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Abstract We investigate the stabilization of a locally coupled wave equations with only
one internal viscoelastic damping of Kelvin-Voigt type (see System (1.2)-(1.4)). The main
novelty in this paper is that both the damping and the coupling coefficients are non smooth
(see (1.5)). First, using a general criteria of Arendt-Batty, combined with an uniqueness
result, we prove that our system is strongly stable. Next, using a spectrum approach, we
prove the non-exponential (uniform) stability of the system. Finally, using a frequency do-
main approach, combined with a piecewise multiplier technique and the construction of a
new multiplier satisfying some ordinary differential equations, we show that the energy of
smooth solutions of the system decays polynomially of type t−1.

Keywords Wave equation · Kelvin-Voigt damping · Semigroup · Stability

1 Introduction

1.1 Motivation and Aims

There are several mathematical models representing physical damping. The most often en-
countered type of damping in vibration studies are linear viscous damping and Kelvin-Voigt
damping which are special cases of proportional damping. Viscous damping usually models
external friction forces such as air resistance acting on the vibrating structures and is thus
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called “external damping”, while Kelvin-Voigt damping originates from the internal fric-
tion of the material of the vibrating structures and thus called “internal damping”. In 1988,
F. Huang in [17] considered a wave equation with globally distributed Kelvin-Voigt damp-
ing, i.e. the damping coefficient is strictly positive on the entire spatial domain. He proved
that the corresponding semigroup is not only exponentially stable, but also is analytic (see
Definition A.10, Theorem A.12 and Theorem A.14 below). Thus, Kelvin-Voigt damping is
stronger than the viscous damping when globally distributed. Indeed, it was proved that the
semigroup corresponding to the system of wave equations with global viscous damping is
exponentially stable but not analytic (see [11] for the one dimensional system and [8] for
the higher dimensional system). However, the exponential stability of a wave equation is
still true even if the viscous damping is localized, via a smooth or a non smooth damping
coefficient, in a suitable subdomain satisfying some geometric conditions (see [8]). Never-
theless, when viscoelastic damping is distributed locally, the situation is more delicate and
such comparison between viscous and viscoelastic damping is not valid anymore. Indeed,
the stabilization of the wave equation with local Kelvin-Voigt damping is greatly influenced
by the smoothness of the damping coefficient and the region where the damping is localized
(near or faraway from the boundary) even in the one-dimensional case. So, the stabilization
of systems (simple or coupled) with local Kelvin-Voigt damping has attracted the attention
of many authors (see the Literature below for the history of this kind of damping). From
a mathematical point of view, it is important to study the stability of a system coupling a
locally damped wave equation with a conservative one. Moreover, the study of this kind
of systems is also motivated by several physical considerations and occurs in many applica-
tions in engineering and mechanics. In this direction, recently in 2019, Hassine and Souayeh
in [15], studied the stabilization of a system of global coupled wave equations with one lo-
calized Kelvin-Voigt damping. The system is described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt − (ux + b(x)utx)x + vt = 0, (x, t) ∈ (−1,1) ×R
+,

vtt − cvxx − ut = 0, (x, t) ∈ (−1,1) ×R
+,

u(0, t) = v(0, t) = 0, u(1, t) = v(1, t) = 0, t > 0,

u(x,0) = u0(x), ut (x,0) = u1(x), x ∈ (−1,1),

v(x,0) = v0(x), vt (x,0) = v1(x), x ∈ (−1,1),

(1.1)

where c > 0, and b ∈ L∞(−1,1) is a non-negative function. They assumed that the damping
coefficient is given by b(x) = d1[0,1](x), where d is a strictly positive constant. The Kelvin-
Voigt damping (b(x)utx)x is applied at the first equation and the second equation is indirectly
damped through the coupling between the two equations. Under the two conditions that
the Kelvin-Voigt damping is localized near the boundary and the two waves are globally
coupled, they obtained a polynomial energy decay rate of type t−

1
6 . Then the stabilization

of System (1.1) in the case where the Kelvin-Voigt damping is localized in an arbitrary
subinterval of (−1,+1) and the two waves are locally coupled has been left as an open
problem. In addition, we believe that the energy decay rate obtained in [15] can be improved.
So, we are interested in studying this open problem.

The main aim of this paper is to study the stabilization of a system of localized coupled
wave equations with only one Kelvin-Voigt damping localized via non-smooth coefficient
in a subinterval of the domain. The system is described by

utt − (aux + b(x)utx)x + c(x) yt = 0, (x, t) ∈ (0,L) ×R
+, (1.2)



Stability Results of an Elastic/Viscoelastic Transmission Problem. . . Page 3 of 46 23

ytt − yxx − c(x) ut = 0, (x, t) ∈ (0,L) ×R
+, (1.3)

with fully Dirichlet boundary conditions,

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, ∀ t ∈R
+, (1.4)

where

b(x) =
{

b0 if x ∈ (α1, α3)

0 otherwise
and c(x) =

{
c0 if x ∈ (α2, α4)

0 otherwise
(1.5)

and a > 0, b0 > 0 and c0 ∈ R
∗, and where we consider 0 < α1 < α2 < α3 < α4 < L. This

system is considered with the following initial data

u(·,0) = u0(·), ut (·,0) = u1(·), y(·,0) = y0(·) and yt (·,0) = y1(·). (1.6)

1.2 Literature

The wave is created when a vibrating source disturbs the medium. In order to restrain those
vibrations, several dampings can be added such as Kelvin-Voigt damping which is originated
from the extension or compression of the vibrating particles. This damping is a viscoelas-
tic structure having properties of both elasticity and viscosity. In the recent years, many re-
searchers showed interest in problems involving this kind of damping (local or global) where
different types of stability have been showed. In particular, in the one dimensional case, it
was proved that the smoothness of the damping coefficient affects critically the studying of
the stability and regularity of the solution of the system. Indeed, in the one dimensional case
we can consider the following system

⎧
⎪⎪⎨

⎪⎪⎩

utt − (ux + b1(x)utx)x = 0, −1 ≤ x ≤ 1, t > 0,

u(1, t) = u(−1, t) = 0, t > 0,

u(x,0) = u0(x), ut (x,0) = u1(x), −1 ≤ x ≤ 1,

(1.7)

with b1 ∈ L∞(−1,1) and

b1(x) =
{

0 if x ∈ (0,1),

a1(x) if x ∈ (−1,0),
(1.8)

where the function a1(x) is non-negative. The case of local Kelvin-Voigt damping was first
studied in 1998 [19, 25], it was proved that the semigroup loses exponential stability and
smooth property when the damping is local and a1 = 1 or b1(·) is the characteristic function
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of any subinterval of the domain. This surprising result initiated the study of an elastic
system with local Kelvin-Voigt damping. In 2002, K. Liu and Z. Liu proved that system (1.7)
is exponentially stable if b′

1(.) ∈ C0,1([−1,1]) (see [20]). Later, in [34], the smoothness on
b1 was weakened to b1(·) ∈ C1([−1,1]) and a condition on a1 was taken. In 2004, Renardy’s
results [32] hinted that the solution of the system (1.7) may be exponentially stable under
smoother conditions on the damping coefficient. This result was confirmed by K. Liu, Z.
Liu and Q. Zhang in [26]. On the other hand, Liu and Rao in 2005 (see [21]) proved that
the semigroup corresponding to system (1.7) is polynomially stable of order almost 2 if
a1(.) ∈ C(0,1) and a1(x) ≥ a1 ≥ 0 on (0,1). The optimality of this order was later proved
in [2]. In 2014, Alves and al., in [1], considered the transmission problem of a material
composed of three components; one of them is a Kelvin–Voigt viscoelastic material, the
second is an elastic material (no dissipation) and the third is an elastic material inserted with
a frictional damping mechanism. They proved that the rate of decay depends on the position
of each component. When the viscoelastic component is not in the middle of the material,
they proved exponential stability of the solution. However, when the viscoelastic part is
in the middle of the material, the solution decays polynomially as t−2. In 2016, under the
assumption that the damping coefficient has a singularity at the interface of the damped and
undamped regions and behaves like xα near the interface, it was proven by Liu and Zhang
[23] that the semigroup corresponding to the system is polynomially or exponentially stable
and the decay rate depends on the parameter α ∈ (0,1]. In [5], Ammari et al. generalized
the cases of single elastic string with local Kelvin-Voigt damping (in [3, 20]). They studied
the stability of a tree of elastic strings with local Kelvin-Voigt damping on some of the
edges. They proved exponential/polynomial stability of the system under the compatibility
condition of displacement and strain and the continuity condition of damping coefficients at
the vertices of the tree.

In [13], Hassine considered the longitudinal and transversal vibrations of the transmis-
sion Euler-Bernoulli beam with Kelvin-Voigt damping distributed locally on any subinterval
of the region occupied by the beam. He proved that the semigroup associated with the equa-
tion for the transversal motion of the beam is exponentially stable, although the semigroup
associated with the equation for the longitudinal motion of the beam is polynomially stable
of type t−2. In [14], Hassine considered a beam and a wave equation coupled on an elastic
beam through transmission conditions with locally distributed Kelvin-Voigt damping that
acts through one of the two equations only. He proved a polynomial energy decay rate of
type t−2 for both cases where the dissipation acts through the beam equation and through
the wave equation. In 2016, Oquendo and Sanez studied the wave equation with internal
coupled terms where the Kelvin-Voigt damping is global in one equation and the second
equation is conservative. They showed that the semigroup loses speed and decays with the
rate t−

1
4 and they proved that this decay rate is optimal (see [30]).

Let us mention some of the results that have been established for the case of wave equa-
tion with Kelvin-Voigt damping in the multi-dimensional setting. In [17], the author proved
that when the Kelvin-Voigt damping div(d(x)∇ut ) is globally distributed, i.e. d(x) ≥ d0 > 0
for almost all x ∈ �, the wave equation generates an analytic semi-group. In [22], the au-
thors considered the wave equation with local visco-elastic damping distributed around the
boundary of �. They proved that the energy of the system decays exponentially to zero as
t goes to infinity for all usual initial data under the assumption that the damping coefficient
satisfies: d ∈ C1,1(�), �d ∈ L∞(�) and |∇d(x)|2 ≤ M0d(x) for almost every x in � where
M0 is a positive constant. On the other hand, in [33], the author studied the stabilization of
the wave equation with Kelvin-Voigt damping. He established a polynomial energy decay
rate of type t−1 provided that the damping region is localized in a neighborhood of a part of
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the boundary and verifies certain geometric condition. Also in [28], under the same assump-
tions on d , the authors established the exponential stability of the wave equation with local
Kelvin-Voigt damping localized around a part of the boundary and an extra boundary with
time delay where they added an appropriate geometric condition. Later on, in [4], the wave
equation with Kelvin-Voigt damping localized in a subdomain ω far away from the bound-
ary without any geometric conditions was considered. The authors established a logarithmic
energy decay rate for smooth initial data. Further more, in [27], the authors investigate the
stabilization of the wave equation with Kelvin-Voigt damping localized via non smooth co-
efficient in a suitable sub-domain of the whole bounded domain. They proved a polynomial
stability result in any space dimension, provided that the damping region satisfies some ge-
ometric conditions.

1.3 Description of the Paper

This paper is organized as follows: In Sect. 2.1, we reformulate the system (1.2)-(1.6) into an
evolution system and we prove the well-posedness of our system by semigroup approach.
In Sect. 2.2, using a general criteria of Arendt and Batty, we show the strong stability of
our system in the absence of the compactness of the resolvent. In Sect. 3, we prove that
the system lacks exponential stability using two different approaches. The first case is by
taking the damping and the coupling terms to be globally defined, i.e. b(x) = b0 > 0 and
c(x) = c0 > 0 and we prove the lack of exponential stability using Borichev-Tomilov results.
The second case is by taking only the damping term to be localized and we use the method
which was developed by Littman and Markus. In Sect. 4, we look for a polynomial decay
rate by applying a frequency domain approach combined with a multiplier method based on
the exponential stability of an auxiliary problem, where we establish a polynomial energy
decay for smooth solution of type t−1.

2 Well-Posedness and Strong Stability

In this section, we study the strong stability of System (1.2)-(1.6). First, using a semigroup
approach, we establish well-posedness result of our system.

2.1 Well-Posedness

Firstly, we reformulate System (1.2)-(1.6) into an evolution problem in an appropriate
Hilbert state space.

The energy of System (1.2)-(1.6) is given by

E(t) = 1

2

∫ L

0

(|ut |2 + a|ux |2 + |yt |2 + |yx |2
)
dx.

Let (u,ut , y, yt ) be a regular solution of (1.2)-(1.6). Multiplying (1.2), (1.3) by ut , yt , re-
spectively, then using the boundary conditions (1.4), we get

E′(t) = −
∫ L

0
b(x)|utx |2dx,
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using the definition of the function b(x), we get E′(t) ≤ 0. Thus, System (1.2)-(1.6) is
dissipative in the sense that its energy is a non-increasing function with respect to the time
variable t . Let us define the energy space H by

H = (H 1
0 (0,L) × L2(0,L))2.

The energy space H is equipped with the inner product defined by

〈U,U1〉H =
∫ L

0
vv1dx + a

∫ L

0
ux(u1)xdx +

∫ L

0
zz1dx +

∫ L

0
yx(y1)xdx,

for all U = (u, v, y, z) and U1 = (u1, v1, y1, z1) in H. We use ‖U‖H to denote the corre-
sponding norm. We define the unbounded linear operator A : D (A) ⊂ H −→ H by

D(A) =
{

U = (u, v, y, z) ∈ H; y ∈ H 2 (0,L) ∩ H 1
0 (0,L)

v, z ∈ H 1
0 (0,L), (aux + b(x)vx)x ∈ L2(0,L)

}

and for all U = (u, v, y, z) ∈ D (A),

A (u, v, y, z) = (v, (aux + b(x)vx)x − c(x)z, z, yxx + c(x)v)� .

If U = (u,ut , y, yt ) is the state of System (1.2)-(1.6), then this system is transformed into
the first order evolution equation on the Hilbert space H given by

Ut = AU, U(0) = U0, (2.1)

where U0 = (u0, u1, y0, y1).

Proposition 2.1 The unbounded linear operator A is m-dissipative in the energy space H.

