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Abstract Competition is a fundamental force shaping population size and structure as a
result of limited availability of resources. In biomathematics, the biological models with
competitive interactions exist widely. Furthermore, the nonlinear-diffusion (including self-
and cross-diffusions) terms are incorporated to the biological models to better simulate the
actual movement of species. Therefore, better compatibility with reality can be achieved
by introducing nonlinear-diffusion into biological models with competitive interactions. As
a result, a competition system with nonlinear-diffusion and nonlinear functional response
is proposed and analyzed in this paper. We first briefly discuss the stability of trivial and
semi-trivial solutions by spectrum analysis. Then the boundedness and the non-existence
of steady states are studied. Based on the boundedness of the solutions, the existence of the
steady states is also investigated by the fixed point index theory in a positive cone. The result
shows that the two species can coexist when their diffusion and inter-specific competition
pressures are controlled in a certain range.

Keywords Steady states · Competition model · Nonlinear-diffusion · Boundedness ·
Existence

Mathematics Subject Classification (2000) 35K57 · 92D25 · 93C20

1 Introduction

Competition models, having enormous impacts on various fields including biological, eco-
logical and biochemical processes, enrich modern research to a large extent [1–3]. In biol-
ogy, competition models are widely regarded as the crucial tools to understand the mecha-
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nisms leading to biodiversity. During the past years, the competition models derived from in-
teractions of several species have been extensively studied. Among those models, the Lotka-
Volterra competition model is considered as the basis of a model reflecting competitive in-
teractions between species [4–9]. However, there is a limitation in classical Lotka-Volterra
model that has the competitive interaction of two populations: with the increase of one com-
petitor’s density, its competitive capacity will increase and tend to infinity. But in reality, this
capacity between different species should be upper-bounded. To overcome this deficiency,
several types of models have been proposed. For example, this deficiency can be remedied
by the following model with nonlinear functional response:{

∂u
∂t

= u(a1 − b1u − c1v

1+v
),

∂v
∂t

= v(a2 − b2v − c2u

1+u
),

(1.1)

where u and v stand for the densities of two competing species, a1 and a2 refer to their
intrinsic growth rates, b1 and b2 account for their logistic growth rates, c1 and c2 are their
maximum inter-specific interaction coefficients. Here, all parameters are positive constants.
The terms c1uv

1+v
and c2uv

1+u
represent the functional response, their limits lim

v→∞
c1uv

1+v
= c1u and

lim
u→∞

c2uv

1+u
= c2v imply that the competitive capacity of species cannot increase at an infinitely

great rate when the density of its competitor increases. In the past few years, the models
based on (1.1) have been well studied, and some valuable results have been obtained, see
[10, 11] for examples.

In the field of population dynamics, the diffusion phenomenon of different species in the
environment is a very universal survival and life style. Therefore, a large number of models
of the multi-species interacting populations are described by reaction-diffusion systems. For
example, Barabanova [12] studied a reaction-diffusion system with exponential nonlinearity.
He discussed the global existence of nonnegative solutions and the asymptotic behavior of
global solutions for system. Jia [13] considered a reaction-diffusion population model with
predator-prey-dependent functional response. He investigated the conditions which ensure
the model has a unique positive constant solution, and studied the dynamical properties of
the model, including the large time behaviors of the nonconstant solutions and the local and
global asymptotic stability of the positive constant solution. For more detailed backgrounds
of reaction-diffusion systems, one can see [4, 14–16] and the references therein.

In recent decades, there has been considerable interest in being able to reveal the dynam-
ics of reaction-diffusion models with nonlinear diffusion. Just because of this, the cross-
diffusion terms are introduced into a system of reaction-diffusion equations to model the
situation that one species influence the movement of another species, which was proposed
firstly by Kerner [17] and applied firstly to biological models by Shigesada et al. [18]. Re-
cently, many researchers have devoted to the study of the population models with cross-
diffusion from various mathematical viewpoints. For example, in [19], the authors presented
a general instability analysis on cross-diffusion system with two species. They showed that
cross-diffusion can destabilize a uniform equilibrium which is stable for the kinetic and self-
diffusion-reaction systems; On the other hand, cross-diffusion can also stabilize a uniform
equilibrium which is stable for the kinetic system but unstable for the self-diffusion-reaction
system. Bendahmane [20] discussed a predator-prey model with cross-diffusion. He estab-
lished the existence of weak and classical solutions for model by means of an approxima-
tion system, the Faedo-Galerkin method, and the compactness method. Paper [21] studied
three species food chain model with a Holling type-II functional response involving cross-
diffusions. The authors presented the equilibrium solutions of the model and proved the
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stability of positive coexistence equilibrium, and conducted Turing instability induced by
cross-diffusion. In [22], the authors investigated the Shigesada-Kawasaki-Teramoto model
for two competing species with triangular cross-diffusion. By using the scalar maximum
principle and the Hopf boundary point lemma, they determined explicit parameter ranges
within which the model exclusively possesses constant steady state solutions. Moreover,
there have many valuable surveys on the mathematical developments of cross-diffusion
equations arising from various research fields, one can see [6, 23–31] and the references
therein.

Based on model (1.1), in [28], Li et al. proposed the following model with cross-diffusion⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t

− �(d11u + d12v) = u(a1 − b1u − c1v

1+v
), (x, t) ∈ � × (0,∞),

∂v
∂t

− �(d21u + d22v) = v(a2 − b2v − c2u

1+u
), (x, t) ∈ � × (0,∞),

∂nu = ∂nv = 0, (x, t) ∈ ∂� × (0,∞),

u(x,0) = u0(x) > 0, v(x,0) = v0(x) > 0, x ∈ �, t = 0,

(1.2)

where � is a bounded domain in R
n (n ≥ 1) with smooth boundary ∂�, n is the unit outward

normal vector on the boundary ∂�, ai , bi , ci , i = 1,2 have the same biological meaning
as in model (1.1), d11 and d22 are the self-diffusion coefficients of two species, d12 and
d21 denote their cross-diffusion pressures. Here, d11, d12, d21, d22 are positive parameters. In
[28], the authors studied the existence and stability of positive equilibrium, and gave the
Turing bifurcation critical value and the condition for the occurrence of Turing pattern to
model (1.2).

In [18], Shigesada et al. described that the movement of two species in the actual ecolog-
ical environment is affected by nonlinear diffusion forces. So, it is more realistic to consider
the nonlinear diffusion effects to model (1.2). With what in mind, by making appropriate
modifications, model (1.2) can be revised as the following form with nonlinear diffusion
effects and Dirichlet boundary conditions⎧⎪⎪⎨

⎪⎪⎩
∂u
∂t

− �[(α1 + β11u + β12v)u] = u(a1 − b1u − c1v

1+v
), (x, t) ∈ � × (0,∞),

∂u
∂t

− �[(α2 + β21u + β22v)v] = v(a2 − b2v − c2u

1+u
), (x, t) ∈ � × (0,∞),

u = v = 0, (x, t) ∈ ∂� × (0,∞),

u(x,0) = u0(x) ≥ 0, �≡ 0, v(x,0) = v0(x) ≥ 0, �≡ 0, x ∈ �, t = 0,

(1.3)

where all parameters are positive constants, the parameters ai, bi, ci , i = 1,2 have the same
biological meaning as in model (1.1), α1 and α2 are the diffusion rates of two species, β11

and β22 are their self-diffusion pressures, β12 and β21 are their cross-diffusion pressures,
the nonlinear terms �(α1u) and �(α2v) model the situation that the two species move in
random ways, and the nonlinear terms �[(β11u + β12v)u] and �[(β21u + β22v)v] describe
that the movement of two species is under influence of population pressure caused by intra-
and inter-species interferences, u0 and v0 are continuous functions. Obviously, compared
with model (1.2), the model (1.3) is more logical and close to real situations.

