕ (y)
=

k∑

i=1

γi

y − αi

(9)

is a square-free rational function. Hence necessity is proved.
Sufficiency. Since ϕ′ (y) /ϕ (y) is a square-free rational function we have equation (9).

Integrating equation (9) we get

ϕ (y) = a

k∏

i=1

(y − αi)
γi ,

where a is an integration constant. The proof of Lemma 6 is completed. �

Consider h(x) = ∑m−n

i=0 hn+ix
n+i with m ≥ n ≥ 1, hn+i ∈ C and hmhn �= 0. If system (1)

has a generalized analytic first integral H (x,y), then H (x,y) can be written as a power
series in x of the form

H (x,y) =
∑

j≥0

aj (y) xj , (10)
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where the coefficients aj (y) are product functions in the variable y. From equation (3) we
obtain

XH =
∑

j≥0

jf (y) aj (y)

(
m−n∑

i=0

hn+ix
n+i

)

xj−1 +
∑

j≥0

g (y)a′
j (y) xj

= f (y)

m−n∑

i=0

∑

j≥0

jhn+iaj (y) xn+i+j−1 + g (y)
∑

j≥0

a′
j (y) xj = 0.

(11)

The equation

m−n∑

i=0

∑

j≥0

jhn+iaj (y) xn+i+j−1

can be decomposed into sum of the following equations:

for i = m − n,
∑

j≥0

jhmaj (y) xm+j−1;

for i = m − n − 1,
∑

j≥0

jhm−1aj (y) xm+j−2 =
∑

j≥0

(j + 1)hm−1aj+1 (y) xm+j−1;

for i = m − n − 2,

∑

j≥0

jhm−2aj (y) xm+j−3 =
∑

j≥0

(j + 2)hm−2aj+2 (y) xm+j−1

+
1∑

j=0

jhm−2aj (y) xm+j−3;

for i = m − n − 3,

∑

j≥0

jhm−3aj (y) xm+j−4 =
∑

j≥0

(j + 3)hm−3aj+3 (y) xm+j−1

+
2∑

j=0

jhm−3aj (y) xm+j−4;

for i = m − n − 4,

∑

j≥0

jhm−4aj (y) xm+j−5 =
∑

j≥0

(j + 4)hm−4aj+4 (y) xm+j−1

+
3∑

j=0

jhm−4aj (y) xm+j−5;

...

for i = 2,
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∑

j≥0

jhn+2aj (y) xn+j+1 =
∑

j≥0

(m − n + j − 2)hn+2am−n+j−2 (y) xm+j−1

+
m−n−3∑

j=0

jhn+2aj (y) xn+j+1;

for i = 1,

∑

j≥0

jhn+1aj (y) xn+j =
∑

j≥0

(m − n + j − 1)hn+1am−n+j−1 (y) xm+j−1

+
m−n−2∑

j=0

jhn+1aj (y) xn+j ;

for i = 0,

∑

j≥0

jhnaj (y) xn+j−1 =
∑

j≥0

(m − n + j)hnam−n+j (y) xm+j−1

+
m−n−1∑

j=0

jhnaj (y) xn+j−1;

and
∑

j≥0

g (y)a′
j (y) xj =

∑

j≥0

g (y) a′
m+j−1 (y) xm+j−1

+
m−2∑

j=0

g (y) a′
j (y) xj .

Then equating the coefficients of xj in (11) we get the equations that aj (y) must satisfy:

a′
j (y) = 0 for j = 0, . . . , n − 1;

a′
j (y) = −f (y)

g (y)

j−n+1∑

i=1

ihj−i+1ai (y) for j = n, . . . ,m − 2;

a′
j (y) = −f (y)

g (y)

m−n∑

i=0

(j + i − m + 1)hm−if (y) aj+i−m+1 (y) for j ≥ m − 1.