Proof For all U = (u, v, y, z) ∈ D (A), we have

� (〈AU,U〉H) = −
∫ L

0
b(x)|vx |2dx = −

∫ α3

α1

b0|vx |2dx ≤ 0,

which implies that A is dissipative. Here � is used to denote the real part of a complex
number. Now, let F = (f1, f2, f3, f4), we prove the existence of U = (u, v, y, z) ∈ D(A),
solution of the equation

−AU = F. (2.2)

Equivalently, one must consider the system given by

−v = f1, (2.3)

−(aux + b(x)vx)x + c(x)z = f2, (2.4)

−z = f3, (2.5)

−yxx − c(x)v = f4, (2.6)

with the boundary conditions

u(0) = u(L) = 0, and y(0) = y(L) = 0. (2.7)
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Let (ϕ,ψ) ∈ H 1
0 (0,L) × H 1

0 (0,L). Multiplying Equations (2.4) and (2.6) by ϕ and ψ re-
spectively, integrate over (0,L), we obtain

∫ L

0
(aux + b(x)vx)ϕxdx +

∫ L

0
c(x)zϕdx =

∫ L

0
f2ϕdx, (2.8)

∫ L

0
yxψxdx −

∫ L

0
c(x)vψdx =

∫ L

0
f4ψdx. (2.9)

Inserting Equations (2.3) and (2.5) into (2.8) and (2.9), we get

∫ L

0
auxϕxdx =

∫ L

0
f2ϕdx +

∫ L

0
b(x)(f1)xϕxdx +

∫ L

0
c(x)f3ϕdx, (2.10)

∫ L

0
yxψxdx =

∫ L

0
f4ψdx −

∫ L

0
c(x)f1ψdx. (2.11)

Adding Equations (2.10) and (2.11), we obtain

a ((u, y), (ϕ,ψ)) = L(ϕ,ψ) , ∀ (ϕ,ψ) ∈ H 1
0 (0,L) × H 1

0 (0,L), (2.12)

where

a ((u, y), (ϕ,ψ)) = a

∫ L

0
uxϕxdx +

∫ L

0
yxψxdx (2.13)

and

L(ϕ,ψ) =
∫ L

0
f2ϕdx +

∫ L

0
b(x)(f1)xϕxdx +

∫ L

0
c(x)f3ϕdx +

∫ L

0
f4ψdx

−
∫ L

0
c(x)f1ψdx. (2.14)

Thanks to (2.13), (2.14), we have that a is a bilinear continuous coercive form on
(
H 1

0 (0,L) × H 1
0 (0,L)

)2
, and L is a linear continuous form on H 1

0 (0,L) × H 1
0 (0,L). Then,

using Lax-Milgram theorem, we deduce that there exists (u, y) ∈ H 1
0 (0,L) × H 1

0 (0,L)

unique solution of the variational problem (2.12). Applying the classical elliptic regular-
ity we deduce that U = (u, v, y, z) ∈ D(A) is the unique solution of (2.2). The proof is thus
complete. �

From Proposition 2.1, the operator A is m-dissipative on H and consequently, generates
a C0−semigroup of contractions

(
etA)

t≥0
following Lummer-Phillips theorem (see in [24]

and [29]). Then the solution of the evolution Equation (2.1) admits the following represen-
tation

U(t) = etAU0, t ≥ 0,

which leads to the well-posedness of (2.1). Hence, we have the following result.

Theorem 2.2 Let U0 ∈ H then, problem (2.1) admits a unique weak solution U satisfies

U(t) ∈ C0
(
R

+,H
)
.
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Moreover, if U0 ∈ D(A) then, problem (2.1) admits a unique strong solution U satisfies

U(t) ∈ C1
(
R

+,H
)∩ C0(R+,D(A)).

2.2 Strong Stability

This part is devoted for the proof of the strong stability of the C0-semigroup
(
etA)

t≥0
.

To obtain strong stability of the C0-semigroup
(
etA)

t≥0
we use the theorem of Arendt

and Batty in [6] (see Theorem A.11 in the Appendix).

Theorem 2.3 The C0−semigroup of contractions
(
etA)

t≥0
is strongly stable in H; i.e. for

all U0 ∈ H, the solution of (2.1) satisfies

lim
t→+∞‖etAU0‖H = 0.

For the proof of Theorem 2.3, since the condition (u, v, y, z) ∈ D(A) implies only u ∈
H 1

0 (0,L). Therefore, the embedding from D(A) into H is not compact and the resolvent
(−A)−1 of the operator A is not compact in general. Then according to Theorem A.11, we
need to prove that the operator A has no pure imaginary eigenvalues and σ (A)∩ iR contains
only a countable number of continuous spectrum of A. The argument for Theorem 2.3 relies
on the subsequent lemmas.

Lemma 2.4 For λ ∈R, we have iλI −A is injective i.e.

ker (iλI −A) = {0}, ∀λ ∈ R.

Proof From Proposition 2.1, we have 0 ∈ ρ(A). We still need to show the result for λ ∈R
∗.

Suppose that there exists a real number λ �= 0 and U = (u, v, y, z) ∈ D(A), such that

AU = iλU.

Equivalently, we have

v = iλu, (2.15)

(aux + b(x)vx)x − c(x)z = iλv, (2.16)

z = iλy, (2.17)

yxx + c(x)v = iλz. (2.18)

Next, a straightforward computation gives

0 = �〈iλU,U〉H = �〈AU,U〉H = −
∫ L

0
b(x)|vx |2dx = −

∫ α3

α1

b0|vx |2dx,

consequently, we deduce that

b(x)vx = 0 in (0,L) and vx = 0 in (α1, α3). (2.19)

It follows, from Equation (2.15), that

ux = 0 in (α1, α3). (2.20)
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Using Equations (2.16), (2.17), (2.19), (2.20) and the definition of c(x), we obtain

yx = 0 in (α2, α3). (2.21)

Substituting Equations (2.15), (2.17) in Equations (2.16), (2.18), and using Equation (2.19)
and the definition of b(x) in (1.5), we get

λ2u + auxx − iλc(x)y = 0, in (0,L) (2.22)

λ2y + yxx + iλc(x)u = 0, in (0,L) (2.23)

with the boundary conditions

u(0) = u(L) = y(0) = y(L) = 0. (2.24)

Our goal is to prove that u = y = 0 on (0,L). For simplicity, we divide the proof into three
steps.

Step 1. The aim of this step is to show that u = y = 0 on (0, α3). So, using Equation (2.20),
we have

ux = 0 in (α1, α2).

Using the above equation and Equation (2.22) and the fact that c(x) = 0 on (α1, α2), we
obtain

u = 0 in (α1, α2). (2.25)

In fact, system (2.22)-(2.24) admits a unique solution (u, y) ∈ C1 ([0,L]), then

u(α1) = ux(α1) = 0. (2.26)

Then, from Equations (2.22) and (2.26) and the fact that c(x) = 0 on (0, α1), we get

u = 0 in (0, α1). (2.27)

Using Equations (2.20) and (2.25) and the fact that u ∈ C1([0,L]), we get

u = 0 in (α1, α3). (2.28)

Now, using Equations (2.20), (2.21) and the fact that c(x) = c0 on (α2, α3) in Equations
(2.22), (2.23), we obtain

u = ic0

λ
y in (α2, α3). (2.29)

Using Equation (2.28) in Equation (2.29), we obtain

u = y = 0 in (α2, α3). (2.30)

Since y ∈ C1([0,L]), then

y(α2) = yx(α2) = 0. (2.31)

So, from Equations (2.23) and (2.31) and the fact that c(x) = 0 on (α1, α2), we obtain

y = 0 in (α1, α2). (2.32)
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Using the same argument over (0, α1), we get

y = 0 in (0, α1). (2.33)

Hence, from Equations (2.25), (2.27), (2.28), (2.30), (2.32) and (2.33), we obtain u = y = 0
on (0, α3). Consequently, we obtain

U = 0 in (0, α3).

Step 2. The aim of this step is to show that u = y = 0 on (α3, α4). Using Equation (2.30),
and the fact that (u, y) ∈ C1([0,L]), we obtain the boundary conditions

u(α3) = ux(α3) = y(α3) = yx(α3) = 0. (2.34)

Combining Equations (2.22), (2.23), and the fact that c(x) = c0 on (α3, α4), we get

auxxxx + (a + 1)λ2uxx + λ2
(
λ2 − c2

0

)
u = 0. (2.35)

The characteristic equation of system (2.35) is

P (r) := ar4 + (a + 1)λ2r2 + λ2
(
λ2 − c2

0

)
.

Setting

P0(m) := am2 + (a + 1)λ2m + λ2
(
λ2 − c2

0

)
.

The polynomial P0 has two distinct real roots m1 and m2 given by:

m1 =
−λ2(a + 1) −

√

λ4(a − 1)2 + 4ac2
0λ

2

2a
and

m2 =
−λ2(a + 1) +

√

λ4(a − 1)2 + 4ac2
0λ

2

2a
.

It is clear that m1 < 0 and the sign of m2 depends on the value of λ with respect to c0. We
distinguish the following three cases: λ2 < c2

0, λ2 = c2
0 and λ2 > c2

0.

Case 1. If λ2 < c2
0, then m2 > 0. Setting

r1 = √−m1 and r2 = √
m2.

Then P has four simple roots ir1, −ir1, r2 and −r2, and hence the general solution of system
(2.22), (2.23), is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(x) = c1 sin(r1x) + c2 cos(r1x) + c3 cosh(r2x) + c4 sinh(r2x),

y(x) = (λ2 − ar2
1 )

iλc0
(c1 sin(r1x) + c2 cos(r1x))

+ (λ2 + ar2
2 )

iλc0
(c3 cosh(r2x) + c4 sinh(r2x)) ,
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where cj ∈ C, j = 1, . . . ,4. In this case, the boundary condition in Equation (2.34), can be
expressed by

M1

⎛

⎜
⎜
⎝

c1

c2

c3

c4

⎞

⎟
⎟
⎠= 0,

where

M1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sin(r1α3) cos(r1α3) cosh(r2α3) sinh(r2α3)

r1 cos(r1α3) −r1 sin(r1α3) r2 sinh(r2α3) r2 cosh(r2α3)

(λ2 − ar2
1 )

iλc0
sin(r1α3)

(λ2 − ar2
1 )

iλc0
cos(r1α3)

(λ2 + ar2
2 )

iλc0
cosh(r2α3)

(λ2 + ar2
2 )

iλc0
sinh(r2α3)

(λ2 − ar2
1 )

iλc0
r1 cos(r1α3) − (λ2 − ar2

1 )

iλc0
r1 sin(r1α3)

(λ2 + ar2
2 )

iλc0
r2 sinh(r2α3)

(λ2 + ar2
2 )

iλc0
r2 cosh(r2α3)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The determinant of M1 is given by

det(M1) = r1r2a
2
(
r2

1 + r2
2

)2

λ2c2
0

.

System (2.22), (2.23) with the boundary conditions (2.34), admits only a trivial solution
u = y = 0 if and only if det(M1) �= 0, i.e. M1 is invertible. Since, r2

1 + r2
2 = m2 − m1 �= 0,

then det(M1) �= 0. Consequently, if λ2 < c2
0, we obtain u = y = 0 on (α3, α4).

Case 2. If λ2 = c2
0, then m2 = 0. Setting

r1 = √−m1 =
√

(a + 1)c2
0

a
.

Then P has two simple roots ir1, −ir1 and 0 is a double root. Hence the general solution of
System (2.22), (2.23) is given by

⎧
⎨

⎩

u(x) = c1 sin(r1x) + c2 cos(r1x) + c3x + c4,

y(x) = (λ2 − ar2
1 )

iλc0
(c1 sin(r1x) + c2 cos(r1x)) + λ

ic0
(c3x + c4),

where cj ∈ C, for j = 1, . . . ,4. Also, the boundary condition in Equation (2.34), can be
expressed by

M2

⎛

⎜
⎜
⎝

c1

c2

c3

c4

⎞

⎟
⎟
⎠= 0,

where

M2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sin(r1α3) cos(r1α3) α3 1

r1 cos(r1α3) −r1 sin(r1α3) 1 0

(λ2 − ar2
1 )

iλc0
sin(r1α3)

(λ2 − ar2
1 )

iλc0
cos(r1α3)

λα3

ic0

λ

ic0

(λ2 − ar2
1 )

iλc0
r1 cos(r1α3) − (λ2 − ar2

1 )

iλc0
r1 sin(r1α3)

λ

ic0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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The determinant of M2 is given by

det(M2) = −a2r5
1

λ2c2
0

.

Since r1 = √−m1 �= 0, then det(M2) �= 0. Thus, System (2.22), (2.23) with the boundary
conditions (2.34), admits only a trivial solution u = y = 0 on (α3, α4).

Case 3. If λ2 > c2
0, then m2 < 0. Setting

r1 = √−m1 and r2 = √−m2.

Then P has four simple roots ir1, −ir1, ir2 and −ir2, and hence the general solution of
System (2.22), (2.23) is given by

⎧
⎪⎨

⎪⎩

u(x) = c1 sin(r1x) + c2 cos(r1x) + c3 sin(r2x) + c4 cos(r2x),

y(x) = (λ2 − ar2
1 )

iλc0
(c1 sin(r1x) + c2 cos(r1x)) + (λ2− ar2

2 )

iλc0
(c3 sin(r2x) + c4 cos(r2x)),

where cj ∈ C, for j = 1, . . . ,4. Also, the boundary condition in Equation (2.34), can be
expressed by

M3

⎛

⎜
⎜
⎝

c1

c2

c3

c4

⎞

⎟
⎟
⎠= 0,

where

M3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

sin(r1α3) cos(r1α3) sin(r2α3) cos(r2α3)

r1 cos(r1α3) −r1 sin(r1α3) r2 cos(r2α3) −r2 sin(r2α3)

(λ2 − ar2
1 )

iλc0
sin(r1α3)

(λ2 − ar2
1 )

iλc0
cos(r1α3)

(λ2 − ar2
2 )

iλc0
sin(r2α3)

(λ2 + ar2
2 )

iλc0
cos(r2α3)

(λ2 − ar2
1 )

iλc0
r1 cos(r1α3) − (λ2 − ar2

1 )

iλc0
r1 sin(r1α3)

(λ2 − ar2
2 )

iλc0
r2 cos(r2α3) − (λ2 − ar2

2 )

iλc0
r2 sin(r2α3)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The determinant of M3 is given by

det(M3) = − r1r2a
2(r2

1 − r2
2 )2

λc2
0

.

Since r2
1 − r2

2 = m2 −m1 �= 0, then det(M3) �= 0. Thus, System (2.22)-(2.23) with the bound-
ary condition (2.34), admits only a trivial solution u = y = 0 on (α3, α4). Consequently, we
obtain U = 0 on (α3, α4).