In this paper, we focus on the existence of steady state solutions of model (1.3), that is,
the existence of classical positive solutions of the following elliptic system⎧⎨

⎩
−�[(α1 + β11u + β12v)u] = u(a1 − b1u − c1v

1+v
), x ∈ �,

−�[(α2 + β21u + β22v)v] = v(a2 − b2v − c2u

1+u
), x ∈ �,

u = v = 0, x ∈ ∂�.

(1.4)

Since the cross-diffusion terms are introduced, one interesting problem is that whether their
increase will affect the possibility of existence of positive solutions for model (1.4) or not.
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Therefore, the main purpose of this paper is to consider the effects of cross-diffusion pres-
sures on the positive solutions of model (1.4). Our approach to the proof is the fixed point
index theory [31]. It should be pointed out that we extend the conclusions in [31] in analyz-
ing the existence of positive solution since the standard conclusion frameworks in [31] are
not comprehensive for our model (it only can obtain that system (1.4) admits a positive solu-
tion if the signs of the first eigenvalues of suitable operators are the same). More specifically,
we not only prove that (1.4) has a positive solution when the signs of the first eigenvalues of
suitable operators are the same, but also show that (1.4) has a positive solution when one of
these first eigenvalues is less than 0 and one is equal to 0. Due to the cross-diffusion pres-
sures are related to these first eigenvalues, and therefore they affect the existence of positive
solution of model. Moreover, we also show that the inter-specific competition pressures are
also related to the existence of positive solution of model (1.4).

The rest of this paper is organized as follows. Section 2 states some known results about
eigenvalue problem, a scalar equation and the fixed point index theory. In Sect. 3, we briefly
discuss the stability of trivial and semi-trivial solutions of (1.4) by spectrum analysis. In
Sect. 4, we first give the boundedness of positive solution of (1.4), and then present the
sufficient conditions which ensure (1.4) having no positive solution. Using the fixed point
index theory, the existence of positive solutions of (1.4) is investigated in Sect. 5. Section 6
gives the conclusion to end the investigation.

2 Preliminaries

In this section, we first consider a certain eigenvalue problem and a scalar equation, and then
give some known results for fixed point index theory.

2.1 Eigenvalue Problem

For a(x) > 0 in C2(�) and b(x) ∈ L∞(�), consider the eigenvalue problem{
�[a(x)u] + b(x)u = λu, x ∈ �,

u = 0, x ∈ ∂�,
(2.1)

where � is the same as � in (1.2). By [31], we obtain that the problem (2.1) has an infinite
sequence of eigenvalues {λi(�a(x) + b(x))} such that λi(�a(x) + b(x)) ≥ λi+1(�a(x) +
b(x)) with corresponding eigenfunctions φi,φi+1, . . ., i = 1,2, . . ., where lim

i→∞
λi(�a(x) +

b(x)) = −∞, i ≥ 1.
Denote by ‖ · ‖L2 the usual L2-norm in L2(�). From [31] we have

λ1(�a(x) + b(x)) = sup
u∈W1,2(�)

∫
�
(−|∇[a(x)u]|2 + a(x)b(x)u2)dx

‖√a(x)u‖2
L2

. (2.2)

Clearly, λ1(�a(x) + b(x)) is increasing in b(x). The following Lemma 2.1 and Lemma 2.2
can also be obtained from [31].

Lemma 2.1 Let a(x) > 0 in C2(�), b(x) ∈ L∞(�), and u ≥ 0, �≡ 0 in � with u = 0 on ∂�.
Then the following conclusions hold:

(i) If (�a(x) + b(x))u ≥, �≡ 0, then λ1(�a(x) + b(x)) > 0;
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(ii) If (�a(x) + b(x))u ≤, �≡ 0, then λ1(�a(x) + b(x)) < 0;
(iii) If (�a(x) + b(x))u ≡ 0, then λ1(�a(x) + b(x)) = 0.

Lemma 2.2 Assume that b1(x)/a1(x) > b2(x)/a2(x), where ai(x) > 0 in C2(�), bi(x) ∈
L∞(�) for i = 1,2.

(i) If λ1(�a1(x) + b1(x)) ≤ 0, then λ1(�a2(x) + b2(x)) < 0;
(ii) If λ1(�a2(x) + b2(x)) ≥ 0, then λ1(�a1(x) + b1(x)) > 0.

Let T : E → E be a linear operator on a Banach space E and denote by r(T ) the spectral
radius of T . Then we have the following statements for r(T ), which can be shown by the
similar manner in [32, Lemma 2].

Lemma 2.3 Let a(x) > 0 in C2(�), b(x) ∈ L∞(�), and M be a positive constant such that
b(x) + Ma(x) > 0 for all x ∈ �. Then we have

(i) If λ1(�a(x) + b(x)) > 0, then r[ 1
a(x)

(−� + M)−1(b(x) + Ma(x))] > 1;

(ii) If λ1(�a(x) + b(x)) < 0, then r[ 1
a(x)

(−� + M)−1(b(x) + Ma(x))] < 1;

(iii) If λ1(�a(x) + b(x)) = 0, then r[ 1
a(x)

(−� + M)−1(b(x) + Ma(x))] = 1.

2.2 A Scalar Equation

In this subsection, we consider the scalar equation{−�[ϕ(u)u] = uf (u), x ∈ �,

u = 0, x ∈ ∂�,
(2.3)

where � is a bounded domain in R
n (n ≥ 1) with smooth boundary ∂�. The functions

ϕ : [0,∞) → [0,∞) and f : [0,∞) →R are assumed to satisfy the following hypotheses:

(H2.1) ϕ(0) > 0 and ϕ(u) is C2-function in u with ϕ′(u) ≥ 0 for all u ≥ 0;
(H2.2) f (u) is C1-function in u with f ′(u) < 0 for all u ≥ 0;
(H2.3) f (0) > 0 and f (u) < 0 on (C0,∞) for some positive constant C0.

Now we give the existence and uniqueness theorem of positive solutions of (2.3), which
can be proved by the similar technique in [31, Theorem 2.11].

Theorem 2.1 Consider the scalar equation (2.3) with hypotheses (H2.1)-(H2.3).

(i) If λ1(ϕ(0)� + f (0)) ≤ 0, then (2.3) has no positive solution;
(ii) If λ1(ϕ(0)� + f (0)) > 0, then (2.3) has a unique positive solution.

2.3 Fixed Point Index Theory in Banach Space

Let E be a real Banach space and W ⊂ E a closed convex set. W is called a total wedge if
αW ⊂ W for all α ≥ 0 and W − W = E. A wedge is said to be a cone if W ∩ (−W) = {0}.
For y ∈ W , define Wy = {x ∈ E : y + γ x ∈ W for some γ > 0}, Sy = {x ∈ Wy : −x ∈ Wy}.
Then Wy is a wedge containing W,y,−y, and Sy is a closed subspace of E containing y.

Let T be a compact linear operator on E which satisfies T (Wy) ⊂ Wy . We say that T

has property α on Wy if there is t ∈ (0,1) and w ∈ Wy \ Sy such that w − tT w ∈ Sy . Let
F : W → W is a compact operator with a fixed point y ∈ W and F is Fréchet differentiable
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at y. Let L = F ′(y) be the Fréchet derivative of F at y. Then L maps Wy into itself. For an
open subset U ⊂ W , define indexW(F,U) = index(F,U,W) = indexW(I −F,U,0), where
I is the identity map. If y is an isolated fixed point of F , then the fixed point index of F at
y in W is defined by indexW(F,y) = index(F, y,W) = indexW(F,U(y),W), where U(y)

is a small open neighborhood of y in W .
Next, we represent two results that will be useful in proving the existence of positive

solutions of system (1.4). Theorem 2.2 is due to Li [33], and Theorem 2.3 is due to Amann
[34].

Theorem 2.2 Assume that I − L is invertible on Wy .

