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Abstract
We develop a second-order accurate, energy stable, and linear numerical method for a
ternary Cahn–Hilliard (CH) model. The proposed scheme is an extension of typical La-
grange multiplier approach for binary CH system. The second-order backward difference
formula (BDF2) is applied to construct time discretization. We theoretically prove the mass
conservation, unique solvability, and energy stability of the proposed scheme. We efficiently
solve the resulting discrete linear system by using a multigrid algorithm. The numerical so-
lutions demonstrate that the proposed scheme is practically stable and second-order accurate
in time and space. Moreover, we can use the proposed scheme as an effective solver to cal-
culate the ternary CH equations in ternary phase-field fluid systems.

Keywords Ternary Cahn–Hilliard model · Second-order accuracy · Energy stable scheme ·
Multigrid method

1 Introduction

The classical Cahn–Hilliard (CH) equation was derived by Cahn and Hilliard to model the
dynamics of binary mixture [1]. One of the important applications of the CH equation is to
model spinodal decomposition, which is a basic mechanism for the phase separation occur-
ring in binary mixture. Moreover, the CH model can be used to simulate the binary fluid
flows [2], vesicle membrane [3], diblock copolymer [4], etc. Two basic physical properties
of the CH equation are the energy dissipation and mass conservation. Naturally, we want to
keep these basic properties in discrete equations even if a larger time step is used when we
numerically solve the CH equation.

The well-known convex splitting method proposed by Eyre [5] is a popular method to
achieve unconditional energy stability, which can be theoretically proved to satisfy the en-
ergy dissipation for all time steps. Lee and Shin [6] developed an unconditionally stable
fourth-order space-accurate method for the CH equation using the convex splitting method.
Although the classical convex splitting scheme has the advantages of unique solvability and
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unconditional stability, it only has first-order time accuracy in general. Furihata and Matsuo
[7] proposed a stable and linear scheme for the CH equation based on the finite difference
approximation. Appadu et al. [8] studied the finite volume approximation for the 2D CH
equation with convective effect. Zhao and Liu [9] investigated the existence of global attrac-
tor for viscous CH model. Comparing with the first-order methods, the second-order time-
accurate methods become increasingly important and necessary in recent years. Li et al.
[10] developed the temporally second-order compact finite difference method for the three-
dimensional CH equation using the BDF2 scheme. Zhang and Qiao [11] proposed tempo-
rally second-order accurate, adaptive time-stepping method for the CH equation. Later, Luo
et al. [12] developed a parameter-free time adaptive method for the CH equation. Li and
Qiao [13] studied temporally second-order accurate Fourier spectral method for the two-
dimensional CH models. Guillén-González and Tierra [14] proposed a typical Lagrange
multiplier approach for the binary CH equation, which can easily achieve second-order ac-
curacy for a system with double-well potential. Based on the typical Lagrange multiplier
approach, some scholars recently developed invariant energy quadratization (IEQ) method
[15] and scalar auxiliary variable (SAV) method [16] for gradient flows with complex non-
linear potentials. In a recent work of Li et al. [17], a second-order, unconditionally stable,
linear scheme was developed based on the Crank–Nicolson (CN) scheme. The methods us-
ing the Runge–Kutta (RK) type scheme have also been studied by many researchers [18, 19].
Note that the above-mentioned numerical schemes are famous and practical for the binary
CH equation.

In practical problems, the ternary CH system has many applications. Some typical exam-
ples are the ternary alloys [20], the ternary fluid flows [21–24], phase evolution in complex
domains [25], and the cell division [26]. Recently, the multi-component CH model has also
been used in multi-component volume reconstruction [27]. Therefore, it is useful to develop
accurate and practical numerical schemes for the ternary CH system. A practically uncondi-
tionally stable scheme was proposed by Lee et al. [28] which only has first-order accuracy in
time. Recently, Yang and Kim [29] developed a linear and unconditionally stable scheme for
the multi-component CH equations with second-order accuracy. In their work, a truncated
potential functional was needed to satisfy the unconditional energy stability in the proof.

In this study, we extend the Lagrange multiplier approach to a ternary CH model and de-
velop a second-order accurate, energy stable, and linear numerical scheme. Unlike the proof
in the previous research [29], the present energy estimation can be easily obtained with-
out any artificial truncated potential. Another primary advantage of the proposed scheme
is that it can be easily applied to an arbitrary multi-component CH system. To the best of
our knowledge, this is the first work focusing on the Lagrange multiplier approach for the
present ternary CH model.

The rest of this research is organized as follows. We describe the ternary CH system in
Sect. 2. In Sect. 3, we present the proposed numerical scheme and theoretically prove the
mass conservation, energy stability, and unique solvability. In Sect. 4, we briefly introduce
the numerical solution algorithm. We perform various computational experiments in Sect. 5.
Conclusions are given in Sect. 6.