(12)

Remark 7 Note that a0 (y) is a constant. In the following we can assume a0 (y) = 0, because
a first integral does not depend on the sum of an additional constant.

The solutions of equations (12) are characterized by the following two lemmas.

Lemma 8 Let h(x) = ∑m−n

i=0 hn+ix
n+i with hn+i ∈ C and hmhn �= 0. Assume that n = 1 and

that the differential polynomial system (1) has a generalized analytic first integral (10). Then
the following statements hold.

(a) There exist polynomials Fj (u) with degFj = j and Fj (0) = 0 such that

aj (y) = Fj

(

exp

(

−h1

∫
f (y)

g (y)
dy

))

for all j ∈ N.
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(b) The polynomial g (y) is square-free and degf < degg.

Proof (a) When n = 1 equations (12) can be rewritten as

a′
j (y) = −jh1

f (y)

g (y)
aj (y) − f (y)

g (y)

j−1∑

i=1

ihj−i+1ai (y) for j = 1, . . . ,m − 2, (13)

and

a′
j (y) = −jh1

f (y)

g (y)
aj (y) − f (y)

g (y)

m−2∑

i=0

(j + i − m + 1)hm−if (y) aj+i−m+1 (y) , (14)

for j ≥ m − 1.
For m = 2 we only need to study equation (14) that is

a′
j (y) = −jh1

f (y)

g (y)
aj (y) − (j − 1)h2

f (y)

g (y)
aj−1 (y) , (15)

with j ≥ 1.
When j = 1 the solution of equation (15) is

a1 (y) = C1 exp

(

−h1

∫
f (y)

g (y)
dy

)

, (16)

where C1 is an integration constant. Obviously F1 (u) = C1u. Hence for j = 1 statement (a)

holds.
Assume that there exists polynomial Fj (u) with deg Fj = j and Fj (0) = 0 such that

aj (y) = Fj

(

exp

(

−h1

∫
f (y)

g (y)
dy

))

.

By the induction hypothesis and equation (15) we have

a′
j+1 (y) = − (j + 1) h1

f (y)

g (y)
aj+1 (y) − jh2

f (y)

g (y)
Fj

(

exp

(

−h1

∫
f (y)

g (y)
dy

))

. (17)

The solution of the linear differential equation (17) is

aj+1 (y) = exp

(

− (j + 1)h1

∫
f (y)

g (y)
dy

)

×
(
Cj+1 − jh2

∫
f (y)

g (y)
exp

(

(j + 1)h1

∫
f (y)

g (y)
dy

)

× Fj

(

exp

(

−h1

∫
f (y)

g (y)
dy

))

dy
)
. (18)

Let u = exp
(
−h1

∫
f (y)

g(y)
dy

)
. Then

du

u
= −h1

f (y)

g (y)
dy. (19)
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So equation (18) can be written as

aj+1 (y) = Fj+1 (u) = uj+1

(

Cj+1 + jh2

h1

∫
1

uj+2
Fj (u)du

)

. (20)

Using the induction hypothesis deg Fj = j and Fj (0) = 0, we get deg Fj+1 = j + 1 and
Fj+1 (0) = 0. The induction is proved and statement (a) follows for m = 2.

For m ≥ 3 we need to consider equations (13) and (14), that is

a′
j (y) = −jh1

f (y)

g (y)
aj (y) − f (y)

g (y)

j−1∑

i=1

ihj+1−iai (y) for j = 1, . . . ,m − 2, (21)

and

a′
j (y) = −jh1

f (y)

g (y)
aj (y) − f (y)

g (y)

m−2∑

i=0

(j + i − m + 1)hm−iaj+i−m+1 (y) , (22)

for j ≥ m − 1.
For j = 1 equation (21) becomes

a′
1 (y)

a1 (y)
= −h1

f (y)

g (y)
. (23)

It is easy to get that

a1 (y) = C1 exp

(

−h1

∫
f (y)

g (y)
dy

)

,

where C1 is an integration constant. Let F1 (u) = C1u. So statement (a) holds for j = 1.
Assume that for j = 1, . . . , l there exist polynomials Fj (u) with deg Fj = j such that

aj (y) = Fj

(

exp

(

−h1

∫
f (y)

g (y)
dy

))

.

