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Abstract We recount and discuss some of the most important methods and blow-up crite-
ria for analyzing solutions of Keller-Segel chemotaxis models. First, we discuss the results
concerning the global existence, boundedness and blow-up of solutions to parabolic-elliptic
type models. Thereafter we describe the global existence, boundedness and blow-up of so-
lutions to parabolic-parabolic models. The numerical analysis of these models is still at a
rather early stage only. We recollect quite a few of the known results on numerical methods
also and direct the attention to a number of open problems in this domain.

Mathematics Subject Classification (2010) 35A01 · 35D30 · 35B44 · 34H15 · 35K40 ·
65N30 · 65M08 · 65M06

Keywords Chemotaxis · Keller-Segel models · Weak solutions · Renormalized solutions ·
Local existence · Global existence · Blow-up · Boundedness · Stabilization · Asymptotic
behavior of solutions · Finite difference method · Finite element method · Finite Volume
method · Discontinuous Galerkin method

1 Introduction

Response to the environmental changes is an essential and basic property of the living cells.
Through evolution, both unicellular and multicellular organisms develop various mecha-
nisms that help them to regulate their cellular function in response to environmental changes.
In general, whole organisms or cells cannot move by random manner, but they sense their
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environment and respond to it. Movement of the cells is mainly decided by some external
stimulants / signals, which determine the direction and distance of the cell movement. In
the context of individual cells, migration can be regulated by various environmental fac-
tors such as light, chemicals, temperature, electric field, environmental gravity and many
more. Of these, chemotaxis is an important sensory phenomenon of the cells by which cells
translate chemical signals into motile behavior. Prokaryotic response to chemotaxis have
been studied extensively in Escherichia coli, where a quite simple signaling cascade sup-
ports the clockwise or anticlockwise rotation of flagella to produce either forward motion
or headlong, respectively. In case of eukaryotic organisms, chemotaxis mechanisms have
been studied widely in amoeboid Dictyostelium discoideum and mammalian neutrophils in
which chemoattractants induce intricate signaling cascades contributing to diverse cellular
processes including the establishment of cellular polarity and extension of the cell mem-
brane. Chemotaxis regulates various biological processes such as sperm motivation during
fertilization, wound healing, tissue morphogenesis, axon guidance, immune reaction, neuron
migration and lymphocyte migration during later phases of development.

Chemotaxis has attracted the significant interest due to its critical role in a wide range of
biological phenomena (see [1, 22, 45]). Famous examples of biological species experiencing
chemotaxis are the flagellated bacteria Salmonella typhimurium and Escherichia Coli, the
slime mold amoebae Dictyostelium discoideum and the human endothelial cells etc. The
mathematical model of chemotaxis has provided a cornerstone for much of this work, its
success being a consequence of its intuitive simplicity, analytical tractability and capacity
to replicate key behaviour of chemotactic populations. Among all properties of chemotaxis
behaviour, the important one is the ability to display cell aggregation, which has led to its
importance as a mechanism for self-organization of biological systems. This phenomenon
has shown to lead to finite time blow-up under certain formulations of the model and a wide
spectrum of work has been devoted to determine succinctnessing when blow-up occurs or
whether global solutions exist. To illustrate the breadth of this field, we describe some of
areas that have benefited from the use of Keller-Segel (KS) models, apologizing to those
whose works have been omitted for conciseness.

In general, organism or cell moves from a lower concentration towards a higher concen-
tration of the chemo attractant, which is known as positive chemotaxis. In the same way,
the opposite movement of the organisms is known as negative chemotaxis. In particular,
microorganisms use chemotaxis to position themselves within the optimal portion of their
habitats by monitoring the environmental concentration gradients of specific chemical at-
tractant (positive chemotaxis) and repellent ligands (negative chemotaxis). Let us consider
a positive chemotactic response of unicellular organisms such as bacteria. Let us first as-
sume that a chemical gradient has been produced externally and the bacteria are merely
responding to it. Organic or inorganic substances which cause bacterial motility by inducing
chemotaxis are called chemo attractants or chemo repellents. Bacterial motion involves a
sequence of runs and tumbles. At the run stage, the bacterium moves a certain distance in
a combination of motion in certain direction with random diffusion. At the tumble stage,
the bacterium reorients itself to get ready for a fresh run. Rather than actively changing
their direction of motion in response to the stimulus, bacteria seems to turn more frequently
when the chemical concentration is low. The easiest model is that the average velocity with
which the bacteria responds to the gradient is proportional to the gradient. Therefore the flux
should be proportional to the product of the gradient and the density of bacteria. Let u and
v be denote the bacteria density and the chemical concentration, respectively. Now, we have

Jchemo = χu∇v,
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where χ is a proportionality constant and is also called the chemotactic constant or chemo-
tactic sensitivity. The flux Jchemo is nothing but the chemotactic flux. This is the most widely
used model for chemotactic flux. For negative chemotaxis, χ is negative. Since the chemical
concentration v also diffuses, the resulting diffusion equation becomes

∂tv = ∇ · (d2∇v) + g(u, v),

where g(u, v) = αu − βv and d2 > 0. If the bacteria themselves produce the chemical then
things become more complicated.

1.1 The Keller-Segel Model

The general form of Keller-Segel model for chemotaxis is

⎧
⎪⎨

⎪⎩

∂u

∂t
= ∇(φ(u, v)∇u − ψ(u,v)∇v) + f (u, v),

τ
∂v

∂t
= d	v + g(u, v) − h(u, v)v,

(1.1)

where u represents the cell (or organism) density on a given domain 
 ⊂ R
n and v denotes

the concentration of the chemical signal. The motility function φ(u, v) describes the dif-
fusivity of the cells and ψ(u,v) represents the chemotactic sensitivity. Both φ and ψ may
be functions of u and v. The function f (u, v) describes cell growth and death while the
functions g(u, v) and h(u, v) are kinetic functions that describe production and degradation
of the chemical signal, respectively. The general form of chemotactic term is of the form
ψ(u,v, |∇v|) (for example, see [125]). The important properties of (1.1) are self aggre-
gation phenomenon and spatial pattern formation. Theoretical and mathematical modeling
of chemotaxis phenomenon dates back to the pioneering works of Patlak in the 1950s in
[129] and Keller-Segel in 1970s [86–88]. For the application perspectives of chemotaxis
phenomenon, cf. [128]. Since the model derivations have already been available in [70, 73,
119], so we omit the details here.

The Keller-Segel models have fascinated the applied researchers for few decades. In par-
ticular, it has attracted to applied mathematicians due to its qualitative behavior like blow-up,
pattern formation, stabilization etc. This model mainly describes the aggregation of bacteria
or cells induced by concentration of chemical and the aggregation is balanced by diffusion
of cells. We interpret this aggregation or concentration of cells as blow-up in mathematics.
Since the size of cells is finite so this blow-up is not very realistic from the biological point
of view. Hence, avoiding blow-up in theory and numerics is a challenging problem. There
are some possible ways to avoid blow-up such as bounded chemotaxis sensibilities, addi-
tional cross-diffusion term in the second equation of the classical model, degenerate cell
diffusion, logistic sources. For instance, the reader may consult the recent survey [100] for
available blow-up techniques and regularity issues for classical Keller-Segel model. In the
present review, we carefully discuss quite a few Keller-Segel models from literature and its
related issues.

1.2 Keller-Segel-Navier-Stokes Models

Understanding the chemotaxis phenomena in fluid environment is an interesting topic of
research in mathematical biology. This is governed by Keller-Segel model together with
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Navier-Stokes equation. The Keller-Segel-Navier-Stokes model is presented by the follow-
ing model:

⎧
⎪⎪⎨

⎪⎪⎩

∂tn + u · ∇n = d1	n − ∇ · (nχ(c)∇c) + f (u),

∂t c + u · ∇c = d2	c − nf (c),

∂tu + (u · ∇)u = ν	u − ∇P − n∇�,

∇ · u = 0,

(1.2)

where n, c, u and p represent the cell density, chemical concentration, velocity of the fluids,
and pressure of the fluid, respectively. Here χ(c) denotes the chemotactic sensitivity, f (c)

represents the consumption rate of the chemical and � is the potential function. The positive
constants d1, d2, and ν denote the diffusion coefficients of the cells, chemical and fluids,
respectively.

Let there is no fluid in the above model, that is, u = 0 in the Keller-Segel-Navier-Stokes
model (1.2), then it will reduce to Keller-Segel model (which is the centre of the other mod-
els). Similarly, there are a few models available such as chemotaxis-haptotaxis, attraction-
repulsion models which are generalization of Keller-Segel models, cf. [127]. In order to
present the available theory for these models, we need some basic results around Keller-
Segel models. Using the same, we can extend the available results of Keller-Segel models to
chemotaxis-haptotaxis, attraction-repulsion models, etc. Since the literature related to these
models is vast, so in this review, we mainly focus on Keller-Segel models and its variants.

1.3 The Model Variations

A number of variations have been described based on additional biological realism. We
record some of the available variations of Keller-Segel chemotaxis system and precisely
mention the existing results in the literature. Depending on the properties of the chemoat-
tractant, the system can be simplified to a parabolic-elliptic system (for chemoattractant
with ‘fast’ diffusion) or to a parabolic-ODE system (for non-diffusive chemoattractants or
with slow diffusion). We list a few models, below, which have been discussed by many
researchers. The minimal model (γ = 1, α = 1) [70]:

{
∂tu = d	u − ∇ · (χu∇v),

∂tv = 	v + u − γ v.
(1.3)

The classical Keller-Segel model [199]:

{
∂tu = 	u − ∇ · (u∇v),

∂tv = 	v + u − v.
(1.4)

The non-local model [70]:

{
∂tu = ∇· (d∇u − χu∇̊ρv),

∂tv = 	v + u − v,
(1.5)

the non-local gradient ∇̊ρv is defined as follows

∇̊ρv(x, t) = n

ωρ

ˆ

Sn−1

σv(x + ρσ, t)dσ, (1.6)
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where ω = |Sn−1| and Sn−1 denotes the (n− 1) dimensional unit sphere in R
n and is chosen

such that the monomial model follows for ρ → 0. Keller-Segel model like a drift-diffusion
type [124]:

{
∂tu = div(∇um − u · ∇ϕ),

−	ϕ = u− < u >,
(1.7)

where m � 1. The nonlinear-diffusion model [70]:
{

∂tu = ∇· (dun∇u − χu∇v),

∂tv = 	v + u − v,
(1.8)

where the minimal model corresponds to the limit of n → 0. The Keller-Segel model in
[132]:

{
∂tu = ∇· (φ(v)∇u) − ∇(uχ(v)∇v),

∂tv = D	v + uf (v) − k(v)v.
(1.9)

The nonlinear gradient model [70]:
{

∂tu = ∇· (d∇u − χuFc(∇v)),

∂tv = 	v + u − v,
(1.10)

where the vector valued function Fc :Rn →R
n is defined as follows

Fc(∇v) = 1

c

(

tanh

(
cvx1

1 + c

)

, . . . , tanh

(
cvxn

1 + c

))

.

Signal-dependent sensitivity models [70]:
Here are the two versions of signal-dependent sensitivity; the receptor model

{
∂tu = ∇· (d∇u − χu

(1 + αv)2
∇v),

∂tv = 	v + u − v,
(1.11)

where for α → 0, the minimal model is obtained and the logistic model:
⎧
⎨

⎩

∂tu = ∇·
(

d∇u − χu
1 + β

v + β
∇v

)

,

∂tv = 	v + u − v,

(1.12)

when β → ∞, the minimal model follows and for β → 0, we obtain the classical form of
χ(v) = 1/v.

Density dependent sensitivity models [70]:
There are two models with density dependent sensitivity, which are described as follows:

⎧
⎨

⎩

∂tu = ∇·
(

d∇u − χu

(

1 − u

γ

)

∇v

)

,

∂tv = 	v + u − v,

(1.13)

where the limit of γ → ∞ leads to the minimal model and the volume-filling model is
⎧
⎨

⎩

∂tu = ∇·
(

d∇u − χ
u

1 + εu
∇v

)

,

∂tv = 	v + u − v,

(1.14)
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where ε → 0 leads to the minimal model. The derivation of Keller-Segel models and an
extensive literature survey on the above mentioned variations of Keller-Segel models can be
found in [10, 70, 73]. Here, we choose some variants of Keller-Segel model below, to review
already existing recent results on existence, uniqueness, blow-up, boundedness of solutions
and its numerical analysis. Singular sensitivity model [209]:

⎧
⎨

⎩

∂tu = 	um − χ∇ ·
(

u

v
∇v

)

,

∂tv = 	v − uv.

(1.15)

Keller-Segel model with signal absorption and logistic growth term (when k = 2 [97] and
when k > 1 [216])

⎧
⎨

⎩

∂tu = 	u − χ∇ ·
(

u

v
∇v

)

+ ru − μuk,

∂tv = 	v − uv.

(1.16)

Quasilinear Keller-Segel model [67]:

{
∂tu = ∇· (∇um − uq−1∇v),

τ∂tv = 	v − v + u.
(1.17)

The following model [155] describes a typical chemotaxis process:

{
∂tu = ∇(φ(u)∇u) − ∇· (ψ(u)∇v),

∂tv = 	v − v + u.
(1.18)

The Keller-Segel model with special case [11]:

{
∂tu = ∇· (uα∇u) − ∇ · (u1+α∇v) + f (u, v),

∂tv = vβ	v − vβ+1 + uvβ.
(1.19)

Keller-Segel model [114]:

{
∂tu = ∇· (∇u − um∇v),

�∂tv = 	v − λv + u.
(1.20)

The macroscopic model for cell populations [59]:

{
∂tu = 	u − ∇· (uχ0(v)∇v) + f (u),

τ∂tv = 	v − v + u.
(1.21)

The following model with m > 1, α,γ,χ > 0 and N � 1 [150]:

{
∂tu = ∇· (∇um − χu∇v),

0 = 	v − γ v + αu.
(1.22)

Keller-Segel model [39]:

{
∂tu = ∇· (φ(u)∇u) − ∇ · (u∇v),

0 = 	v + u − M.
(1.23)
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Keller-Segel model [21]:
{

∂tu = div(∇um − u∇v),

−	v = u.
(1.24)

The Keller-Segel model with non-diffusive chemical [153]:
⎧
⎨

⎩

∂tu = 	u − ∇·
(

u
∇v

v

)

,

∂tv = uvλ.