2 Governing Equations

Let us consider a ternary system in a domain �. Let ck = ck(x, t) be the concentration of
the kth phase field at space x and time t . The summation of the concentrations satisfies the
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following equation:

c1 + c2 + c3 = 1. (1)

Let c = (c1, c2, c3), then c ∈ Gs , where

Gs =
{

c ∈ R
3

∣∣∣∣∣
3∑

k=1

ck = 1, 0 ≤ ck ≤ 1 for k = 1,2,3,

}
. (2)

Let us define the total free energy functional of the ternary system:

E(c) =
∫

�

(
3∑

k=1

F(ck) + ε2

2

3∑
k=1

|∇ck|2
)

dx, (3)

where F(ck) = 0.25c2
k(ck − 1)2 and ε is a constant. Note this kind of energy functional has

been extensively used for various ternary physical systems [22, 28, 30–32]. Although Eq. (3)
does not contain the effect of surface tension, this energy functional can be easily extended
to construct N -component (N > 3) phase-field systems. Instead, the effect of surface tension
can be added into the momentum equation as external forces if we consider the multi-phase
flow systems. Refer to [28, 29, 33, 34] for some successful applications. The governing
equation of ck is given by the ternary CH system [28]:

∂ck

∂t
= M�μk, (4)

μk = F ′(ck) − ε2�ck + β(c), for k = 1,2,3, (5)

where M is the mobility and we set M = 1 for convenience, μk is the chemical potential,

F ′(ck) = c3
k − 1.5c2

k + 0.5ck , β(c) = − 1
3

3∑
k=1

F ′(ck). By taking the differentiations of E(c)

and
∫

�
ckdx with respect to time t , we have

d

dt
E(c) =

∫
�

3∑
k=1

(
∂F (c)

∂t

∂ck

∂t
+ ε2∇ck · ∇ ∂ck

∂t

)
dx (6)

=
∫

�

3∑
k=1

∂F (c)
∂t

∂ck

∂t
dx +

∫
∂�

3∑
k=1

ε2∇ck · n
∂ck

∂t
ds −

∫
�

3∑
k=1

ε2�ck

∂ck

∂t
dx

=
∫

�

3∑
k=1

(
∂F (c)
∂ck

− ε2�ck

)
∂ck

∂t
dx =

∫
�

3∑
k=1

(μk − β(c))
∂ck

∂t
dx

=
∫

�

3∑
k=1

μk�μkdx − β(c)
∫

�

3∑
k=1

∂ck

∂t
dx = −

∫
�

3∑
k=1

|∇μk|2dx ≤ 0

and

d

dt

∫
�

ckdx =
∫

�

∂ck

∂t
dx =

∫
�

�μkdx = 0, (7)
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where the periodic or the following homogeneous Neumann boundary conditions are con-
sidered

∇ck · n|∂� = ∇μk · n|∂� = 0.

Equations (6) and (7) imply the decrease of the total energy and the total mass conservation
of each component, respectively.

3 Proposed Numerical Scheme for a Ternary CH System

In a previous study [14], the authors introduced a Lagrange multiplier-type auxiliary variable
q . This new variable is used to replace the polynomial in a nonlinear term. For example, the
nonlinear term of a binary CH model is F(φ) = 0.25(φ2 − 1)2. Let q = φ2 − 1, then the
nonlinear term is modified to be F(q) = 0.25q2. In the ternary CH model, a nonlinear term
is F(ck) = 0.25c2

k(ck − 1)2 and we define a Lagrange multiplier-type variable qk as qk =
ck(ck − 1), thus the double-well potential can be represented by F(qk) = 0.25q2

k . Equations
(4)–(5) can be rewritten as

∂ck

∂t
= �μk, (8)

μk = −ε2�ck + qkck − 1

2
qk + β(c), (9)

∂qk

∂t
= (2ck − 1)

∂ck

∂t
, for k = 1,2,3, (10)

where β(c) = −c1c2c3. The original energy, Eq. (3) is recast to be the following form

E(c,q) =
∫

�

(
0.25

3∑
k=1

q2
k + ε2

2

3∑
k=1

|∇ck|2
)

dx, (11)

where the periodic or the following homogeneous Neumann boundary conditions are con-
sidered

∇ck · n|∂� = ∇μk · n|∂� = 0.

We next describe the spatial discretization in two-dimensional domain � = (a, b) × (c, d).
Let �d = {(xi, yj ) : xi = a + (i − 0.5)h, yj = c + (j − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}
be the discrete computational domain. Here, h = (b − a)/Nx = (d − c)/Ny ; and Nx and
Ny are positive even integers. Let cn

k,ij , μn
k,ij , and qn

k,ij be approximations of ck(xi, yj , t
n),

μk(xi, yj , t
n), and qk(xi, yj , t

n), respectively. Here, tn = n�t where �t is the uniform time
step, 1 ≤ n ≤ Nt and Nt is the total number of temporal evolutions. The final time is T =
Nt�t . The linear, second-order accurate, fully discrete scheme based on a variant of BDF2
approximation is given to be

3cn+1
k,ij − 4cn

k,ij + cn−1
k,ij

2�t
= �dμ

n+1
k,ij , (12)

μn+1
k,ij = −ε2�dc

n+1
k,ij + qn+1

k,ij

(
2cn

k,ij − cn−1
k,ij

)− 1

2
qn+1

k,ij
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+2β
(
cn
ij

)− β
(
cn−1
ij

)
, (13)

3qn+1
k,ij − 4qn

k,ij + qn−1
k,ij

2�t
= [

2
(
2cn

k,ij − cn−1
k,ij

)− 1
] 3cn+1

k,ij − 4cn
k,ij + cn−1

k,ij

2�t
,

for k = 1,2,3, (14)

where superscripts n+1, n, and n−1 represent different time levels. �d is a discrete Lapla-
cian operator. For example, �dμk,ij = (μk,i+1,j +μk,i−1,j +μk,i,j+1 +μk,i,j−1 −4μk,ij )/h2.
We define two discrete inner products:

(φ,ϕ)d = h2
Nx∑
i=1

Ny∑
j=1

φijϕij (15)

and

〈∇dφ,∇dϕ〉d = h2

⎛
⎝Nx−1∑

i=1

Ny∑
j=1

Dxφi+ 1
2 ,jDxϕi+ 1

2 ,j +
Nx∑
i=1

Ny−1∑
j=1

Dyφi,j+ 1
2
Dyϕi,j+ 1

2

⎞
⎠

+h2

2

Ny∑
j=1

Dxφ 1
2 ,jDxϕ 1

2 ,j + h2

2

Ny∑
j=1

DxφNx+ 1
2 ,jDxϕNx+ 1

2 ,j

+h2

2

Nx∑
i=1

Dyφi, 1
2
Dyϕi, 1

2
+ h2

2

Nx∑
i=1

Dyφi,Ny+ 1
2
Dyϕi,Ny+ 1

2
, (16)

where the discrete differentiation operators Dxφi+ 1
2 ,j and Dyφi,j+ 1

2
are defined by

Dxφi+ 1
2 ,j = 1

h

(
φi+1,j − φij

)
, Dyφi,j+ 1

2
= 1

h

(
φi,j+1 − φij

)
. (17)

For simplicity of exposition, we omit the spatial indexes. The discrete norms are defined as
‖φ‖2

d = (φ,φ)d and ‖∇dφ‖2
d = 〈∇dφ,∇dφ〉d .

3.1 Mass Conservation

The mass conservation is a basic property for each component in a ternary CH system. To
prove

(
cn+1
k ,1

)
d
= (

cn
k ,1

)
d
, we take the discrete inner product for Eq. (12) and obtain

(
3cn+1

k − 4cn
k + cn−1

k

2�t
,1

)
d

= �t
(
�dμ

n+1
k ,1

)
d

= −�t
〈∇dμ

n+1
k ,∇d1

〉
d
= 0. (18)

Here, the periodic boundary condition or homogeneous Neumann boundary condition
is used for μn+1

k . Therefore, we obtain (3cn+1
k ,1)d = (4cn

k ,1)d − (cn−1
k ,1)d . Then, we

have (cn+1
k ,1)d = (cn

k ,1)d if (cn
k ,1)d = (cn−1

k ,1)d . Note that the proposed scheme in
Eqs. (12)–(14) needs the information at (n − 1) time level, the first-order time-accurate
backward Euler method is used as ignition step. In the Appendix, we briefly describe the
fist-order scheme. By using the ignition step, we can easily obtain (c1

k,1)d = (c0
k ,1)d . For
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n = 1, by using (3c2
k ,1)d = (4c1

k ,1)d − (c0
k ,1)d . Then, we can find that (c2

k ,1)d = (c1
k,1)d .

By taking the chain of the equalities: (cn+1
k ,1)d = (cn

k ,1)d = · · · = (c0
k ,1)d . Thus, we have

proved the conservation of mass for each component k, which also implies the mass conser-
vation of whole ternary system.

3.2 Energy Stability

Next, we prove that the proposed numerical method satisfies the energy stability for the
whole system. The discrete energy functional for kth component at n+1 time level is defined
to be

Ed(cn+1
k ) = ε2

2
‖∇dc

n+1
k ‖2

d + 1

4
‖qn+1

k ‖2
d . (19)

Because the BDF2 approximation contains the information at previous time levels, the en-
ergy law with respect to Eq. (19) is hard to derive. To obtain a reasonable energy estimation,
we define the pseudo discrete energy functional for kth component at n+1 and n time levels
to be

Ēd(cn+1
k , cn

k ) = ε2

4

(‖∇dc
n+1
k ‖2

d + ‖∇d(2cn+1
k − cn

k )‖2
d

)
+1

8

(‖qn+1
k ‖2

d + ‖2qn+1
k − qn

k ‖2
d

)
. (20)

Moreover, “pseudo” also means Eq. (20) is a modified discrete version of original energy
because the computed value qn+1

k may violate its definition, i.e., qk = ck(ck −1) if large time
steps are used. By taking the inner products of Eqs. (12)–(14) with μn+1

k , (3cn+1
k − 4cn

k +
cn−1
k )/(2�t), and 0.5qn+1

k , respectively, we have the following inequality:

ε2

2�t

〈∇dc
n+1
k ,∇d

(
3cn+1

k − 4cn
k + cn−1

k

)〉
d
+ 1

4�t

(
3qn+1

k − 4qn
k + qn−1

k , qn+1
k

)
d

+
(

2β(cn) − β(cn−1),
3cn+1

k − 4cn
k + cn−1

k

2�t

)
d

= −‖∇dμ
n+1
k ‖2

d ≤ 0. (21)

Then, we rewrite the inequality (21) as

ε2

4�t

[
2
〈∇dc

n+1
k ,∇d

(
3cn+1

k − 4cn
k + cn−1

k

)〉
d

]+ 1

8�t

[
2
(
3qn+1

k − 4qn
k + qn−1

k , qn+1
k

)
d

]

+
(

2β(cn) − β(cn−1),
3cn+1

k − 4cn
k + cn−1

k

2�t

)
d

= −‖∇dμ
n+1
k ‖2

d ≤ 0. (22)