Next we consider j = l + 1. If l + 1 ≤ m − 2, then

a′
l+1 (y) = −(l + 1)h1

f (y)

g (y)
al+1 (y) − f (y)

g (y)

l∑

i=1

ihl+2−iFi (u) , (24)

with u = exp
(
−h1

∫
f (y)

g(y)
dy

)
. The solution of the linear differential equation (24) is

al+1 (y) = ul+1

(

Cl+1 −
l∑

i=1

ihl+2−i

∫
f (y)

g (y)

Fi (u)

ul+1
dy

)

, (25)

with u = exp
(
−h1

∫
f (y)

g(y)
dy

)
. From equation (19) it follows that

al+1 (y) = Fl+1 (u) = ul+1

(

Cl+1 +
l∑

i=1

ihl+2−i

h1

∫
Fi (u)

ul+2
du

)

.
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By the induction hypothesis deg Fj = j and Fj (0) = 0 for j = 1, . . . , l, we obtain
deg Fl+1 = l + 1 and Fl+1 (0) = 0.

If l + 1 ≥ m − 1, then

a′
l+1 (y) = −(l + 1)h1

f (y)

g (y)
al+1 (y) − f (y)

g (y)

m−2∑

i=0

(l + i − m + 2)hm−iFl+i−m+2 (u) , (26)

with u = exp
(
−h1

∫
f (y)

g(y)
dy

)
. By the same arguments as above one can get that

al+1 (y) = Fl+1 (u) = ul+1

(

Cl+1 +
m−2∑

i=0

(l + i − m + 2)hm−i

h1

∫
Fl+i−m+2 (u)

ul+1
du

)

. (27)

Applying the induction hypothesis deg Fj = j and Fj (0) = 0 for j = 1, . . . , l, we have
deg Fl+1 = l + 1 and Fl+1 (0) = 0. The proof of statement (a) is done.

(b) Let aj (y) = constant = Cj for j ∈ N. From statement (a) we know that there exists
a polynomial Fj (u) such that

aj (y) = Fj (u) = Cj with u = exp

(

−h1

∫
f (y)

g (y)
dy

)

and Fj (0) = 0.

Thus Cj = 0. Since the first integral H (x,y) is a non-locally constant function, there exists
a positive integer j0 such that aj0 (y) is not a constant and ai (y) = 0 for i = 1, . . . , j0 − 1.
Using equations (13) and (14) we have

a′
j0

(y) = −j0h1
f (y)

g (y)
aj0 (y) .

Consequently

aj0 (y) = Cj0 exp

(

−j0h1

∫
f (y)

g (y)

)

, (28)

with constant Cj0 �= 0. From Lemma 6 we get that aj0 (y) if and only if f (y) /g (y) is a
square-free rational function. So g (y) is square-free and deg f < deg g. This completes the
proof of this lemma. �

Lemma 9 Let h(x) = ∑m−n

i=0 hn+ix
n+i with hn+i ∈ C and hmhn �= 0. Assume that n ≥ 2 and

that the polynomial differential system (1) has a generalized analytic first integral (10), and
α1, . . . , αk are the different roots of the polynomial g (y). The following statements hold.

(a) There exist polynomials Fj (u) such that

aj (y) = Fj

(∫
f (y)

g (y)
dy

)

,

for j ≥ n, and aj (y) are constants for j = 1, . . . , n − 1.
(b) Then Res [f (y) /g (y) ,αi] = 0 for all i = 1, . . . , k.