(1.25)

The Keller-Segel model with rotation [166]:
{

∂tu = ∇· (φ(u)∇u − uS(u, v, x)∇v),

∂tv = 	v − uf (v).
(1.26)

The Keller-Segel model with nonlinear diffusion [210]:
{

∂tu − 	φ(u) + ∇· (ψ(u, v)u∇v) = f (u, v),

−	v = u − v.
(1.27)

The Keller-Segel model with nonlinear diffusion [136]:
{

∂tu − (ux − (φ(v))xu)x = 0,

−vxx + v = u.
(1.28)

Keller-Segel model with nonlinear secretion [217]:
{

∂tu = ∇· (φ(u)∇u) − ∇· (χu∇v) + au − bur,

0 = 	v + uk − v.
(1.29)

Keller-Segel model with nonlinear diffusion and secretion [61]:
{

∂tu = 	u − ∇· (χum∇v) + μu(1 − uα),

0 = 	v + uγ − v.
(1.30)

Simplest form of Keller-Segel model [19]:
{

∂tu = 	u − χ∇· (u∇v),

0 = 	v + u.
(1.31)

Keller-Segel model in [144]:
{

∂tu = ∇· (φ(u)∇u) − ∇(ψ(u)∇v),

∂tv = d	v + αu − βv.
(1.32)

p-Laplacian Keller-Segel model [42]:
{

∂tu = ∇· (|∇u|p−2∇u) − ∇· (u∇v),

−	v = u.
(1.33)

Keller-Segel model with logistic source [139]:
{

∂tu = 	u − ∇· (χu∇v) + u(a − bu),

0 = 	v + u − v.
(1.34)
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Keller-Segel model with Fokker-Planck diffusion [211]:
{

∂tu = 	(γ (v)u),

∂tv = ε	v + bu − av.
(1.35)

Keller-Segel model with consumption of chemoattractant [82]:
{

∂tu = 	u − ∇· (uχ(v)∇v),

∂tv = 	v − uf (v).
(1.36)

Keller-Segel model with signal-dependent motility [167]; Model 1:
{

∂tu = 	(γ (v)u) + au − μu2,

∂tv = 	v − v + u.
(1.37)

Keller-Segel model with density-suppressed motility model [83]; Model 2:
{

∂tu = 	(γ (v)u) + a(u − u2),

∂tv = 	v − v + u.
(1.38)

Keller-Segel model with flux limitation [8]:
⎧
⎨

⎩

∂tu = ∇·
(

u∇u
√

u2 + |∇u|2
)

− χ∇·
(

u∇v
√

1 + |∇v|2
)

,

0 = 	v − μ + u.

(1.39)

Quasilinear Keller-Segel model with flux limitation [37]:
⎧
⎨

⎩

∂tu = ∇·
(

up∇u
√

u2 + |∇u|2
)

− χ∇·
(

uq∇v
√

1 + |∇v|2
)

,

0 = 	v − μ + u.

(1.40)

Keller-Segel model with flux limitation [37]:
⎧
⎨

⎩

∂tu = ∇·
(

φ(u, v)u∇u
√

u2 + |∇u|2
)

− χ∇·
(

ψ(u,v)u∇v
√

1 + |∇v|2
)

+ f (u, v),

∂tv = d	v + g(u, v).

(1.41)

Quasilinear Keller-Segel model with logistic source [109]:
{

∂tu = ∇· (φ(u)∇u) − χ∇· (u∇v) + f (u),

0 = 	v − μ(t) + u.
(1.42)

Keller-Segel model [20]:
⎧
⎪⎨

⎪⎩

∂tu = 	u − χ∇· (u∇v),

v = − 1

dπ

ˆ

Rd

log |x − y|udy. (1.43)

Keller-Segel model with additional cross-diffusion [71]:
{

∂tu = div(∇u − u∇v),

τ∂tv = 	v + δ	u + μu − v,
(1.44)



Keller-Segel Chemotaxis Models: A Review Page 9 of 82 6

where δ > 0. Keller-Segel model with additional cross-diffusion [6]:
{

∂tu = ∇· (d1∇u − φ(u, v)∇v) + h(u, v),

∂tv = d2	v + δ	u + g(u, v),
(1.45)

where δ > 0. Keller-Segel model with additional cross-diffusion [66]:
{

∂tu − ∇· (d1∇u − χφ(u, v)∇v) = fu,

∂tv − d2	v − μ	u − αu + βv = fv.
(1.46)

Keller-Segel model with additional cross-diffusion [30]:
{

∂tu = div(∇(um) − u∇v),

α∂tv = 	v + δ	(um) + u − v,
(1.47)

where δ > 0. The full Keller-Segel model [76]:
⎧
⎪⎪⎨

⎪⎪⎩

∂tu − div(κ(u, v)∇u) = div(σ (u, v)∇v)

∂tv − kv	v = −r1vp + r−1w + uf (v),

∂tp − kp	p = −r1vp + (r−1 + r2)w + ug(v,p),

∂tw − kw	w = r1vp − (r−1 + r2)w.

(1.48)

Keller-Segel model with singular sensitivity [95]:
⎧
⎨

⎩

∂tu = 	u − χ∇·
(

u

v
∇v

)

,

∂tv = 	v + u − v.

(1.49)

Keller-Segel model with signal-dependent sensitivity [60]:
{

∂tu = 	u − ∇· (uχ(v)∇v),

0 = 	v − v + u.
(1.50)

Quasilinear Keller-Segel model with logistic source:
{

∂tu = ∇· ((1 + u)m−1∇u) − χ∇· (u(1 + u)q−1∇v) + au − bur,

0 = 	v − v + u,
(1.51)

where m � 1, r > 1, a � 0, b, a,χ > 0.
Keller-Segel model with logistic source [169]:

{
∂tu = ∇· (φ(u)∇u) − χ∇· (ψ(u)∇v) + f (u),

∂tv = 	v − v + u.
(1.52)

Keller-Segel model with logistic source [104]:
⎧
⎪⎨

⎪⎩

∂tu = ∇· (φ(u)∇u) − ∇· (u∇v),

0 = 	v − μ(t) + f (u),μ(t) = 1

|
|
ˆ




f (u(·, t)). (1.53)

Keller-Segel model with logistic source [161]:
{

∂tu = ∇· (φ(u)∇u) − ∇· (ψ(u)∇v) + f (u),

∂tv = 	v − v + g(u).
(1.54)
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Keller-Segel model [200]:

{
∂tu = ∇· (φ(u)∇u) − ∇· (ψ(u)∇v),

0 = 	v − M + u.
(1.55)

Keller-Segel model [219]:

{
∂tu = 	u − χ∇· (ψ(u)∇v) + f (u),

0 = 	v − v + g(u).
(1.56)

Keller-Segel model [125]:

{
∂tu = 	u − ∇· (χu|∇u|p−2∇v),

0 = 	v − M + u,
(1.57)

where χ is positive constant and p > 1.
Keller-Segel model with logistic source [205]:

{
∂tu = ∇· (d1∇u − χu∇v) + f (u),

∂tv = d2	v − βv + αu.
(1.58)

Keller-Segel model [2]:

{
∂tu = 	u − χ∇· (u∇ logv),

0 = η	v − βv + αu.
(1.59)

Keller-Segel model [188]:

{
∂tu = 	u − ∇· (u∇v) + λu − μuκ,

0 = 	v − βv + αu.
(1.60)

Keller-Segel model with logistic source [102]:

{
∂tu = 	u − χ∇· (u∇v) + f (u),

τvt = 	v − v + u.
(1.61)

Keller-Segel model with nonlinear secretion [102]:

{
∂tu = 	u − χ∇· (ψ(u)∇v) + f (u),

τvt = 	v − v + g(u).
(1.62)

Keller-Segel model with signal-dependent [165]:

{
∂tu = 	u − ∇· (uψ(v)∇v),

0 = 	v − v + g(u).
(1.63)

Keller-Segel system with an environmental dependent logistic source [54]:

⎧
⎪⎨

⎪⎩

∂tu = 	u − ∇· (u∇v) + κ(|x|)u − μ(|x|)up,

0 = 	v − m(t)

|
| + u,m(t) :=
ˆ




u(·, t). (1.64)
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Keller-Segel system with logistic source [207]:

{
∂tu = 	u − ∇· (u∇v) + f (u),

τ∂tv = 	v − v + u.
(1.65)

Keller-Segel system [96]:

{
∂tu = ∇(φ(u)∇u) − ∇· (u

v
∇v),

∂tv = 	v − uv.
(1.66)

Keller-Segel system [159]:

{
∂tu = 	u − ∇· (u∇v),

0 = 	v − uv − μv + r(x, t).
(1.67)

Keller-Segel system [41]:

{
∂tu = ∇· (φ(u)∇u) − ∇· (ψ(u)∇v),

∂tv = 	v − v + u.
(1.68)

Keller-Segel system [201]:

{
∂tu = d	u − dχ∇· (u

v
∇v),

∂tv = d	v − v + u.
(1.69)

Keller-Segel system [84]:

{
∂tuδ = div(∇uδ − uδ∇vδ),

ε∂tvδ = 	vδ − vδ + uδ.
(1.70)

Keller-Segel system [112]:

{
∂tu = ∇· (∇um − χu∇v),

ε∂tv = 	v − v + u.
(1.71)

Keller-Segel system [185]:

{
∂tu = 	u − χ∇· (u∇v) + au − μu2,

∂tv = 	v − v + u.
(1.72)

Keller-Segel system [17]:

{
∂tu = 	u − ∇· (u∇v),

∂tv = 	v − v + u + f (x, t).
(1.73)

Keller-Segel system [190]:

{
∂tu = 	u − χ∇· (u

v
∇v) − uv + B1(x, t),

∂tv = 	v + uv − v + B2(x, t).
(1.74)
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Keller-Segel system [101]:

{
∂tu = ∇· (∇uq+1 − u∇v),

∂tv = 	v − αv + u.
(1.75)

Keller-Segel system [193]:

⎧
⎪⎨

⎪⎩

∂tu = 	 − ∇· (u∇v),

0 = 	v − μ + u,μ := 1

|
|
ˆ




u. (1.76)

Keller-Segel system [55]:

{
∂tu = ∇· (φ(u, v)∇u − φ(u, v)∇v),

∂tv = 	v − v + u.
(1.77)

Keller-Segel system [145]:

⎧
⎪⎨

⎪⎩

∂tu = 	u − ∇· (u∇v),

0 = 	v − μ + u,μ := 1

|
|
ˆ




u0. (1.78)

Keller-Segel system [183]:

{
∂tu = 	u − ∇· (u

v
∇v),

∂tv = 	v − uv.
(1.79)

Keller-Segel system [215]:

{
∂tu + �αu + ∇· (u∇v) = 0,

	v = u.
(1.80)

Keller-Segel system [171]:

{
∂tu = 	um − ∇· (u∇v),

∂tv = 	v − v + u.
(1.81)

One Species and two stimuli:
One can found a particular example for chemotactic movement caused by two stimuli in

[23]. In their experiment, oxygen and glucose are two attractants for the considered E. Coli
population. In a very general formulation such an experimental observed movement of the
E. Coli population can be described by the following class of coupled chemotaxis systems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tu = ∇· (d1(u, v1, v2)∇u + φ1(u, v1, v2)∇v1) + ∇(φ2(u, v1, v2)∇v2)

= f (u, v1, v2) in QT ,

∂tv1 = ∇· (d2(u, v1, v2)∇v1) + h(u, v1, v2) in QT ,

∂tv2 = ∇· (d3(u, v1, v2)∇v2) + g(u, v1, v2) in QT ,
∂u

∂n
= 0,

∂v1

∂n
= 0,

∂v2

∂n
= 0 in �,

u(x,0) = u0(x), v1(x,0) = v10(x), v2(x,0) = v20(x) in 
.

(1.82)
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The following special cases for the values of d1, φ2, d2, d3, f , h, g which have been consid-
ered and presented in [23] are, given below:

d1(u, v1, v2) = 1, φ1(u, v1, v2) = −u
χ2

1 v2
1

1 + χ2
1 v2

1

, φ2(u, v1, v2) = −u
χ2

2 v2
2

1 + χ2
2 v2

2

,

d2(u, v1, v2) = a1, d3(u, v1, v2) = a2,

h(u, v1, v2) = −γ1
α1s1

1 + α1s1
(1 + β4

2 s4
2)

−1 − γ1δ1
α2s1

1 + α2s1

α3s2

1 + α3s2
,

and

g(u, v1, v2) = −γ2
α2s3

1 + α3s2
(1 + β4

1 s4
1 )

−1 − γ2δ2
α4s2

1 + α4s2

α1s1

1 + α1s1
.

It should be noted that they formulated the above system in several dimensions but they
provided some numerical simulations in one dimension for the experimental observed for-
mation of bacterial bands.

Keller-Segel with Lotka-Volterra competitive source [63]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu1 = d1	u1 − χ1∇(u1∇v) + ε1u1(1 − u1 − a1u2) in QT ,

∂tu2 = d2	u2 − χ2∇(u2∇v) + ε2u2(1 − a2u1 − u2) in QT ,

τ∂tv = d3	v + u1 + u2 − ε3v in QT ,
∂u1

∂n
= 0,

∂u2

∂n
= 0,

∂v

∂n
= 0 in �,

u(x,0) = u10(x), u2(x,0) = u20(x), v(x,0) = v0(x) in 
.

(1.83)

Keller-Segel with Lotka-Volterra competitive source [126]:
⎧
⎪⎪⎨

⎪⎪⎩

∂tu1 = d1	u1 − χ1∇(u1 · ∇v1) + g1(u1, u2),

∂tu2 = d2	u2 − χ2∇(u2 · ∇v2) + g2(u1, u2),

−d3	v1 + α1v1 = β1u2,

−d4	v2 + α2v2 = β2u1.

(1.84)

Keller-Segel system coupled to Navier-Stokes equation [197]:
⎧
⎨

⎩

∂tn + u · ∇n = 	n + ∇ · (n∇c),

∂t c + u · ∇c = 	c − c + n,

∂tu + u · ∇u = 	u + ∇P + n∇�,∇ · u = 0.

(1.85)

Keller-Segel system coupled to Navier-Stokes equation [198]:
⎧
⎨

⎩

∂tn + u · ∇n = 	n + ∇ · (n∇c),

u · ∇c = 	c − c + n,

∂tu + u · ∇u = 	u + ∇P + n∇�,∇ · u = 0.

(1.86)

Keller-Segel system coupled to Navier-Stokes equation:
⎧
⎨

⎩

∂tn + u · ∇n = ∇ · (D(n)∇n) − ∇ · (nS(n)∇c),,

∂t c + u · ∇c = 	c − c + n,

∂tu + κ(u · ∇)u = 	u + ∇P + n∇�,∇ · u = 0.

(1.87)
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Keller-Segel system coupled to Navier-Stokes equation [156]:
⎧
⎨

⎩

∂tn + u · ∇n = 	n − ∇ · (n∇c) + rn − μn2,

∂t c + u · ∇c = 	c − c + n,

∂tu = 	u − ∇P + n∇� + g(x, t),∇ · u = 0.

(1.88)

Keller-Segel system coupled to Navier-Stokes equation [85]:
⎧
⎨

⎩

∂tn + u · ∇n = 	n − ∇ · (n∇c) − μn2,

∂t c + u · ∇c = 	c − c + n,

∂tu + κ(u · ∇)u = 	u − ∇P − n∇� + g(x, t),∇ · u = 0.

(1.89)

Keller-Segel system coupled to Navier-Stokes equation [196]:
⎧
⎨

⎩

∂tn + u · ∇n = 	n − χ∇ · (n∇c) + ρn − μn2,

∂t c + u · ∇c = 	c − c + n,

∂tu + (u · ∇)u = 	u + ∇P + n∇� + g(x, t),∇ · u = 0.