(i) If L has property α on Wy , then indexW(F,y) = 0.
(ii) If L does not have property α on Wy , then indexW(F,y) = (−1)γ , where γ is the sum

of multiplicities of all the eigenvalues of L which are greater than 1.

Suppose that B is an open unit ball of E, V is a real vector space, P is a nonempty
subset of V . Denote by (E,P ) an arbitrary ordered Banach space. For every ρ > 0, denote
Pρ = ρB ∩ P . Then we have the following statements.

Theorem 2.3 Let F : P̄ρ → P be a compact map such that F(0) = 0. Suppose that F has
a right derivative F ′+(0) at zero such that 1 is not an eigenvalue of F ′+(0) to a positive
eigenvector. Then there exists a constant σ0 ∈ (0, ρ] such that for every σ ∈ (0, σ0],
(i) if F ′+(0) has no positive eigenvector to an eigenvalue greater than one, then indexW(F,

Pσ ) = 1.
(ii) if F ′+(0) possesses a positive eigenvector to an eigenvalue greater than one, then

indexW(F,Pσ ) = 0.

3 Stability of Trivial and Semi-Trivial Solutions

This section focuses on the stability of trivial and semi-trivial solutions of model (1.4). The
arguments are based on the spectrum analysis of the linearized operators.

Clearly, model (1.4) has a trivial solution (0,0). With Theorem 2.1, we know that the
problem {−�[(α1 + β11u)u] = u(a1 − b1u), x ∈ �,

u = 0, x ∈ ∂�

has a unique positive solution u∗ for λ1(α1� + a1) > 0. Thus (1.4) has semi-trivial solution
(u∗,0) when λ1(α1� + a1) > 0.

Similarly, (1.4) has semi-trivial solution (0, v∗) when λ1(α2� + a2) > 0.

Theorem 3.1 The solution (0,0) is asymptotically stable if λ1(α1�+a1) < 0 and λ1(α2�+
a2) < 0, whereas it is unstable if λ1(α1� + a1) > 0 or λ1(α2� + a2) > 0.

Proof The linearized operator of (1.4) at (0,0) is

G1 =
[

α1� + a1 0
0 α2� + a2

]
.
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In view of [35], we know that all eigenvalues of G1 are {λi(α1� + a1)} ∪ {λi(α2� +
a2)}, i = 1,2, . . . . Thus the conclusion can be obtained directly by spectral analysis. �

Theorem 3.2 (i) The solution (u∗,0) is asymptotically stable if λ1(�(α2 + β21u
∗) + a2 −

c2u∗
1+u∗ ) < 0, whereas it is unstable if λ1(�(α2 + β21u

∗) + a2 − c2u∗
1+u∗ ) > 0.

(ii) The solution (0, v∗) is asymptotically stable if λ1(�(α1 + β12v
∗) + a1 − c1v∗

1+v∗ ) < 0,

whereas it is unstable if λ1(�(α1 + β12v
∗) + a1 − c1v∗

1+v∗ ) > 0.

Proof We only prove the (i) since we can make a similar argument for (ii). The linearized
operator of (1.4) at (u∗,0) is

G2 =
[

�(α1 + 2β11u
∗) + a1 − 2b1u

∗ β12�u∗ − c1u
∗

0 �(α2 + β21u
∗) + a2 − c2u∗

1+u∗

]
.

Similarly, by [35] we derive that all eigenvalues of G2 are {λi(�(α1 + 2β11u
∗) + a1 −

2b1u
∗)} ∪ {λi(�(α2 + β21u

∗) + a2 − c2u∗
1+u∗ )}, i = 1,2, . . . . Clearly, λi(�(α1 + 2β11u

∗) +
a1 − 2b1u

∗) ≤ λ1(�(α1 + 2β11u
∗) + a1 − 2b1u

∗) < 0 for any i ≥ 1. Combining the spectral
analysis, we can obtain the conclusion directly. �

4 Boundedness and Non-existence of Positive Solutions

This section deals with the boundedness and non-existence of positive solutions of (1.4),
which play a critical role in proving the existence result in Sect. 5.

Denote

ϕ(u, v) = α1 + β11u + β12v, ψ(u, v) = α2 + β21u + β22v,

f (u, v) = a1 − b1u − c1v

1 + v
, g(u, v) = a2 − b2v − c2u

1 + u
.

Then model (1.4) becomes⎧⎨
⎩

−�[ϕ(u, v)u] = uf (u, v), x ∈ �,

−�[ψ(u,v)v] = vg(u, v), x ∈ �,

u = v = 0, x ∈ ∂�.

(4.1)

The following lemma is useful in the calculation of the priori upper bound of positive
solution to model (1.4), which is an immediate result of the proof of Lemma 3.2 in [31].

Lemma 4.1 Let (u, v) be a positive solution of (4.1). If ϕ(u, v)u and ψ(u,v)v attain
their maximum at x = x0 and x = x1 over �, respectively, then f (u(x0), v(x0)) ≥ 0 and
g(u(x1), v(x1)) ≥ 0.

Theorem 4.1 Suppose c1 ≥ a1, c2 ≥ a2. Then there exist constants M1,M2 > 0 such that
every positive classical solution (u, v) of (1.4) satisfies

u(x) ≤ M1, v(x) ≤ M2.
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Proof Assume that (u, v) is a positive solution of (1.4). Let x0 be a point such that
ϕ(u(x0), v(x0))u(x0) = max

x∈�

{ϕ(u, v)u}. Applying Lemma 4.1 to the first equation of model

(4.1), we have f (u(x0), v(x0)) ≥ 0. Since fu,fv < 0, we have

f (u(x0),0)) ≥ f (u(x0), v(x0)) ≥ 0 and f (0, v(x0))) ≥ f (u(x0), v(x0)) ≥ 0.

This means that u(x0) ≤ a1
b1

and v(x0) ≤ a1
c1−a1

by given condition c1 ≥ a1. With ϕu,ϕv > 0,
we have

max
x∈�

{ϕ(u, v)u} ≤ ϕ(
a1

b1
,

a1

c1 − a1
)
a1

b1
= a1(c1 − a1)(α1b1 + a1β11) + a2

1b1β12

b2
1(c1 − a1)

,

and so

u(x) ≤ 1

α1
ϕ(u, v)u ≤ 1

α1
max
x∈�

{ϕ(u, v)u} ≤ a1(c1 − a1)(α1b1 + a1β11) + a2
1b1β12

α1b
2
1(c1 − a1)

� M1

for all x ∈ �.
By the similar reason, we can show that there exists a positive constant M2 such that

v(x) ≤ M2 for all x ∈ � when c2 ≥ a2, where

M2 = a2(c2 − a2)(α2b2 + a2β22) + a2
2b2β21

α2b
2
2(c2 − a2)

.

Thus, the proof is finished. �

In the following, we give the non-existence of positive solutions for (1.4). By Sect. 2.1,
we know that when a(x) = 1 and b(x) = 0 in (2.1), λi(�a(x) + b(x)) is the eigenvalue of
�, denoted as λi . In this case, the principle eigenvalue of � in � with the homogeneous
Dirichlet boundary condition is λ1, which will be used many times in the later. In addition,
for any ϕ ∈ L1(�), we let ϕ = 1

|�|
∫

�
ϕdx.

Theorem 4.2 Suppose that Ai,Di, i = 1,2 are given positive constants. Then there exist
positive constants D0

1,D
0
2 such that model (1.4) has no positive solution if

α1 > D0
1, α2 > D0

2, D1 ≤ β12 < A1, D2 ≤ β21 < A2.