Proof (a) From equations (12) we have that

a′
j (y) = 0 for j = 1, . . . , n − 1; (29)
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a′
j (y) = −f (y)

g (y)

j−n+1∑

i=1

ihj−i+1ai (y) for j = n,n + 1, . . . ,m − 2; (30)

and

a′
j (y) = −f (y)

g (y)

m−n∑

i=0

(j + i − m + 1)hm−iaj+i−m+1 (y) for j ≥ m − 1. (31)

Then aj (y) = constant = Cj for j = 1, . . . , n − 1.
For j = n equation (30) can be written as

a′
n (y) = −hn

f (y)

g (y)
a1 (y) = −hnC1

f (y)

g (y)
.

We get

an (y) = −hnC1

∫
f (y)

g (y)
dy + Cn,

where Cn is an integration constant. Let Fn (u) = −hnC1u + Cn. Thus statement (a) holds
for j = n.

The constants aj (y) = Cj for j = 1, . . . , n− 1 can be regarded as polynomials of degree
0. Assume that for j = 1, . . . , l there exist polynomials Fj (u) such that

aj (y) = Fj

(∫
f (y)

g (y)
dy

)

.

If n ≤ l + 1 ≤ m − 2, then function al+1 (y) satisfy

a′
l+1 (y) = −f (y)

g (y)

l−n+2∑

i=1

ihl−i+2Fi

(∫
f (y)

g (y)
dy

)

. (32)

Let u = ∫
(f (y) /g (y)) dy. Note that du = (f (y) /g (y)) dy. Therefore

al+1 (y) = Fl+1 (u)

= −
l−n+2∑

i=1

ihl−i+2

∫
f (y)

g (y)
Fi

(∫
f (y)

g (y)
dy

)

dy

= −
l−n+2∑

i=1

ihl−i+2

∫

Fi (u)du.

If l + 1 ≥ m − 1, then

a′
l+1 (y) = −f (y)

g (y)

m−n∑

i=0

(l + i − m + 2)hm−iFl+i−m+2 (u) .

Using similar arguments we obtain

al+1 (y) = Fl+1 (u) = −
m−n∑

i=0

(l + i − m + 2)hm−i

∫

Fl+i−m+2 (u) du.
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Therefore statement (a) is proved.
(b) Suppose that aj (y) = constant = Cj for all j ≥ n. Then the first integral H (x,y)

is independent of the variable y. This implies that ẋ = 0, which is a contradiction. There-
fore there exists a positive integer j0 ≥ n such that aj0 (y) is not a constant and ai (y) =
constant = Ci for i = 1, . . . , j0 − 1. From equations (30) and (31) we obtain that

a′
j0

(y) = C
f (y)

g (y)
, (33)

where C = −∑j−n+1
i=1 ihj−i+1Ci or

∑m−n

i=0 (j + i − m + 1)hm−iCj+i−m+1. Hence

aj0 (y) = C

∫
f (y)

g (y)
dy + Cj0 , (34)

with constant C �= 0. Since aj0 (y) is a product function, by Lemma 6, we get that

C

C
∫

f (y)

g(y)
dy + Cj0

f (y)

g (y)

is a square-free rational function. This implies that
∫

f (y)

g(y)
dy (35)

is a rational function.
We know that there exist two polynomials p (y) , r (y) ∈ C [y] such that

f (y) = p (y)g (y) + r (y) and deg r < deg g.