(1.90)

Keller-Segel system coupled to Navier-Stokes equation [92]:
⎧
⎪⎪⎨

⎪⎪⎩

∂tn + u · ∇n = 	n − ∇ · (n∇c) − ∇ · (n∇v),

∂t c + u · ∇c = 	c − cn,

∂tu + (u · ∇)u = 	u − ∇π − nf ,

∂tv + (u · ∇)v = 	v − γ v + n,∇ · u = 0.

(1.91)

Keller-Segel system coupled to Navier-Stokes equation [184]:
⎧
⎨

⎩

∂tn + u · ∇n = 	n − ∇ · (nχ(c)∇c),

∂t c + u · ∇c = 	c − nf (c),

∂tu + (u · ∇)u = 	u + ∇P + n∇�,∇ · u = 0.

(1.92)

Keller-Segel system coupled to Navier-Stokes equation [18]:
⎧
⎪⎨

⎪⎩

∂tn + u · ∇n = 	n − χ∇ · (n
c
∇c),

∂t c + u · ∇c = 	c − c + n,

∂tu = 	u + ∇P + n∇�,∇ · u = 0.

(1.93)

Keller-Segel system coupled to Navier-Stokes equation [187]:
⎧
⎨

⎩

∂tn + u · ∇n = 	n − ∇ · (nS(n)∇c),

∂t c + u · ∇c = 	c − c + n,

∂tu + ∇P = 	u + n∇� + f (x, t),∇ · u = 0.

(1.94)

Keller-Segel system coupled to Navier-Stokes equation [172]:
⎧
⎨

⎩

∂tnε + uε · ∇nε = 	nε − ∇ · (nεS(x,nε, cε)∇cε) + f (x,nε, cε),

∂t cε + uε · ∇cε = 	cε − cε + nε,

∂tuε + κ(uε · ∇uε) − ∇Pε = 	uε + nε∇�,∇ · uε = 0.

(1.95)

Keller-Segel system coupled to Navier-Stokes equation [189, 192]:
⎧
⎨

⎩

∂tn + u · ∇n = 	n − ∇ · (nS(x,n, c)∇c),

∂t c + u · ∇c = 	c − nf (c),

∂tu − ∇P = 	u + n∇�,∇ · u = 0.

(1.96)
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Keller-Segel system coupled to Navier-Stokes equation [170]:
⎧
⎨

⎩

∂tn + u · ∇n = 	n − ∇ · (nS(x,n, c)∇c),

∂t c + u · ∇c = 	c − c + n,

∂tu + (u · ∇)u = 	u − ∇P + n∇�,∇ · u = 0.

(1.97)

Keller-Segel system coupled to Navier-Stokes equation [51]:
⎧
⎪⎪⎨

⎪⎪⎩

∂tn + u · ∇n = 	n − ∇ · (n∇c) − nm,

∂tc + u · ∇c = 	c − c + m,

∂tm + u · ∇m = 	m − nm,

∂tu + (u · ∇)u = 	u − ∇P + (n + m)∇�,∇ · u = 0.

(1.98)

The following Table 1 and Table 2, show the simplified version of most of the models which
are reviewed in this section.

1.4 Outline of the Article

We organize this paper as follows. Section 2 deals with definitions of solution to Keller-
Segel models. In Sect. 3, we provide the mathematical approach for determining global
existence and blow-up of solutions to parabolic-elliptic models. In Sect. 4, we discuss about
the boundedness of solutions to parabolic-elliptic models. The global existence and blow-up
of solutions to parabolic-parabolic models are discussed in Sect. 5, and boundedness results
to parabolic-parabolic models discussed in Sect. 6. The results on numerical analysis of
different types of Keller-Segel models are a part of Sect. 7. Finally, in Sect. 8 we discuss the
recent findings and mention some of the related issues to attempt in future.

2 Basic Definitions

We recall basic definitions and solution spaces for a few models, which are listed in the
previous section.

Definition 2.1 [121]. Let Tmax be the maximal existence time of the solutions (u, v) of (1.3)
with d = 1. A point x0 ∈ 
 is said to be a blow-up point of u if there exist {tk}∞

k=1 ⊂ (0, Tmax)

and {xk}∞
k=1 ⊂ 
 satisfying

u(xk, tk) → ∞, tk → Tmax, xk → x0 as k → ∞.

Definition 2.2 [72] We say that the solution of (1.3) blows up, provided there is a time
Tmax � ∞ such that

lim sup
t→Tmax

‖u(x, t)‖L∞(
) = ∞ or lim sup
t→Tmax

‖v(x, t)‖L∞(
) = ∞.

If Tmax < ∞, we say that the solution of (1.3) blows up in finite time and if Tmax = ∞, we
will call it blow-up in infinite time.

Definition 2.3 (Type I and II blow-up) The blow-up is called type I if ‖u(t)‖L∞ � C(T −
t)−1 for all t ∈ [0, T ) with some constant C > 0 and type II otherwise.

Now, we define the weak solutions of the Keller-Segel model (1.32).
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Table 1 Summary of the listed models

Model φ(u, v) ψ(u, v) f (u, v) g(u, v) h(u, v).

(1.3), τ = d = 1 d χu 0 αu γ

(1.5), τ = d = 1 d χu 0 u 1

(1.9), τ = 1, d = D φ(v) uχ(v) 0 uf (v) k(v)

(1.8), τ = d = 1 dun χu 0 u 1

(1.10), τ = d = 1 d χu 0 u 1

(1.11), τ = d = 1 d χu

(1+αv)2 0 u 1

(1.12), τ = d = 1 d χu
1+β

(v+β)
0 u 1

(1.13), τ = d = 1 d χu(1 − u
γ ) 0 u 1

(1.14), τ = d = 1 d χ u
1+εu

0 u 1

(1.18), τ = d = 1 φ(u) ψ(u) 0 u 1

(1.19), τ = d = vβ uα u1+α f (u, v) uvβ vβ

(1.20), τ = �, d = 1 1 um 0 u λ

(1.21), d = 1 1 uχ(v0) f(u) u 1

(1.23), τ = 0, d = 1 φ(u) u 0 u Mv−1

(1.9), τ = 1, d = D φ(v) uχ(v) 0 uf (v) k(v)

(1.25), τ = 1, d = 0 1 u
v 0 uvλ 0

(1.26), τ = d = 1 φ(u) uS(u, v, x) 0 −uf (v) 0

(1.29), τ = 0, d = 1 φ(u) χu au − bur uk 1

(1.30), τ = 0, d = 1 1 χum μu(1 − uα) uγ 1

(1.31), τ = 0, d = 1 1 χu 0 u 0

(1.32), τ = 1 φ(u) ψ(u) 0 αu β

(1.33), τ = 0, d = 1 |∇u|p−2 u 0 u 0

(1.34), τ = 0, d = 1 1 χu u(a − bu) u 1

(1.36), τ = d = 1 1 uχ(v) 0 −uf (v) 0

(1.36), τ = d = 1 1 uχ(v) 0 −uf (v) 0

(1.39), τ = 0, d = 1 u√
u2+|∇u|2 χ u√

1+|∇v|2 0 u μv−1

(1.42), τ = 0, d = 1 φ(u) χu f (u) u μ(t)v−1

(1.49), τ = d = 1 1 χ u
v 0 u 1

(1.50), τ = 0, d = 1 1 uχ(v) 0 u 1

(1.51), τ = 0, d = 1 (1 + u)m−1 χu(1 + u)q−1 au − bur u 1

(1.52), τ = d = 1 φ(u) χψ(u) f (u) g(u) 1

(1.54), τ = d = 1 φ(u) ψ(u) f (u) g(u) 1

(1.56), τ = 0, d = 1 1 χψ(u) f (u) g(u) 1

(1.58), τ = 1, d = d2 d1 χu f (u) αu β

(1.60), τ = 0, d = 1 1 u λu − μuκ αu β

Definition 2.4 ([144], weak solution) A function (u, v) is a weak solution of the system
(1.32) if the following conditions hold

u ∈ C([0, T ];L2(
)) ∩ L∞(QT ) ∩ L2(0, T ;H 1
0 (
)),φ(u) ∈ L2(0, T ;H 1

0 (
))

v ∈ C([0, T ];L2(
)) ∩ L∞(QT ) ∩ Lp(0, T ;W 2,p(
)),
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Table 2 Summary of the listed models

Model φ(u, v) ψ(u, v) f (u, v) g(u, v) h(u, v).

(1.64),τ = 0, d = 1 1 u κ(|x|)u − μ(|x|)up u
m(t)
|
|v

(1.65)d = 1 1 u f (u) u 1

(1.66)τ = d = 1 φ(u) u
v 0 0 u

(1.67)τ = 0, d = 1 1 u 0 r(x, t) u + 1

(1.68)τ = d = 1 φ(u) ψ(u) 0 u 1

(1.69) d
dχu
v 0 u 1

(1.70)d = 1 1 uδ 0 u 1

(1.72)τ = d = 1 1 χu au − μu2 u 1

(1.73)τ = 1 1 u 0 u + f (x, t) 1

(1.74)τ = d = 1 1 χu
v −uv + B1(x, t) uv + B2(x, t) 1

(1.76)τ = 0, d = 1 1 u 0 u
μ
v

(1.77)τ = d = 1 φ(u, v) ψ(u, v) 0 u 1

(1.78)τ = 0, d = 1 1 u 0 u
μ
v

(1.79)τ = d = 1 1 u
v 0 0 u

and for any ϕ1, ϕ2 ∈ L2(0, T ;H 1
0 (
)) ∩ C1(QT ), with ϕ1(·, T ) = ϕ2(·, T ) = 0, we have

−
ˆ




u0(x)ϕ1(x)dx −
ˆ

QT

uϕ1tdxdt +
ˆ

QT

φ(u)∇u∇ϕ1dxdt −
ˆ

QT

ψ(u)∇v∇ϕ1dxdt

−
ˆ




v0(x)ϕ2(x)dx −
ˆ

QT

vϕ2tdxdt + d

ˆ

QT

∇v∇ϕ2dxdt =
ˆ

QT

(αu − βv)ϕ2dxdt.

Now, let us define a energy solution, maximal existence time and blow-up for (1.17) in
a ball 
 = BR := {x ∈ R

N ||x| < R} with N � 2,R > 0,m � 1, q � 2 and initial conditions
u0 � 0, u0 ∈ L∞(
) with ∇um

0 ∈ L2(
), v0 � 0, v0 ∈ W 1,∞(
).

Definition 2.5 ([124]) Suppose 0 < T � ∞. A pair (u,ϕ) of functions u : 
 × [0, T ) −→
[0,∞), ϕ : 
 × [0, T ) −→R is a weak solution of (1.7) in 
 × [0, T ) if

(i) u ∈ L∞((0, T );L∞(
));um ∈ L2((0, T );H 1(
)) and 〈u〉 = M , where

〈u〉 = 1

|
|
ˆ




u(t, x)dx.

(ii) ϕ ∈ L2((0, T );H 1(
)) and 〈ϕ〉 = 0.
(iii) (u,ϕ) satisfies the equation in the sense of distributions; that is,

−
T̂

0

ˆ




(∇um · ∇ψ − u∇ϕ · ∇ψ − u∂tψ)dxdt =
ˆ




u0(x)ψ(0, x)dx,

T̂

0

ˆ




∇ϕ · ∇ψdxdt =
T̂

0

ˆ




(u − M)ψdxdt,
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for any continuously differentiable function ψ ∈ C1([0, T ] × 
) with ψ(T ) = 0 and T > 0.

Definition 2.6 (Energy solution). [67] Let T ∈ (0,∞]. A pair (u, v) of nonnegative func-
tions defined on 
 × (0, T ) is called an energy solution of (1.17) on 
 × [0, T ) if

(i) u ∈ L∞(0, T ;L∞(
)), ∇um ∈ L∞(0, T ;L2(
)), (u
m+1

2 )t ∈ L2(0, t;L2(
)) for all t <

T ,
(ii) v ∈ L∞(0, T ;W 1,∞(
)), vt ∈ L2(0, T ;L2(
)),

(iii) (u, v) satisfies (1.17) in the following sense: for all ϕ ∈ L1(0, T ;H 1(
)) ∩
W 1,1(0, T ;L2(
)) with compact support ϕ(x) ⊂ [0, T )(a.a.x ∈ 
),

T̂

0

ˆ




(∇um · ∇ϕ − uq−1∇v · ∇ϕ − uϕt )dxdt =
ˆ




u0(x)ϕ(x,0)dx, (2.1)

T̂

0

ˆ




(∇v · ∇ϕ + vϕ − uϕ − vϕt )dxdt =
ˆ




v0(x)ϕ(x,0)dx. (2.2)

(iv) (u, v) satisfies the following energy estimate for a.a. t ∈ (0, T ):

2e−2t

(m + 1)2

tˆ

0

ˆ




∣
∣
∣
∣

∂

∂s
u

m+1
2

∣
∣
∣
∣

2

dxds + 1

2m

ˆ




|∇(um(t))|2dx � K,

where K > 0 is a constant depending on ‖u0‖L2(
),‖∇um
0 ‖L2(
), ‖v0‖W1,∞(
),

‖u‖L∞(0,T ;L∞(
)),m,q,N, |
|.

The following definition is a weak power-λ solution of (1.49).

Definition 2.7 [146] Let λ ∈ (0,1), u0 ∈ Lλ(
), v0 ∈ Lλ(
) and T > 0. The pair of nonneg-
ative functions (u, v) is said to be a weak power-λ solution of (1.49) if u ∈ Lλ

loc(
×[0, T )),
v ∈ Lλ

loc(
 × [0, T )) such that

(u + 1)λ−2|∇u|2, (v + 1)λ−2|∇v|2, uλv−2|∇v|2

and u(v + 1)λ−1 belong to L1
loc(
 × [0, T )),

that satisfies the following identities

− 1

λ

T̂

0

ˆ




(u + 1)λϕt + (λ − 1)

T̂

0

ˆ




(u + 1)λ−2|∇u|2ϕ +
T̂

0

ˆ




(u + 1)λ−1∇u · ∇ϕ

−χ(λ − 1)

T̂

0

ˆ




(u + 1)λ−2 u

v
∇u · ∇vϕ

−χ

T̂

0

ˆ




(u + 1)λ−1 u

v
∇v · ∇ϕ = 1

λ

ˆ




(u0 + 1)λϕ(·,0)
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and

− 1

λ

T̂

0

ˆ




(v + 1)λϕt + (λ − 1)

T̂

0

ˆ




(v + 1)λ−2|∇v|2ϕ +
T̂

0

ˆ




(v + 1)λ−1∇v · ∇ϕ

+
T̂

0

ˆ




(v + 1)λ−1vϕ −
T̂

0

ˆ




u(v + 1)λ−1ϕ = 1

λ

ˆ




(v0 + 1)λϕ(·,0),

for all ϕ ∈ C∞
0 (
 × [0, T )).

Definition 2.8 [99] A pair (u, v) of functions u ∈ L1
loc(
 × [0, T )), v ∈

L1
loc([0,∞);W 1,1(
)) is called a global weak solution of

⎧
⎨

⎩

∂tv = 	v + u − v, x ∈ 
, t > 0,
∂v
∂ν

= 0, x ∈ ∂
, t > 0,

v(x,0) = v0(x), x ∈ 
,

(2.3)

if

−
∞̂

0

ˆ




vϕt −
ˆ




v0ϕ(·,0) = −
∞̂

0

ˆ




∇v · ∇ϕ −
∞̂

0

ˆ




vϕ +
∞̂

0

ˆ




uϕ (2.4)

for all ϕ ∈ C∞
0 (
 × [0,∞)).