Using the following identity for ck : 2(cn+1
k ,3cn+1

k − 4cn
k + cn−1

k )d = ‖cn+1
k ‖2

d + ‖2cn+1
k −

cn
k‖2

d + ‖cn+1
k − 2cn

k + cn−1
k ‖2

d − ‖cn
k‖2

d − ‖2cn
k − cn−1

k ‖2
d , this relationship for qk is defined in

a same way. The inequality (22) can be written to be

ε2

4

[
‖∇dc

n+1
k ‖2

d + ‖∇d(2cn+1
k − cn

k )‖2
d − (‖∇dc

n
k‖2

d + ‖∇d(2cn
k − cn−1

k )‖2
d

)
+‖∇d(c

n+1
k − 2cn

k + cn−1
k )‖2

d

]
+ 1

8

[
‖qn+1

k ‖2
d + ‖2qn+1

k − qn
k ‖2

d − (‖qn
k ‖2

d + ‖2qn
k − qn−1

k ‖2
)
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+‖qn+1
k − 2qn

k + qn−1
k ‖2

d

]
+ �t

(
2βd(cn) − βd(cn−1),

3cn+1
k − 4cn

k + cn−1
k

2�t

)
d

= −�t‖∇dμ
n+1
k ‖2

d ≤ 0. (23)

Note that Ēd
(
cn+1, cn

) =
3∑

k=1
Ēd
(
cn+1
k , cn

k

)
, then we need to show Ēd

(
cn+1, cn

) ≤ Ēd
(
cn,

cn−1
)
. Since

�t

(
2β(cn) − β(cn−1),

3∑
k=1

3cn+1
k − 4cn

k + cn−1
k

�t

)
d

= �t

⎛
⎜⎜⎜⎝2β(cn) − β(cn−1),

3
3∑

k=1
cn+1
k − 4

3∑
k=1

cn
k +

3∑
k=1

cn−1
k

�t

⎞
⎟⎟⎟⎠

d

= 0, (24)

where the condition c1 + c2 + c3 = 1 is used. Therefore, we have

Ēd
(
cn+1, cn

)− Ēd
(
cn, cn−1

)
= −�t

3∑
k=1

‖∇dμ
n+1
k ‖2

d − ε2

4

3∑
k=1

‖∇d(c
n+1
k − 2cn

k + cn−1
k )‖2

d

− 1

8

3∑
k=1

‖qn+1
k − 2qn

k + qn−1
k ‖2

d ≤ 0. (25)

Now, we have proved that Ēd
(
cn+1, cn

) ≤ Ēd
(
cn, cn−1

)
. We claim that the discrete pseudo

energy law, i.e., (Ēd
(
cn+1, cn

)− Ēd
(
cn, cn−1

)
)/�t is a temporally second-order approxima-

tion of d
dt
E(c,q) at t = tn+1 in the sense that

(
‖∇dc

n+1
k ‖2

d + ‖∇d(2cn+1
k − cn

k )‖2
d

2�t

)
−
(

‖∇dc
n
k‖2

d + ‖∇d(2cn
k − cn−1

k )‖2
d

2�t

)

∼=
(

‖∇dc
n+2
k ‖2

d − ‖∇dc
n
k‖2

d

2�t

)
+ O(�t2)

∼= d

dt
‖∇dck(·, tn+1)‖2

d + O(�t2), for k = 1,2,3.

(
‖qn+1

k ‖2
d + ‖2qn+1

k − qn
k ‖2

d

2�t

)
−
(

‖qn
k ‖2

d + ‖2qn
k − qn−1

k ‖2
d

2�t

)

∼=
(

‖qn+2
k ‖2

d − ‖qn
k ‖2

d

2�t

)
+ O(�t2)

∼= d

dt
‖qk(·, tn+1)‖2

d + O(�t2), for k = 1,2,3.
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3.3 Unique Solvability

We prove the unique solvability of the proposed temporal scheme and the spatial variables
are assumed to be continuous for the purpose of convenience. From Eq. (14), we have

qn+1
k = 1

3

[(
4cn

k − 2cn−1
k − 1

) (
3cn+1

k − 4cn
k + cn−1

k

)+ 4qn
k − qn−1

k

]
.

Then, we obtain the following linear scheme

3

2�t
cn+1
k = �μn+1

k + 1

2�t

(
4cn

k − cn−1
k

)
, (26)

μn+1
k = P (cn+1

k ) + gn
k , (27)

where P (cn+1
k ) = −ε2�cn+1

k + 0.5
(
4cn

k − 2cn−1
k − 1

)2
cn+1
k and gn

k is expressed as follows

gn
k =

(
4cn

k − 2cn−1
k − 1

6

)[(
4cn

k − 2cn−1
k − 1

) (−4cn
k + cn−1

k

)

+ 4qn
k − qn−1

k

]
+ 2β (cn) − β

(
cn−1

)
.

Theorem 1 The linear system, Eqs. (26) and (27), admits a unique solution in H 1(�), and
the linear operator is symmetric positive definite.

Proof From Eq. (26), by taking the L2 inner product with 1, we have∫
�

cn+1
k dx =

∫
�

cn
kdx = · · · =

∫
�

c0
kdx. (28)

Let Vc = 1
|�|
∫

�
c0
kdx, Vμ = 1

|�|
∫

�
μn+1

k dx, and we define

c̃n+1
k = cn+1

k − Vc, μ̃n+1
k = μn+1

k − Vμ. (29)

From Eqs. (26) and (27), we can easily find that (c̃n+1
k , μ̃n+1

k ) are the solutions of the follow-
ing equations with unknowns (ck,μk),

3

2�t
ck − �μk = f1, (30)