Step 3. The aim of this step is to show that u = y = 0 on (α4,L). From Equations (2.22),
(2.23) and the fact that c(x) = 0 on (α4,L), we obtain the following system

{
λ2u + auxx = 0 over (α4,L)

λ2y + yxx = 0 over (α4,L).
(2.36)
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Since (u, y) ∈ C1([0,L]) and the fact that u = y = 0 on (α3, α4), we get

u(α4) = ux(α4) = y(α4) = yx(α4) = 0. (2.37)

Finally, it is easy to see that System (2.36) admits only a trivial solution on (α4,L) under
the boundary condition (2.37).

Consequently, we proved that U = 0 on (0,L). The proof is thus complete. �

Lemma 2.5 For all λ ∈ R, we have

R(iλI −A) = H.

Proof From Proposition 2.1, we have 0 ∈ ρ(A). We still need to show the result for λ ∈R
∗.

Set F = (f1, f2, f3, f4) ∈ H, we look for U = (u, v, y, z) ∈ D(A) solution of

(iλI −A)U = F. (2.38)

Equivalently, we have

v = iλu − f1, (2.39)

iλv − (aux + b(x)vx)x + c(x)z = f2, (2.40)

z = iλy − f3, (2.41)

iλz − yxx − c(x)v = f4. (2.42)

Let (ϕ,ψ) ∈ H 1
0 (0,L) × H 1

0 (0,L), multiplying Equations (2.40) and (2.42) by ϕ̄ and ψ̄

respectively and integrate over (0,L), we obtain

∫ L

0
iλvϕ̄dx +

∫ L

0
auxϕ̄xdx +

∫ L

0
b(x)vxϕ̄xdx +

∫ L

0
c(x)zϕ̄dx =

∫ L

0
f2ϕ̄dx, (2.43)

∫ L

0
iλzψ̄dx +

∫ L

0
yxψ̄xdx −

∫ L

0
c(x)vψ̄dx =

∫ L

0
f4ψ̄dx. (2.44)

Substituting v and z by iλu − f1 and iλy − f3 respectively in Equations (2.43)-(2.44) and
taking the sum, we obtain

a ((u, y), (ϕ,ψ)) = L(ϕ,ψ), ∀(ϕ,ψ) ∈ H 1
0 (0,L) × H 1

0 (0,L), (2.45)

where

a ((u, y), (ϕ,ψ)) = a1 ((u, y), (ϕ,ψ)) + a2 ((u, y), (ϕ,ψ))

with

⎧
⎪⎪⎨

⎪⎪⎩

a1 ((u, y), (ϕ,ψ)) =
∫ L

0

(
auxϕ̄x + yxψ̄x

)
dx + iλ

∫ L

0
b(x)uxϕ̄xdx,

a2 ((u, y), (ϕ,ψ)) = −λ2
∫ L

0

(
uϕ̄ + yψ̄

)
dx + iλ

∫ L

0
c(x)

(
yϕ̄ − uψ̄

)
dx,
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and

L(ϕ,ψ) =
∫ L

0
(f2 + c(x)f3 + iλf1) ϕ̄dx +

∫ L

0
(f4 − c(x)f1 + iλf3) ψ̄dx

+
∫ L

0
b(x) (f1)x ϕ̄xdx.

Let V = H 1
0 (0,L) × H 1

0 (0,L) and V ′ = H−1(0,L) × H−1(0,L) the dual space of V . Let
us consider the following operators,

{
A : V → V ′

(u, y) → A(u, y)

{
A1 : V → V ′

(u, y) → A1(u, y)

{
A2 : V → V ′

(u, y) → A2(u, y)

such that
⎧
⎪⎪⎨

⎪⎪⎩

(A(u, y)) (ϕ,ψ) = a ((u, y), (ϕ,ψ)), ∀(ϕ,ψ) ∈ H 1
0 (0,L) × H 1

0 (0,L),

(A1(u, y)) (ϕ,ψ) = a1 ((u, y), (ϕ,ψ)), ∀(ϕ,ψ) ∈ H 1
0 (0,L) × H 1

0 (0,L),

(A2(u, y)) (ϕ,ψ) = a2 ((u, y), (ϕ,ψ)), ∀(ϕ,ψ) ∈ H 1
0 (0,L) × H 1

0 (0,L).

(2.46)

Our goal is to prove that A is an isomorphism operator. For this aim, we divide the proof
into three steps.

Step 1. In this step, we prove that the operator A1 is an isomorphism operator. For this goal,
following the second equation of (2.46) we can easily verify that a1 is a bilinear continuous
coercive form on H 1

0 (0,L) × H 1
0 (0,L). Then, by Lax-Milgram Lemma, the operator A1 is

an isomorphism.

Step 2. In this step, we prove that the operator A2 is compact. According to the third equation
of (2.46), we have

|a2 ((u, y), (ϕ,ψ))| ≤ C‖(u, y)‖L2(0,L)‖(ϕ,ψ)‖L2(0,L).

Finally, using the compactness embedding from H 1
0 (0,L) to L2(0,L) and the continuous

embedding from L2(0,L) into H−1(0,L) we deduce that A2 is compact.

From steps 1 and 2, we get that the operator A = A1 + A2 is a Fredholm operator of index
zero. Consequently, by Fredholm alternative, to prove that operator A is an isomorphism it
is enough to prove that A is injective, i.e. ker {A} = {0}.

Step 3. In this step, we prove that ker{A} = {0}. For this aim, let (ũ, ỹ) ∈ ker{A}, i.e.

a ((ũ, ỹ), (ϕ,ψ)) = 0, ∀ (ϕ,ψ) ∈ H 1
0 (0,L) × H 1

0 (0,L).

Equivalently, we have

−λ2
∫ L

0

(
ũϕ̄ + ỹψ̄

)
dx + iλ

∫ L

0
c(x)

(
ỹϕ̄ − ũψ̄

)
dx +

∫ L

0

(
aũxϕ̄x + ỹxψ̄x

)
dx

+iλ

∫ L

0
b(x)ũxϕ̄xdx = 0.

(2.47)
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Taking ϕ = ũ and ψ = ỹ in equation (2.47), we get

−λ2
∫ L

0
|ũ|2dx − λ2

∫ L

0
|ỹ|2dx + a

∫ L

0
|ũx |2dx +

∫ L

0
|ỹx |2dx − 2λ�

(∫ L

0
c(x)ỹ ¯̃udx

)

+iλ

∫ L

0
b(x)|ũx |2dx = 0.

Taking the imaginary part of the above equality, we get

0 =
∫ L

0
b(x)|ũx |2dx,

we get,

ũx = 0, in (α1, α3) . (2.48)

Then, we find that

⎧
⎪⎪⎨

⎪⎪⎩

−λ2ũ − aũxx + iλc(x)ỹ = 0, in (0,L)

−λ2ỹ − aỹxx − iλc(x)ũ = 0, in (0,L)

ũx = ỹx = 0. in (α2, α3)

Therefore, the vector Ũ defined by

Ũ = (ũ, iλũ, ỹ, iλỹ)

belongs to D(A) and we have

iλŨ −AŨ = 0.

Hence, Ũ ∈ ker (iλI −A), then by Lemma 2.4, we get Ũ = 0, this implies that ũ = ỹ = 0.
Consequently, ker {A} = {0}.

Therefore, from step 3 and Fredholm alternative, we get that the operator A is an isomor-
phism. It is easy to see that the operator L is continuous from V to L2(0,L)×L2(0,L). Con-
sequently, Equation (2.45) admits a unique solution (u, y) ∈ H 1

0 (0,L) × H 1
0 (0,L). Thus,

using v = iλu − f1, z = iλy − f3 and using the classical regularity arguments, we conclude
that Equation (2.38) admits a unique solution U ∈ D (A). The proof is thus complete. �

Proof of Theorem 2.3 Using Lemma 2.4, we have that A has non pure imaginary eigenval-
ues. According to Lemmas 2.4, 2.5 and with the help of the closed graph theorem of Banach,
we deduce that σ(A) ∩ iR = ∅. Thus, we get the conclusion by applying Theorem A.11 of
Arendt Batty (see the Appendix). The proof of the theorem is thus complete. �

Remark 2.6 For the case when supp(b) ∩ supp(c) = ∅ it remains as an open problem.

3 Lack of the Exponential Stability

In this section, our goal is to show that system (1.2)-(1.6) in not exponentially stable.
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3.1 Lack of Exponential Stability with Global Kelvin-Voigt Damping

In this part, assume that

b(x) = b0 > 0 and c(x) = c0 ∈R
∗, ∀ x ∈ (0,L). (3.1)

We introduce the following theorem.

Theorem 3.1 Under hypothesis (3.1), for ε > 0 small enough, we cannot expect the energy
decay rate 1

t
2

2−ε

for all initial data U0 ∈ D(A) and for all t > 0.

Proof Following Huang and Prüss [16, 31] (see also Theorem A.12 in the Appendix) it is
sufficient to show the existence of a real sequences (λn)n with λn → +∞, (Un)n ∈ D(A),
and (Fn)n ⊂ H such that (iλnI −A)Un = Fn is bounded in H and λ−2+ε

n ‖Un‖ → +∞. For
this aim, take

Fn =
(

0,0,0, sin
(nπx

L

))
,

Un =
(
An sin

(nπx

L

)
, iλnAn sin

(nπx

L

)
,Bn sin

(nπx

L

)
, iλnBn sin

(nπx

L

))
,

where

λn = nπ

L
, An = iL

c0nπ
, Bn = − inb0π

c2
0L

− a − 1

c2
0

.

Clearly that Un ∈ D(A), and Fn is bounded in H. Let us show that (iλnI − A)Un = Fn.
Detailing (iλnI −A)Un, we get

(iλnI −A)Un =
(

0,D1,n sin
(nπx

L

)
,0,D2,n sin

(nπx

L

))
,

where

D1,n = − (L2λ2
n − an2π2 − iπ2b0λnn

2
)
An

L2
+ iBnc0λn, and

D2,n = −iAnc0λn + Bn

(
π2n2 − L2λ2

n

)

L2
.

(3.2)

Inserting λn,An,Bn in D1,n and D2,n, we get D1,n = 0 and D2,n = 1. Hence we obtain

(iλnI −A)Un =
(

0,0,0, sin
(nπx

L

))
= Fn.

Now, we have

‖Un‖2
H ≥

∫ L

0

∣
∣
∣iλnBn sin

(nπx

L

)∣
∣
∣
2
dx = Lλ2

n

2
|Bn|2 ∼ λ4

n.

Therefore, for ε > 0 small enough, we have

λ−2+ε
n ‖Un‖H ∼ λε

n → +∞.

Then, we cannot expect the energy decay rate 1

t
2

2−ε

. �
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3.2 Lack of Exponential Stability with Local Kelvin-Voigt Damping

In this part, under the equal speed wave propagation condition (i.e. a = 1), we use the clas-
sical method developed by Littman and Markus in [18] (see also [12]), to show that system
(1.2)-(1.6) with Local Kelvin-Voigt damping and global coupling is not exponentially stable.
For this aim, assume that

a = 1, b(x) =
{

0 if 0 < x ≤ 1
2 ,

1 if 1
2 < x ≤ 1.

, and c(x) = c ∈R. (3.3)

Our main result in this part is following theorem.

Theorem 3.2 Under condition (3.3). The semigroup of contractions
(
etA)

t≥0
generated by

the operator A is not exponentially stable in the energy space H.

For the proof of Theorem 3.2, we recall the following definitions: the growth bound
ω0 (A) and the spectral bound s (A) of A are defined respectively as

ω0 (A) = inf
{
ω ∈R : there exists a constant Mω such that ∀ t ≥ 0,

∥
∥etA1

∥
∥
L(H1)

≤ Mωeωt
}

and

s (A) = sup {� (λ) : λ ∈ σ (A)} .

Then, according to Theorem 2.1.6 and Lemma 2.1.11 in [12], one has that

s (A1) ≤ ω0 (A1) .

By the previous results, one clearly has that s (A) ≤ 0 and the theorem would follow if
equality holds in the previous inequality. It therefore amounts to show the existence of a
sequence of eigenvalues of A whose real parts tend to zero.

Since A is dissipative, we fix α0 > 0 small enough and we study the asymptotic behavior
of the eigenvalues λ of A in the strip

S = {λ ∈ C : −α0 ≤ Re(λ) ≤ 0} .

First, we determine the characteristic equation satisfied by the eigenvalues of A. For this
aim, let λ ∈ C

∗ be an eigenvalue of A and let U = (u,λu, y,λy) ∈ D(A) be an associated
eigenvector. Then, the eigenvalue problem is given by

λ2u − (1 + λ)uxx + cλy = 0, x ∈ (0,1), (3.4)

λ2y − yxx − cλu = 0, x ∈ (0,1), (3.5)

with the boundary conditions

u(0) = u(1) = y(0) = y(1) = 0.

We define
{

u−(x) := u(x), y−(x) := y(x) x ∈ (0, 1
2 ),

u+(x) := u(x), y+(x) := y(x) x ∈ [ 1
2 ,1).
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Then, system (3.4)-(3.5) becomes

λ2u− − u−
xx + cλy− = 0, x ∈ (0,1/2), (3.6)

λ2y− − y−
xx − cλu− = 0, x ∈ (0,1/2), (3.7)

λ2u+ − (1 + λ)u+
xx + cλy+ = 0, x ∈ [1/2,1), (3.8)

λ2y+ − y+
xx − cλu+ = 0, x ∈ [1/2,1), (3.9)

with the boundary conditions

u−(0) = y−(0) = 0, (3.10)

u+(1) = y+(1) = 0, (3.11)

and the continuity conditions

u−(1/2) = u+(1/2), (3.12)

u−
x (1/2) = (1 + λ)u+

x (1/2), (3.13)

y−(1/2) = y+(1/2), (3.14)

y−
x (1/2) = y+

x (1/2). (3.15)

Here and below, in order to handle, in the case where z is a non zero non-real number, we
denote by

√
z the square root of z; i.e., the unique complex number whose square is equal

to z, that is defined by

√
z =

√ |z| + �(z)

2
+ i sign(�(z))

√ |z| − �(z)

2
.