The polynomial r (y) cannot be zero due to the fact that f (y) and g (y) are coprime. Con-
sequently

∫
f (y)

g (y)
dy = Q(y) +

∫
r (y)

g (y)
dy, (36)

with Q′ (y) = p (y). Assume that α1, . . . , αk are the distinct roots of g (y) with multiplicity
n1, n2, . . . , nk , respectively. Using Lemma 5 r (y) /g (y) can be expressed as

r (y)

g (y)
=

k∑

i=1

ni∑

j=1

ci,j

(y − αi)
j
, (37)

where ci,ni
�= 0 for i = 1, . . . , k. Thus

∫
r (y)

g (y)
dy = ln

(
k∏

i=1

(y − αi)
ci,1

)

+
k∑

i=1

ni∑

j=2

∫
ci,j

(y − αi)
j
dy. (38)

Since equation (35) is a rational function and Q(y) (see equation (36)) is polynomial, equa-
tion (38) is also a rational function. Note that j ≥ 2 in equation (38). This implies that

∫
ci,j

(y − αi)
j
dy
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is a rational function. Then ci,1 must be 0, that is Res [f (y) /g (y) ,αi] = 0 for all i =
1, . . . , k. The proof is done. �

3 Proofs of Theorems 1, 3 and 4

The main purpose of this section is to prove Theorems 1, 3 and 4.

Proof of Theorem 1 We claim that if h(x) simultaneously has simple roots and multiple
roots, then system (1) has no generalized analytic first integral.

Let β1 and β2 be a simple root and a root of multiplicity n of h(x) with n ≥ 2, respec-
tively. Assume that system (1) has a generalized analytic first integral. Doing the change of
variables (x, y, t) 	→ (x + β1, y, t), system (1) becomes

ẋ = h̃ (x)f (y) , ẏ = g (y) , (39)

where h̃ (x) = ∑m

i=1 h̃ix
i with h̃i ∈ C and h̃mh̃1 �= 0. Since system (1) has a generalized

analytic first integral, system (39) also has a generalized analytic first integral. By Lemma 8
we get that g (y) is square-free and deg f < deg g. This means that Res [f (y) /g (y) ,αi] �=
0 for all i = 1, . . . , k.

Under the transformation (x, y, t) 	→ (x + β2, y, t) system (1) changes to

ẋ = h̄ (x)f (y) , ẏ = g (y) , (40)

where h̄ (x) = ∑m

i=n h̄ix
i with h̄i ∈C and h̄mh̄n �= 0. From Lemma 9 it follows that

Res [f (y) /g (y) ,αi] = 0

for all i = 1, . . . , k. This is in contradiction with Res [f (y) /g (y) ,αi] �= 0 for all i =
1, . . . , k. So the claim is proved.

In summary, the polynomial h(x) is square-free or it has no simple roots. If h(x) is
square-free, using Lemma 8, we obtain statement (a). If h(x) has no simple roots, by
Lemma 9, statement (b) holds. This completes the proof of the theorem. �

Proof of Theorem 3 Doing the change of variables (x, y, t) 	→ ((x − b) /a, y, t/a), system
(1) becomes

ẋ = xmf (y) , ẏ = 1

a
g (y) . (41)

(a) From Theorem 2 it follows that statement (a) holds.
(b) Necessity. Using statement (a) of Theorem 1 the necessity is obvious.
Sufficiency. It is sufficient to show that system (41) has a generalized analytic first inte-

gral. Assume that α1, . . . , αk are the distinct roots of g (y) with multiplicity n1, n2, . . . , nk ,
respectively. There exist two polynomials p (y) , r (y) ∈C [y] such that

f (y) = p (y)g (y) + r (y) and deg r < deg g.

The polynomial r (y) cannot be zero due to the fact that f (y) and g (y) are coprime.
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By Lemma 5 we have

f (y)

g (y)
= p (y) + r (y)

g (y)
= p (y) +

k∑

i=1

ni∑

j=1

ci,j

(y − αi)
j
, (42)

where ci,ni
�= 0 for i = 1, . . . , k. Since Res [f (y) /g (y) ,αi] = 0 that is ci,1 = 0 for all i =

1, . . . , k, we obtain

P (y) :=
∫

f (y)

g (y)
dy =

∫

p (y)dy +
k∑

i=1

ni∑

j=2

∫
ci,j

(y − αi)
j
dy. (43)

Note that j ≥ 2 in equation (43). Thus P (y) is a rational function, that is, a product function.
Now we show that

H (x,y) = (m − 1) xm−1

1 + a (m − 1) xm−1P (y)
(44)

is a generalized analytic first integral of system (41). Doing simple computations we have

∂H

∂x
= (m − 1)2 xm−2

(
1 + a (m − 1) xm−1P (y)

)2 and
∂H

∂y
= − a (m − 1)2 x2m−2

(
1 + a (m − 1) xm−1P (y)

)2

f (y)

g (y)
.