μk + Vμ − P (ck) = g1, (31)

where f1 = (4cn
k − cn−1

k )/(2�t)− 3Vc/(2�t) and g1 = gk +Vc(4cn
k − 2cn−1

k − 1)2/2. More-
over, ck and μk are all mean zero. Define the inverse Laplace operator α := �−1β by �α = β

and
∫

�
αdx = 0 with the periodic or homogeneous Neumann boundary condition, then we

apply −�−1 to Eq. (30) and using Eq. (31), we have

− 3

2�t
�−1ck + P (ck) − Vμ = −�−1f1 − g1. (32)

We can simplify Eq. (32) as A(ck) = b. For any ck in H 1(�) and which satisfies
∫

�
ckdx = 0,

we can easily verify that (A(ck), ck) = (ck,A(ck)). Hence, A(ck) is self-adjoint. We can also
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find that

(A(ck), ck) = − 3

2�t
(�−1ck, ck) + (P (ck), ck)

= 3

2�t
‖∇�−1ck‖2 + ε2‖∇ck‖2 + 1

2
‖(4cn

k − 2cn−1
k − 1)ck‖2. (33)

Then, we can easily find that (A(ck), ck) is bounded since we can find positive constants C1

and C2 such that (A(ck), ck) ≤ C1(‖∇�−1ck‖2 + ‖∇ck‖2 + ‖ck‖2) ≤ C2‖ck‖2
H 1 . Moreover,

we can find another positive constant C3 such that

3

2�t
‖∇�−1ck‖2 + ε2‖∇ck‖2 + 1

2
‖(4cn

k − 2cn−1
k − 1)ck‖2 ≥ C3‖ck‖2 ≥ 0. (34)

Thus, the bilinear form (A(ck), ck) is coercive and positive definite. By using the Lax–
Milgram theorem, we conclude that the linear system Eqs. (26) and (27) admits a unique
solution. The proof of the unique solvability of the proposed temporal scheme for ck is
completed. Because the unique solvability for each component can be proved in a same
way, then the unique solvability for the whole system is straightforward. �

4 Numerical Solution

To achieve an efficient computation, we rewrite Eq. (14) to be

qn+1
k,ij = 1

3

[(
4cn

k,ij − 2cn−1
k,ij − 1

) (
3cn+1

k,ij − 4cn
k,ij + cn−1

k,ij

)+ 4qn
k,ij − qn−1

k,ij

]
. (35)

Then we substitute all qn+1
k,ij in Eq. (13) with Eq. (35). The following equations are obtained

3cn+1
k,ij − 4cn

k,ij + cn−1
k,ij

2�t
= �dμ

n+1
k,ij , (36)

μn+1
k,ij = −ε2�dc

n+1
k,ij +

(
4cn

k,ij − 2cn−1
k,ij − 1

)2

2
cn+1
k,ij

+
(

4cn
k,ij − 2cn−1

k,ij − 1

6

)[(
4cn

k,ij − 2cn−1
k,ij − 1

) (−4cn
k,ij + cn−1

k,ij

)
+4qn

k,ij − qn−1
k,ij

]+ 2β
(
cn
ij

)− β
(
cn−1
ij

)
. (37)

The above linear system is solved by using a multigrid algorithm with Gauss–Seidel (GS)
type relaxation. Please see [35, 36] for more details of the multigrid algorithm. Note that the
proposed scheme needs the information at n and n− 1 time levels. With the computed cn+1

k,ij ,

we can directly update qn+1
k,ij from Eq. (35). From Eqs. (35)–(37), we can find our proposed

scheme is efficient because only one linear semi-implicit system needs to be solve in one
time iteration.

5 Numerical Experiments

Without specific needs, all tests are performed in the domain � = (0,1) × (0,1) with the
periodic boundary conditions.
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5.1 Linear Stability Analysis

To validate the proposed scheme, we first consider the short-time evolution of a ternary
CH system. By combining Eqs. (4) and (5), we have the following vector-values governing
equation

∂c
∂t

= �(ψ(c) − ε2�c), (38)

where ψ(c) = F ′(c) + β(c)1. Let the mean concentration be m = (m1,m2). In [37], the
authors gave that the following solution of a ternary CH system:

c(x, t) = m +
∞∑

k=1

cos(kπx)(αk(t), βk(t)), (39)

on the one-dimensional domain � = (0,1). After linearizing ψ(c) about m, we get

ψ(c) ≈ ψ(m) + (c − m)

(
∂c1ψ1(m) ∂c1ψ2(m)

∂c2ψ1(m) ∂c2ψ2(m)

)
. (40)

By submitting Eq. (40) into Eq. (38) and assuming m1 = m2 = m, we get

∂c
∂t

= �c
(

2m2 − 3m + 0.5 −m2

−m2 2m2 − 3m + 0.5

)
− ε2�2c. (41)

By submitting c from Eq. (39) into Eq. (41), we have(
α′

k(t)

β ′
k(t)

)
= G

(
αk(t)

βk(t)

)
, G =

(
a b

b a

)
, (42)

where the subscript ′ is the time derivative and

a = −k2π2(2m2 − 3m + 0.5) − ε2k4π4, b = k2π2m2.

The eigenvalues of G are

λ1 = k2π2(−3m2 + 3m − 0.5) − ε2k4π4,

λ2 = k2π2(−m2 + 3m − 0.5) − ε2k4π2.