Definition 2.9 [162] A pair of functions (u, v) is said to be a nonnegative weak solution of
(1.56) with φ(u) = 1, ψ(u) = g(u) = u, k = 1 if

u ∈ L1((0, T );W 1,1(
)), v ∈ L1((0, T );W 1,1(
))

such that u∇v ∈ L1((0, T );L1(
)), f (u) ∈ L1((0, T );L1(
)) and the following identities
hold

T̂

0

ˆ




uϕt +
T̂

0

ˆ




∇u · ∇ϕ − χ

T̂

0

ˆ




u∇v · ∇ϕ =
ˆ




u0ϕ(0) +
T̂

0

ˆ




f (u)ϕ, (2.5)

T̂

0

ˆ




∇v · ∇ψ +
T̂

0

ˆ




vψ =
T̂

0

ˆ




uψ, (2.6)

for all ϕ ∈ C∞
0 (
 × [0, T )) and ψ ∈ C∞

0 (
 × [0, T )).

Next, we define the renormalized solutions to (1.15) with m = 1.

Definition 2.10 [186] Let n � 1,
 ⊂R
n is a bounded domain and that u0 ∈ L1(
) and v0 ∈

L1(
) be nonnegative. Then, a pair (u, v) of functions u ∈ L1
loc(
×[0,∞)), v0 ∈ L∞

loc(
×
[0,∞)), satisfying u � 0 and v > 0 a.e. in 
 × (0,∞), is called a global renormalized
solution of (1.15) with m = 1 if
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{
χ{u<M}∇u ∈ L2

loc(
 × [0,∞)) for all M > 0 and
∇v
v

∈ L2
loc(
 × [0,∞)),

(2.7)

and for all φ ∈ C∞([0,∞)) with φ′ ∈ C∞
0 ([0,∞)), we have

−
∞̂

0

ˆ




φ(u)ϕt−
ˆ




φ(u0)ϕ(·,0) = −
∞̂

0

ˆ




φ′′(u)|∇u|2ϕ −
∞̂

0

ˆ




φ′(u)∇u · ∇ϕ

+
∞̂

0

ˆ




uφ′′(u)

(

∇u · ∇v

v

)

ϕ +
∞̂

0

ˆ




uφ′(u)
∇v

v
· ∇ϕ,

for all ϕ ∈ C∞
0 (
 × [0,∞)) and if moreover the identity

∞̂

0

ˆ




vϕt +
ˆ




v0ϕ(·,0) =
∞̂

0

ˆ




∇v · ∇ϕ +
∞̂

0

ˆ




uvϕ,

holds for any ϕ ∈ C∞
0 (
 × [0,∞)).

Definition 2.11 (Very weak subsolution [97]). A pair (u, v) of functions is called very
weak subsolution to the model (1.16) with k = 2 iff u and v are nonnegative and positive
almost everywhere, respectively, and u ∈ L2

loc([0,∞);L2(
)), v ∈ L2
loc([0,∞);W 1,2(
))

and ∇ log(v) ∈ L2
loc(
 × [0,∞)) hold and further

∞̂

0

ˆ




φtu −
ˆ




u0φ(·,0) �
∞̂

0

ˆ




u	φ + χ

∞̂

0

ˆ




u∇φ · ∇ log(v) + r

∞̂

0

ˆ




uφ

− μ

∞̂

0

ˆ




φu2 (2.8)

is satisfied for every nonnegative test function φ ∈ C∞
0 (
 × [0,∞)) with ∂nφ = 0 on ∂
 ×

(0,∞) and

−
∞̂

0

ˆ




ψtv −
ˆ




v0ψ(·,0) = −
∞̂

0

ˆ




∇v · ∇ψ −
∞̂

0

ˆ




ψuv (2.9)

is fulfilled for every ψ ∈ C∞
0 (
 × [0,∞)).

Definition 2.12 (Weak logarithmic supersolution [97]). A pair of functions (u, v) is called
weak logarithmic supersolution of (1.16) with k = 2 iff u is nonnegative and v is positive al-
most everywhere, u ∈ L1

loc([0,∞);L2(
)), v ∈ L∞
loc(
 × [0,∞)) ∩ L2

loc([0,∞);W 1,2(
)),
∇ log(u + 1) ∈ L2

loc(
 × [0,∞)), ∇ log(v) ∈ L2
loc(
 × [0,∞)) and

−
∞̂

0

ˆ




log(u + 1)φt −
ˆ




log(u0 + 1)φ(·,0) � −
∞̂

0

ˆ




∇ log(u + 1) · ∇φ
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+
∞̂

0

ˆ




φ|∇ log(u + 1)|2 + χ

∞̂

0

ˆ




u

u + 1
∇ log(v) · ∇φ

− χ

∞̂

0

ˆ




u

u + 1
φ∇ log(v) · ∇ log(u + 1) + r

∞̂

0

ˆ




u

u + 1
φ − μ

∞̂

0



u2

u + 1
φ (2.10)

is satisfied for every nonnegative test function φ ∈ C∞
0 (
 × [0,∞)) and (2.9) holds ∀ ψ ∈

C∞
0 (
 × [0,∞)).

Definition 2.13 (Generalized solution [97]). A pair (u, v) of functions is called generalized
solution to (1.16) with k = 2 iff (u, v) is a very weak subsolution and a weak logarithmic
super solution to (1.16) with k = 2.

Definition 2.14 (Mild solution [92]) Let n � 2 and {n0, c0, v0, u0, f } be satisfy

(i) For n � 3 the initial data {n0, c0, v0, u0} satisfies n0 ∈ L
n
2
w(Rn), c0 ∈ L∞(Rn) with ∇c0 ∈

Ln
w(Rn), v0 ∈ S ′ with ∇v0 ∈ Ln

w(Rn), u0 ∈ PLn
w(Rn).

(ii) For n = 2, we replace n0 ∈ L1
w(R2) by n0 ∈ L1(R2.) The external force f satisfies

f ∈ Ln
w(Rn). A pair {n, c,u, v} of measurable functions on R

n × (0,∞) is called a mild
solution of (1.91) on (0,∞) if n, c,u, v ∈ L

q

loc(0,∞;Lr(Rn)) for some 1 � q , r � ∞,
and if the identities

n(t) =et	n0 −
tˆ

0

e(t−τ)	(u · ∇n)(τ )dτ −
tˆ

0

∇ · e(t−τ)	(n∇c + n∇v)(τ )dτ,

c(t) =et	c0 −
tˆ

0

e(t−τ)	(u · ∇c + nc)(τ )dτ,

v(t) =e−γ t et	v0 −
tˆ

0

e−γ (t−τ)	(u · ∇v − n)(τ )dτ,

u(t) =et	u0 −
tˆ

0

e(t−τ)	P (u · ∇u + nf )(τ )dτ,

hold for 0 < t < ∞, where et	 denotes the heat semi-group defined by (et	g)(x) =´
Rn G(x − y, t)g(y)dy with G(x, t) = 1

(4πt)
n
2
e− |x|2

4t .

In the next section, we discuss about existence and blow-up of solutions of parabolic-
elliptic models.

3 Existence and Blow-up of Solutions of Parabolic-Elliptic Type Models

The conjecture introduced by Childress and Percus [36] and Nanjundiah [123] as either the
solution of the complete Keller-Segel system globally exists or it blows-up in finite time, the
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so called chemotactic collapse. This conjecture was validated in [19] for the simplest Keller-
Segel model (1.31). Under the assumptions of the initial data u0 ∈ L1+(R2, (1 + |x|2)dx),
u0 logu0 ∈ L1(R2,dx), the authors [19] proved the following two cases:

• solutions of (1.31) blow-up in finite time when M > 8π/χ ,
• there exits a global in time solution to (1.31) when M < 8π/χ .

Their idea is based on the free energy defined by

F [u] :=
ˆ

R2

u logu dx − χ

2

ˆ

R2

uv dx.

Based on the bounds of this free energy, they have classified global existence of solutions
and decaying properties. The first term in the above free energy F is called the entropy
and second is called a potential energy. The global existence and blow-up of solutions in
two dimension to the minimal model (1.3) with d = 1, γ = 1, α = 1 was established in
[121]. Nagai has indicated the blow up behavior of solutions at isolated blow-up points
and proved the global existence of solutions and decay properties of bounded solutions at
t → ∞. In order to establish his results, he assumed that the initial conditions (u0, v0) ∈
L1(
) ∩ L∞(
).

He summarized the main results as follows

Theorem 3.1 Let (u, v) be a finite-time blow-up nonnegative solution to (1.3) with d = 1,
γ = 1, α = 1. If x0 ∈ 
 is a isolated blow-up point of u, then there exists a constant m

satisfying

m �
{

8π if x0 ∈ 
,

4π if x0 ∈ ∂
,
(3.1)

and a nonnegative function f ∈ L1(
(x0, ε)) for a positive number ε such that

lim
t→Tmax

u(·, t) = mδx0 + f weak −∗ star in M(
(x0, ε)),

where δx0 is the delta function at x0 and M(
(x0, ε)) is the space of radon measure on

(x0, ε).

For the proof of Theorem 3.1, we refer to Theorem 1 [121].

Theorem 3.2 If
´
R2 u0dx < 4π , then the nonnegative solution (u, v) of (1.3) with d = 1,

γ = 1, α = 1 with initial function (u0, v0) exists globally in time.

For the proof of Theorem 3.2, we refer to Theorem 2 [121]. For the model (1.17) with
m = 1, q = 2 and τ = 0, Nagai proved that there exist global solutions in time when the
space dimension N = 1 and showed the blow-up of solutions under some appropriate con-
ditions on the data when N � 3. In the case of space dimension N = 2, he also proved that
either there exists global solution or blow-up of solutions in a finite time depending on the
size of L1-norm of the initial data u0.

Sugiyama [149] considered the model (1.17) with τ = 0 or τ = 1. For this model, let
us mention the challanges which were encountered by the author. Firstly, the degeneracy of
the model (1.17) in case when m > 1, and therefore one can not expect classical solutions.
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Secondly, the comparison principle doesn’t hold for this model and we can not use any
representation formula, since there is no explicit fundamental solution for the first equation.
Even if we had these difficulties, in both cases (i) m > 2 for large initial data, and (ii) 1 <

m � 2 − 2
N

for a small initial data, Sugiyama [149] proved the global existence of solutions
and also proved it without assuming the small initial data in case (i). Also, Sugiyama has
established uniform bound in both space and time for the solution in both cases (i) and (ii).
The decay properties of the model (1.17) are established in cases (ii) and τ = 0. Moreover,
she assumed the initial data (u0, v0) is nonnegative and belongs to L1 ∩ L∞(RN) × L1 ∩
H 1 ∩ W 1,∞(RN), um

0 ∈ H 1(RN). Note that the results in [149] were improved in [77] and
[78] and the details will be discussed after Theorem 5.7.

Sugiyama [150] has also considered the degenerate parabolic-elliptic system of type
(1.22) with m > 1, α,γ,χ > 0 and N � 1 and proved the global existence and finite time
blow-up in sub-critical and super-critical cases, respectively. Without any restriction on the
initial data, she proved global solvability of the model when m > 2 − 2

N
and showed the

blow-up of solutions when 1 < m � 2 − 2
N

for some large initial data. From this it is clear
that the existence and non-existence of solutions strongly depend on the exponent m = 2− 2

N

which generalized the Fujita exponent of the model (1.22). In [28], Calvez and Carrillo
have derived a priori estimates for the classical chemotaxis model of Patlak, Keller-Segel
when a nonlinear diffusion or a nonlinear chemotactic sensitivity is considered account-
ing for the finite size of the cells. They also obtained entropy estimates which give natural
conditions on nonlinearities implying the absence of blow-up of solutions. The globally
bounded in time, point wise estimate of solutions to simplified model of (1.1), that is, when
φ(u, v) = a + b|u|m, ψ(u,v) = a + b|u|m, τ = 0, g(u, v) = γ , h(u, v) = α and f (u, v) = 0
are derived in [208]. The authors considered their problem in two dimension. Winkler intro-
duced a concept of very weak solutions for the parabolic-elliptic Keller-Segel system and
proved boundedness properties in [173]. He considered the chemotaxis system by restrict-
ing to ψ(u,v) = 1, ψ(u,v) = χu, τ = 0, g(u, v) = u, h(u, v) = 1, the logistic function
f (u, v) = Au − bα with α > 0,A � 0 and b > 0. To prove global existence of very weak
solutions for any nonnegative initial data u0 ∈ L1(
) under the assumption that α > 2 − 1

n
,

he also assumed the logistic function g to belong to C1([0,∞)) and to satisfy g(0) � 0. In
addition, he also assumed the following assumptions for various α > 1:

(1) g(s) � a − bsα for all s � 0 with some a � 0 and b > 0, and
(2) g(s) � −c0(s + sα) for all s � 0 with some c0 > 0.

The main results of this paper are

Theorem 3.3 [173] Let χ > 0 and suppose that g satisfies the above assumptions 1 and 2
with some α > 2 − 1

n
. Then for each nonnegative u0 ∈ L1(
), the parabolic-elliptic system

possesses at least one global very weak solution (u, v). This solution can be obtained as the
limit of an approximate sequence ((uε, vε))ε=εj ↘0 of global bounded classical solutions of
the following problem

⎧
⎪⎨

⎪⎩

∂εtu = 	uε − χ∇ · (uε∇vε) + g(uε) − εuβ
ε , x ∈ 
, t > 0,

0 = 	vε + μuε − vε, x ∈ 
, t > 0, ∂uε

∂ν
= ∂vε

∂ν
= 0, x ∈ ∂
, t > 0,

uε(x,0) = u0ε(x), x ∈ 
,

(3.2)

where (u0ε)ε∈(0,1) ⊂ C0(
) is such that u0ε > 0 in 
 and ‖u0ε − u0‖L1(
) � ε, ε ∈ (0,1), in

the sense that uε → u a.e in 
 × (0,∞), u
γ
2
ε ⇀ u

γ
2 in L2

loc([0,∞);W 1,2(
)), uε ⇀ u in
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Lα
loc(
 × [0,∞)) and vε ⇀ v in Lα

loc([0,∞);W 2,α(
)) as ε = εj ↘ 0 for any γ ∈ (0,1)

satisfying γ � α − 1.

For the proof of Theorem 3.3, one can refer to [173]. The next theorem states the exis-
tence of global bounded solutions with small-data.

Theorem 3.4 Assume that g satisfies assumptions 1 and 2 with some α > 1. Then there
exists δ > 0 with the property that if a

b
< δ, then for all γ > max{1, n

2 }, one can find λ > 0
such that whenever u0 ∈ Ł∞(
) satisfies ‖u0‖Lγ (
) < λ, the parabolic-elliptic system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu = 	u − χ∇ · (u∇v) + g(u), x ∈ 
, t > 0,

0 = 	v + u − v, x ∈ 
, t > 0,

∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂
, t > 0,

u(x,0) = u0(x) � 0, x ∈ 
,

(3.3)

possesses global bounded very weak solution (u, v).