Our aim is to study the asymptotic behavior of the largest eigenvalues λ of A in S. By taking
λ large enough, the general solution of system (3.6)-(3.7) with boundary condition (3.10) is
given by

⎧
⎨

⎩

u−(x) = d1
λ2 − r2

1

c λ
sinh(r1x) + d2

λ2 − r2
2

c λ
sinh(r2x),

y−(x) = d1 sinh(r1x) + d2 sinh(r2x),

and the general solution of system (3.6)-(3.7) with boundary condition (3.11) is given by
⎧
⎨

⎩

u+(x) = −D1
λ2 − s2

1

c λ
sinh(s1(1 − x)) − D2

λ2 − s2
2

c λ
sinh(s2(1 − x)),

y+(x) = −D1 sinh(s1(1 − x)) − D2 sinh(s2(1 − x)),

where d1, d2,D1,D2 ∈C,

r1 = λ

√

1 + ic

λ
, r2 = λ

√

1 − ic

λ
(3.16)

and

s1 = λ

√
√
√
√1 + 2

λ
+
√

1 − 4c2

λ3 − 4c2

λ4

2
(
1 + 1

λ

) , s2 = √
λ

√
√
√
√λ + 2 − λ

√

1 − 4c2

λ3 − 4c2

λ4

2
(
1 + 1

λ

) . (3.17)
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The boundary conditions in (3.12)-(3.15), can be expressed by M(d1 d2 D1 D2)
� = 0, where

M =

⎛

⎜
⎜
⎜
⎜
⎝

sinh(
r1
2 ) sinh(

r2
2 ) sinh(

s1
2 ) sinh(

s2
2 )

r1 cosh(
r1
2 ) r2 cosh(

r2
2 ) −s1 cosh(

s1
2 ) −s2 cosh(

s2
2 )

r2
1 sinh(

r1
2 ) r2

2 sinh(
r2
2 ) s2

1 sinh(
s1
2 ) s2

2 sinh(
s2
2 )

r3
1 cosh(

r1
2 ) r3

2 cosh(
r2
2 ) −s1(s2

1 − λ(λ2 − s2
1 )) cosh(

s1
2 ) −s2(s2

2 − λ(λ2 − s2
2 )) cosh(

s2
2 )

⎞

⎟
⎟
⎟
⎟
⎠

System (3.6)-(3.15) admits a non trivial solution if and only if det (M) = 0. Using Gaussian
elimination, det (M) = 0 is equivalent to det (M1) = 0, where M1 is given by

M1 =

⎛

⎜
⎜
⎜
⎜
⎝

sinh(
r1
2 ) sinh(

r2
2 ) sinh(

s1
2 ) 1 − e−s2

r1 cosh(
r1
2 ) r2 cosh(

r2
2 ) −s1 cosh(

s1
2 ) −s2(1 + e−s2 )

r2
1 sinh(

r1
2 ) r2

2 sinh(
r2
2 ) s2

1 sinh(
s1
2 ) s2

2 (1 − e−s2 )

r3
1 cosh(

r1
2 ) r3

2 cosh(
r2
2 ) −s1(s2

1 − λ(λ2 − s2
1 )) cosh(

s1
2 ) −s2(s2

2 − λ(λ2 − s2
2 ))(1 + e−s2 )

⎞

⎟
⎟
⎟
⎟
⎠

.

Then, we get

det (M1) = F1 + F2e
−s2 , (3.18)

where

F1 = −s1s2

(
r2

1 − r2
2

) (
s2

1 − s2
2

)
( λ + 1) sinh

( r1

2

)
sinh

( r2

2

)
cosh

( s1

2

)

+r1s2
(
r2

2 − s2
1

) (
(λ2 − s2

2 ) λ + r2
1 − s2

2

)
cosh

( r1

2

)
sinh

( r2

2

)
sinh

( s1

2

)

−r2s2

(
r2

1 − s2
1

) (
(λ2 − s2

2 ) λ + r2
2 − s2

2

)
sinh

( r1

2

)
cosh

( r2

2

)
sinh

( s1

2

)

−r1r2

(
r2

1 − r2
2

) (
s2

1 − s2
2

)
cosh

( r1

2

)
cosh

( r2

2

)
sinh

( s1

2

)

+r2s1

(
r2

1 − s2
2

) (
(λ2 − s2

1 ) λ + r2
2 − s2

1

)
sinh

( r1

2

)
cosh

( r2

2

)
cosh

( s1

2

)

−r1s1

(
r2

2 − s2
2

) (
(λ2 − s2

1 ) λ + r2
1 − s2

1

)
cosh

( r1

2

)
sinh

( r2

2

)
cosh

( s1

2

)

and

F2 = −s1s2

(
r2

1 − r2
2

) (
s2

1 − s2
2

)
( λ + 1) sinh

( r1

2

)
sinh

( r2

2

)
cosh

( s1

2

)

+r1s2

(
r2

2 − s2
1

) (
(λ2 − s2

2 ) λ + r2
1 − s2

2

)
cosh

( r1

2

)
sinh

( r2

2

)
sinh

( s1

2

)

−r2s2

(
r2

1 − s2
1

) (
(λ2 − s2

2 ) λ + r2
2 − s2

2

)
sinh

( r1

2

)
cosh

( r2

2

)
sinh

( s1

2

)

+r1r2

(
r2

1 − r2
2

) (
s2

1 − s2
2

)
cosh

( r1

2

)
cosh

( r2

2

)
sinh

( s1

2

)

−r2s1
(
r2

1 − s2
2

) (
(λ2 − s2

1 ) λ + r2
2 − s2

1

)
sinh

( r1

2

)
cosh

( r2

2

)
cosh

( s1

2

)

+r1s1

(
r2

2 − s2
2

) (
(λ2 − s2

1 ) λ + r2
1 − s2

1

)
cosh

( r1

2

)
sinh

( r2

2

)
cosh

( s1

2

)
.
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Lemma 3.3 Let λ ∈C be an eigenvalue of A. Then, we have �(λ) is bounded.

Proof Multiplying equations (3.6)-(3.9) by u−, y−, u+, y+ respectively, then using the
boundary conditions, we get

‖λu−‖2 +‖u−
x ‖2 +‖λy−‖2 +‖y−

x ‖2 +‖λu+‖2 + (1 + �(λ))‖u+
x ‖2 +‖λy+‖2 +‖y+

x ‖2 = 0.

(3.19)
Since the operator A is dissipative then the real part of λ is negative. It is easy to see that
u+

x �= 0, hence using the fact that ‖U‖H = 1 in (3.19), we get that �(λ) is bounded below.
Therefore, there exists α > 0, such that

−α ≤ �(λ) < 0. �

Proposition 3.4 Assume that the condition (3.3) holds. Then there exists n0 ∈ N sufficiently
large and two sequences

(
λ1,n

)

|n|≥n0
and

(
λ2,n

)

|n|≥n0
of simple root of det (M1) satisfying

the following asymptotic behavior:

Case 1. If sin
(

c
4

) �= 0, then

λ1,n = 2nπi + iπ − 2 sin2( c
4 )(1 − i sign(n))

(
3 + cos( c

2 )
)√|n|π + O

(
1

n

)

(3.20)

and

λ2,n = 2nπi + i arccos
(

cos2
( c

4

))
− γ√|n|π + i

sign(n)γ√|n|π + O

(
1

n

)

, (3.21)

where

γ =
(

cos( c
2 ) sin

(
arccos(cos2( c

4 ))
2

)
+ sin

(
3 arccos(cos2( c

4 ))
2

))

4
√

1 − cos4
(

c
4

)
cos

(
arccos(cos2( c

4 ))
2

) .

Case 2. If sin
(

c
4

)= 0, then

λ1,n = 2nπi + iπ + i c2

32πn
− (4 + iπ)c2

64π2n2
+ O

(
1

|n| 5
2

)

(3.22)

and

λ2,n = 2nπi + O

(
1

n

)

. (3.23)

The proof of Proposition 3.4, is divided into two lemmas.

Lemma 3.5 Assume that condition (3.3) holds. Let λ be largest eigenvalue of A, then λ is
large root of the following asymptotic behavior estimate

F(λ) := f0(λ) + f1(λ)

λ1/2
+ f2(λ)

8λ
+ f3(λ)

8λ3/2
+ f4(λ)

128λ2
+ O(λ−5/2), (3.24)
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where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(λ) = cosh
(

3λ
2

)− cosh
(

λ
2

)
cos

(
c
2

)
,

f1(λ) = sinh
(

3λ
2

)+ sinh
(

λ
2

)
cos

(
c
2

)
,

f2(λ) = c2 sinh
(

3λ
2

)− 4 cosh
(

3λ
2

)+ 4
(
cosh

(
λ
2

)
cos

(
c
2

)+ c sinh
(

λ
2

)
sin
(

c
2

))
,

f3(λ) = −8 sinh
(

3λ
2

)+ c2 cosh
(

3λ
2

)− 12c cosh
(

λ
2

)
sin
(

c
2

)− 8 sinh
(

λ
2

)
cos

(
c
2

)
,

f4(λ) = −40c2 sinh
(

3λ
2

)+ (c4 + 72c2 + 48) cosh
(

3λ
2

)

+32c
(
c cos

(
c
2

)+ 7 sin
(

c
2

))
sinh

(
λ
2

)

− (8c2 + 8c3 sin
(

c
2

)+ 16(4c2 + 3) cosh
(

c
2

))
cosh

(
λ
2

)
.

(3.25)

Proof Let λ be a large eigenvalue of A, then λ is root of det (M1). In this Lemma, we give
an asymptotic development of the function det (M1) for large λ. First, using the asymptotic
expansion in (3.16)-(3.17), we get

⎧
⎪⎨

⎪⎩

r1 = λ + ic
2 + c2

8λ
− ic3

16λ2 + O(λ−3), r2 = λ − ic
2 + c2

8λ
+ ic3

16λ2 + O(λ−3),

s1 = λ − c2

2λ
+ O(λ−5), s2 = √

λ − 1
2
√

λ
+ 4c2+3

8λ
3
2

+ O
(
λ−3/2

)
.

(3.26)

From (3.26), we get
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2icλs1s2(s
2
1 − s2

2)(λ + 1) = icλ11/2
(

2 − 1
λ

+ 3+4c2

4λ2 + O(λ−3)
)

,

r1s2(r
2
2 − s2

1 )
(
(λ2 − s2

2)λ + r2
1 − s2

2

)= −icλ11/2
(

1 − 1−i c
2λ

+ 5c2+3+14i c

8λ2 + O(λ−3)
)

,

r2s2(r
2
1 − s2

1 )
(
(λ2 − s2

2)λ + r2
2 − s2

2

)= icλ11/2
(

1 − 1+i c
2λ

+ 5c2+3−14i c

8λ2 + O(λ−3)
)

,

2i cλr1r2

(
s2

1 − s2
2

)= icλ11/2
(

2√
λ

− 2
λ3/2 + O(λ−5/2)

)
,

r2s1(r
2
1 − s2

2 )((λ
2 − s2

1 )λ + r2
2 − s2

1) = −icλ11/2
(

1√
λ

− 2−3ic

2λ3/2 + O
(
λ−5/2

))
,

r1s1(r
2
2 − s2

2 )((λ
2 − s2

1 )λ + r2
1 − s2

1) = icλ11/2
(

1√
λ

− 2+3ic

2λ3/2 + O(λ−5/2)
)

.

(3.27)
From equation (3.27) and using the fact that �(λ) is bounded, we get

F1

icλ11/2
= −

[(

2 − 1

λ
+ 4c2 + 3

4λ2

)

sinh
( r1

2

)
sinh

( r2

2

)
cosh

( s1

2

)

+
(

1 − 1

2λ
+ 5c2 + 3

8λ2

)(
cosh

( r1

2

)
sinh

( r2

2

)

+ sinh
( r1

2

)
cosh

( r2

2

))
sinh

( s1

2

)

+
(

i c

2λ
+ 7i c

4λ2

)(
cosh

( r1

2

)
sinh

( r2

2

)
− sinh

( r1

2

)
cosh

( r2

2

))
sinh

( s1

2

)

+
(

2√
λ

− 2

λ3/2

)

cosh
( r1

2

)
cosh

( r2

2

)
sinh

( s1

2

)
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+
(

1√
λ

− 1

λ3/2

)(
sinh

( r1

2

)
cosh

( r2

2

)

+ cosh
( r1

2

)
sinh

( r2

2

))
cosh

( s1

2

)

+
(

3i c

2λ3/2

)(
sinh

( r1

2

)
cosh

( r2

2

)
− cosh

( r1

2

)
sinh

( r2

2

))
cosh

( s1

2

)

+ O
(
λ−5/2

)
]

.

(3.28)

From equation (3.27) and using the fact that �(λ) is bounded, we get

F2 = −i c λ11/2

[

2 sinh
( r1

2

)
sinh

( r2

2

)
cosh

( s1

2

)

+
(

cosh
( r1

2

)
sinh

( r2

2

)
+ sinh

( r1

2

)
cosh

( r2

2

))
sinh

( s1

2

)
+ O

(
λ−1/2

)
]

.

(3.29)
Since the real part of

√
λ is positive, then

lim|λ|→∞λ−5/2e−√
λ = 0,

hence

e−√
λ = o(λ−5/2), (3.30)

then,

F2e
−s2 = −icλ11/2

(
o(λ−5/2)

)
. (3.31)

Inserting (3.28) and (3.31), in (3.18), we get

det(M1) = −ic λ11/2F(λ),

where,

F(λ) =
(

1 − 1

2λ
+ 4c2 + 3

8λ2

)(

cosh

(
r1 + r2

2

)

− cosh

(
r1 − r2

2

))

cosh
( s1

2

)

+
(

1 − 1

2λ
+ 5c2 + 3

8λ2

)

sinh

(
r1 + r2

2

)

sinh
( s1

2

)

−
(

i c

2λ
+ 7i c

4λ2

)

sinh

(
r1 − r2

2

)

sinh
( s1

2

)

+
(

1√
λ

− 1

λ3/2

)(

cosh

(
r1 + r2

2

)

+ cosh

(
r1 − r2

2

))

sinh
( s1

2

)

+
(

1√
λ

− 1

λ3/2

)

sinh

(
r1 + r2

2

)

cosh
( s1

2

)
+
(

3i c

2λ3/2

)

sinh

(
r1 − r2

2

)

cosh
( s1

2

)

+ O
(
λ−5/2

)
.