The analytical solutions of the ordinary differential equations (ODEs) in Eq. (42) are given
as

(αk(t), βk(t)) = eλ1t

2
(−αk(0) + βk(0), αk(0) − βk(0))

+eλ2t

2
(αk(0) + βk(0), αk(0) + βk(0)) . (43)

Let us consider the following initial conditions:

c1(x,0) = m + 0.01 cos(kπx), (44)

c2(x,0) = m + 0.02 cos(kπx), (45)
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Fig. 1 Time evolutions of the
computational and analytical
values of αk and βk

c3(x,0) = 1 − c1(x, y,0) − c2(x, y,0), (46)

which indicate the initial values of αk and βk are 0.01 and 0.02, respectively. The computa-
tional parameters: k = 2, m = 0.24, h = 1/256, �t = 0.001, ε = 0.01. The computation
stops until T = 0.01. The numerical form of αk and βk are given as:

αn
k =

(
max

1≤i≤Nx

cn
1(xi) − min

1≤i≤Nx

cn
1(xi)

)
/2, (47)

βn
k =

(
max

1≤i≤Nx

cn
2(xi) − min

1≤i≤Nx

cn
2(xi)

)
/2. (48)

Figure 1 displays the time evolutions of computational and analytical values. We can confirm
that the results are in good agreement with each other.

5.2 Basic Properties of Ternary CH System

For a ternary CH system, the total energy decrease and the conservation of mass are two
basic properties. We consider the phase evolutions with the following random initial condi-
tions:

c1(x, y,0) = 1

3
+ 0.1rand(), (49)

c2(x, y,0) = 1

3
+ 0.1rand(), (50)

c3(x, y,0) = 1 − c1(x, y,0) − c2(x, y,0), (51)

where rand() is the random number between −1 and 1. Here, h = 1/256, �t = 0.01h, ε =
0.0025. The discrete mass Md(ck) and energy Ed(ck) are defined as follows:

Md(ck) = h2
Nx∑
i=1

Ny∑
j=1

ck,ij ,

Ed(ck) = h2
Nx−1∑
i=1

Ny−1∑
j=1

[
F(ck,ij ) + ε2

2

(
(ck,i+1,j − ck,ij )

2

h2
+ (ck,i,j+1 − ck,ij )

2

h2

)]
.
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Fig. 2 Snapshots of phase evolutions at different computational moments, where c1, c2, and c3 locate in
black, gray, and white regions, respectively

Here, the discrete total energy is Ed(c) =
3∑

k=1
Ed(ck). The simulation is performed until

T = 0.1563. Figures 2(a)–(d) show the snapshots of phase evolutions at different compu-
tational moments. The evolutions of discrete mass and normalized discrete total energy
Ed(cn)/Ed(c0) are illustrated in Fig. 3. As we can see, the total energy is non-increasing
and mass of each component is conserved.

5.3 Energy Stability Test

To confirm the energy stability of the proposed scheme, we consider the following initial
conditions:

c1(x, y,0) = 0.3 + 0.01rand(), (52)

c2(x, y,0) = 0.3 + 0.01rand(), (53)

c3(x, y,0) = 1 − c1(x, y,0) − c2(x, y,0). (54)
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Fig. 3 Temporal evolutions of
discrete mass and normalized
discrete total energy

Fig. 4 Temporal evolutions of
discrete total energy with respect
to different time steps

The mesh size h = 1/128 and ε = 0.02 are used. We consider a series of increasing time
steps: �t, 10�t, 100�t , and 1000�t , where �t = 7.8125e-5. All tests are performed until
T = 1.5625. The time evolutions of discrete total energy are displayed in Fig. 4. We can find
that the total energies are both non-increasing in time even if large time steps are used.

5.4 Convergence Test

For convergence tests, let the initial conditions be given as

c1(x, y,0) = 1

3
+ 0.01 cos(3πx) + 0.04 cos(4πx), (55)

c2(x, y,0) = 1

3
+ 0.02 cos(2πx) + 0.03 cos(4πx), (56)

c3(x, y,0) = 1 − c1(x, y,0) − c2(x, y,0). (57)
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Table 1 Errors and convergence rates with different time steps. The computational reference is computed
with a very fine time step �tref = 0.01h2 at T = 4.8828e-5. Here, h = 1/256 is fixed

�t 1.6h2 0.8h2 0.4h2 0.2h2

c1: l2-error 5.0177e-5 1.4255e-5 2.8672e-6 6.6411e-7

c1: Rate 1.8156 2.3138 2.1101

c2: l2-error 1.0418e-4 2.9209e-5 5.7397e-6 1.1562e-6

c2: Rate 1.8346 2.3474 2.3116

c3: l2-error 1.5431e-4 4.3417e-5 8.5612e-6 1.7804e-6

c3: Rate 1.8295 2.3424 2.2656

Table 2 Errors and convergence rates with different space steps. The computational reference is computed
with a very fine space step href = 1/512 at T = 4.8828e-5. Here, �t = 1.5259e-7 is fixed

h 1/32 1/64 1/128 1/256

c1: l2-error 5.2779e-4 1.4110e-4 3.0652e-5 7.5814e-6

c1: Rate 1.9032 2.2027 2.0154

c2: l2-error 1.1e-3 2.8529e-4 6.1776e-5 1.4778e-5

c2: Rate 1.9470 2.2073 2.0636

c3: l2-error 1.6e-3 4.2638e-4 9.2407e-5 2.2281e-5

c3: Rate 1.9079 2.2061 2.0522

The parameter ε = 0.02 is used. First, we fix the mesh size as h = 1/256 and a numerical
reference solution c

ref

k is chosen with very fine time step �tref = 0.01h2. A set of increas-
ing time step: �t = 0.2h2, 0.4h2, 0.8h2, and 1.6h2 is used to perform the computational
simulations until T = 4.8828e-5. The error under a particular time step is defined as the
l2-norm of the difference between numerical result and reference solution at t = T , i.e.,

e�t =
∥∥∥ck,ij − c

ref

k,ij

∥∥∥
2
. Let the rate of convergence be defined as log2

(
‖e�t‖2 /

∥∥∥e �t
2

∥∥∥
2

)
. Ta-

ble 1 lists the errors and convergence rates. The results indicate that the proposed scheme
can achieve second-order accuracy in time.