Proof Assume, on the contrary, that (u, v) is a positive solution of (1.4). Multiply the first
equation of (1.4) by (u − u) and the second equation by (v − v), then integrate over � by
parts, and then add them together to yield

−
∫

�

�[(α1 + β11u + β12v)u](u − u)dx −
∫

�

�[(α2 + β21u + β22v)v](v − v)dx

=
∫

�

{2β11u|∇u|2 + β12u∇u∇v + α1|∇u|2 + β12v|∇u|2 + 2β22v|∇v|2 + β21v∇u∇v

+ α2|∇v|2 + β21u|∇v|2}dx
(4.2)

=
∫

�

u(a1 − b1u − c1v

1 + v
)(u − ū)dx +

∫
�

v(a2 − b2v − c2u

1 + u
)(v − v)dx
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=
∫

�

{[a1 − b1(u + u) − c1v + c1vv

(1 + v)(1 + v)
](u − u)2 − c1u(v − v)(u − u)

(1 + v)(1 + v)
}dx

+
∫

�

{[a2 − b2(v + v) − c2u + c2uu

(1 + u)(1 + u)
](v − v)2 − c2v(u − u)(v − v)

(1 + u)(1 + u)
}dx.

With (4.2), Young’s inequality, Theorem 4.1 and the given conditions β12 < A1, β21 < A2,
we have∫

�

{α1|∇u|2 + α2|∇v|2}dx

=
∫

�

{2β11u|∇u|2 + β12u∇u∇v + α1|∇u|2 + β12v|∇u|2 + 2β22v|∇v|2 + β21v∇u∇v

+ α2|∇v|2 + β21u|∇v|2}dx −
∫

�

{2β11u|∇u|2 + β12u∇u∇v + β12v|∇u|2 + 2β22v|∇v|2

+ β21v∇u∇v + β21u|∇v|2}dx

≤
∫

�

{2β11u|∇u|2 + β12u∇u∇v + α1|∇u|2 + β12v|∇u|2 + 2β22v|∇v|2 + β21v∇u∇v

+ α2|∇v|2 + β21u|∇v|2}dx −
∫

�

{β12u∇u∇v + β21v∇u∇v}dx

=
∫

�

{[a1 − b1(u + u) − c1v + c1vv

(1 + v)(1 + v)
](u − u)2 − c1u(v − v)(u − u)

(1 + v)(1 + v)
}dx

+
∫

�

{[a2 − b2(v + v) − c2u + c2uu

(1 + u)(1 + u)
](v − v)2 − c2v(u − u)(v − v)

(1 + u)(1 + u)
}dx

−
∫

�

{β12u∇u∇v + β21v∇u∇v}dx

≤
∫

�

[a1 + (
c1u

(1 + v)(1 + v)
)2/(4ε1) + ε2](u − u)2dx

+
∫

�

[a2 + (
c2v

(1 + u)(1 + u)
)2/(4ε2) + ε1] · (v − v)2dx

+
∫

�

[β
2
12u

2

4�1
|∇u|2 + �1|∇v|2]dx +

∫
�

[�2|∇u|2 + β2
21v

2

4�2
|∇v|2]dx

≤
∫

�

[(a1 + C(ε1) + ε2)(u − u)2 + (a2 + C(ε2) + ε1)(v − v)2 + (
A2

1M
2
1

4�1
+ �2)|∇u|2

+ (�1 + A2
2M

2
2

4�2
)|∇v|2]dx,

where, C(εi) = C(εi)(M1,M2), εi > 0, �i > 0, i = 1,2, u ≤ M1, v ≤ M2, M1,M2 are the
same as defined in Theorem 4.1.

It follows from the Poincaré inequality that∫
�

(α1|∇u|2 + α2|∇v|2)dx ≤
∫

�

[(−a1 + C(ε1) + ε2

λ1
+ A2

1M
2
1

4�1
+ �2)|∇u|2

+ (−a2 + C(ε2) + ε1

λ1
+ �1 + A2

2M
2
2

4�2
)|∇v|2]dx.

(4.3)
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We choose D0
1 and D0

2 satisfying

D0
1 ≥ −a1 + C(ε1) + ε2

λ1
+ A2

1M
2
1

4�1
+ �2 and D0

2 ≥ −a2 + C(ε2) + ε1

λ1
+ �1 + A2

2M
2
2

4�2
,

respectively, then (4.3) is a contradiction with assumptions α1 > D0
1, α2 > D0

2 . Thus, when
α1 > D0

1, α2 > D0
2,D1 ≤ β12 < A1,D2 ≤ β21 < A2, model (1.4) has no positive solution. �

5 Existence of the Positive Solutions

In this section, we investigate the existence of positive solutions of (1.4) by calculating the
fixed point’s index. We assume that the following hypothesis always hold.

(H5.1) λ1(α1� + a1) > 0 and λ1(α2� + a2) > 0.

Obviously, the hypothesis (H5.1) shows that the model (1.4) has semi-trivial solutions
(u∗,0) and (0, v∗).

Let G(u,v) = (ϕ(u, v)u,ψ(u, v)v), S = (S1, S2), where

S1(u, v) = u(a1 − b1u − c1v

1 + v
+ M(α1 + β11u + β12v)),

S2(u, v) = v(a2 − b2v − c2u

1 + u
+ M(α2 + β21u + β22v))

with M being a sufficiently large positive constant so that S1 is monotone increasing with
respect to u and S2 is monotone increasing with respect to v for all (u, v) ∈ [0,M1] ×
[0,M2]. The existence of M follows from α1 > 0 and α2 > 0.

Since the Jacobian determinant J = ∂G(u,v)

∂(u,v)
satisfies

J = ∂G(u, v)

∂(u, v)
=

∣∣∣∣α1 + 2β11u + β12v β12u

β21v α2 + β21u + 2β22v

∣∣∣∣
= (α1 + 2β11u + β12v)(α2 + β21u + 2β22v) − β12β21uv > 0,

G is invertible and denote the inverse of G by G−1. Define operator H : C(�) × C(�) →
C(�)×C(�) by H(u,v) = ((−�+M)−1S1(u, v), (−�+M)−1S2(u, v)). Then H is com-
pact. Simple calculation gives that (u, v) is a solution of (1.4) is equivalent to (u, v) satisfies
(u, v) = (G−1 ◦ H)(u, v). Denote F = G−1 ◦ H throughout this section.

We introduce the following notations:

C0(�) := {u ∈ C(�) : u = 0 on ∂�}, E := C0(�) ⊕ C0(�),
D := {(u, v) ∈ C0(�) ⊕ C0(�) : u ≤ M1 + 1, v ≤ M2 + 1},
K := {u ∈ C0(�) : 0 ≤ u(x), x ∈ �}, W := K ⊕ K ,
Qρ′ := {(u, v) ∈ W : u ≤ ρ ′, v ≤ ρ ′, ρ ′ = max{M1,M2} + ε, ε > 0},
D′ := {(intD) ∩ W } for ρ ′ > 0.

Note that D′ is open in W and every positive solution of (1.4) is a fixed point of F in
D′. To show that model (1.4) has a strictly positive solution (u, v), we prove that F has a
nontrivial fixed point in D′.

Let

h1 = 1

α1
(a1 − c1v

∗

1 + v∗ ) − a1 − b1u
∗

α1 + β11u∗ , h2 = 1

α2
(a2 − c2u

∗

1 + u∗ ) − a2 − b2v
∗

α2 + β22v∗ .
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Now we state the existence theorem of positive solutions to model (1.4), which will be
proved in the later.

Theorem 5.1 (i) If the first eigenvalues λ1(�(α1 + β12v
∗) + a1 − c1v∗

1+v∗ ) and λ1(�(α2 +
β21u

∗) + a2 − c2u∗
1+u∗ ) have the same signs (i.e., if both of them are either positive or negative

or zero), or one of these first eigenvalues is less than 0 and one is equal to 0, then model
(1.4) has a positive solution.

(ii) If β12 = β21 = 0 and both h1, h2 have the same constant sign, or one of h1 and h2 is
less than 0 and one is equal to 0 on (0,M), where M = max{ a1

b1
,

a2
b2

}, then the conditions in
(i) are necessary and sufficient for the existence of positive solutions to model (1.4).