Therefore

XH = xmf (y)
∂H

∂x
+ 1

a
g (y)

∂H

∂y
= 0.

Moreover H (x,y) can be written as a power series in x

H (x, y) = (m − 1) xm−1

1 − a (1 − m)xm−1P (y)
= (m − 1) xm−1

∑

j≥0

aj (1 − m)j P j (y) x(m−1)j .

This completes the proof of the theorem. �

Proof of Theorem 4 Necessity. We claim that h(x) is square-free.
Let β1, . . . , βl be different roots of the polynomial h(x). Suppose that β is an arbitrary

root of the polynomial h(x) with multiplicity n. By changing the variables (x, y, t) 	→
(x + β,y, t), system (1) is equivalent to

ẋ = h̃ (x)f (y) , ẏ = g (y) , (45)

where h̃ (x) = ∑m

i=n h̃ix
i with h̃i ∈ C and h̃mh̃n �= 0. Note that h̃n = h(n)(β)/n!. Since sys-

tem (1) has a polynomial first integral, system (45) also has a polynomial first integral, that
is

H (x,y) =
∑

j≥0

aj (y) xj , (46)

where aj (y) are polynomials. Obviously H (x,y) is a generalized analytic first integral.
From the proof of Lemmas 8 and 9 we know that there exists a positive integer j0 such that
aj0 (y) is not a constant, and ai (y) = constant = Ci for i = 1, . . . , j0 − 1.
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Assume that n ≥ 2. From the proof of statement (b) of Lemma 9, we get

aj0 (y) = C

∫
f (y)

g (y)
dy + Cj0 , (47)

with constant C �= 0 (see equation (34)). By equation (38) aj0 (y) is not a polynomial. Thus
β is a simple root of h(x), that is n = 1. Using Theorem 1 we obtain that the polynomials
h(x) and g (y) are square-free, and deg f < deg g. Hence the claim is proved.

From the proof of statement (b) of Lemma 8 we have

aj0 (y) = Cj0 exp

(

−j0h̃1

∫
f (y)

g (y)

)

, (48)

with h̃1 = h′ (β) and the constant Cj0 �= 0 (see equation (28)).
Applying Lemma 5 f (y) /g (y) can be expressed as

f (y)

g (y)
=

k∑

j=1

μj

y − αj

, (49)

where μj = Res
[
f (y) /g (y) ,αj

]
for j = 1, . . . , k. Therefore

aj0 (y) = Cj0

k∏

j=1

(y − αi)
−j0h̃1μj . (50)

Since aj0 (y) is a polynomial we have h̃1μj ∈ Q
− for all j = 1, . . . , k. Note that β is an

arbitrary root of the polynomial h(x). Thus

h′ (βi) · Res
[
f (y) /g (y) ,αj

] ∈Q
− for i = 1, . . . , l and j = 1, . . . , k. (51)

This means that h′ (β1) /h′ (βi) ∈ Q+ for i = 1, . . . , l.
Assume that l ≥ 2. Using statement (b) of Lemma 5 1/h (x) can be written as

1

h(x)
=

l∑

i=1

ti

x − βi

,

with ti = Res [1/h (x) ,βi] = 1/h′ (βi) �= 0. From equation (7) we obtain

l∑

i=1

ti =
l∑

i=1

1

h′ (βi)
= 0. (52)