Next, we fix the time step to be �t = 1.5259e-7. The numerical reference solution
c

ref

k is chosen with a finer space step href = 1/512. A set of coarsening mesh size:
h = 1/256, 1/128, 1/64, and 1/32 is used to perform the computational simulations un-
til T = 4.8828e-5. The error under a particular time step is defined as the l2-norm of the
difference between numerical result and reference solution at t = T , i.e.,

eh =
∥∥∥ck,ij − 0.25

(
c

ref

k,2pi−2p−1,2pj−2p−1 + c
ref

k,2pi−2p−1+1,2pj−2p−1+1

+c
ref

k,2pi−2p−1+1,2pj−2p−1 + c
ref

k,2pi−2p−1,2pj−2p−1+1

)∥∥∥
2
,

where p = 1, 2, 3, and 4 with respect to h = 1/256, 1/128, 1/64, and 1/32, respectively.

Let log2

(
‖eh‖2 /

∥∥∥e h
2

∥∥∥
2

)
be the convergence rate. Table 2 lists the errors and convergence

rates. The results indicate that the proposed scheme can achieve second-order accuracy in
space.
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5.5 Solving Ternary CH Equations in Phase-Field Fluid Systems

The ternary CH system can be extensively applied into the simulations of multi-phase
fluid flows. In this work, we consider the following dimensionless modified Navier–
Stokes–Cahn–Hilliard (NSCH) system:

ρ(c)
(

∂u
∂t

+ u · ∇u
)

= −∇p + 1

Re
�u + Fs(c) + ρ(c)

F r2
g, (58)

∇ · u = 0, (59)

∂c
∂t

+ ∇ · (cu) = 1

Pe
�μ, (60)

μ = F ′(c) − ε2�c + β(c). (61)

For details of the definitions, refer to [30]. The proposed scheme is used to solve Eqs. (60)
and (61), i.e.,

3cn+1
k,ij − 4cn

k,ij + cn−1
k,ij

�t
= 1

Pe
�dμ

n+1
k,ij − ∇d · (cku)n+1

ij , (62)

μn+1
k,ij = −ε2�dc

n+1
k,ij +

[(
4cn

k,ij − 2cn−1
k,ij − 1

)2

2
cn+1
k,ij

]

+
(

4cn
k,ij − 2cn−1

k,ij − 1

6

)[(
4cn

k,ij − 2cn−1
k,ij − 1

) (−4cn
k,ij + cn−1

k,ij

)
+4qn

k,ij − qn−1
k,ij

]+ 2β
(
cn
ij

)− β
(
cn−1
ij

)
, (63)

where the values un+1 and cn+1
k in convection term are calculated using the extrapolation

from previous values, i.e., un+1 ≈ 2un − un−1 and cn+1
k ≈ 2cn

k − cn−1
k . Then, the advection

term is defined as follows [2]:

∇d · (cku)n+1
ij = [

(cku)x + (ckv)y

]n+1

ij

=
un+1

i+ 1
2 ,j

(cn+1
k,i+1,j + cn+1

k,ij ) − un+1
i− 1

2 ,j
(cn+1

k,ij + cn+1
k,i−1,j )

2h

+
vn+1

i,j+ 1
2
(cn+1

k,i,j+1 + cn+1
k,ij ) − vn+1

i,j− 1
2
(cn+1

k,ij + cn+1
k,i,j−1)

2h
. (64)

The projection method [2] is used and the convection term in Eq. (58) is discretized by using
the second-order ENO scheme [38].

5.6 Spreading of a Circular Liquid Lens

As a benchmark test of three-phase fluid flow, we investigate the spreading of a circular
liquid lens (c2) locating at the interface between two fluids c1 and c3 in the domain � =
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Fig. 5 Spreading of a circular liquid lens. (a) Schematic illustration. (b) Temporal evolution of a liquid lens,
where the arrows indicate the directions of evolution

(0,1) × (0,1), the initial conditions are as follows:

c1(x, y,0) = max

[
0.5 + 0.5 tanh

(
y − 0.5

2
√

2ε

)
− c2(x, y,0),0

]
, (65)

c2(x, y,0) = 0.5 + 0.5 tanh

(
0.15 −√

(x − 0.5)2 + (y − 0.5)2

2
√

2ε

)
, (66)

u(x, y,0) = 0, v(x, y,0) = 0. (67)

We take the homogeneous Neumann boundary conditions for phase field variables and ve-
locity field. In present simulation, we use h = 1/256, �t = 0.01h, ε = 0.006/

√
2, P e =

10/ε, Re = 60, We1 = We3 = 36 and We2 = 60. The effect of gravity is not considered.
Theoretically, the circular liquid lens spreads and eventually reaches the equilibrium state
under the control of three surface tension coefficients: σ12, σ13, and σ23, where the subscript
pq indicates the surface tension coefficient on the interface between fluid p and fluid q (see
Fig. 5(a)). Specifically, σpq = γp + γq , where γp = 1/Wep . Therefore, the values of σ12,
σ23, and σ13 in this tests are

σ12 = σ23 ≈ 0.0444, σ13 ≈ 0.0556.