Remark 5.1 By the formula of the first eigenvalue (i.e., (2.2)), we know that β12, β21 influ-
ence the signs of λ1(�(α1 + β12v

∗) + a1 − c1v∗
1+v∗ ) and λ1(�(α2 + β21u

∗) + a2 − c2u∗
1+u∗ ). So

the changes of β12, β21 can lead to all the cases in Theorem 5.1 arising, and therefore the
cross-diffusion pressures affect the existence of positive solution of model (1.4). In Theo-
rem 5.1(i), we give a sufficient condition for the existence of positive solutions of model
(1.4). Biologically, this implies that the two competition species u and v can coexist, and
the cross-diffusion pressures have an important effect on the coexistence of the two species.
Theorem 5.1(ii) shows a necessary and sufficient condition for the existence of positive so-
lutions of model (1.4) under β12 = β21 = 0. Biologically, this means that the coexistence of
two competition species u and v is not affected by the cross-diffusion pressures when their
self-diffusion, inter-specific competition pressures and growth rates meet certain conditions.

In order to complete the proof of Theorem 5.1, we first give the following Lemmas 5.1-
5.4.

Lemma 5.1 IndexW(F,D′) = 1.

Proof Clearly, ∂D contains no fixed points of F . Thus indexW(F,D′) is well-defined. De-
fine an operator Fμ by G−1 ◦ Hμ for μ ∈ [0,1], where

Hμ(u, v) = ((−� + M)−1S1,μ(u, v), (−� + M)−1S2,μ(u, v)),

S1,μ = u(μ(a1 − b1u − c1v

1 + v
) + M(α1 + β11u + β12v)),

S2,μ = v(μ(a2 − b2v − c2u

1 + u
) + M(α2 + β21u + β22v)).

Then clearly F = F1 and, for each μ, (u, v) is the fixed point of Fμ if and only if (u, v) is
the solution of the following problem⎧⎨

⎩
−�[(α1 + β11u + β12v)u] = μu(a1 − b1u − c1v

1+v
), x ∈ �,

−�[(α2 + β21u + β22v)v] = μv(a2 − b2v − c2u

1+u
), x ∈ �,

u = v = 0, x ∈ ∂�.

(5.1)

As in Theorem 4.1, we can see that every fixed point of Fμ satisfies u(x) ≤ M1 and v(x) ≤
M2 in � for each μ ∈ [0,1], and so every fixed point of Fμ is in D but not on ∂D. Further,
the homotopy invariance property of degree shows that indexW(Fμ,D′) is independent of
μ. So

indexW(F,D′) = indexW(F1,D
′) = indexW(F0,D

′).
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Noting that if μ = 0, then (5.1) has only the trivial solution (0,0), we get indexW(F0,D
′) =

indexW(F0, (0,0)). Moreover, by the definition of λ1, we know that α1λ1 < 0 and α2λ1 < 0.
For the point y = (0,0), we observe that Wy = K ⊕ K , Sy = {0} ⊕ {0}, and Wy\Sy =

(K ⊕ K)\{(0,0)}. Set L1 = F ′
0(0,0). Assume that

(
ξ

η

)
is an eigenfunction of L1 corre-

sponding to some eigenvalue λ ≥ 1. Then we have{
(−� + M)−1(Mα1ξ) = α1(λξ),

(−� + M)−1(Mα2η) = α2(λη).

If η �≡ 0, then we have r( 1
α2

(−�+M)−1(Mα2)) < 1 by α2λ1 < 0 and Lemma 2.3(ii), which
contradicts λ ≥ 1. So η ≡ 0. Similarly, we can derive ξ ≡ 0 by α1λ1 < 0 and Lemma 2.3(ii).
This implies that I − L1 is invertible on Wy and L1 does not have an eigenvalue which is
greater than or equal to one.

Now we suppose that L1 has property α on Wy . Then there exist 0 < t < 1 and (φ∗
1 , φ∗

2 ) ∈
Wy\Sy such that (I − tL1)

(
φ∗

1
φ∗

2

)
∈ Sy . So we get

φ∗
2 − t

α2
(−� + M)−1(α2M)φ∗

2 = 0.

Since φ∗
2 ∈ K\{0}, we may conclude that 1

t
> 1 is an eigenvalue of 1

α2
(−� + M)−1(Mα2),

which contradicts the above conclusion. This shows that L1 does not have property α

on Wy . Then we conclude that indexW(F0, (0,0)) = 1 by Theorem 2.2(ii). Therefore,
indexW(F,D′) = 1. �

Lemma 5.2 IndexW(F, (0,0)) = 0.

Proof Clearly, F(0,0) = (0,0) and F is compact in Qρ′ . Let L2 = F ′(0,0), where F ′(0,0)

is the Fréchet derivative of F at (0,0). Then by calculation, we have

L2

(
ξ

η

)
=

(
1
α1

(−� + M)−1[(a1 + Mα1)ξ ]
1
α2

(−� + M)−1[(a2 + Mα2)η]

)

for each (ξ, η) ∈ E.
We first show that 1 is not an eigenvalue of L2 corresponding to a positive eigenfunction(

ξ

η

)
. Assume that L2 has an eigenvalue 1, i.e., L2

(
ξ

η

)
=

(
ξ

η

)
. This can be written as

follows ⎧⎨
⎩

−�(α1ξ) = a1ξ, x ∈ �,

−�(α2η) = a2η, x ∈ �,

ξ = η = 0, x ∈ ∂�.

By Lemma 2.1(iii) we know that if ξ > 0 or η > 0, then λ1(α1�+a1) = 0 or λ1(α2�+a2) =
0, which contradicts the hypothesis (H5.1). Thus 1 is not an eigenvalue of L2 corresponding
to a positive eigenfunction.

Next we calculate indexW(F, (0,0)). Since λ1(α1� + a1) > 0, we get r(T1) > 1 by
Lemma 2.3(i), where

T1 := 1

α1
(−� + M)−1(a1 + Mα1).
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Then using the Krein-Rutman theorem, one can see that r(T1) is an eigenvalue of T1 with

a positive eigenfunction φ. That is, if we consider the pair

(
φ

0

)
and λ = r(T1) > 1, then

there is an eigenvalue greater than one with a positive eigenfunction. By Theorem 2.3, there
exists a σ ′

0 ∈ (0, ρ ′) such that indexW(F,Qσ ′) = 0 for any 0 < σ ′ < σ ′
0. On the other hand,

since (0,0) is isolated, there exists δ > 0 such that (0,0) is the only fixed point of F in Qδ .
If we take σ ′ < min{σ ′

0, δ}, then

indexW(F, (0,0)) = indexW(F,Qσ ′) = 0. �

Lemma 5.3 (i) If λ1(�(α2 + β21u
∗) + a2 − c2u∗

1+u∗ ) > 0, then indexW(F, (u∗,0)) = 0.

(ii) If λ1(�(α1 + β12v
∗) + a1 − c1v∗

1+v∗ ) > 0, then indexW(F, (0, v∗)) = 0.

Proof (i) For the point y = (u∗,0), we observe that Wy = C0(�) ⊕ K . Set L3 = F ′(u∗,0).
By calculation, we have

L3 =
(

(−� + M)

(
α1 + 2β11u

∗ β12u
∗

0 α2 + β21u
∗

))−1 (
α β

0 γ

)
,

⎧⎨
⎩

α = a1 − 2b1u
∗ + M(α1 + 2β11u

∗),
β = u∗(−c1 + Mβ12),

γ = a2 − c2u∗
1+u∗ + M(α2 + β21u

∗).
(5.2)

First we prove that I − L3 is invertible on Wy . Suppose that there is (ξ, η) ∈ Wy such

that (I − L3)

(
ξ

η

)
=

(
0
0

)
. Then we have

{
(−� + M)−1(αξ + βη) = (α1 + 2β11u

∗)ξ + β12u
∗η,

(−� + M)−1[(a2 − c2u∗
1+u∗ + M(α2 + β21u

∗))η] = (α2 + β21u
∗)η.