For the proof of Theorem 3.4, one can refer to [173]. Fujie et al. [59] proved a global
existence results to the model (1.21) in a bounded domain 
 ⊂ R

2 with initial condition
u0 ∈ C0(
) nonnegative with u0 �= 0. They have assumed that χ0(v) = χ

v
, where χ > 0 and

f (u) = ru−μu2, r ∈R, μ > 0. They also noticed that there is a way to prevent the blow-up
either by decaying sensitivities or by logistic source functions. In [39], they have considered
the model (1.23) with a critical exponent of the nonlinearity in the diffusion which measures
the strength of diffusion at points of high densities and it distinguishes between finite-time
blow-up and global-in-time existence of uniformly bounded solutions. They summarised
their results as follows

• If φ(s) � c(1+ s)−p for all s � 0 holds with some c > 0 and p < 2
n
−1, then all solutions

of (1.7) are global and bounded.
• If, however φ(s) � c(1 + s)−p for all s � 0 and some c > 0 and p > 2

n
− 1, then there

exists initial data u0 such that lim supt↗T ‖u(·, t)‖L∞(
) = ∞ for some finite T > 0.

For the proof of the above results, one can refer to Theorems 2.4 and 3.2 [39]. Nasreddine
[124] proved the global existence of solutions to (1.7) with homogeneous Neumann bound-
ary conditions under a smallness of initial data. By using some higher regularity condition on
solutions, he also established uniqueness of solutions. For the prevention of blow-up related
to model (1.7), one can consult the paper [28]. Blanchet et al. [21] considered the model
(1.24) in the space of dimension d � 3. They have stated that the qualitative behaviour of
solutions is decided by the initial conditions of the model. In addition to this, they proved
that there exists a sharp critical mass Mc such that if M ∈ (0,Mc], the global solution exists
in time and otherwise there are blowing up solutions exist. They showed the existence of
self similar solutions within the rage (0,Mc). They assumed that the initial data belongs to
u0 ∈ L1(Rd; (1 + |x|2)dx) ∩ L∞(Rd), ∇um

0 ∈ L2(Rd) and u0 � 0. For the model (1.25) in
the whole space R

n, n � 3, the global existence of solutions with initial data which belongs
to L1 ∩ Lp , n < p � ∞ are proved in [153]. Sugiyama et al. [153] have introduced the
following transformation

z = v1−λ

1 − λ
with θ = 1

1 − λ
∈R, (3.4)
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and using the same, the system (1.25) can be re-written as
⎧
⎨

⎩

∂tu = 	u − θ∇ ·
(

u
∇z

z

)

,

∂t z = u.

(3.5)

This system together with initial conditions u(0, x) = a(x), z(0, x) = θb(x)1−λ is investi-
gated. Further, the system (3.5) can be converted into integral equation of the form

u(t) = et	a − θB[u](t), z(t) = 1 +
tˆ

0

u(τ)dτ, (3.6)

where

B[u](t) =
tˆ

0

e(t−τ)	∇ ·
(

u(τ)
∇z(τ )

z(τ )

)

dτ.

They summarized their results as follows:

Theorem 3.5 (Small data: global existence) Let n � 3, n/(n − 1) < q < n < r < p � ∞
and θ ∈R. There exists δ = δ(n,p, q, r, |θ |) > 0 such that if ‖a‖L1∩Lp � δ, then there exists
a global solution u ∈ L1(0,∞;L∞(Rn)) of (3.6) satisfying ‖u‖X1∞ + ‖u‖X2∞ + ‖u‖X3∞ �
‖a‖L1∩Lp , where

‖u‖X1
t
=

tˆ

0

‖u(τ)‖L∞dτ,

‖u‖X2
t
= sup

τ<t

∥
∥
∥
∥

τˆ

0

∇u(σ)dσ

∥
∥
∥
∥

Lr

and

‖u‖X3
t
= sup

τ<t

∥
∥
∥
∥

τˆ

0

∇u(σ)dσ

∥
∥
∥
∥

Lq

.

Moreover, with U∞(t) = ´ t

0 ‖u(τ)‖L∞dτ and U(x, t) = ´ t

0 u(τ, x)dτ , one has U∞ ∈
C([0,∞)) and ∇U ∈ C([0,∞);Lr ∩ Lq).

For the proof of Theorem 3.5, we refer to Theorem 1.1 [153].

Theorem 3.6 (Large data: local existence). Let n � 1,0 < s < 1 and θ ∈R. Let

(i) There exists a small constant C = C(n, s, |θ |) ∈ (0,1) such that for any a ∈ L∞, (3.6)
admits a local existence of solutions with T = C

‖a‖L∞ satisfying

‖u‖Y 1
T

+ ‖u‖Y 2
T

+ ‖u‖Y 3
T

+ ‖u‖Y 4
T

� ‖a‖L∞ , where for t > 0,

‖u‖Y 1
t

= sup
τ<t

‖u(τ)‖L∞ , ‖u‖Y 2
t

= sup
τ<t

t s/2‖u(t)‖Ḃs∞,∞ ,

‖u‖Y 3
t

= sup
τ<t

τ 1/2‖∇u(τ)‖L∞ and ‖u‖Y 4
t

= sup
τ<t

τ (1+s)/2‖∇u(τ)‖Ḃs∞,∞ .
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(ii) In addition, if the initial data also belongs to L1(Rn), then the solution u constructed
in (i), is in C([0, T ];L1), where T = C

‖a‖
L1∩L∞ and C depending on n, s and |θ |, and

fulfills

‖u‖Zt = sup
τ<t

‖u(τ)‖L1 � ‖a‖L1 .

For the proof of Theorem 3.5, we refer to Theorem 1.2 [153]. For the model (1.27) when
n � 3, the existence of solutions proved in [210]. They considered the nonlinear diffu-
sion and superlinear growth term f (u, v) = |u|α−1u and f (u, v) is Lipschitz continuous.
They also assumed that the functions φ and ψ satisfy φ ∈ C1(R), φ(0) = 0, ψ ∈ C2(R2),
ψ(0,0) = 0, 0 < φ0 � φ′(r) � φ∞ < ∞ for all r ∈ R, (r1, r2) �→ ψ(r1, r2)r1 is Lipschitz
continuous on R

2. It would be easy to establish the numerical error estimates when the non-
linear diffusion and the growth functions are assumed to be Lipschitz continuous. For more
literature regarding existence of solutions of parabolic-elliptic type models, one can refer [7,
14, 110]. It would also be interesting to check that whether (1.27) has a local solution when
f is non-Lipschitz continuous.

The model (1.30) describes the movement of cells towards a higher concentration of a
chemical signal. In [61], the authors considered the model (1.30) in a bounded and regular
domain in R

N,N ∈ N. They have investigated that if the parameters either α > m + γ − 1
or α = m + γ − 1 and μ > Nα−2

2(m−1)+Nα
χ . Moreover, they also proved for μ > 2χ and u0 ∈

W 1,p(
) for some p > N and there exists u0 > 0 such that u0 � u0 and ∂u0
∂ν

= 0 in ∂
,
the solution satisfies ‖u − 1‖L∞(
) + ‖v − 1‖L∞(
) → 0, as t → ∞. The model (1.33) was
considered in [42] and they have proved that the existence of a uniform in time L∞ bounded
weak solution of the model with super critical diffusion exponent 1 < p < 3d

d+1 under the

assumption that norm of the initial data in L
d(3−p)

p − is smaller than the universal constant.
For general initial data in L1 ∩ L∞, they have also established the local existence of weak
solutions and a blow-up criterion. Salako and Shen [139] considered the model (1.34) in
R

N with χ > 0, a � 0, b > 0. They proved the local existence and uniqueness of classical
solutions with given initial conditions (u0, v0) with various initial conditions u0. Moreover,
they have also proved the global existence and boundedness of classical solutions. Under
the assumptions of strictly positive initial conditions or nonnegative compactly supported
initial conditions, they have also established the asymptotic behavior of the global solutions,
where the initial condition u0 belongs to

• Cb

unif(R
N) =

{

u ∈ C(RN)|u(x) is uniformly continuous in x ∈R
N and lim supx∈RN |u(x)| < ∞

}

.

• For given p � 1 and α ∈ (0,1), let Xα be the fractional power space of I − 	 on X =
Lp(RN).

• Lp(RN) for every p > N with p � 2.

They have summarised their local existence and uniqueness results as follows:

Theorem 3.7 For any u0 ∈ Cb
unif(R

N) with u0 � 0, there exits T ∞
max(u0) ∈ (0,∞] such that

(1.34) has a unique non-negative classical solution (u(x, t;u0), v(x, t;u0)) on [0, T ∞
max(u0))

satisfying that limt→0+ u(·, t;u0) = u0 in the Cb
unif(R

N)- norm,

u(·, ·;u0) ∈ C([0, T ∞
max(u0)),C

b
unif(R

N)) ∩ C1((0, T ∞
max(u0)),C

b
unif(R

N))
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and

u(·, ·;u0), ∂xi
u(·, ·), ∂2

xixj
u(·, ·), ∂tu(·, ·;u0) ∈ Cθ((0, T ∞

max(u0)),C
ν
unif(R

N))

for all i, j = 1, 2, . . . ,N,0 < θ � 1, and 0 < ν � 1. Moreover, if T ∞
max(u0) < ∞, then

lim supt→T ∞
max(u0) ‖u(·, t;u0)‖∞ = ∞.

For the proof of Theorem 3.7, we refer to Theorem 1.1 [139].

Theorem 3.8 Assume that p > N and α ∈ ( 1
2 ,1). For every nonnegative u0 ∈ Xα , there is

a positive number T α
max(u0) ∈ (0,∞] such that (1.34) has a unique nonnegative classical

solution (u(x, t;u0), v(x, t;u0)) on R
N × [0, T α

max(u0)) satisfying that limt→0+ u(·, t;u0) =
u0 in the Xα-norm,

u(·, ·;u0) ∈ C([0, T α
max(u0)),X

α) ∩ C1((0, T α
max(u0)),L

p(RN)),

u(·, ·;u0) ∈ C((0, T α
max(u0)),X

β) ∩ C1((0, T α
max(u0)),C

b
unif(R

N)),

and

u(·, ·;u0), ∂xi
u(·, ·;u0), ∂

2
xixj

u(·, ·;u0), ∂tu(·, ·;u0) ∈ Cθ((0, T α
max(u0)),C

ν
unif(R

N))

for all 0 � β < 1, i, j = 1, 2, . . . ,0 < θ � 1, and 0 < ν � 1. Moreover, if T α
max(u0) < +∞,

then limt→T α
max(u0) ‖u(·, t;u0)‖Xα = ∞.

For the proof of Theorem 3.8, we refer to Theorem 1.2 [139].

Theorem 3.9 For every p > N with p � 2 and u0 ∈ Lp(RN) with u0 � 0, there is a
positive number T

p
max(u0) ∈ (0,∞] such that (1.34) has a unique non-negative solution

(u(x, t;u0), v(x, t;u0)) on [0, T
p

max(u0)) satisfying that limt→0+ u(·, t;u0) = u0(·) in the
Lp(RN)-norm,

u(·, ·;u0) ∈ C([0, T p
max(u0)),L

p(RN)) ∩ C1((0, T p
max(u0)),L

p(RN)),

u(·, ·;u0) ∈ C((0, T p
max(u0)),X

β) ∩ C1((0, T p
max(u0)),C

b
unif(R

N)),

and

u(·, ·;u0), ∂xi
u(·, ·), ∂2

xixj
u(·, ·;u0), ∂tu(·, ·;u0) ∈ Cθ((0, T p

max(u0)),C
ν
unif(R

N))

for all 0 � β < 1, i, j = 1, 2, . . . ,N,0 < θ � 1, and 0 < ν � 1. Moreover, if T
p

max(u0) <

+∞, then limt→T
p
max(u0) ‖u(·, t;u0)‖Lp(RN ) = ∞.

For the proof of Theorem 3.9, we refer to Theorem 1.3 [139]. For the global existence
of classical solutions, we refer to Theorems 1.5, 1.6 and 1.7 [139] and for the asymptotic
behavior of global classical solutions of (1.34), we refer to Theorems 1.8 and 1.9.

In recent years, the researchers have introduced chemotaxis models with gradient de-
pendent chemotactic coefficient, that is, χ(∇v) rather than constant (for example, see [8,
9, 125]). The main novelty of the paper [9] is the introduction of new type of Keller-Segel
model (1.39) with flux delimiter features. In [9], the authors considered the model (1.39) in
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a ball 
 = BR(0) ⊂ R
n, n � 1. The authors established the existence of a unique classical

solution which is extendable in time up to a maximal Tmax ∈ (0,∞] and satisfying the con-
dition if Tmax < ∞, then limt↗Tmax sup‖u(·, t)‖L∞(
) = ∞. They assumed that the initial
condition satisfy

u0 ∈ C3(
) is radially symmetric and positive in 
 with
∂u0

∂ν
= 0 on ∂
. (3.7)

They summarized their main results as follows:

Theorem 3.10 Let u0 ∈ C3(
). Then there exist Tmax ∈ (0, T ] and a uniquely deter-
mined pair (u, v) of positive radially symmetric functions u ∈ C2,1(
 × [0, Tmax)) and
v ∈ C2,0(
 × [0, Tmax)) which solve (1.39) classically in 
 × (0, Tmax), and which are such
that if

Tmax < ∞, then lim
t↗Tmax

sup‖u(·, t)‖L∞(
) = ∞. (3.8)

For the proof of Theorem 3.10, we refer to Theorem 1.1 [9]. The above Theorem 3.10
provides the extensibility criteria (3.8), which has more crucial importance for deriving
global existence and to characterise the asymptotic behavior near blow-up time of non-
global solutions. It is to be noted that the extensible criteria eliminates the occurrence of
gradient blow-up in [9]. The next theorem states the global existence of solutions.

Theorem 3.11 Assume that u0 satisfies (3.7) and that either n � 2 and χ < 1, or n = 1,
χ > 0 and

´



u0 < mc , where in the case n = 1, we have set

mc :=
{

1√
χ2−1

if χ > 1,

+∞ if χ � 1.
(3.9)

Then the problem (1.39) possesses a unique global classical solution (u, v)∈ C2,1(
 ×
[0,∞)) × C2,0(
 × [0,∞)) which is radially symmetric and such that for some C > 0, we
have ‖u(·, t)‖L∞(
) � C and ‖v(·, t)‖L∞(
) � C, for all t > 0.