(3.32)
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Therefore, system (3.10)-(3.15) admits a non trivial solution if and only if det(M1) = 0, if
and only if the eigenvalues of A are roots of the function F . Next, from (3.26) and the fact
that real λ is bounded, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosh
(

r1+r2
2

)= cosh(λ) + c2 sinh(λ)

8λ
+ c4 cosh(λ)

128λ2 + O(λ−3),

cosh
(

r1−r2
2

)= cos
(

c
2

)+ c3 sin( c
2 )

16λ2 + O(λ−3),

sinh
(

r1+r2
2

)= sinh(λ) + c2 cosh(λ)

8λ
+ c4 sinh(λ)

128λ2 + O(λ−3),

sinh
(

r1−r2
2

)= i sin
(

c
2

)− i
c3 cos( c

2 )
16λ2 + O(λ−3),

sinh
(

s1
2

)= sinh( λ
2 ) − c2 cosh

(
λ
2

)

4λ2 + O(λ−4),

cosh(
s1
2 ) = cosh

(
λ
2

)− c2 sinh
(

λ
2

)

4λ2 + O(λ−4).

(3.33)

Inserting (3.33) in (3.32), we get (3.24). �

Lemma 3.6 Under condition (3.3), there exists n0 ∈N sufficiently large and two sequences(
λ1,n

)

|n|≥n0
and

(
λ2,n

)

|n|≥n0
of simple roots of F satisfying the following asymptotic behavior

λ1,n = 2inπ + iπ + ε1,n where lim
|n|→+∞

ε1,n = 0 (3.34)

and

λ2,n = 2nπi + i arccos
(

cos2
( c

4

))
+ ε2,n where lim

|n|→+∞
ε2,n = 0. (3.35)

Proof First, we look at the roots of f0. From (3.25), we deduce that f0 can be written as

f0(λ) = 2 cosh

(
λ

2

)(
cosh(λ) − cos2

( c

4

))
. (3.36)

Then, the roots of f0 are given by

{
μ1,n = 2nπi + iπ, n ∈ Z,

μ2,n = 2nπi + i arccos
(
cos2

(
c
4

))
, n ∈ Z.

Now, with the help of Rouché’s Theorem, we will show that the roots of F are close to f0.
Let us start with the first family μ1,n. Let Bn = B ((2n + 1)πi, rn) be the ball of centrum

(2n + 1)πi and radius rn = |n|− 1
4 and λ ∈ ∂ Bn; i.e. λn = 2nπi + iπ + rne

iθ , θ ∈ [0,2π[.
Then

cosh

(
λ

2

)

= i(−1)nrne
iθ

2
+ O(r2

n), and cosh(λ) = −1 + O(r2
n). (3.37)

Inserting (3.37) in (3.36), we get

f0(λ) = −i(−1)nrne
iθ
(

1 + cos2
( c

4

)
+ O(r3

n)
)

.
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It follows that there exists a positive constant C such that

∀ λ ∈ ∂ Bn, |f0(λ)| ≥ C rn = C|n|− 1
4 .

On the other hand, from (3.24), we deduce that

|F(λ) − f0(λ)| = O

(
1√
λ

)

= O

(
1√|n|
)

.

It follows that, for |n| large enough

∀λ ∈ ∂ Bn, |F(λ) − f0(λ)| < |f0(λ)|.
Hence, with the help of Rouché’s theorem, there exists n0 ∈ N

∗ large enough, such that
∀ |n| ≥ n0, the first branch of roots of F denoted by λ1,n are close to μ1,n, that is

λ1,n = μ1,n + iπ + ε1,n where lim|n|→+∞ ε1,n = 0. (3.38)

Passing to the second family μ2,n. Let B̃n = B
(
μ2,n, rn

)
be the ball of centrum μ2,n and

radius

rn :=
⎧
⎨

⎩

1

|n| 1
8

if sin
(

c
4

)= 0,

1

|n| 1
4

if sin
(

c
4

) �= 0,

such that λ ∈ ∂ B̃n; i.e. λn = μ2,n + rne
iθ , θ ∈ [0,2π [. Then,

cosh(λ) − cos2
( c

4

)
= cosh

(
2nπi + i arccos

(
cos2

( c

4

)
+ rne

iθ
))

− cos2
( c

4

)
.

It follow that,

cosh(λ) − cos2
( c

4

)
= i rn

√

1 − cos4
( c

4

)
eiθ + r2

n cos2
(

c
4

)
e2iθ

2
+ O(r3

n), (3.39)

and

cosh

(
λ

2

)

= (−1)n cos

(
arccos

(
cos2

(
c
4

))

2

)

+ irne
iθ (−1)n

2
sin

(
arccos

(
cos2

(
c
4

))

2

)

+ O(r2
n). (3.40)

Inserting (3.39) and (3.40) in (3.36), we get

f0(λ) = R1 eiθ rn + R2 e2iθ r2
n + O(r3

n), (3.41)

where
⎧
⎪⎨

⎪⎩

R1 = i (−1)n

√

1 − cos4
(

c
4

)
cos

(
arccos(cos2( c

4 ))
2

)
,

R2 = −(−1)n

√

1 − cos4
(

c
4

)
sin
(

arccos(cos2( c
4 ))

2

)
+ (−1)n cos2

(
c
4

)
cos

(
arccos(cos2( c

4 ))

2

)
.

(3.42)
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We distinguish two cases:

Case 1. If sin
(

c
4

)= 0, then

R1 = 0 and R2 = (−1)n �= 0.

It follows that there exists a positive constant C such that

∀λ ∈ ∂ B̃n, |f0(λ)| ≥ C r2
n = C|n|− 1

4 .

Case 2. If sin
(

c
4

) �= 0, then R1 �= 0. It follows that, there exists a positive constant C such
that

∀λ ∈ ∂ B̃n, |f0(λ)| ≥ C rn = C|n|− 1
4 .

On the other hand, from (3.24), we deduce that

|F(λ) − f0(λ)| = O

(
1√
λ

)

= O

(
1√|n|
)

.

In both cases, for |n| large enough, we have

∀λ ∈ ∂B̃n, |F(λ) − f0(λ)| < |f0(λ)|.

Hence, with the help of Rouché’s Theorem, there exists n0 ∈ N
∗ large enough, such that

∀|n| ≥ n0, the second branch of roots of F , denoted by λ2,n are close to μ2,n that is defined
in equation (3.35). The proof is thus complete. �

We are now in position to conclude the proof of Proposition 3.4.

Proof of Proposition 3.4 The proof is divided into two steps.

Calculation of ε1,n. From (3.38), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosh

(
3λ1,n

2

)

= −i (−1)n sinh

(
3ε1,n

2

)

, sinh

(
3λ1,n

2

)

= −i (−1)n cosh

(
3ε1,n

2

)

,

cosh

(
λ1,n

2

)

= i (−1)n sinh
(ε1,n

2

)
, sinh

(
λ1,n

2

)

= i (−1)n cosh
(ε1,n

2

)
,

1

λ1,n

= − i

2πn
+ i

4πn2
+ O

(
ε1,n n−2

)+ O
(
n−3

)
,

1

λ2
1,n

= − 1

4π2n2
+ O

(
n−3

)

1
√

λ1,n

= 1 − i sign(n)

2
√

π |n| + i − sign(n)

8
√

π |n|3 + O
(
ε1,n |n|−3/2

)+ O
(|n|−5/2

)
,

1
√

λ3
1,n

= −1 − i sign(n)

4
√

π3|n|3 + O
(|n|−5/2

)
,

1
√

λ5
1,n

= O
(|n|−5/2

)
.

(3.43)
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On the other hand, since lim|n|→+∞ ε1,n = 0, we have the asymptotic expansion

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sinh

(
3ε1,n

2

)

= 3ε1,n

2
+ O(ε3

1,n), cosh

(
3ε1,n

2

)

= 1 + 9ε1,n

8
+ O(ε4

1,n),

sinh
(ε1,n

2

)
= ε1,n

2
+ O(ε3

1,n), cosh
(ε1,n

2

)
= 1 + ε1,n

8
+ O(ε4

1,n).

(3.44)

Inserting (3.44) in (3.43), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosh

(
3λ1,n

2

)

= −3i (−1)nε1,n

2
+ O(ε3

1,n),

sinh

(
3λ1,n

2

)

= −i (−1)n − 9i (−1)n ε1,n

8
+ O(ε4

1,n),

cosh

(
λ1,n

2

)

= i (−1)n ε1,n

2
+ O(ε3

1,n), sinh

(
λ1,n

2

)

= i (−1)n + i (−1)n ε1,n

8
+ O(ε4

1,n),

1

λ1,n

= − i

2πn
+ i

4πn2
+ O

(
ε1,n n−2

)+ O
(
n−3

)
,

1

λ2
1,n

= − 1

4π2n2
+ O

(
n−3

)

1
√

λ1,n

= 1 − i sign(n)

2
√

π |n| + i − sign(n)

8
√

π |n|3 + O
(
ε1,n |n|−3/2

)+ O
(|n|−5/2

)
,

1
√

λ3
1,n

= −1 − i sign(n)

4
√

π3|n|3 + O
(|n|−5/2

)
,

1
√

λ5
1,n

= O
(|n|−5/2

)
.

(3.45)
Inserting (3.45) in (3.24), we get

ε1,n

2

(
3 + cos

( c

2

))(

1 + i

4π n

)

+ (1 − i sign(n))
(
1 − cos

(
c
2

))

2
√

π |n| + i c
(
4 sin

(
c
2

)− c
)

16πn

− (2 + iπ) (1 + i sign(n))
(
1 − cos

(
c
2

))

8
√

π3 |n|3

+4c (7 − 2iπ) sin
(

c
2

)+ c2 (2iπ + 5 + 4 cos
(

c
2

)
)

64π2n2

+O
(|n|−5/2

)+ O
(
ε1,n |n|−3/2

)+ O
(
ε2

1,n |n|−1/2
)+ O

(
ε3

1,n

)= 0.

(3.46)
We distinguish two cases.

Case 1. If sin
(

c
4

) �= 0, then 1 − cos
( c

2

)
= 2 sin2

( c

4

)
�= 0, then from (3.46), we get

ε1,n

2

(
3 + cos

( c

2

))
+ sin2

(
c
4 (1 − i sign(n))

)

√|n|π + O(ε3
1,n) + O(|n|−1/2ε2

1,n) + O(n−1) = 0,
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hence, we get

ε1,n = −2 sin2
(

c
4

)
(1 − i sign(n))

(
2 + cos

(
c
2

)) + O(n−1). (3.47)

Inserting (3.47) in (3.38), we get (3.22).

Case 2. If sin
(

c
4

)= 0,

1 − cos
( c

2

)
= 2 sin2

( c

4

)
= 0, sin

( c

2

)
= 2 sin

( c

4

)
cos

( c

4

)
= 0,

then, from (3.46), we get

2ε1,n

(

1 + i

4πn

)

− i c2

16πn
+ c2(2iπ + 9)

64π2n2
+ O

(|n|−5/2
)+ O

(
ε1,n|n|−3/2

)

+O
(
ε2

1,n|n|−1/2
)+ O

(
ε3

1,n

)= 0.

(3.48)

By a straightforward calculation in equation (3.48), we get

ε1,n = i c2

32πn
− (4 + i π)c2

64π2n2
+ O

(|n|−5/2
)
. (3.49)

Inserting (3.49) in (3.38), we get (3.21).

Calculation of ε2,n. From (3.35), we have

1
√

λ2,n

= 1 − i sign(n)

2
√|n|π + O

(|n|−3/2
)

and
1

λ2,n

= O(n−1). (3.50)

Inserting (3.35) and (3.50) in (3.24), we get

cosh

(
λ2,n

2

)(
cosh(λ2,n) − cos2

( c

4

))

+
(1 − i sign(n))

(
sinh

(
3λ2,n

2

)
+ sinh

(
λ2,n

2

)
cos

(
c
2

))

4
√|n|π + O(n−1) = 0.

(3.51)

On the other hand, we have

cosh(λ2,n) − cos2
(

c
4

) = cosh
(
2nπi + i arccos

(
cos2

(
c
4

))+ ε2,n

)− cos2
(

c
4

)

= cos2
(

c
4

)
cosh(ε2,n) + i

√

1 − cos4
(

c
4

)
sinh(ε2,n) − cos2

(
c
4

)

= i ε2,n

√

1 − cos4
(

c
4

)+ O(ε2
2,n),

(3.52)
and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cosh
(

λ2,n

2

)
= (−1)n cos

(
arccos(cos2( c

4 ))
2

)
+ O(ε2,n),

sinh
(

λ2,n

2

)
= i(−1)n sin

(
arccos(cos2( c

4 ))
2

)
+ O(ε2,n),

sinh
(

3λ2,n

2

)
= i(−1)n sin

(
3 arccos(cos2( c

4 ))
2

)
+ O(ε2,n).

(3.53)
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Inserting (3.52) and (3.53) in (3.51), we get

ε2,n cos
(

arccos(cos2( c
4 ))

2

)√

1 − cos4
(

c
4

)+ O
( ε2,n

n

)+ O
(

1
n

)

+
(1 − i sign(n))

(
sin
(

3
arccos(cos2( c

4 ))
2

)
+ cos

(
c
2

)
sin
(

arccos(cos2( c
4 ))

2

))

4
√|n|π = 0.

(3.54)

We distinguish two cases.

Case 1. If sin
(

c
4

) �= 0, then from (3.54), we get

ε2,n = −
(

cos( c
2 ) sin

(
arccos(cos2( c

4 ))
2

)
+ sin

(
3 arccos(cos2( c

4 ))
2

))
(1 − i sign(n))

4
√

1 − cos4
(

c
4

)
cos

(
arccos(cos2( c

4 ))
2

)√
π |n|

+ O(n−1).

(3.55)
Inserting (3.55) in (3.35), we get (3.21).

Case 2. If sin
(

c
4

)= 0, we get

ε2,n = O(n−1). (3.56)

Inserting (3.56) in (3.35), we get (3.23). Thus, the proof is complete. �

Proof of Theorem 3.2 From Proposition 3.4, the operator A has two branches of eigenvalues
such that the real parts tending to zero. Then the energy corresponding to the first and second
branch of eigenvalues is not exponentially decaying. Then the total energy of the wave
equations with local Kelvin-Voigt damping with global coupling are not exponentially stable
in the equal speed case. �

4 Polynomial Stability

From Sect. 3, System (1.2)-(1.6) is not uniformly (exponentially) stable, so we look for
a polynomial decay rate. As the condition iR ⊂ ρ(A) is already checked in Lemma 2.4,
following Theorem A.13, it remains to prove that condition (A.39) holds. This is made with
the help of a specific multiplier and by using the exponential decay of an auxiliary problem.
Our main result in this section is the following theorem.