(5.3)

The second equation in (5.3) implies{−�[(α2 + β21u
∗)η] = (a2 − c2u∗

1+u∗ )η, x ∈ �,

η = 0, x ∈ ∂�,

where η ∈ K . If η �≡ 0, then we can consider η as a positive eigenfunction of �(α2 +
β21u

∗) + (a2 − c2u∗
1+u∗ ), and so λ1(�(α2 + β21u

∗) + a2 − c2u∗
1+u∗ ) = 0, which contradicts our

assumption. Thus η ≡ 0. Substituting η = 0 into the first equation of (5.3), we have{
�[(α1 + 2β11u

∗)ξ ] + (a1 − 2b1u
∗)ξ = 0, x ∈ �,

ξ = 0, x ∈ ∂�.

If ξ �≡ 0, then 0 is an eigenvalue of �(α1 + 2β11u
∗) + (a1 − 2b1u

∗), and so we have
λ1(�(α1 + 2β11u

∗)+ a1 − 2b1u
∗) ≥ 0, which contradicts the fact that λ1(�(α1 + 2β11u

∗)+
a1 − 2b1u

∗) < 0. Thus ξ ≡ 0, i.e., (ξ, η) = (0,0), and so I − L3 is invertible on Wy .
Next we show that L3 has property α on Wy . Observe that Sy = C0(�) ⊕ {0} and

Wy\Sy = C0(�)⊕{K\{0}}. Since λ1(�(α2 +β21u
∗)+a2 − c2u∗

1+u∗ ) > 0 from the assumption,
r(T2) > 1 by Lemma 2.3(i), where

T2 := 1

α2 + β21u∗ (−� + M)−1[a2 − c2u
∗

1 + u∗ + M(α2 + β21u
∗)],
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and so r(T2) is an eigenvalue of T2 with a corresponding positive eigenfunction φ∗
3 ∈ K \ {0}

by the Krein-Rutman theorem. Set t = 1/r(T2). Then t ∈ (0,1) and (0, φ∗
3 ) ∈ Wy\Sy . Thus

(I − tL3)

(
0
φ∗

3

)
=

⎛
⎜⎝

tβ12u∗(−�+M)−1((a2− c2u∗
1+u∗ +M(α2+β21u∗))φ∗

3 )

(α1+2β11u∗)(α2+β21u∗)
− t (−�+M)−1((−c1+Mβ12)u∗φ∗

3 )

α1+2β11u∗

φ∗
3 − t (−�+M)−1((a2− c2u∗

1+u∗ +M(α2+β21u∗))φ∗
3 )

α2+β21u∗

⎞
⎟⎠

=
⎛
⎝ tβ12u∗(−�+M)−1((a2− c2u∗

1+u∗ +M(α2+β21u∗))φ∗
3 )

(α1+2β11u∗)(α2+β21u∗)
− t (−�+M)−1((−c1+Mβ12)u∗φ∗

3 )

α1+2β11u∗
φ∗

3 − 1
r(T2)

T2φ
∗
3

⎞
⎠

=
(

tβ12u∗(−�+M)−1((a2− c2u∗
1+u∗ +M(α2+β21u∗))φ∗

3 )

(α1+2β11u∗)(α2+β21u∗)
− t (−�+M)−1((−c1+Mβ12)u∗φ∗

3 )

α1+2β11u∗
0

)

∈ Sy,

i.e., L3 has property α. Therefore indexW(F, (u∗,0)) = 0 by Theorem 2.2(i).
Using the similar technique, we can prove (ii). �

Lemma 5.4 (i) If λ1(�(α2 + β21u
∗) + a2 − c2u∗

1+u∗ ) ≤ 0, then indexW(F, (u∗,0)) = 1.

(ii) If λ1(�(α1 + β12v
∗) + a1 − c1v∗

1+v∗ ) ≤ 0, then indexW(F, (0, v∗)) = 1.

Proof We only prove (i) since we can make a similar argument for (ii). Consider the follow-
ing two cases:

(a) λ1(�(α2 + β21u
∗) + a2 − c2u∗

1+u∗ ) < 0;

(b) λ1(�(α2 + β21u
∗) + a2 − c2u∗

1+u∗ ) = 0.

Case (a). Note that Wy = C0(�) ⊕ K , Sy = C0(�) ⊕ {0}, Wy\Sy = C0(�) ⊕ {K\{0}}.
Assume that

(
ξ

η

)
is an eigenfunction of L3 corresponding to some eigenvalue λ ≥ 1. Then

we have {
(−� + M)−1(αξ + βη) = (α1 + 2β11u

∗)(λξ) + β12u
∗(λη),

(−� + M)−1[(a2 − c2u∗
1+u∗ + M(α2 + β21u

∗))η] = (α2 + β21u
∗)(λη).

(5.4)

By Lemma 2.3(ii), our assumption (a) implies

r(
1

α2 + β21u∗ (−� + M)−1(a2 − c2u
∗

1 + u∗ + M(α2 + β21u
∗))) < 1,

and so η ≡ 0. Substituting η = 0 into the first equation of (5.4), we can similarly derive
ξ ≡ 0 by λ1(�(α1 +2β11u

∗)+a1 −2b1u
∗) < 0 and Lemma 2.3(ii). This implies that I −L3

is invertible on Wy and L3 does not have an eigenvalue which is greater than or equal to
one. Further, as in Lemma 5.1, one can easily check that L3 does not have property α, so
indexW(F, (u∗,0)) = 1.

Case (b). Define Fμ1 = G−1 ◦ Hμ1 for μ1 ∈ [0,1], where

Hμ1(u, v) = ((−� + M)−1S1(u, v), (−� + M)−1S2,μ1(u, v)),
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S1(u, v) = u(a1 − b1u − c1v

1 + v
+ M(α1 + β11u + β12v)),

S2,μ1(u, v) = v(a2 − b2v − c2u

1 + u
− μ1 + M(α2 + β21u + β22v)).

Clearly, (u∗,0) is a fixed point of Fμ1 for each μ1 ∈ [0,1] and F0 = F . Also we can
easily verify that every fixed point of Fμ1 satisfies u(x) ≤ M1 and v(x) ≤ M2. Hence
Fμ1 has no fixed points on ∂D × [0,1]. By the homotopy invariance property of degree,
indexW(F, (u∗,0)) = indexW(Fμ1 , (u

∗,0)).
Now we show that indexW(Fμ1 , (u

∗,0)) = 1. Set Lμ1 = F ′
μ1

(u∗,0). Then we have

Lμ1 =
(

(−� + M)

(
α1 + 2β11u

∗ β12u
∗

0 α2 + β21u
∗

))−1 (
α β

0 γ ∗

)
,

where α,β are defined as in (5.2) and γ ∗ = a2 − c2u∗
1+u∗ − μ1 + M(α2 + β21u

∗). Fix μ1 > 0.

Suppose that

(
ξ

η

)
is an eigenfunction of Lμ1 corresponding to some eigenvalue λ ≥ 1.

Then η satisfies λη(α2 + β21u
∗) = (−�+ M)−1(γ ∗η), i.e., �((α2 + β21u

∗)η) + B∗η = 0 in
� and η = 0 on ∂�, where

B∗ = a2 − c2u
∗

1 + u∗ + 1 − λ

λ
(a2 − c2u

∗

1 + u∗ + M(α2 + β21u
∗)) − μ1

λ
,

η ∈ K . If η �≡ 0, then we can consider η as a positive eigenfunction of �(α2 + β21u
∗) + B∗.