For the proof of Theorem 3.11, we refer to Theorem 1.2 [9]. In [217], the authors studied
a unique global bounded classical solution and obtained the large time behavior of the solu-
tion for specific logistic source term for the model (1.29). In particular, they considered the
model in the space dimension R

n, n � 2 under homogeneous Neumann boundary conditions
with χ > 0, a, b > 0, r > 1, k � 1 and φ(u) is smooth and satisfying φ(u) > cDum−1 with
some cD > 0 and m � 1. It is already known that for any b > 0, if any one of the following
assumptions holds

• k ∈ (1,2] and m < 2
n

− 1;
• max{k,1 + 2

n
− m} > 2,

then the model (1.42) has a unique nonnegative classical solution (u, v) which is globally
bounded. But very recently, for the model (1.42), the blow-up result is shown in [109] in
a bounded domain 
 ⊂ R

n, n � 2. The authors established the global boundedness of so-
lutions of (1.42) and blow-up of solutions. In order to establish their studies, they assumed
that the logistic source function f ∈ C([0,∞)) ∩ C1((0,∞)) and satisfies

f (u) � a − buk for all u � 0 and some a � 0, b > 0 and k > 1, (3.10)
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and

φ ∈ C2([0,∞)),φ(u) > 0, u � 0 and φ(u) � φ0u
−mfor all u > 0 with some

φ0 > 0 and m ∈R. (3.11)

In [109], in particular, they extended the results k > 2 to more general cases. The main
results are summarized as follows:

Theorem 3.12 Let 
 ⊂ R
n(n � 2) be an arbitrary bounded domain with smooth boundary,

and let χ > 0. Suppose that f and φ satisfy (3.10) and (3.11) with some φ0,m ∈ R, a �
0, b > 0 and k > 2, respectively. If k > m + 3 − 4

n+2 , then for any nonnegative initial data

u0 ∈ C0(
), the system (1.42) possesses a unique global bounded classical solution.

For the proof of Theorem 3.12, we refer to Theorem 1.1 [109]. Negreanu and Tello [125]
considered the model (1.57) with the range of p:

{

p ∈ (1,∞), if N = 1 and p ∈
(

1, N
N−1

)

, if N � 2, (3.12)

and u0 ∈ C2,α(
), α ∈ (0,1). The main result is provided as follows:

Theorem 3.13 Under the assumptions of (3.12),u0 ∈ C2,α(
), α ∈ (0,1) and ∂u0
∂ν

= 0, x ∈
∂
, for any T < ∞, there exists a constant c(u0, χ,p,
), independent of T , such that
‖u‖L∞(
) � c.

For the proof the above Theorem 3.13, we refer to Theorem 1.1 [125]. In addition, he
also proved the existence of infinitely many solutions to the steady sate case of (3.12) in a
bounded domain in one dimensional setting for the range p ∈ (1,2). Winkler [188] inves-
tigated the finite time blow-up of radially symmetric solutions to the model (1.60) in a ball

 = BR(0) ⊂ R

n, n � 3,R > 0, λ ∈ R, μ > 0. He proved it by using the conditions κ > 1
such that

κ <

{
7
6 if n ∈ {3,4},
1 + 1

2(n−1)
if n � 5,

(3.13)

and the initial condition u0 ∈ C0(
) is nonnegative and radially symmetric. Moreover, he
presented his findings in the following

Theorem 3.14 Let 
 = BR(0) ⊂ R
n, n � 3 and R > 0, and let λ ∈ R, μ > 0 and

κ > 1 be such that (1.60). Then for all L > 0, m > 0 and m0 ∈ (0,m) one can find
r0(R,λ,μ,κ,L,m,m0) ∈ (0,R) with the property that whenever u0 ∈ C0(
) and is
u0(x) � L|x|−n(n−1) for all x ∈ 
 as well as

´



u0 � m but
´

Br0 (0)
u0 � m0, there exists

Tmax ∈ (0,∞) and a classical solution (u, v) of (1.60), uniquely determined by the inclu-
sions

{
u ∈ C0(
 × [0, Tmax)) ∩ C2,1(
 × (0, Tmax),

v ∈ ∩q>nL
∞
loc([0, Tmax);W 1,q (
)) ∩ C2,0(
 × (0, Tmax)),

(3.14)

The following corollary states that the blow-up of solutions to (1.60) for wide class of
initial data.
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Corollary 3.1 Let 
 = BR(0) ⊂ R
n, n � 3 and R > 0, and let λ ∈ R, μ > 0 and κ > 1 be

such that (3.13). Then for any positive u0 ∈ C0(
), there exist initial data u0k, k ∈N, which
belongs to C0(
) and radially symmetric as well as u0k → u0 in L1(
) as k → ∞, and
which are such that for each k ∈N, (1.60) has a classical solution (uk, vk) with uk|t=0 = u0k

and blowing up in finite time in the sense of the above Theorem 3.14.

For the proof of Theorem 3.14 and Corollary, we refer Theorem 1.1 and Corollary 1.2
[188], respectively. The Keller-Segel model with fractional diffusion (1.80) studied by J.
Zhao in [215]. In this case 1 < α � 2, the author established the local existence and unique-
ness for any initial data and to prove global well-posedness, the author assumed that the ini-

tial data are small and belong to critical Besov spaces Ḃ
−α+ n

p
p,q (Rn),1 � p < ∞,1 � q � ∞.

Further, the global existence and analyticity of solutions also established to (1.80) under for
small initial data which is in Ḃ−α

∞,1(R
n) and the result includes the limiting case α = 1 as

well. Biler et al. [16], proved the existence of radial global-in-time solutions for (1.31) with
χ = 1 under the criteria in Morrey space norms in dimension n � 3. However, for the same
model (1.31) with χ = 1, Biler and Zienkiewicz [15] derived the blowup criteria for radially
symmetric solutions under the Morrey spaces norms in space dimension n � 2. This criteria
is the Very recently, Li [104] studied the finite time blow-up of solutions to the model (1.53)
in a bounded domain R

n, n � 1. To prove his results, he assumed that φ(u) ∈ C2([0,∞))

to be positive function, in particular, φ(u) � C0(1 + u)−m for all u � 0,C0 > 0, m ∈ R and
f (u) = K(1 + u)κ for all u � 0,K > 0, κ > 0. His main interest was on finding the interac-
tion between the nonlinear functions φ(u) and f (u) and to prove finite time blow-up to the
model (1.53). In addition, he proved that the exponent 2

n
is critical. He formulated his main

results as follows:

Theorem 3.15 Let 
 ⊂ R
n, n � 1 be smooth bounded domain. The function φ ∈ C2([0,∞))

and f ∈ ∪θ∈(0,1)C
θ
loc([0,∞)) ∩ C1((0,∞)), f � 0, f ′ � 0. m ∈ R and K,κ > 0 are given

parameters. The initial data u0 ∈ ∪θ∈(0,1)C
θ (
) is radially symmetric, u0 � 0, u0 �≡ 0,

∂u0
∂ν

= 0 on ∂
.

• Suppose that φ(u) � C0(1 + u)−m,C0 > 0 and f (u) � K(1 + u)κ for all u � 0. If

m + κ <
2

n
,

then the corresponding solution of (1.53) is global and uniformly bounded.
• Let 
 = BR(0) ⊂ R

n with n � 1 be a ball, R > 0. If φ(u) � C0(1 + u)−m with C0 > 0
and f (u) � K(1 + u)κ or all u � 0. Assume that

m + κ >
2

n
,

then for all M > 0 with
´



u0 = M , there exist ε = ε(K,κ,M,R) ∈ (0,M) and r∗ =

r∗(K,κ,M,R) ∈ (0,R) such that
´

Br∗ (0)
u0 � M − ε, the he corresponding solution of

(1.53) blow-up in finite time.

For the proof of Theorem 3.15, we refer to Theorem 1.1 [104]. Also we note that it is
possible to prove the boundedness of solution to (1.53) as in Theorem 3.15 with nonnegative
u0 ∈ C0((
)) which need not be radially symmetric. Ahn et al. [2] investigated the global
existence of weak solutions to (1.59) under the condition that χ < χN := (4+√

N)

(4+√
N)2−4

,N � 3.
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In addition, they have also proved that the stabilization of bounded solutions in general
domains. Mizukami et al. [117] proved the global existence of solutions to the model (1.40)
under the condition p > q + 1 − 1

n
. From this later condition, we may expect the blow-up

of solutions when q is large. Fortunately, Chiyoda et al. [37] studied the finite-time blow-
up of solutions for the model (1.40). The authors considered the model in a ball BR(0) ⊂
R

n(n ∈ N), R > 0, χ > 0, p,q � 1,μ := 1
|
|

´



u0. Souplet and Winkler [145] investigated
the asymptotic behaviour of radially decreasing solutions of the model (1.78) in a ball 
 =
BRR

n and 
 = R
n, n � 3, that is, they studied the solution behaviour at blow-up time. To

prove the results, the authors assumed that the initial condition u0 ∈ L∞(
),u0 � 0 u0 is
radially symmetric and nonincreasing with respect to |x| with u0 �≡ const .

4 Boundedness of Solutions of Parabolic-Elliptic Models

During the past few decades, the main issue on the Keller-Segel model was whether the
solutions of KS models are globally bounded or blows up in finite time. The global existence
and boundedness of solutions to the singular Keller-Segel model is always a challenging
problem, though the global existence of weak solutions to (1.50) with χ(v) = χ0

v
proved

by Biler [12]. However, the author had left the boundedness as an open problem. Tello and
Winkler [162] proved the existence of global and bounded solutions to (1.56) under the
assumptions that ψ(u) = g(u) = u. Moreover, they summarized their results as follows

• If either n � 2 or n � 3 and b >
(n−2)χ

n
, then for arbitrary initial data, (1.56) ψ(u) =

g(u) = u has a global bounded classical solution and which is unique.
• For all n � 1, b > 0, and for any initial conditions, there exist at least one global weak

solution (u, v) ∈ (L1((0, T );W 1,2(
)))2 if f (s) � −c0(s
2 + 1),∀s > 0 and c0 > 0.

Theorem 4.1 If g meets the conditions f (u) � c1 −bu2,∀u � 0, f (u) > 0 if 0 < u < 1 and
f (u) < 0 if u > 1, where c1 and b are positive constants and satisfying b > n−2

n
χ , then for

any nonnegative u0 ∈ C0(
), the model (1.56) ψ(u) = g(u) = u has a unique and uniformly
bounded global classical solution (u, v). More precisely, there exists c = c(‖u0‖L∞(
)) such
that ‖u(t)‖L∞(
) � c(‖u0‖L∞(
)), ∀t ∈ (0,∞) holds.

For the proof of Theorem 4.1, we refer to Theorem 2.5 [162].
In [200], the authors studied the boundedness and finite-time collapse to the model (1.55).

They assumed that φ(u) = (u + 1)−p and ψ(u) = u(u + 1)q−1, p � 0, q ∈R. They summa-
rized their results as follows:

• If p + q < 2
n

, then there exist solutions, which are global and bounded.
• If p + q > 2

n
, a > 0 and 
 is a ball, then there exist unbounded solutions in finite time.

Theorem 4.2 Let 
 ⊂ R
n be a bounded domain with, smooth boundary, and φ,ψ ∈

C1
loc([0,∞)) for some θ > 0 and satisfy φ > 0 and ψ � 0 in [0,∞). Furthermore, assume

that the nonnegative function u0 ∈ Cα(
) for some α > 0 and that 1
|
|

´



u0 = M . Then
there exists a unique classical solution (u, v) of (1.55) that can be extended up to its maxi-
mal existence time Tmax ∈ (0,∞]. Here, either Tmax = ∞ or limt↗Tmax ‖u(·, t)‖L∞(
) = ∞.

For the proof of Theorem 4.2, we refer to Theorem 2.1 [200]. Fujie et al. [60] proved the
existence of a unique global classical solution for (1.50), which is uniformly bounded under
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the condition that χ0 < 2
n
(k = 1), χ0 < 2

n
kk

(k−1)k−1 γ k−1(k > 1), where γ > 0. They estab-

lished their results in a bounded domain 
 ⊂ R
n, n � 2 and u0 ∈ C0(
),u0 � 0. Moreover,

they assumed that χ(v) satisfy 0 < χ(v) � χ0
vk , k � 1, χ0 > 0. In [219], the authors have

discussed the boundedness of solutions of the model (1.56).
In heterogeneous environment the growth or death rates shall depend on spatial charac-

teristics. This fact has been incorporated into many mathematical models of population. For
the space and time dependent logistic source one can refer the series of papers [140–142].

As we know, the classical Keller-Segel system exhibits a critical-mass phenomena. Now
Winkler ensured that a novel type of critical-mass phenomenon, in the radially symmetric
setting, exists for (1.76) in [193]. From his findings, there is an interesting fact is that if
the mass levels m := ´



u0 increasing above the critical mass level mc , then the trajectories

collapses in finite time, that is, we are getting extreme unstable solutions. This results are
proved in a ball 
 ⊂ R

n, n � 2. Moreover, he summarised his results as follows: 1) For
R > 0 and n � 2, the model (1.76) exhibits blow-up phenomena in finite time provided
whenever m > mc(n,R). 2) In contrast to 1), if m < mc , there exist infinite number of
nonnegative radial u0, which are concentrated than u = m

|
| , nevertheless, it allows global
bounded classical solutions to (1.76).

Very recently, the boundedness of solution to the model (1.53) studied in [104] (see
Theorem 3.15 in this article). Viglialoro and Woolley [165] considered the model (1.63)
in a bounded domain in R

2 and proved its solvability under the suitable assumptions on
the production function g(u) belongs to C1([0,∞)) and it satisfies λ1 � g(u) � λ2(1 +
u)β,u � 0,0 � β < 1 and 0 < λ1 � λ2 and the general chemotactic sensitivity ψ(v) belongs
to C1((0,∞)). The main result is summarized as follows:

Theorem 4.3 Let 
 be a smooth and bounded domain in R
2,0 < χ ∈ C(0,∞) and g ∈

C1((0,∞)) a function satisfying the above assumption. Then for any nonnegative initial data
0 �≡ u0 ∈ C0(
), the model (1.63) has a unique global classical solution (u, v). Moreover,
both u and v are bounded in 
 × (0,∞).

For the proof of Theorem 4.3, we refer to Theorem 1 [165]. Currently, the chemotaxis
models with Lotka-Voltera type logistic source are attracted by many researchers see [126].
Under suitable assumptions on the coefficients of the system (1.84), the authors studied the
existence of global and bounded solutions in [126]. In [159], the authors considered the
model (1.67) in 
 ⊂ R

n, n � 1,μ � 0 and a nonnegative function r ∈ C1(
 × [0,∞)).
The authors proved the global classical solutions to (1.67) for any positive initial data u0 ∈
W 1,∞(
). Moreover, the stabilization of the solution u is derived provided if r satisfies

t+1ˆ

t

ˆ




|∇√
r|2 → 0 as t → ∞.

Further, the solution u is uniformly bounded if supt>0 ‖r(·, t)‖Lq(
) < ∞, q � 1 and q > n
2 .