Theorem 4.1 There exists a constant C > 0 independent of U0, such that the energy of
system (1.2)-(1.6) satisfies the following estimation:

E(t) ≤ C

t
‖U0‖2

D(A), ∀t > 0, ∀U0 ∈ D(A). (4.1)

According to Theorem A.13, by taking � = 2, the polynomial energy decay (4.1) holds
if the following conditions

iR⊂ ρ(A), (H1)

and

sup
λ∈R

∥
∥(iλI −A)−1

∥
∥
L(H)

= O
(|λ|2) , (H2)
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are satisfied. Condition (H1) is already proved in Lemma 2.4. We will prove condition (H2)
using an argument of contradiction. For this purpose, suppose that (H2) is false, then there
exists {(λn,Un = (un, vn, yn, zn))}n≥1 ⊂ R× D (A) and

λn → +∞, ‖Un‖H = 1, (4.2)

such that

λ2
n ( iλnUn −AUn) = (

f1,n, g1,n, f2,n, g2,n

) := Fn → 0 in H. (4.3)

For simplicity, we drop the index n. Detailing Equation (4.3), we obtain

iλu − v = λ−2f1 −→ 0 in H 1
0 (0,L), (4.4)

iλv − (aux + b(x)vx)x + c(x)z = λ−2g1 −→ 0 in L2(0,L), (4.5)

iλy − z = λ−2f2 −→ 0 in H 1
0 (0,L), (4.6)

iλz − yxx − c(x)v = λ−2g1 −→ 0 in L2(0,L). (4.7)

Here we will check the condition (H2) by finding a contradiction with (4.2) such as ‖U‖H =
o(1). For clarity, we divide the proof into several lemmas. By taking the inner product of
(4.3) with U in H, we remark that

∫ L

0
b(x) |vx |2 dx = −� (〈AU,U〉H) = � (〈(iλI −A)U,U〉H) = o

(
λ−2

)
.

Then,
∫ α3

α1

|vx |2 dx = o
(
λ−2

)
. (4.8)

Remark 4.2 Since v and z are uniformly bounded in L2(0,L), then from equations (4.4)
and (4.6), the solution (u, v, y, z) ∈ D(A) of (4.4)-(4.7) satisfies the following asymptotic
behavior estimation

‖u‖ = O
(
λ−1

)
, (4.9)

‖y‖ = O
(
λ−1

)
. (4.10)

Using equation (4.4), and equation (4.8) we get
∫ α3

α1

|ux |2 dx = o
(
λ−4

)
. (4.11)

Lemma 4.3 Let ε <
α3−α1

4 , the solution (u, v, y, z) ∈ D(A) of the system (4.4)-(4.7) satis-
fies the following estimation

∫ α3−ε

α1+ε

|v|2 dx = o(1) and
∫ α3−ε

α1+ε

|λu|2dx = o(1). (4.12)

Proof We define the function ρ ∈ C∞
0 (0,L) by

ρ(x) =
⎧
⎨

⎩

1 if x ∈ (α1 + ε,α3 − ε),

0 if x ∈ (0, α1) ∪ (α3,L),

0 ≤ ρ ≤ 1 elsewhere.

(4.13)
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Multiply equation (4.5) by
1

λ
ρv̄, integrate over (0,L), using the fact that ‖g1‖L2(0,L) = o(1)

and v is uniformly bounded in L2(�), we get

∫ L

0
iρ |v|2 dx + 1

λ

∫ L

0
(aux + b(x)vx)

(
ρ ′v̄ + ρv̄x

)
dx + 1

λ

∫ L

0
c(x)zρv̄dx = o(λ−3).

(4.14)
Using Equation (4.8), Remark 4.2 and the fact that v and z are uniformly bounded in L2(�),
we get

1

λ

∫ L

0
(aux + b(x)vx)

(
ρ ′v̄ + ρv̄x

)
dx = o(λ−2) and

1

λ

∫ L

0
c(x)zρv̄dx = o(1). (4.15)

Inserting Equation (4.15) in Equation (4.14), we obtain

∫ L

0
iρ |v|2 dx = o(1). (4.16)

Hence, we obtain the first estimation in Equation (4.12). Now, multiplying Equation (4.4)
by λρū integrate over (0,L) and using the fact that ‖f1‖H 1

0 (�) = o(1) and Remark 4.2, we
get

∫ L

0
iρ |λu|2 dx −

∫ L

0
ρλvūdx = o(λ−2).

Using Equation (4.16), we get

∫ L

0
iρ |λu|2 dx = o(1).

Then, we obtain the desired second estimation in Equation (4.12). �

Inserting equations (4.4) and (4.6) respectively in equations (4.5) and (4.7), we get

λ2u + (aux + b(x)vx)x − iλc(x)y = F1, (4.17)

λ2y + yxx + iλc(x)u = F2, (4.18)

where

F1 = −λ−2g1 − iλ−1f1 − c(x)λ−2f2 and F2 = −λ−2g2 − iλ−1f2 + c(x)λ−2f1. (4.19)

Lemma 4.4 Let ε <
α3−α1

4 , the solution (u, v, y, z) ∈ D(A) of the system (4.4)-(4.7) satis-
fies the following estimation

∫ α3−2ε

α2

|λy|2 dx = o(1) and
∫ α3−2ε

α2

|z|2 dx = o(1). (4.20)

Proof We define the function ζ ∈ C∞
0 (0,L) by

ζ(x) =
⎧
⎨

⎩

1 if x ∈ (α1 + 2ε,α3 − 2ε),

0 if x ∈ (0, α1 + ε) ∪ (α3 − ε,L),

0 ≤ ζ ≤ 1 elsewhere.

(4.21)
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Multiply equations (4.17) by λζ ȳ and (4.18) by λζ ū respectively, integrate over (0,L),
using Remark 4.2 and the fact that ‖F‖H = ‖(f1, g1, f2, g2)‖H = o(1), we get

∫ L

0
λ3ζuȳdx −

∫ L

0
λ (aux + b(x)vx) (ζ ′ȳ + ζ ȳx)dx − i

∫ L

0
c(x)ζ(x) |λy|2 dx = o(λ−1)

(4.22)
and

∫ L

0
λ3ζyūdx −

∫ L

0
λyxζ

′ūxdx −
∫ L

0
λyxζ ūxdx + i

∫ L

0
c(x)ζ(x) |λu|2 dx = o(λ−1).

(4.23)
Using Remark 4.2, Lemma 4.3 and the fact that yx is uniformly bounded in L2(0,L), we
get

∫ L

0
λ (aux + b(x)vx) (ζ ′ȳ + ζ ȳx)dx = o(1), −

∫ L

0
λyxζ

′ūxdx = o(1) and

∫ L

0
λyxζ ūxdx = o(1).

(4.24)

Using Lemma 4.3, we have that

∫ L

0
c(x)ζ |λu|2 dx = o(1). (4.25)

Inserting Equations (4.24) and (4.25) in Equations (4.22) and (4.23), and summing the result
by taking the imaginary part, and using the definition of the functions c and ζ , we get the
first estimation of Equation (4.20).

Now, multiplying equation (4.6) by z̄, integrating over (α2, α3 − 2ε) and using the fact
that ‖f2‖H 1

0 (0,L) = o(1) and z is uniformly bounded in L2(0,L), in particular in L2(α2, α3 −
2ε), we get

∫ α3−2ε

α2

iλyz̄dx −
∫ α3−2ε

α2

|z|2 dx = o(λ−2).

Then, using the first estimation of Equation (4.20), we get the second desired estimation of
Equation (4.20). �

Now, like as [27], we will construct a new multiplier satisfying some ordinary differential
systems.

Lemma 4.5 Let 0 < α1 < α2 < α3 < α4 < L and suppose that ε <
α3−α1

4 , and c(x) the
function defined in Equation (1.5). Then, for any λ ∈ R, the solution (ϕ,ψ) ∈ ((H 2(0,L) ∩
H 1

0 (0,L))2 of system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ2ϕ + aϕxx − iλ
(
1(α2,α3−2ε)

)
(x)ϕ − iλc(x)ψ = u, x ∈ (0,L)

λ2ψ + ψxx − iλ
(
1(α2,α3−2ε)

)
(x)ψ + iλc(x)ϕ = y, x ∈ (0,L)

ϕ(0) = ϕ(L) = 0,

ψ(0) = ψ(L) = 0,

(4.26)
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satisfies the following estimation

‖λϕ‖2
L2(0,L)

+ ‖ϕx‖2
L2(0,L)

+ ‖λψ‖2
L2(0,L)

+ ‖ψx‖2
L2(0,L)

≤ M
(
‖u‖2

L2(0,L)
+ ‖y‖2

L2(0,L)

)
.

(4.27)

Proof Following Theorem A.2, the exponential stability of System (A.1), proved in the
Appendix, implies that the resolvent of the auxiliary operator Aa defined by (A.2)-(A.3) is
uniformly bounded on the imaginary axis i.e. there exists M > 0 such that

sup
λ∈R

‖ (iλI −Aa)
−1 ‖L(Ha) ≤ M < +∞ (4.28)

where Ha = (
H 1

0 (0,L) × L2(0,L)
)2

. Now, since (u, y) ∈ H 1
0 (0,L) × H 1

0 (0,L), then
(0,−u,0,−y) belongs to Ha , and from (4.28), there exists (ϕ, η,ψ, ξ) ∈ D(Aa) such that
(iλI −Aa) (ϕ, η,ψ, ξ) = (0,−u,0,−y)� i.e.

iλϕ − η = 0, (4.29)

iλη − aϕxx + (
1(α2,α3−2ε)

)
(x)η + c(x)ξ = −u, (4.30)

iλψ − ξ = 0, (4.31)

iλξ − ψxx + (
1(α2,α3−2ε)

)
(x)ξ − c(x)η = −y, (4.32)

such that

‖(ϕ, η,ψ, ξ)‖Ha ≤ M
(‖u‖L2(0,L) + ‖y‖L2(0,L)

)
. (4.33)

From equations (4.29)-(4.33), we deduce that (ϕ,ψ) is a solution of (4.26) and we have

‖λϕ‖2
L2(0,L)

+ ‖ϕx‖2
L2(0,L)

+ ‖λψ‖2
L2(0,L)

+ ‖ψx‖2
L2(0,L)

≤ M
(
‖u‖2

L2(0,L)
+ ‖y‖2

L2(0,L)

)
.

Then, we get our desired result. �

Remark 4.6 There was no reference found for the proof of the exponential stability of Sys-
tem (A.1) when the coefficients of the damping and the coupling are both non smooth. For
this, we give the proof of the exponential stability of System (A.1) in Theorem A.2 (see
Sect. A.1 in the Appendix section).

Lemma 4.7 Let ε <
α3−α1

4 . Then, the solution (u, v, y, z) ∈ D(A) of (4.4)-(4.7) satisfies the
following asymptotic behavior estimation

∫ L

0
|λu|2 dx = o(1), (4.34)

and
∫ L

0
|λy|2 dx = o(1). (4.35)

Proof The proof of this Lemma is divided into two steps.
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Step 1.
Multiplying equation (4.17) by λ2ϕ̄, integrate over (0,L), and using Equation (4.27) and the
facts that u is uniformly bounded in L2(0,L) and ‖F‖H = ‖(f1, g1, f2, g2)‖H = o(1), we
get

∫ L

0

(
λ2ϕ̄ + aϕ̄xx

)
λ2udx −

∫ L

0
λ2b(x)vxϕ̄xdx −

∫ L

0
iλ3c(x)yϕ̄dx = o(λ−1). (4.36)

Using Equations (4.8) and (4.27), we get

∫ L

0
λ2b(x)vxϕ̄xdx = o(1). (4.37)

Combining Equations (4.36) and (4.37), we obtain

∫ L

0

(
λ2ϕ̄ + aϕ̄xx

)
λ2udx −

∫ L

0
iλ3c(x)yϕ̄dx = o(1). (4.38)

From System (4.26), we have

λ2ϕ̄ + aϕ̄xx = −iλ
(
1(α2,α3−2ε)

)
(x)ϕ̄ − iλc(x)ψ̄ + ū. (4.39)

Substituting (4.39) in (4.38), we get

∫ L

0
|λu|2 dx−

∫ L

0
iλ3

(
1(α2,α3−2ε)

)
(x)uϕ̄dx−

∫ L

0
iλ3c(x)ψ̄udx−

∫ L

0
iλ3c(x)yϕ̄dx = o(1).

(4.40)
Using Remark 4.2, Lemma 4.3 and Equation (4.27), we obtain

∫ L

0
iλ3

(
1(α2,α3−2ε)

)
(x)uϕ̄dx = o(1). (4.41)

Inserting Equation (4.41) in Equation (4.40), we get

∫ L

0
|λu|2 dx −

∫ L

0
iλ3c(x)ψ̄udx −

∫ L

0
iλ3c(x)yϕ̄dx = o(1). (4.42)

Step 2.
Multiplying equation (4.18) by λ2ψ̄ , integrate over (0,L), and using Equation (4.27) and
the facts that y is uniformly bounded in L2(0,L) and ‖F‖H = ‖(f1, g1, f2, g2)‖H = o(1),
we get

∫ L

0

(
λ2ψ̄ + ψ̄xx

)
λ2ydx +

∫ L

0
iλc(x)uψ̄dx = o(λ−1). (4.43)

From System (4.26), we have

λ2ψ̄ + aψ̄xx = −iλ
(
1(α2,α3−2ε)

)
(x)ψ̄ + iλc(x)ϕ̄ + ȳ. (4.44)

Substituting (4.44) in (4.43), we get

∫ L

0
|λy|2 dx −

∫ L

0
iλ3

(
1(α2,α3−2ε)

)
(x)yψ̄dx +

∫ L

0
iλ3c(x)ϕ̄ydx +

∫ L

0
iλ3c(x)uψ̄dx

= o(λ−1). (4.45)
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Using Remark 4.2, Lemma 4.4 and Equation (4.27), we obtain

∫ L

0
iλ3

(
1(α2,α3−2ε)

)
(x)yψ̄dx = o(1). (4.46)

Inserting Equation (4.46) in Equation (4.45), we get

∫ L

0
|λy|2 dx +

∫ L

0
iλ3c(x)ϕ̄ydx +

∫ L

0
iλ3c(x)uψ̄dx = o(1). (4.47)

Finally, summing up equations (4.42) and (4.47) we get

∫ L

0
|λu|2 dx = o(1) and

∫ L

0
|λy|2 dx = o(1).