This implies λ1(�(α2 +β21u
∗)+B∗) = 0. Since λ ≥ 1 and μ1 > 0, we have 0 = λ1(�(α2 +

β21u
∗)+B∗) < λ1(a2 +β21u

∗ +a2 − c2u∗
1+u∗ ) by Lemma 2.2(i), which contradicts our assump-

tion (b). So η ≡ 0. Thus ξ satisfies λ(α1 + 2β11u
∗)ξ = (−� + M)−1(αξ), and so

�((α1 + 2β11u
∗)ξ) + (a1 − 2b1u

∗ + 1 − λ

λ
α)ξ = 0

in � and ξ = 0 on ∂�. If ξ �≡ 0, then 0 is an eigenvalue of �(α1 + 2β11u
∗) + (a1 − 2b1u

∗ +
1−λ
λ

α), and so λ1(�(α1 + 2β11u
∗) + a1 − 2b1u

∗ + 1−λ
λ

α) ≥ 0. Since λ ≥ 1, we get

λ1(�(α1 + 2β11u
∗) + a1 − 2b1u

∗) ≥ 0

by Lemma 2.2(ii), which also contradicts the fact that λ1(�(α1 +2β11u
∗)+a1 −2b1u

∗) < 0.
Hence I − Lμ1 is invertible in Wy and Lμ1 has no eigenvalue greater than or equal to one.
As in Lemma 5.1, one can easily check that Lμ1 does not have property α on Wy . Thus we
conclude that indexW(Fμ1 , (u

∗,0)) = 1 by Theorem 2.2(ii). �

Combing Lemma 5.1-Lemma 5.4, we give the proof of Theorem 5.1.

Proof of Theorem 5.1 (i) By Theorem 4.1 we obtain that (0,0), (u∗,0), (0, v∗) ∈ D′. Sup-
pose that F has no positive fixed point in D′. Then by Lemma 5.1 and the additivity of
index, we have

indexW(F, (0,0)) + indexW(F, (u∗,0)) + indexW(F, (0, v∗)) = indexW(F,D′) = 1. (5.5)

If λ1(�(α1 + β12v
∗) + a1 − c1v∗

1+v∗ ) > 0 and λ1(�(α2 + β21u
∗) + a2 − c2u∗

1+u∗ ) > 0, then by
Lemmas 5.2 and 5.3 we have

indexW(F, (0,0)) + indexW(F, (u∗,0)) + indexW(F, (0, v∗)) = 0,
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which contradicts (5.5). By the similar arguments, when the signs of first eigenvalues
λ1(�(α1 + β12v

∗) + a1 − c1v∗
1+v∗ ) and λ1(�(α2 + β21u

∗) + a2 − c2u∗
1+u∗ ) are both negative or

zero, or one of these first eigenvalues is less than 0 and one is equal to 0, we can also de-
rive a contradiction by using Lemmas 5.1, 5.2 and 5.4. Therefore model (1.4) must have a
positive solution in D′. This concludes the proof of Theorem 5.1(i).

(ii) If β12 = β21 = 0, then model (1.4) becomes

⎧⎨
⎩

−�[(α1 + β11u)u] = u(a1 − b1u − c1v

1+v
), x ∈ �,

−�[(α2 + β21u)v] = v(a2 − b2v − c2u

1+u
), x ∈ �,

u = v = 0, x ∈ ∂�.

(5.6)

Similar to the proof of Theorem 5.1(i), we can show the sufficiency of the conditions in
Theorem 5.1(ii). We now prove the necessity. Here we assume h1 < 0 and h2 < 0. The other
cases are proved in the same way.

Let (ū, v̄) be a positive solution to system (5.6). Then ū solves

�[(α1 + β11ū)ū] + ū(a1 − b1ū − c1v̄

1 + v̄
) = 0, x ∈ �, ū = 0, x ∈ ∂�.

Hence ū is a positive lower solution to

�[(α1 + β11u)u] + u(a1 − b1u) = 0, x ∈ �, u = 0, x ∈ ∂�. (5.7)

Obviously, a1
b1

is an upper solution to (5.7). So (5.7) has a positive solution u∗, and hence

λ1(�(α1 + β11u
∗) + a1 − b1u

∗) = 0.

By the similar technique, we can obtain that

�[(α2 + β22v)v] + v(a2 − b2v) = 0, x ∈ �, v = 0, x ∈ ∂� (5.8)

has a positive solution v∗. Hence

λ1(�(α2 + β22v
∗) + a2 − b2v

∗) = 0.

By h1 < 0, h2 < 0 and Lemma 2.2, we have

λ1(α1� + a1 − c1v
∗

1 + v∗ ) < λ1(�(α1 + β11u
∗) + a1 − b1u

∗) = 0

and

λ1(α2� + a2 − c2u
∗

1 + u∗ ) < λ1(�(α2 + β22v
∗) + a2 − b2v

∗) = 0.

Therefore the signs of λ1(α1� + a1 − c1v∗
1+v∗ ) and λ1(α2� + a2 − c2u∗

1+u∗ ) are all negative.
Similarly, we can also prove that the other cases are true. This completes the proof of (ii). �

Remark 5.2 If the signs of the first eigenvalues λ1(�(α1 + β12v
∗) + a1 − c1v∗

1+v∗ ) and

λ1(�(α2 + β21u
∗) + a2 − c2u∗

1+u∗ ) are opposite, or one of these first eigenvalues is greater
than 0 and one is equal to 0, then by Lemmas 5.2-5.4, we have

indexW(F, (0,0)) + indexW(F, (u∗,0)) + indexW(F, (0, v∗)) = 1.
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By Lemma 5.1, we get indexW(F,D′) = 1, hence it cannot show that whether (1.4) has a
positive solution or not. However, if α1, α2, β12, β21 also satisfy α1 > D0

1, α2 > D0
2,D1 ≤

β12 < A1,D2 ≤ β21 < A2, then by Theorem 4.2 we know that model (1.4) has no positive
solution. Biologically, this implies that there may be at least one species cannot persist. From
the nature point of view, it is also reasonable.

According to Theorem 5.1(i), if we can find some conditions such that the signs of the
first eigenvalues λ1(�(α1 + β12v

∗) + a1 − c1v∗
1+v∗ ) and λ1(�(α2 + β21u

∗) + a2 − c2u∗
1+u∗ ) sat-

isfy any of the situations in Theorem 5.1(i), then the existence of positive solution of (1.4)
can be obtained. In fact, the following Corollary 5.1 and Corollaries 5.2-5.3 give some
sufficient conditions for the signs of the first eigenvalues λ1(�(α1 + β12v

∗) + a1 − c1v∗
1+v∗ )

and λ1(�(α2 + β21u
∗) + a2 − c2u∗

1+u∗ ) to be negative and positive, respectively. From Theo-
rem 5.1(i), it follows naturally that those conditions are sufficient for system (1.4) to have a
positive solution. We give the specific analysis as follows.

Corollary 5.1 System (1.4) has a positive solution either if

(i) the cross-diffusion pressures β12 and β21 are sufficiently large for fixed αi, ai, bi, ci , βii ,

i = 1,2, or
(ii) the inter-specific competition pressures c1 and c2 are sufficiently large for fixed αi, ai ,

bi, βij , i, j = 1,2.

Proof (i) By (2.2), we have

λ1(�(α1 + β12v
∗) + a1 − c1v

∗

1 + v∗ )

= sup
u∈W1,2(�)

∫
�
(−|∇[(α1 + β12v

∗)u]|2 + (α1 + β12v
∗)(a1 − c1v∗

1+v∗ )u2)dx

‖√(α1 + β12v∗)u‖2
L2

.