The main results are stated as follows

Theorem 4.4 Let n � 1 and 
 ⊂ R
n be a bounded domain with smooth boundary, and

let μ � 0 and r ∈ C1(
 × [0,∞)) be nonnegative. Then for any choice of u0 ∈ W 1,∞(
)

such that u0 > 0 in 
, the problem (1.67) admits a global classical solution (u, v), uniquely
determined by the inclusions u ∈ C0(
 × [0,∞)) ∩ C2,1(
 × (0,∞)) and v ∈ C2,0(
 ×
(0,∞)) for which furthermore u > 0, v � 0 in 
 × (0,∞).
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For the proof of Theorem 4.4, we refer to Theorem 1.1 [159]. To prove stabilization of
u, we need decay of gradient ∇√

r instead of the function r itself. The stabilization result
reads as

Theorem 4.5 Let μ � 0 and suppose that r ∈ C1(
 × (0,∞)) is a nonnegative function
fulfilling

√
r ∈ L2

loc([0,∞);W 1,2(
)), and
´ t+1

t

´



|∇√
r|2 → 0 as t → ∞. Then for any

u0 ∈ W 1,∞(
) which is such that u0 > 0 in 
 the solution (u, v) of (1.67) satisfies u(·, t) →
u0 in L1(
) as t → ∞ and that

t+1ˆ

t

‖∇v
1
4 (·, s)|4

L2(
)
ds → 0 as t → ∞.

If furthermore there exists q � 1 such that q > n
2 and supt>0 ‖r(·, t)‖Lq(
) < ∞, then u

belongs to L∞(
 × (0,∞)) and we have u(·, t) → u0 in Lp(
) for all p ∈ [1,∞) and
u(·, t) →� u0 in L∞(
) as t → ∞.

For the proof of Theorem 4.5, we refer to Theorem 1.2 [159] In [54], Fuest considered
the Keller-Segel system with environmental dependent logistic source function (1.64) in a
ball BR(0) ⊂ R

2, R > 0 and p � 1. He assumed that the functions κ,μ : [0,R] → [0,∞)

are sufficiently smooth. He summarised the main result as follows

Theorem 4.6 Let p � 1, α � 2(p − 1),μ1 > 0 and suppose that κ,μ ∈ C0([0,R]) ∩
C1((0,R)) satisfy

κ,−κ ′,μ,μ′ � 0 in (0,R)

and μ(s) � μ1s
α for all s ∈ [0,R]. For any m0 > 8π there exist r1 ∈ (0,R) and c ∈ (0,m0)

such that if 0 � u0 ∈ C0(
) is radially symmetric and radially decreasing with
´



u0 = m0

and
´

Br1 (0)
u0 � c, then there exists a classical solution (u, v) to (1.64) with u0 blowing up

in finite time, that is, there exists Tmax ∈ (0,∞) such that

lim
t→Tmax

sup‖u(·, t)‖L∞(
) = ∞.

For the proof of Theorem 4.6, we refer to Theorem 1.1 [54]. The additional cross-
diffusion term has been introduced in the chemical concentration equation of Keller-Segel
models to suppress blow up of solutions. Jüngel, Leingang and Wang [84] answered for
the question how the solutions of added cross-diffusion model approximate those solutions
from the main Keller-Segel model? The authors provided this results by using vanishing
cross-diffusion limit and error estimate as well.

In Table 3, we review the existence, blow-up and boundedness results to a variety of
parabolic-elliptic models.

5 Existence and Blow-up of Solutions of Parabolic-Parabolic Type Models

We recall that the results of this section are useful to understand under what conditions there
exist global existence and blow-up of solutions of variations of Keller-Segel model. Now,
we turn to the parabolic-parabolic Keller-Segel models. The global existence and regularity
of solutions to (1.3) in a bounded domain in R

2 derived in [120]. The authors assumed that
χ,d = 1, γ,α are positive constant and u0, v0 are nonnegative functions for the model (1.3).
He summarized the results as follows:
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Table 3 Summary of the existing results for parabolic-elliptic models

Model Results Reference

(1.31) Blow-up & global existence [19]

(1.3) d = γ = α = 1 Blow-up & global existence [121]

(1.31) m = 1, q = 2, τ = 0 Blow-up & global existence [19]

(1.17) Global existence & decay [149]

(1.22) Global existence & blow-up [150]

(1.1)(particular case) Globally bounded solutions [208]

(1.1)(particular case) boundedness [173]

(1.21) Global existence [59]

(1.23) Finite-time blow-up & global existence [39]

(1.7) Global existence [124]

(1.7) Blow-up [28]

(1.24) Global existence & blow-up [21]

(1.25) Global existence [153]

(1.27) Existence of solutions [210]

(1.30) Existence [61]

(1.33) Existence, blow-up criteria [42]

(1.34) Global existence & boundedness [139]

(1.34) Asymptotic behavior [139]

(1.39) Global existence & blow-up [9]

(1.29) Unique global bounded & asymptotic solutions [217]

(1.42) Blow-up & global boundedness [109]

(1.60) Blow-up [188]

(1.60) Existence [16]

(1.31) Blow-up [15]

(1.53) Blow-up [104]

(1.59) Global existence & boundedness [2]

(1.50) Global existence & boundedness [12]

(1.56), ψ(u) = g(u) = u Global and bounded solutions [162]

(1.55) Boundedness and finite-time collapse [200]

(1.50) Global existence & boundedness [60]

(1.56) Boundedness [219]

(1.84) Global and boundedness [126]

(1.40) Global and boundedness [117]

(1.40) Blow-up [37]

(1.40) Global existence [117]

(1.63) Global existence & boundedness [165]

(1.64) Blow-up [54]

(1.76) Blow-up [193]

(1.78) Qualitative behaviour [145]

(1.80) Well-posedness & analyticity [215]
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Theorem 5.1 Let 
 be a bounded domain in R
2. Assume u0, v0 ∈ H 1+ε0(
) for some 0 <

ε0 � 1, and u0 � 0, v0 � 0 on 
.

(i) If
´



u0(x)dx < 4π/(αχ), then (1.3) admits a unique classical solution (u, v) on 
 ×

(0,∞) satisfying

sup
t�0

{‖u(t)‖L∞ + ‖v(t)‖L∞} < ∞.

(ii) Let 
 = {x ∈ R
2; |x| < L} and (u0, v0) be radial in x. Then the same assertion as (i)

holds under the condition
´



u0(x)dx < 8π/(αχ).

For the proof of Theorem 5.1, we refer to Theorem 1.1 [120].
In [69], Hillen and Painter considered the version of Keller-Segel model with chemotac-

tic sensitivity function depending on both the local population cell density and the external
signal. They also assumed that the chemotactic response is switched off at high threshold
cell densities. Therefore this mechanism prevents overcrowding and they established the
local and global existence of classical solutions. In addition to this they also performed
numerical simulations through which they have observed pattern formation and stable ag-
gregates. In [29], the authors derived a critical mass threshold below which they have en-
sured the global existence of the model related to (1.17). Their main idea was to tackle the
global existence issues for the parabolic-parabolic model (1.17) with τ > 0, in space di-
mension d = 2 and in the whole space R

2. They have obtained the optimal critical mass
value for the global existence by using the energy method and ad hoc functional inequalities
on R

2. Before them, there was no optimal critical mass value for the global existence of
solutions to the parabolic - parabolic Keller-Segel model. The author [202], proved the exis-
tence of global in time solution to a chemotaxis model with volume filling under no-flux or
Dirichlet boundary conditions. In addition, he showed the existence of global attractor in the
space W 1,p(
),p > n, 
 ⊂ R

n. Kowalcyk and Szymanska [89] proved aggregation model
of Keller-Segel type with nonlinear, degenerate diffusion. They shown the existence, uni-
form in-time boundedness and uniqueness of solutions. The uniqueness proved by assuming
some higher regularity conditions on solutions is known a priori. The crucial assumption
for the diffusion coefficient f (n) � δnp for all n > 0, where δ > 0 is a constant and p > 0
in case d = 1 and p > 2 − 4/d in the case d � 2. For initial conditions u0 ∈ Ln/2

w (Rn) and
v0 ∈ BMO, the authors in [90] proved the global existence of strong solutions to (1.3) with
d = 1 in R

n, n � 3. Their method is based on the perturbation of linearisation together with
the Lp −Lq estimates of the heat semigroup and the fractional powers of Laplace operators.
They also proved the existence of global self-similar solutions {u,v} of the following system

{
∂tu = 	u − ∇(u∇v), in x ∈R

n, t ∈ (0,∞),

0 = 	v + μu − v.
(5.1)

He has chosen the weak Lp− space since it contains homogeneous functions. To solve the
original system, they converted it as the following integral equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(t) = et	u0 −
tˆ

0

dive(t−τ)	(u∇v)(τ )dτ ,

v(t) = e−t (−	+γ )v0 +
tˆ

0

e−(t−τ)(−	+γ )u(τ )dτ .

(5.2)
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Theorem 5.2 Let n � 3 and let u0 ∈ Ln/2
w , and v0 ∈ BMO. Suppose that n/2 < q < n and

n/q − 1 < α < 1.

(i) (global existence) There is a constant ε0 = ε0(n, q,α) such that if the initial data
{u0, v0} satisfies

‖u0‖L
n/2
w

+ ‖v0‖BMO � ε0, (5.3)

then there exists a solution {u,v} of (5.2) on (0,∞) in the class

u ∈ Cw([0,∞);Ln/2
w ) ∩ C((0,∞);Hα,q), (5.4)

v ∈ Cw([0,∞);BMO), ∇v ∈ Cw((0,∞);L∞), (5.5)

with the property

sup
0<t<∞

‖u(t)‖
L

n/2
w

+ sup
0<t<∞

t (n/2)(2/n−1/q)+l/2‖(−	)l/2u(t)‖Lq < ∞, (5.6)

sup
0<t<∞

‖u(t)‖BMO + sup
0<t<∞

t1/2‖∇v(t)‖L∞ < ∞, (5.7)

for 0 � l � α. Here, Cw([0,∞);X) denotes the set of weakly-star continuous functions
on [0,∞) with values in X, and Hα,q is the space of Bessel potentials defined by Hα,q =
{f ∈ S ′; ‖(1 − 	)α/2f ‖Lq < ∞}.

(ii) (uniqueness) There is a constant δ0 = δ0(n, q,α) > 0 such that if the solution {u,v} of
(5.2) in the class (5.4)-(5.5) with the property (5.6)-(5.7) satisfies

lim
t→+0

sup t (n/2)(2/n−1/q)‖u(t)‖Lq + lim
t→+0

t1/2‖∇v(t)‖L∞ � δ0, (5.8)

then {u,v} is the unique solution of (5.2).

For the proof of Theorem 5.2, we refer to [90].

As a consequence of Theorem 5.2, the existence of a forward self-similar solution to
⎧
⎨

⎩

∂tu = 	u − ∇ · (u∇v), in x ∈R
n, t ∈ (0,∞),

∂tv = 	v + μu, in x ∈ R
n, t ∈ (0,∞),

u|t=0 = u0, v|t=0 = v0, in x ∈ R
n,

(5.9)

is given as corollary in [90]. For the regularity of the solutions of (5.2), we refer to Theorem
1.3 [90].

There is a natural question arise as whether the model (1.1) has global existence of so-
lutions? The global existence of strong solution to the semi-linear Keller-Segel system of
type (1.3) with small data in scale invariant spaces studied in [91]. They considered the
system in R

n, n � 3 and chosen initial condition u0 ∈ H
n
r −2,r (Rn) and v0 ∈ H

n
r ,r (Rn) for

max{1, n/4} < r < n/2. Their method is based on the perturbation of linearisation together
with Lp − Lq estimates of the heat semigroup and the fractional powers of the Laplace op-
erator. Below, we presented a result of Kozono and Sugiyama, who proved the following
main existence theorem.

Theorem 5.3 Let n � 3, and let max{1, n/4} < r < n/2. There is a constant ε0(n, r) > 0
such that if u0 ∈ H

n
r −2,r (Rn) and v0 ∈ H

n
r ,r (Rn) satisfy

‖(−	)
n
2r

−1u0‖r + ‖(−	)
n
2r v0‖r � ε0, (5.10)
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then there exists a unique solution {u,v} of (1.3) in

u ∈ C([0,∞);H n
r −2,r (Rn)) ∩ C((0,∞);H 2,r (Rn)) ∩ C1((0,∞);Lr(Rn)), (5.11)

v ∈ C([0,∞);H n
r ,r (Rn)) ∩ C1((0,∞);Lr(Rn)). (5.12)

Moreover, such a solutions {u,v} has the following decay property:

‖(−	)σ u(t)‖r = O(t
n
2r

−1−σ ), for
n

2r
− 1 � σ < 1, (5.13)

‖(−	)ζ v(t)‖r = O(t
n
2r

−ζ ), for
n

2r
� ζ � n

4r
+ 1, (5.14)

as t → ∞.

For the proof of Theorem 5.3, we refer to [91]. The mass conservation property is also
hold if we assume additionally that u0, v0 ∈ L1(Rn) (see Theorem 2 in [91]. Payne and
Straughan considered the model (1.9) in [132]. They have concentrated mainly on deriving
conditions which ensure the solution will decay to a constant state. These sufficient condi-
tions precludes the formation of instabilities in space. Payne have obtained other results in
this direction, for example, the interested readers may refer to [130, 131].

The author in [174] considered the model (1.3) with d = 1 in space dimension n � 3.
For each q > n

2 , p > n and for bounded initial data (u0, v0) such that ‖u0‖Lq(
) < ε and
‖∇v0‖Lp(
) < ε, he proved the solution global in time and bounded and (u, v) approaches
the steady state (m,m) as t → ∞, where m is the total mass m := ´



u0 of the popula-

tion. Winkler observed that there were no results available about either global existence of
bounded solutions or the occurrence of blow-up solutions for parabolic-parabolic system
(1.3) with d = 1 in space dimension n � 3. He also was noticed that there were no results
in the literature regarding whether (1.3) possesses any nonstationary global solutions, when
n � 3. He stated the main results as follows:

(1) if n � 3, given any q > n/2 and p > n one can find a bound for u0 ∈ Lq(
) and for
∇v0 ∈ Lp(
) guaranteeing that (u, v) is global in time and bounded, see Theorem 2.1
[174]).

On the other hand,
(2) if n � 3 and 
 is a ball then for arbitrarily small mass m > 0 there exist u0 and v0

having
´



u0 = m such that (u, v) blows up either in finite or infinite time, see Theorem

3.5 [174].

In addition, he characterized the large-time behavior of small-data solutions as follows:

(1) If both ‖u0‖Lq(
) < ε and ‖∇v0‖Lp(
) < ε with ε > 0 sufficiently small, then solutions
(u, v) of the model (1.3) with d = 1 satisfies

‖u(·, t) − uH (·, t)‖L∞(
) � Cε2e−λ1t and‖∇v(·, t) − vH (·, t)‖Lp(
) � Cε2e−λ1t ,

for all t > 1, with some constant C > 0, where λ1 denotes the smallest positive eigen-
value of −	 in 
 and uH and vH are the solutions of ∂tuH = 	uH and ∂tvH =
	vH − vH + uH under the same initial and boundary data (Theorem 2.1 [174]).

Winkler [175] proved the global existence of solutions to (1.49) actually it was posted

an open problem in [70]. If 0 < χ <

√
2
n

, then he generalized the global-in-time classi-

cal solution of the model (1.49) for n � 2 with initial conditions u0 ∈ C0(
),u0 � 0 and
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v0 ∈ W 1,∞(
), v0 > 0 in 
. In addition, he also have established the global existence of

weak solutions provided 0 < χ <

√
n+2

3n−4 .

If χ <
√

2/n, then (1.49) has a global solution stated in the below theorem.