Hence,
∫ L

0
|v|2 dx = o(1) and

∫ L

0
|z|2 dx = o(1). (4.48)

Then, the proof has been completed. �

Lemma 4.8 The solution (u, v, y, z) ∈ D(A) of the (4.4)-(4.7) satisfies the following
asymptotic behavior estimations

∫ L

0
|ux |2 dx = o(1) and

∫ L

0
|yx |2 dx = o(1). (4.49)

Proof Multiplying (4.17) by ū integrate over (0,L), using the fact that ‖F‖H = ‖(f1, g1, f2,

g2)‖H = o(1) and u is uniformly bounded in L2(0,L), we get

∫ L

0
|λu|2 dx −

∫ L

0
a |ux |2 dx −

∫ L

0
b(x)vxūxdx −

∫ L

0
iλc(x)yūdx = o(λ−2). (4.50)

Using equations (4.8) and (4.34), we get

∫ L

0
|ux |2 dx = o(1).

Similarly, multiply (4.18) by ȳ and integrate, we get

∫ L

0
|yx |2 dx = o(1).

The proof has been completed. �

Proof of Theorem 4.1 Consequently, from the results of Lemmas 4.7 and 4.8, we obtain

∫ L

0

(|v|2 + |z|2 + a |ux |2 + |yx |2
)
dx = o (1) .

Hence ‖U‖H = o(1), which contradicts (4.2). Consequently, condition (H2) holds. This im-
plies, from Theorem A.13, the energy decay estimation (4.1). The proof is thus complete. �
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5 Conclusion

We have studied the stabilization of a system of locally coupled wave equations with only
one internal localized Kelvin-Voigt damping via non-smooth coefficients. We proved the
strong stability of the system using Arendt-Batty criteria. Lack of exponential stability re-
sults has been proved in both cases: The case of global Kelvin-Voigt damping and the case
of localized Kelvin-Voigt damping, taking into consideration that the coupling is global. In
addition, if both coupling and damping are localized internally via non-smooth coefficients,
we established a polynomial energy decay rate of type t−1. We can conjecture that the energy
decay rate t−1 is optimal. However, if the intersection between the supports of the domains
of the damping and the coupling coefficients is empty, the nature of the decay rate of the
system will be unknown. This question is still an open problem.
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Appendix

A.1 Exponential Stability of Locally Coupled Wave Equations with Non-smooth
Coefficients

We consider the following auxiliary problem,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕtt − aϕxx + (
1(α2,α3−2ε)

)
(x)ϕt + c(x)ψt = 0, (x, t) ∈ (0,L) ×R

+,

ψtt − ψxx + (
1(α2,α3−2ε)

)
(x)ψt − c(x)ϕt = 0, (x, t) ∈ (0,L) ×R

+,

ϕ(0, t) = ϕ(L, t) = 0, t > 0,

ψ(0, t) = ψ(L, t) = 0, t > 0.

(A.1)

Since, we have a system of coupled wave equations with two interior damping acting on a
part of the interval (0,L), then system (A.1) is exponentially stable in the associated energy
space Ha = (

H 1
0 (0,L) × L2(0,L)

)2
. In this section, our aim is to show that the auxiliary

problem (A.1) is uniformly stable. The energy of System (A.1) is given by

Ea(t) = 1

2

(∫ L

0
|ϕt |2 + a|ϕx |2 + |ψt |2 + |ψx |2dx

)

and by a straightforward calculation, we have

d

dt
Ea(t) = −

∫ L

0

(
1(α2,α3−2ε)

)
(x)|ϕt |2dx −

∫ L

0

(
1(α2,α3−2ε)

)
(x)|ψt |2dx ≤ 0.
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Thus, System (A.1) is dissipative in the sense that its energy is a non-increasing function
with respect to the time variable t . The auxiliary energy Hilbert space of Problem (A.1) is
given by

Ha = (
H 1

0 (0,L) × L2(0,L)
)2

.

We denote by η = ϕt and ξ = ψt . The auxiliary energy space Ha is endowed with the
following norm

‖�‖2
Ha

= ‖η‖2 + a‖ϕx‖2 + ‖ξ‖2 + ‖ψx‖2,

where ‖ · ‖ denotes the norm of L2(0,L). We define the unbounded linear operator Aa by

D(Aa) = (
(H 2(0,L) ∩ H 1

0 (0,L)) × H 1
0 (0,L)

)2
, (A.2)

and

Aa(ϕ, η,ψ, ξ) = (η, aϕxx −(1(α2,α3−2ε)

)
(x)η−c(x)ξ, ξ,ψxx −(1(α2,α3−2ε)

)
(x)ξ +c(x)η)�.

(A.3)
If � = (ϕ,ψ,η, ξ) is the state of System (A.1), then this system is transformed into a first
order evolution equation on the auxiliary Hilbert space Ha given by

�t = Aa�, �(0) = �0,

where �0 = (ϕ0, η0,ψ0, ξ0). It is easy to see that Aa is m-dissipative and generates a
C0−semigroup of contractions

(
etAa

)

t≥0
.

Theorem A.1 The C0−semigroup of contractions (etAa )t≥0 is strongly stable on Ha , i.e.
for all U0 ∈ Ha , lim

t→+∞ ‖etAaU0‖Ha = 0.

Proof Following Arendt and Batty Theorem in [6], we have to prove the following two
conditions

1. A has no pure imaginary eigenvalues,
2. σ (A) ∩ iR is countable.

In order to prove these two conditions we proceed with the same argument of Sect. 2.2 and
we reach the desired result. �

Now, we present the main result of this section

Theorem A.2 The C0−semigroup of contractions
(
etAa

)

t≥0
is exponentially stable, i.e.

there exists constants M ≥ 1 and τ > 0 independent of �0 such that
∥
∥etAa�0

∥
∥
Ha

≤ Me−τ t‖�0‖Ha , t ≥ 0.

According to Huang [16] and Pruss [31], we have to check if the following conditions
hold:

iR⊆ ρ (Aa) (H3)

and

sup
λ∈R

‖ (iλI −Aa)
−1 ‖L(Ha) = O(1). (H4)
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By using the same argument of Lemma 2.4, the operator Aa has no pure imaginary eigen-
values. Then, condition (H3) holds. We will prove condition (H4) using an argument of
contradiction. Indeed, suppose there exists

{(λn,�n = (ϕn, ηn,ψn, ξn))}n≥1 ⊂ R
∗
+ × D (Aa)

such that

λn → +∞ and ‖�n‖Ha = 1 (A.4)

and there exists a sequence Fn = (
f1,n, f2,n, f3,n, f4,n

) ∈ Ha such that

(iλnI −Aa)�n = Fn → 0 in Ha. (A.5)

Detailing (A.5), we get the following system

iλϕn − ηn = f1,n in H 1
0 (0,L), (A.6)

iληn − a (ϕn)xx + (
1(α2,α3−2ε)

)
(x)ηn + c(x)ξn = f2,n in L2(0,L), (A.7)

iλψn − ξn = f3,n in H 1
0 (0,L), (A.8)

iλξn − (ψn)xx + (
1(α2,α3−2ε)

)
(x)ξn − c(x)ηn = f4,n in L2(0,L). (A.9)

In what follows, we will check the condition (H4) by finding a contradiction with (A.4) such
as ‖�n‖Ha = o(1). For clarity, we divide the proof into several lemmas. From now on, for
simplicity, we drop the index n.

Lemma A.3 The solution (ϕ, η,ψ, ξ) ∈ D (Aa) of Equations (A.6)-(A.9) satisfies the fol-
lowing asymptotic behavior estimation

∫ α3−2ε

α2

|η|2dx = o(1) and
∫ α3−2ε

α2

|ξ |2dx = o(1).

Proof Taking the inner product of (A.5) with � in Ha , then using the fact that � is uniformly
bounded in Ha , we get

∫ α3−2ε

α2

|η|2dx +
∫ α3−2ε

α2

|ξ |2dx = −�〈Aa�,�〉Ha
= �〈(iλI −Aa)�,�〉 = o(1).

Thus, the proof of the Lemma is complete. �

Substituting η and ξ by iλϕ − f1 and iλψ − f3 respectively in (A.7) and (A.9), we get
the following system

λ2ϕ + aϕxx − iλ
(
1(α2,α3−2ε)

)
(x)ϕ − iλc(x)ψ = −iλf1 +(1(α2,α3−2ε)

)
(x)f1 − f2 − c(x)f3,

(A.10)

λ2ψ + ψxx − iλ
(
1(α2,α3−2ε)

)
(x)ψ + iλc(x)ϕ = c(x)f1 − iλf3 − (

1(α2,α3−2ε)

)
(x)f3 − f4.

(A.11)
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Lemma A.4 Let 0 < δ <
α3−2ε−α2

2 . The solution (ϕ, η,ψ, ξ) ∈ D(Aa) of Equations (A.5)-
(A.8) satisfies the following asymptotic behavior estimation

∫ α3−2ε−δ

α2+δ

|ϕx |2dx = o(1) and
∫ α3−2ε−δ

α2+δ

|ψx |2dx = o(1).

Proof First, we define the first cut-off function θ in C1(0,L) by, defined by

0 ≤ θ ≤ 1, θ = 1 on (α2 + δ,α3 − 2ε − δ) and θ = 0 on (0, α2) ∪ (α3 − 2ε,L).

(A.12)
Multiplying Equations (A.10) and (A.11) by θϕ̄ and θψ̄ respectively, integrate over (0,L)

and using the fact that λϕ and λψ are uniformly bounded in L2(0,L) and ‖F‖ → 0 in Ha

and taking the real part, we get

∫ L

0
θ |λϕ|2dx − a

∫ L

0
θ |ϕx |2dx − a

∫ L

0
θ ′ϕ̄ϕxdx − �

(

iλc0

∫ α3−2ε

α2

θψϕ̄dx

)

= o(1)

(A.13)
and

∫ L

0
θ |λψ |2dx −

∫ L

0
θ |ψx |2dx −

∫ L

0
θ ′ψ̄ψxdx + �

(

iλc0

∫ α3−2ε

α2

θϕψ̄dx

)

= o(1).

(A.14)
Using the fact that λϕ and λψ are uniformly bounded in L2(0,L), in particular in
L2 (α2, α3 − 2ε), and the definition of θ , we get

�
(

iλc0

∫ α3−2ε

α2

θψϕ̄dx

)

= o(1) and �
(

iλc0

∫ α3−2ε

α2

θϕψ̄dx

)

= o(1). (A.15)

On the other hand, using the fact that λϕ, λψ, ϕx and ψx are uniformly bounded in L2(0,L),
we get

a

∫ L

0
θ ′ϕ̄ϕxdx = o(1) and

∫ L

0
θ ′ψ̄ψxdx = o(1). (A.16)

Furthermore, using Lemma A.3, Equations (A.6), (A.8) and the definition of the function θ

in Equation (A.12), we get

∫ L

0
θ |λϕ|2dx = o(1) and

∫ L

0
θ |λψ |2dx = o(1). (A.17)

Inserting Equations (A.15)-(A.17) in Equations (A.13) and (A.14), we get the desired re-
sults. Thus, the proof of this Lemma is complete. �

From Lemma A.3 and Lemma A.4, we get ‖�‖Ha = o(1) on (α2 + δ,α3 − 2ε − δ). In
order to complete the proof, we need to show that ‖�‖Ha on (α2 + δ,α3 − 2ε − δ)c .
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Lemma A.5 Let h ∈ C1(0,L). The solution (ϕ, η,ψ, ξ) ∈ D(Aa) of Equations (A.6)-(A.9)
satisfies the following asymptotic behavior estimation

∫ L

0
h′ (|η|2 + a|ϕx |2 + |ξ |2 + |ψx |2

)
dx − �

([
ah|ϕx |2

]L
0

)

− �
([

h|ψx |2
]L

0

)
+ 2�

(∫ L

0
c(x)hξϕ̄xdx

)

− 2�
(∫ L

0
c(x)hηψ̄xdx

)

= 2
∫ L

0
hϕ̄xf2dx + 2

∫ L

0
hη(f̄1)xdx + 2

∫ L

0
hψ̄xf4dx

+ 2
∫ L

0
hξ(f̄3)xdx.

(A.18)

Proof Multiplying Equations (A.7) and (A.9) by 2hϕ̄x and 2hψ̄x respectively, integrate over
(0,L) and using the fact that ϕx , ψx are uniformly bounded in L2(0,L) and ‖F‖Ha → 0
and Lemma A.3, we get

2
∫ L

0
iλhηϕ̄xdx − 2a

∫ L

0
hϕxxϕ̄xdx + 2

∫ L

0
c(x)hξϕ̄xdx = 2

∫ L

0
hϕ̄xf2dx (A.19)

2
∫ L

0
iλhξψ̄xdx − 2

∫ L

0
hψxxψ̄xdx − 2

∫ L

0
c(x)hηψ̄xdx = 2

∫ L

0
hψ̄xf4dx. (A.20)

From Equations (A.6) and (A.8), we have

−iλϕ̄x = η̄x + (
f̄1

)

x
and − iλψ̄x = ξ̄x + (

f̄3

)

x
.

Inserting the above equations in Equations (A.19) and (A.20) and by taking the real part, we
obtain

−
∫ L

0
h|η|2xdx − a

∫ L

0
h|ϕx |2xdx + 2�

(∫ L

0
c(x)hξϕ̄xdx

)

= 2
∫ L

0
hϕ̄xf2dx + 2

∫ L

0
hη(f̄1)xdx, (A.21)

−
∫ L

0
h|ξ |2xdx −

∫ L

0
h|ψx |2xdx − 2�

(∫ L

0
c(x)ηhψ̄xdx

)

= 2
∫ L

0
hψ̄xf4dx + 2

∫ L

0
hξ(f̄3)xdx. (A.22)

Using by parts integration in Equations (A.21) and (A.22), we get the desired results. �

Lemma A.6 Let 0 < δ <
α3−2ε−α2

2 . The solution (ϕ, η,ψ, ξ) ∈ D(Aa) of Equations (A.6)-
(A.9) satisfies the following asymptotic behavior estimation

∫ α2+δ

0

(|η|2 + a|ϕx |2 + |ξ |2 + |ψx |2
)
dx = o(1).
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Proof Define the cut-off function θ̃ in C1([0,L]) by

0 ≤ θ̃ ≤ 1, θ̃ = 1 on (0, α2 + δ), θ̃ = 0 on (α3 − 2ε − δ,L). (A.23)

Take h = xθ̃(x) in Equation (A.18), we get

∫ L

0
h′ (|η|2 + a|ϕx |2 + |ξ |2 + |ψx |2

)
dx + 2c0�

(∫ α3−2ε−δ

α2

xθ̃ξ ϕ̄xdx

)

−2c0�
(∫ α3−2ε−δ

α2

xθ̃ηψ̄xdx

)

= o(1).