Obviously, there exists a constant m1 > 0 such that

λ1(�(α1 + β12v
∗) + a1 − c1v

∗

1 + v∗ ) < 0

for all β12 > m1. Similarly, there also exists a constant m2 > 0 such that

λ1(�(α2 + β21u
∗) + a2 − c2u

∗

1 + u∗ ) < 0

for all β21 > m2. Thus the result follows from Theorem 5.1(i).
Similarly, (ii) can also be proved. �

Corollary 5.2 If λ1 > − a1b2−c1a2/(a2+b2)

α1b2+a2β12
, λ1 > − a2b1−c2a1/(a1+b1)

α2b1+a1β21
, c1 < a1, c2 < a2, β12 <

α1(a1−c1)

a1
, β21 <

α2(a2−c2)

a2
, then model (1.4) has a positive solution.

Proof From the proof of Theorem 5.1(ii), we know that a1
b1

and a2
b2

are the positive upper
solutions of (5.7) and (5.8), respectively. Since u∗ and v∗ are the unique positive solution of
(5.7) and (5.8), respectively, u∗ ≤ a1

b1
, v∗ ≤ a2

b2
. From the assumptions λ1 > − a1b2−c1a2/(a2+b2)

α1b2+a2β12
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and λ1 > − a2b1−c2a1/(a1+b1)

α2b1+a1β21
, we get

λ1(�(α1 + β12(a2/b2)) + a1 − c1(a2/b2)

1 + a2/b2
) > 0

and

λ1(�(α2 + β21(a1/b1)) + a2 − c2(a1/b1)

1 + a1/b1
) > 0.

By assumptions c1 < a1, c2 < a2, β12 <
α1(a1−c1)

a1
, β21 <

α2(a2−c2)

a2
, we get that a1−c1v/(1+v)

α1+β12v

and a2−c2u/(1+u)

α2+β21u
are monotone decreasing in v ≥ 0 and u ≥ 0, respectively. So

a1 − c1v
∗/(1 + v∗)

α1 + β12v∗ >
a1 − c1(a2/b2)

1+a2/b2

α1 + β12(a2/b2)
and

a2 − c2u
∗/(1 + u∗)

α2 + β21u∗ >
a2 − c2(a1/b1)

1+a1/b1

α2 + β21(a1/b1)
,

and so λ1(�(α1 + β12v
∗) + a1 − c1v∗

1+v∗ ) > 0 and λ1(�(α2 + β21u
∗) + a2 − c2u∗

1+u∗ ) > 0 by
Lemma 2.2(ii). Therefore model (1.4) has a positive solution by Theorem 5.1(i). �

Corollary 5.3 If λ1 > − a2b1−c2a1/(a1+b1)

α2b1+a1β21
, c1 < a1, c2 < a2, β12 <

α1(a1−c1)

a1
, β21 <

α2(a2−c2)

a2
,

a1
a2

>
α1
α2

> max{ β12
β22

,
c1β11
b1β22

} and b1
b2

<
β11
β22

, then model (1.4) has a positive solution.

Proof Similar to the proof of Corollary 5.2, we can prove that

λ1(�(α2 + β21u
∗) + a2 − c2u

∗

1 + u∗ ) > 0

when λ1 > − a2b1−c2a1/(a1+b1)

α2b1+a1β21
, c2 < a2 and β21 <

α2(a2−c2)

a2
. Substituting u = α1β22

α2β11
v∗ into

(5.7) and using the given conditions a1
a2

>
α1
α2

,
b1
b2

<
β11
β22

, we get

�[(α1 + β11u)u] + u(a1 − b1u) = α1�[(1 + β11

α1
u)u] + u(a1 − b1u)

= α1�[(1 + β22

α2
v∗)

α1β22

α2β11
v∗] + α1β22

α2β11
v∗(a1 − b1α1β22

α2β11
v∗)

= α2
1β22

α2
2β11

v∗(b2v
∗ − a2) + α1β22

α2β11
v∗(a1 − b1α1β22

α2β11
v∗)

= α1β22

α2β11
v∗[a1 − a2α1

α2
+ (

b2α1

α2
− b1α1β22

α2β11
)v∗]

> 0.

So, α1β22
α2β11

v∗ is a positive lower solution to (5.7), and α1β22
α2β11

v∗ < u∗.

By assumptions c1 < a1 and β12 <
α1(a1−c1)

a1
, we know that a1−c1v/(1+v)

α1+β12v
is mono-

tone decreasing with respect to v ≥ 0, so by Lemma 2.2(ii) and given condition α1
α2

>
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max{ β12
β22

,
c1β11
b1β22

}, we have

λ1(�(α1 + β12v
∗) + a1 − c1v

∗

1 + v∗ ) > λ1(�(α1 + α2β11β12

α1β22
u∗)+a1 − c1α2β11u

∗/(α1β22)

1 + α2β11u∗/(α1β22)
)

> λ1(�(α1 + α2β11β12

α1β22
u∗) + a1 − c1α2β11u

∗/(α1β22))

> λ1(�(α1 + β11u
∗) + a1 − b1u

∗)

= 0.

Therefore, by Theorem 5.1(i) we know that model (1.4) has a positive solution. �

6 Conclusion

A rigorous investigation on the dynamics of a competitive model with cross-diffusion and
nonlinear functional response subject to the homogeneous Dirichlet boundary condition is
discussed. We first prove the stability of trivial and semi-trivial solutions of model (1.4) by
spectrum analysis. Then the boundedness and non-existence of positive solution of (1.4)
are obtained. By using the fixed point index theory in a positive cone, we prove that the
existence of positive solutions of model (1.4) can be characterized by the signs of the first
eigenvalues λ1(�(α1 +β12v

∗)+a1 − c1v∗
1+v∗ ) and λ1(�(α2 +β21u

∗)+a2 − c2u∗
1+u∗ ). Combining

with the previous analysis in this paper, we get the following conclusions:
(I) Assume that the cross-diffusion pressures of two competition species u and v are

controlled in the certain range. (i) If the signs of the first eigenvalues λ1(�(α1 + β12v
∗) +

a1 − c1v∗
1+v∗ ) and λ1(�(α2 +β21u

∗)+a2 − c2u∗
1+u∗ ) are the same, or one of these first eigenvalues

is less than 0 and one is equal to 0, then (1.4) has a positive solution (see Theorem 5.1(i));
(ii) Suppose that the signs of the first eigenvalues above are opposite, or one of these first
eigenvalues is greater than 0 and one is equal to 0. If the self- and cross-diffusion pressures
also meet additional conditions (i.e., α1 > D0

1, α2 > D0
2,D1 ≤ β12 < A1,D2 ≤ β21 < A2),

then model (1.4) has no positive solution (see Remark 5.2). Biologically, the former case
implies that the two competition species u and v can coexist, and the later case implies that
there may be at least one species cannot persist. From the nature point of view, it is also
reasonable.

(II) Assume that the cross-diffusion pressures β12 = β21 = 0, and some certain condi-
tions also hold (i.e. h1 and h2 have the same signs on (0,M)). Then the conditions in Theo-
rem 5.1(i) are necessary and sufficient for the existence of positive solutions to system (1.4)
(see Theorem 5.1(ii)). Biologically, this means that the two competition species u and v can
coexist, and when their self-diffusion, inter-specific competition pressures and growth rates
meet certain conditions, their coexistence is not affected by the cross-diffusion pressures.

(III) Either if the cross-diffusion pressures β12 and β21 or the inter-specific competition
pressures c1 and c2 are sufficiently large, then system (1.4) has a positive solution (see
Corollary 5.1). Biologically, this means that the two competition species u and v can coexist
when their pressures of cross-diffusion or inter-specific competition are sufficiently large.
Moreover, we also prove that when cross-diffusion pressures are controlled within a certain
range, two species can also coexist (see Corollary 5.2 and Corollary 5.3).

The methods and results in the present paper may enrich the research of dynamics in the
competition model. Further studies are necessary to analyze the behavior of more complex
spatial models such as competition model with time delay or other kinds of cross-diffusion
terms and functional responses.
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