The equilibrium three-phase contact angle is determined by

sin θ1

σ23
= sin θ2

σ13
= sin θ3

σ12
.

For a liquid lens with area A, the deformed distance d (the distance between two triple
junctions), and the contact angle θk of the kth fluid satisfy the following Young’s law:

d =
(

2(π − θ1) − sin(2(π − θ1))

8A sin2(π − θ1)
+ 2(π − θ3) − sin(2(π − θ3))

8A sin2(π − θ3)

)− 1
2

.
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Then the theoretical deformed distance is d = 0.4596. In this test, the computation stops un-
til the numerical equilibrium state. Figure 5(b) illustrates the evolution of a liquid lens. The
numerical deformed distance is measured to be d = 0.4593, which means that the present
method can accurately measure the steady shape of a liquid lens.

5.7 Two-Phase Fluid Flow in a Complex Domain

The conventional ternary CH model can be modified to simulate the two-phase system in
complex domains. Please refer to [25, 39] for some details. Here, the initial value of c3

defines the obstacles and we do not update c3 in the following computation. An augmented
projection method [40] is used to treat the velocity field in an arbitrary domain. Hence, it
is easy to implement without artificial works on the conditions of the complex domain. We
only need to solve c1 in each time iteration. With this approach, the governing equations are
recast to be

∂c1

∂t
= M�μ1, (68)

μ1 = F ′(c1) − ε2�c1 + β̃, (69)

where β̃ = −c1c
0
3(1 − c1 − c0

3) is a modified multiplier satisfying the condition in Eq. (1)
and c0

3 is the initially fixed value of obstacles. In this part, we consider the falling droplet in
a complex domain with various circular obstacles (see the white gray regions in Fig. 6(a)).
The following initial conditions on � = (0,2) × (0,4) are considered:

c1(x, y,0) = 0.5 + 0.5 tanh

(
0.35 −√

(x − 1)2 + (y − 3.5)2

2
√

2ε

)
, (70)

u(x, y,0) = v(x, y,0) = 0. (71)

We take the homogeneous Neumann boundary conditions for c1 and no-slip boundary con-
ditions for velocity field. The following parameters are used: h = 1/64, �t = 0.8h2, ε =
0.0101, P e = 1/ε, Re = 100, We1 = 3, and Fr = 1. The density ratio is ρ1 : ρ2 = 3 : 1.
Figures 6(a)–(h) show the temporal evolution and we can find that the droplet falls and
deforms under the effects of gravity, surface tension, and solid obstacles.

Remarks In this subsection, we followed the approach developed in [25] to simulate the two-
phase flow in complex domains by using a modified ternary CH model. The initial value of
the third component is fixed to represent the obstacles. In essence, the computation is for
a two-phase system. Therefore, we only consider the surface tension on the interface of c1,
i.e. only We1 is used. As for the contact angle between droplet and obstacles, the modified
ternary model (Eqs. (68) and (69)) are similar with the model in [39] with contact angle
θ = 90◦. In recent works [22, 41], authors proposed accurate moving contact angle method
for fluid-solid interaction by combining the ternary CH model and geometry relation. How-
ever, their method did not follow the energy dissipation law. The present work focus on an
efficient linear, second-order accurate, and energy stable method for the ternary CH model,
the simulation in this subsection just is a potential application. Although the moving contact
line problem is interesting, it is out of the scope of this work. The energy stable method
for multi-component CH model with moving contact angle hysteresis will be considered as
upcoming works.
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Fig. 6 Temporal evolution of a falling droplet in a complex domain where the white gray regions are the
obstacles, the droplet is in dark gray, and the ambient fluid is in white

6 Conclusions

We proposed a second-order accurate, energy stable, and linear numerical scheme for a
ternary CH model. This numerical scheme was derived from the Lagrange multiplier method
and adopted the BDF2 temporal discretization, which satisfied unconditionally stability and
mass conservation for the whole system. The proposed scheme was simple to implement
because all nonlinear terms were treated as source terms. Many computational experiments
were performed to demonstrate that the proposed method is unconditionally stable and
second-order accurate in space and time. In addition, the proposed method could be used
as an efficient solver for the ternary CH equations in any phase-field fluid system. We note
that our proposed scheme can be straightforwardly extended to an arbitrary N -component
CH system in a same manner. In this study, we only focus on the extended Lagrange mul-
tiplier approach for the ternary CH systems. As future works, we will consider the linear,
decoupled, and energy stable schemes for multi-component thermodynamically consistent
phase-field fluid systems.
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Appendix

Here, we briefly describe the first-order time-accurate and fully discrete scheme. Based on
a backward Euler formula, we discretize Eqs. (8)–(10) to be

cn+1
k,ij − cn

k,ij

�t
= �dμ

n+1
k,ij , (72)

μn+1
k,ij = −ε2�dc

n+1
k,ij + qn+1

k,ij cn
k,ij − 1

2
qn+1

k,ij + β(cn
ij ), (73)

qn+1
k,ij − qn

k,ij

�t
= (2cn+1

k,ij − 1)
cn+1
k,ij − cn

k,ij

�t
, for k = 1,2,3. (74)

The periodic or homogeneous Neumann boundary is considered. The energy stability, mass
conservation, and unique solvability of the above scheme can be proved by following same
procedures described in Sect. 3. We leave them to interested readers.
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