(A.24)

Using Lemma (A.3) and ϕx and ψx are uniformly bounded in L2(0,L) and in particular in
L2(α2, α3 − 2ε − δ), we get

2c0�
(∫ α3−2ε−δ

α2

xθ̃ξ ϕ̄xdx

)

= o(1) and 2c0�
(∫ α3−2ε−δ

α2

xθ̃ηψ̄xdx

)

= o(1).

Inserting the above equations in Equation (A.24), and using Lemmas (A.3)-(A.4) and the
definition the function θ̃ , we get the desired result. �

From the preceded results of Lemmas A.3, A.4 and A.6, we deduce that

‖�‖Ha = o(1) on (α2 + δ,α3 − 2ε − δ).

Now, our goal is to prove that ‖�‖Ha = o(1) on (α3 − 2ε − δ,L). For this aims, let g ∈
C1 ([α3 − 2ε − δ,α4]) such that

g(α4) = −g(α3 − 2ε − δ) = 1, max
x∈[α3−3ε,α4]

|g(x)| = cg and max
x∈[α3−3ε,α4]

|g′(x)| = cg′

where cg and cg′ are strictly positive constant numbers.

Remark A.7 It is easy to see the existence of g(x). For example, we can take g(x) =
cos

(
(α4 − x)π

α4 − α3 + 2ε + δ

)

to get g(α4) = −g(α3 − 2ε − δ) = 1, g ∈ C1 ([α3 − 2ε − δ,4]),
|g(x)| ≤ 1 and |g′(x)| ≤ π

α4−α3+2ε+δ
.

Lemma A.8 Let 0 < δ <
α3−2ε−α2

2 . The solution (ϕ, η,ψ, ξ) ∈ D(Aa) of Equations (A.5)-
(A.8) satisfies the following asymptotic behavior estimation

|η(α4)|2 = O(1), |η(α3 − 2ε − δ)|2 = O(1), |ξ(α4)|2 = O(1) and

|ξ(α3 − 2ε − δ)|2 = O(1).

Proof From (A.7) and (A.9), we have

iλϕx − ηx = (f1)x and iλψx − ξx = (f3)x . (A.25)

Multiplying the first equation and the second equation of (A.25) respectively by 2g(x)η̄ and
2g(x)ξ̄ , integrate over (α3 − 2ε − δ,α4) and using the fact that ‖F‖Ha → 0 and η and ξ are
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uniformly bounded in L2(0,L) in particular in L2(α3 − 2ε − δ,α4), we get

�
(

2iλ

∫ α4

α3−2ε−δ

gϕxη̄dx

)

−
∫ α4

α3−2ε−δ

g(x)
(|η|2)

x
dx = o(1), (A.26)

�
(

2iλ

∫ α4

α3−2ε−δ

gψxξ̄dx

)

−
∫ α4

α3−2ε−δ

g(x)
(|ξ |2)

x
dx = o(1). (A.27)

Using integration by parts in Equations (A.26) and (A.27), we get
∫ α4

α3−2ε−δ

g′(x)|η|2dx + �
(

2iλ

∫ α4

α3−2ε−δ

gϕxη̄dx

)

= |η(α4)|2 + |η(α3 − 2ε − δ)|2 + o(1),

(A.28)
∫ α4

α3−2ε−δ

g′(x)|ξ |2dx + �
(

2iλ

∫ α4

α3−2ε−δ

gψxξ̄dx

)

= |ξ(α4)|2 + |ξ(α3 − 2ε − δ)|2 + o(1).

(A.29)

Multiplying Equations (A.7) and (A.9) by 2g(x)ϕ̄x and 2g(x)ψ̄x respectively, integrate over
(α3 − 2ε − δ,α4), using the fact ‖F‖Ha → 0, ϕx and ψx are uniformly bounded in L2(0,L)

and Lemma A.3 and taking the real part, we get

�
(

2iλ

∫ α4

α3−2ε−δ

g(x)ηϕ̄xdx

)

− a

∫ α4

α3−2ε−δ

g(x)
(|ϕx |2

)

x
dx + 2�

(

c0

∫ α4

α3−2ε−δ

g(x)ξ ϕ̄xdx

)

= o(1),

�
(

2iλ

∫ α4

α3−2ε−δ

g(x)ξψ̄xdx

)

−
∫ α4

α3−2ε−δ

g(x)
(|ψx |2

)

x
dx − 2�

(

c0

∫ α4

α3−2ε−δ

g(x)ηψ̄xdx

)

= o(1).

Using integration by parts in the second terms of the above Equations, we obtain

�
(

2iλ

∫ α4

α3−2ε−δ

g(x)ηϕ̄xdx

)

+ a

∫ α4

α3−2ε−δ

g′(x)|ϕx |2dx + 2�
(

c0

∫ α4

α3−2ε−δ

g(x)ξ ϕ̄xdx

)

= a|ϕx(α4)|2 + a|ϕx(α3 − 2ε − δ)|2 + o(1)

(A.30)
and

�
(

2i

∫ α4

α3−2ε−δ

g(x)ξψ̄xdx

)

+
∫ α4

α3−2ε−δ

g′(x)|ψx |2dx − 2�
(

c0

∫ α4

α3−2ε−δ

g(x)ηψ̄xdx

)

= |ψx(α4)|2 + |ψx(α3 − 2ε − δ)|2 + o(1).

(A.31)
Adding Equations (A.28)-(A.31), we get

M(α4, α3 − 2ε − δ)+N(α4, α3 −2ε − δ) =
∫ α4

α3−2ε−δ

g′(x)
(|η|2 + a|ϕx |2 + |ξ |2 + |ψx |2

)
dx

+2�
(

c0

∫ α4

α3−2ε−δ

g(x)ξ ϕ̄xdx

)

− 2�
(

c0

∫ α4

α3−2ε−δ

g(x)ηψ̄xdx

)

+ o(1)

(A.32)
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where

M(α4, α3 − 2ε − δ) = |η(α4)|2 + |η(α3 − 2ε − δ)| + a|ϕx(α4)|2 + a|ϕx(α3 − 2ε − δ)|2,
N(α4, α3 − 2ε − δ) = |ξ(α4)|2 + |ξ(α3 − 2ε − δ)|2 + |ψx(α4)|2 + |ψx(α3 − 2ε − δ)|2.

From Equation (A.32), we get

M(α4, α3 − 2ε − δ) + N(α4, α3 − 2ε − δ) ≤ cg′
∫ α4

α3−2ε−δ

(|η|2 + a|ϕx |2 + |ξ |2 + |ψx |2
)
dx

+c0cg‖ξ‖L2(0,L)‖ϕx‖L2(0,L) + c0cg‖η‖L2(0,L)‖ψx‖L2(0,L) + o(1).

Using the fact that ‖�‖ is uniformly bounded in Ha , we obtain the desired result. The proof
of this Lemma has been completed. �

Lemma A.9 Let 0 < δ <
α3−2ε−α2

2 . The solution (ϕ, η,ψ, ξ) ∈ D(Aa) of Equations (A.6)-
(A.9) satisfies the following asymptotic behavior estimation

∫ L

α3−2ε−δ

(|η|2 + a|ϕx |2 + |ξ |2 + |ψx |2
)
dx = o(1).

Proof Define the cut-off function θ̂ in C1 ([0,L]) by

0 ≤ θ̂ ≤ 1, θ̂ = 1 on (α3 − 2ε − δ,L), and θ̂ = 0 on (0, α2 + δ). (A.33)

Take h = (x − L)θ̂ in Equation (A.18), using Lemmas (A.3)-(A.4) and the definition of the
function θ̂ , we get
∫ L

α3−2ε−δ

(|η|2 + a|ϕx |2 + |ξ |2 + |ψx |2
)
dx + 2c0�

(∫ α4

α3−2ε−δ

(x − L)θ̂ξ ϕ̄xdx

)

−2c0�
(∫ α4

α3−2ε−δ

(x − L)θ̂ηψ̄xdx

)

= o(1).

(A.34)

Using the fact that ξ = iλψ − f3 and η = iλϕ − f1 in the second and third term of Equation
(A.34) and that ϕx , ψx are uniformly bounded in L2(0,L) and the fact that ‖F‖Ha → 0, we
get

2c0�
(∫ α4

α3−2ε−δ

(x − L)θ̂ξ ϕ̄xdx

)

− 2c0�
(∫ α4

α3−2ε−δ

(x − L)θ̂ηψ̄xdx

)

= 2c0�
(∫ α4

α3−2ε−δ

iλ(x − L)θ̂ψϕ̄xdx

)

−2c0�
(∫ α4

α3−2ε−δ

iλ(x − L)θ̂ϕψ̄xdx

)

+ o(1).

Using integration by parts in the first term of the right hand side of the above equation and
the fact that λϕ and λψ are uniformly bounded in L2(�), we obtain

2c0�
(∫ α4

α3−2ε−δ

(x − L)θ̂ξ ϕ̄xdx

)

− 2c0�
(∫ α4

α3−2ε−δ

(x − L)θ̂ηψ̄xdx

)

=

2c0�
([

iλ(x − L)ψϕ̄
]α4

α3−2ε−δ

)
+ o(1).

(A.35)
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Inserting Equation (A.35) in Equation (A.34), we obtain

∫ L

α3−2ε−δ

(|η|2 + a|ϕx |2 + |ξ |2 + |ψx |2
)
dx = A(α4) + B(α3 − 2ε − δ) + o(1), (A.36)

where

A(α4) = 2c0� (iλ(L − α4)ψ(α4)ϕ̄(α4)) ,

B(α3 − 2ε − δ) = 2c0� (iλ(α3 − 2ε − δ − L)ψ(α3 − 2ε − δ)ϕ̄(α3 − 2ε − δ)) .

On the other hand, from Equations (A.6) and (A.8), we have

|λϕ(s)| ≤ |η(s)| + |f1(s)| and |λψ(s)| ≤ |ξ(s)| + |f3(s)| for s ∈ {α3 − 2ε − δ,α4} .

(A.37)

Using the fact that |f1(s)| ≤ s

∫ s

0
|(f1)x |2dx ≤ sa−1‖F‖2

Ha
and |f3(s)| ≤ s

∫ s

0
|(f3)x |2dx ≤

s‖F‖2
Ha

for all s ∈ {α3 − 2ε − δ,α4}, and using Lemma A.8 in Equation (A.37), we obtain

|λϕ(s)| = O(1) and |λψ(s)| = O(1), for s ∈ {α3 − 2ε − δ,α4} .

Its follow that

A(α4) + B(α3 − 2ε − δ) = o(1). (A.38)

Using Equation (A.37) in Equation (A.36), we obtain

∫ L

α3−2ε−δ

(|η|2 + a|ϕx |2 + |ξ |2 + |ψx |2
)
dx = o(1).

Thus, the proof has been completed. �

Proof of Theorem A.2 Using Lemmas A.3, A.4, A.6 and A.9, we get ‖�‖Ha = o(1) on
[0,L], which contradicts Equation (A.4). Therefore, (H4) holds, by Huang [16] and Pruss
[31] we deduce the exponential stability of the auxiliary problem (A.1). �

A.2 Definitions and Theorems

We introduce here the notions of stability that we encounter in this work.

Definition A.10 Assume that A is the generator of a C0-semigroup of contractions
(
etA
)

t≥0

on a Hilbert space H. The C0-semigroup
(
etA
)

t≥0
is said to be

1. strongly stable if

lim
t→+∞‖etAx0‖H = 0, ∀ x0 ∈ H ;

2. exponentially (or uniformly) stable if there exist two positive constants M and ε such
that

‖etAx0‖H ≤ Me−εt‖x0‖H , ∀ t > 0, ∀ x0 ∈ H ;
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3. polynomially stable if there exists two positive constants C and α such that

‖etAx0‖H ≤ Ct−α‖x0‖H , ∀ t > 0, ∀ x0 ∈ D (A) .

In that case, one says that the semigroup
(
etA
)

t≥0
decays at a rate t−α . The C0-semigroup

(
etA
)

t≥0
is said to be polynomially stable with optimal decay rate t−α (with α > 0) if it is

polynomially stable with decay rate t−α and, for any ε > 0 small enough, the semigroup(
etA
)

t≥0
does not decay at a rate t−(α−ε).

To show the strong stability of a C0−semigroup of contraction (etA)t≥0 we rely on the
following result due to Arendt-Batty [6].

Theorem A.11 Assume that A is the generator of a C0−semigroup of contractions
(
etA
)

t≥0
on a Hilbert space H. If

1. A has no pure imaginary eigenvalues,
2. σ (A) ∩ iR is countable,

where σ (A) denotes the spectrum of A, then the C0−semigroup
(
etA
)

t≥0
is strongly stable.

Concerning the characterization of exponential stability of a C0−semigroup of contrac-
tion (etA)t≥0 we rely on the following result due to Huang [16] and Prüss [31].

Theorem A.12 Let A : D(A) ⊂ H → H generate a C0−semigroup of contractions(
etA
)

t≥0
on H . Assume that iλ ∈ ρ(A), ∀λ ∈ R. Then, the C0−semigroup

(
etA
)

t≥0
is ex-

ponentially stable if and only if

lim
λ∈R, |λ|→+∞

‖(iλI − A)−1‖L(H) < +∞.

Also, concerning the characterization of polynomial stability of a C0−semigroup of con-
traction (etA)t≥0 we rely on the following result due to Borichev and Tomilov [10] (see also
[21] and [9]).

Theorem A.13 Assume that A is the generator of a strongly continuous semigroup of con-
tractions

(
etA
)

t≥0
on H . If iR ⊂ ρ(A), then for a fixed � > 0 the following conditions are

equivalent

sup
λ∈R

∥
∥(iλI − A)−1

∥
∥
L(H)

= O
(|λ|�) , (A.39)

‖etAU0‖2
H ≤ C

t
2
�

‖U0‖2
D(A), ∀t > 0, U0 ∈ D(A), for some C > 0. (A.40)

Finally, the analytic property of a C0−semigroup of contraction (etA)t≥0 is characterized
in the following theorem due to Arendt, Batty and Hieber [7].

Theorem A.14 Let (S(t) = etA)t≥0 be a C0−semigroup of contractions in a Hilbert space.
Assume that

iR⊂ ρ(A). (A1)
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Then, (etA)t≥0 is analytic if and only if

lim sup
λ∈R,|λ|→∞

1

|λ|−1
‖(iλ − A)−1‖L(H) < ∞. (A2)
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