One can get

l∑

i=1

h′ (β1)

h′ (βi)
= 0,

which is in contradiction with h′ (β1) /h′ (βi) ∈Q
+ for i = 1, . . . , l. So l = 1, that is h(x) =

ax + b with a ∈C \ {0}. Then equation (51) becomes

aRes
[
f (y) /g (y) ,αj

] ∈Q
− for j = 1, . . . , k.
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This proves the necessity.
Sufficiency. Let μj = Res

[
f (y) /g (y) ,αj

]
and consider

H̃ (x, y) =
(

x + b

a

) 1
a

⎛

⎝
k∏

j=1

(
y − αj

)−μj

⎞

⎠ . (53)

Since aμj ∈ Q
− there exists a positive integer N such that

H (x,y) = (
H̃ (x, y)

)aN =
(

x + b

a

)N

⎛

⎝
k∏

j=1

(
y − αj

)−μj aN

⎞

⎠ (54)

is a polynomial. Next we show that polynomial (54) is a first integral of system (1). In fact
it is sufficient to prove that H̃ (x, y) is a first integral of system (1).

Straightforward computations show that

∂H̃

∂x
= H̃ (x, y)

ax + b
, (55)

and

∂H̃

∂y
= −H̃ (x, y)

⎛

⎝
k∑

j=1

μj

y − αj

⎞

⎠ . (56)

The polynomial g (y) is square-free with deg f < deg g. Using Lemma 5 we have

f (y)

g (y)
=

k∑

j=1

μj

y − αj

. (57)

Equation (56) can be written as

∂H̃

∂y
= −H̃ (x, y)

f (y)

g (y)
.

Thus

X H̃ = (ax + b)f (y)
∂H̃

∂x
+ g (y)

∂H̃

∂y
= 0.

That is H̃ (x, y) is a first integral of system (1). This completes the proof of the theorem. �

4 Examples

In this section we present some applications of our results.

Example 10 Consider the differential system

ẋ = (x − 1) (x − 2)2 y, ẏ = y + 1. (58)
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It has a first integral

H (x,y) = x − 2

(x − 1) (y + 1)
exp

(

y + 1

x − 2

)

.

By Theorem 1 system (58) has no generalized analytic first integral, because h(x) =
(x − 1) (x − 2)2 simultaneously has simple roots and multiple roots.

Example 11 Consider the differential system

ẋ = (2x − 1)m
(
y3 − 8y2 + 29y − 26

)
, ẏ = (y − 3)3(y + 1)2, (59)

with m ∈N and m ≥ 2. For this system we have f (y) = y3 − 8y2 + 29y − 26, g (y) = (y −
3)3(y + 1)2, α1 = −1 and α2 = 3. So Res [f (y) /g (y) ,α1] = Res [f (y) /g (y) ,α2] = 0.
Applying Theorem 3 system (59) has the generalized analytic first integral (see equation
(44))

H (x,y) = 2(m − 1)(y − 1) (y − 3)2 (2x − 1)m−1

(y + 1) (y − 3)2 − (m − 1)
(
2y2 − 11y + 19

)
(2x − 1)m−1 .

Example 12 Consider the differential system

ẋ = (5x − 1)
(

3 3
√

3 + 2
√

2 − 5y
)

, ẏ = 6
(
y − √

2
)(

y − 3
√

3
)

. (60)

Using the notations of Theorem 4 we get that g (y) = 6
(
y − √

2
)(

y − 3
√

3
)

is square-free,

α1 = √
2, α2 = 3

√
3, h(x) = 5x − 1 and f (y) = 3 3

√
3 + 2

√
2 − 5y. For this system we have

5Res [f (y) /g (y) ,α1] = −5

2
and 5Res [f (y) /g (y) ,α2] = −5

3
.

By Theorem 4 system (60) has the polynomial first integral

H (x,y) =
(

x − 1

5

)6 (
y − √

2
)15 (

y − 3
√

3
)10

.
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