Theorem 5.4 Suppose that χ <
√

2/n. Then for all u0 ∈ C0(
) and v0 ∈ W 1,∞(
) satisfy-
ing u0 � 0 and v0 > 0 in 
, then (1.49) has a global classical solution.

For the proof of Theorem 5.4, we refer to Theorem 3.5 [175].

Theorem 5.5 Assume that n � 2 and χ <
√

(n + 2)/(3n − 4). Then for all u0 ∈ C0(
) and
v0 ∈ W 1,∞(
) satisfying u0 � 0 and v0 > 0 in 
, then there exists a global weak solution
(u, v) of (1.49).

For the proof of the above theorem, we refer to Theorem 4.6 [175]. First, Winkler [176]
has established the blow-up results for degenerate Keller-Segel system of the type (1.1)
with φ(u, v) = u, ψ(u,v) = u,f (u, v) = 0, τ = 1, h(u, v) = 1 and g(u, v) = u under the
super critical condition and u0 ∈ C(
) and v0 ∈ C1(
) in a bounded domain 
 ⊂ R

n. He
summarised main results as follows:

(i) If 
 is a ball in R
n for some n � 2, satisfies ψ(u)

φ(u)
grows faster than u2/n as n → ∞, in

a certain sense then for any m > 0, the model possesses unbounded solutions having
mass

´



u(x, t)dx = m.
(ii) The sufficient conditions for the occurrence of blow-up are

– n = 2,
ψ(u)

φ(u)
� c0 u ln u for some c0 > 0 and sufficiently large u,

– n � 3, and u−α ψ(u)

φ(u)
� c0 as u → ∞ with some α > 2/n;

– n � 3 and limu→∞ inf
u(

ψ
φ

)′(u)

(
ψ
φ )(u)

> 2
n

.

The proof of the above results were inspired by the arguments in [74, 143]. In [203], Wu
and Zheng considered the Keller-Segel system with fractional diffusion as follows:

⎧
⎨

⎩

∂tu + (−	)α/2u = ±∇ · (u∇v), in (x, t) ∈ R
n ×R

+,

ε∂tv + (−	)α/2v = u, in (x, t) ∈R
n ×R

+,

u|t=0 = u0, v|t=0 = v0.

(5.15)

The Cauchy problem to (5.15) for the initial data u0, v0 in critical Fourier-Herz spaces
Ḃ2−2α

q (Rn) × Ḃ2−α
q (Rn), is considered with q ∈ [2,∞), where 1 < α � 2. By utilizing small

initial data and few estimates of the linear dissipative equation in the framework of mixed
time-space spaces, the Fourier localization method, the Chemin’ mono-norm technique’ and
the theory of Littlewood-Paley, they have obtained a local and a global well-posedness of
the problem. They have summarised their main results as follows

Theorem 5.6 Let α ∈ (1,2] and (u0, v0) ∈ Ḃ2−2α
q (Rn) × Ḃ2−α

q (Rn). Then there exists T > 0

such that the Cauchy problem (5.15) has a unique solution (u, v) ∈ L
2α

α−1

(

I ; Ḃ
3(1−α)

2
2

)

×

L
2α

α−1

(

I ; Ḃ
(3−α)

2
2

)

and u ∈ C(I ; Ḃ2−2α
2 ) ∩L

α
α−1

(

I ; Ḃ1−α
2

)

, v ∈ C(I ; Ḃ2−α
2 ) ∩L

α
α−1

(

I ; Ḃ1
2

)

.

For the proof the above theorem, we refer to Theorem 1.1 [203]. Let T ∗ denotes the
maximum life span of the solution. We have the following results: there exists constants
c1, c2 > 0 such that if ‖u0‖Ḃ2−2α

2
� c1 and ‖v0‖Ḃ2−α

2
� c2, then T ∗ = +∞.
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Theorem 5.7 If 2 < q � ∞ and α = 2, then the system (5.15) is ill-posed in Ḃ−2
q × Ḃ0

q and
Ḃ−2∞,q × Ḃ0∞,q .

The above theorem is proved in [203]. For some models from statistical physics with
fractional diffusion, we refer to [13]. Even though, they extended the classical Keller-Segel
model to the fractional diffusion, they did not mention about the biological significance of
their model. It is worth to describe its biological significance. For the model (1.49), the
authors considered (1.49) in a ball in R

n, n � 2. Further, in order to handle the singularity of
χ(v) in (1.49), they have introduced weak power-λ solutions and the regularized problem
of (1.49). Within this solution context, the global-in time solutions were proved for arbitrary
values of χ > 0 and further, this has extended the already proved global existence (weak)

[178] for χ <

√
n+2

3n−4 . Moreover, through the regularity on weak power-λ solutions of (1.49),

they assured that the global existence of solutions which satisfy u(·, t) ∈ Lr(
), for some
r > 0 and for a.e. t > 0.

In [78], Ishida and Yokota obtained the global existence of solutions to quasilinear de-
generate KS model. They have established the global weak solution without any restriction
on the size of initial data when q < m + 2

N
. In addition to this, the have also assumed

that the initial conditions u0 � 0, u0 ∈ L1(RN) ∩ L∞(RN), v0 � 0, v0 ∈ L1(RN) ∩ L∞(RN),
	v0 ∈ Lp0(RN) ∩ L∞(RN), for every p0 � 1. It is to be noticed that we can not apply
semilinear theory to the problem in the degenerate case. Even though the analysis is dif-
ficult, there are some results available for the cases m > 1 and q > 2, one can refer to
[151, 152]. In [77], Ishida and Yokota have answered for the unsolved case of parabolic-
parabolic model under the super-critical case, where q � m + 2

N
and also they assumed the

initial data u0, v0 satisfies u0 � 0, u0 ∈ L1(RN)∩L∞(RN), v0 � 0, v0 ∈ L1(RN)∩L∞(RN),
	v0 ∈ L

N
2 +1(RN) ∩ L

N
2 (q−m)+1(RN) ∩ L∞(RN).

The global existence and boundedness of solutions of the model (1.18) were studied in
a bounded convex domain in R

3 by Tao and Winkler [155]. The convexity assumption in
[155] was removed in [81]. After the work of Keller and Segel, the researchers have been
focused on finding the unbounded solutions of (3.4) with d = 1, χ = 1 or, more generally, to
determine conditions on the initial data and on certain parameters which either guarantee or
rule out the existence of blow-up solutions of (3.4) with d = 1, χ = 1 and also for variations
of Keller-Segel models. The model (1.32) with d = 1, α = 1, β = 1 in a ball 
 = BR ⊂
R

n, n � 3,R > 0 considered in [40]. They assumed that the initial data u0 ∈ C0(
) and
v0 ∈ W 1,∞(
) such that u0, v0 > 0 in 
. By generalizing the idea of M. Winkler [179],
they proved the blow-up of solutions to the non-degenerate quasilinear case of (1.32) with
d = 1, α = β = 1 in finite time if q > m + 2

N
. That is, they assumed that φ,ψ ∈ C2([0,∞))

and there is a function β ∈ C2([0,∞)) satisfying φ(s) > 0, ψ(s) = sβ(s), and β(s) > 0,
for all s ∈ [0,∞). In the case of degenerate diffusion, the blow-up of solutions shown in
[79] but whether the blow-up time is finite or infinite was unknown. In [30], Carrillo et
al. considered the Keller-Segel model with nonlinear cell diffusion and additional cross-
diffusion terms (1.47) in up to three space dimensions. The important property of this model
is that it admits a new entropy functional which provides a gradient estimates for the cell
density and chemical substances. They proved the global existence of weak solutions for the
arbitrary small cross-diffusion coefficients and for the suitable exponents of the nonlinear
diffusions. There are four methods available to avoid the blow-up in Keller-Segel models
which are described as follows:

(i) The first way is the modification of chemotactic sensitivity.
(ii) The modification of the cell diffusion.
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(iii) Considering nonvanishing growth-death models.
(iv) The introduction of additional cross-diffusion term in the chemical concentration equa-

tion.

It is to be noted that we can not apply the maximum principle to (1.47) because of the
introduction of the additional cross-diffusion term, which leads the diffusion matrix of the
system to neither symmetric nor positive definitive. They have tackled this issues by defining
the following logarithmic entropy functional

E0(u, v) =
ˆ




(

u(logu − 1) + α
c2

2δ

)

dx.

The blow-up of solutions of (3.4) with d = 1, χ = 1 in three space dimension was proved
by M. Winkler in [179]. In order to prove blow-up of solutions he used the idea that any
solution of (3.4) with d = 1, χ = 1 satisfies the energy inequality

d

dt
F(u(·, t), v(·, t)) � −D(u(·, t), v(·, t)) for all t ∈ (0, Tmax(u0, v0)), (5.16)

where Tmax(u0, v0) ∈ (0,∞] denotes the maximum existence time of (u, v) and where for
arbitrary smooth positive functions u and v, the energy is defined by

F(u, v) := 1

2

ˆ




|∇v|2 + 1

2

ˆ




v2 −
ˆ




uv +
ˆ




u lnu, (5.17)

and the dissipation rate is given by

D(u, v) :=
ˆ




v2
t +

ˆ




u ·
∣
∣
∣
∣
∇u

u
− ∇v

∣
∣
∣
∣

2

. (5.18)

He summarized his main results as follows:

Theorem 5.8 Let 
 = BR ⊂ R
n with some n � 3 and R > 0, and let m > 0 and A > 0.

Then there exist T (m,A) > 0 and K(m,A) > 0 with the property that given any (u0, v0)

from the set

B(m,A) := {(u0, v0) ∈ C0(
) × W 1,∞(
)|u0 and v0 are radially symmetric and

positive in 
 with
ˆ




u0 = m,‖v0‖W1,2(
) � A and F(u0, v0) � −K(m,A)},

for the corresponding solution (u, v) of (3.4) with d = χ = 1, we have Tmax(u0, v0)�
T (m,A) < ∞; that is, (u, v) blows up before or at time T (m,A).

For the proof of Theorem 5.8, we refer to Theorem 1.1 [179]. It is worth to notice that
the following Theorem is the first result regarding blow-up of solutions of (3.4) with d = 1,
χ = 1 in space dimension n � 3.

Theorem 5.9 Let 
 be as in Theorem 5.8, and suppose that p ∈ (1, 2n
n+2 ). Then, for

each m > 0 and A > 0, the set B(m,A) defined in Theorem 5.8 is dense in the space of
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all radially symmetric positive functions in C0(
) × W 1,∞(
) respect to the topology in
Lp(
) × W 1,2(
.) In particular, for any positive radial (u0, v0) ∈ C0(
) × W 1,∞(
) and
any ε > 0 one can find some radial positive (u0ε, v0ε) ∈ C0(
) × W 1,∞(
) such that

‖u0ε − u0‖Lp(
) + ‖v0ε − v0‖W1,2(
) < ε,

and such that the solution (uε, vε) of (3.4) with d = 1, χ = 1 with initial data (uε, vε)|t=0 =
(u0ε, v0ε) blows up in finite time.

For the proof of Theorem 5.9, we refer to Theorem 1.2 [179]. There are many results
available for the global-in time existence of solutions to the non-degenerate case of (1.1)
with φ(u, v) > 0. As we mentioned in the above, though Winkler proved the blow-up of
solutions for the model (1.1) with φ(u, v) = u, ψ(u,v) = u, f (u, v) = 0, τ = 1, h(u, v) = 1
and g(u, v) = u, the proof of blow-up solutions for the degenerate case under the super-
critical condition, he left it as an open problem. Ishida et al. [80] made an attempt on this
problem in B := {x ∈R

n; |x| < 1}, n � 2, and proved there exits blow-up of solutions under
the following conditions:

φ ∈ C([0,∞)) ∩ C1((0,∞)),φ(0) = 0, φ > 0 on (0,∞),

ψ ∈ C1([0,∞)),ψ(0) = 0, ψ > 0 on (0,∞),

and there exist r0 > 1, ε0 ∈ (0,1), K > 0, k > 0 such that

rˆ

r0

σf (σ)

g(σ )
dσ �

⎧
⎪⎪⎨

⎪⎪⎩

K r
log r

(r � r0) if n = 2,

n − 2 − ε0

n

rˆ

r0

σ̂

r0

f (ξ)

g(ξ)
dξdσ + Kr(r � r0) if n � 3,

(5.19)

rˆ

r0

σ̂

r0

f (ξ)

g(ξ)
dξdσ �

⎧
⎨

⎩

kr(log r)θ (r � r0) with some θ ∈ (0,1) if n = 2,

kr2−α(r � r0) with some α >
2

n
if n � 3.

(5.20)

The conditions (5.19) and (5.20) imply that super-critical condition. In [118], the authors
proved the global existence and boundedness of solutions of the model related to (1.11) with
d = 1 and the logistic source under the assumption in the initial data u0 ∈ C0(
) and v0 ∈
W 1,l(
) for some l > n. For the model (1.19) with Dirichlet boundary conditions, the global
existence and blow-up of solutions were established in [11]. Due to the degenerate case of
their model, they first considered the regularised model and then they have established the
existence and blow-up of solutions. They summarized the results as follows:

Theorem 5.10 (Global existence) The system (1.19) has a global positive solution (u, v) ∈
C(
 × [0,∞)) ∩ C2,1(
 × (0,∞)).

Theorem 5.11 We assume that u0, v0 ∈ C1(
) and u0(x) � ε0ψ(x), v0(x) � ε0ψ(x) and
suppose that, for any d > 0 and u,v > 0,

∣
∣
∣
∣
f (u, v)

un+1

∣
∣
∣
∣ � d

un−α
+ d

vn−β
.

Then the solutions of (1.19) must blow up in a finite time provided that λ1 < d .
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For the proof of Theorem 5.10 and Theorem 5.11, we refer to Theorems 2.1 and 3.1 [11].
The nondegeneracy of blow-up points for the parabolic-parabolic Keller-Segel model (1.20)
established in [114]. They considered (1.20) in the dimension N � 1 with m,� > 0 and
λ � 0. Their results are new even for the standard Keller-Segel model. They summarized the
main results as follows:

Theorem 5.12 Assume either 1 � m < 2 and � > 0, or 0 < m < 1 and � = 1. Let u0,
v0 satisfy u0 ∈ L∞(
), v0 ∈ W 1,∞(
), u0, v0 � 0 and in case 
 = R

N , u0, v0 ∈ L1(RN),
∇u0 ∈ Lr(RN), for some r ∈ [1,∞) if m < 1. Let (u, v) be any solution of (1.20)
with Neumann boundary conditions and u(x,0) = u0(x) and v(x,0) = v0(x) such that
T = Tmax(u, v) < ∞. Let a ∈ 
, t0 ∈ (0, T ) and ρ > 0. There exists a constant ε =
ε(N,m,�) > 0 such that if

u(x, t) � ε(T − t)−1/m for all (x, t) ∈ 
a,ρ × (t0, T ),

then a is not a blow-up point.

They also have established global-in-space lower blow-up estimate as in the following
theorem:

Theorem 5.13 Let m,� > 0 and let (u, v) be any solution of (1.20) with Neumann bound-
ary conditions and u(x,0) = u0(x) and v(x,0) = v0(x) such that T = Tmax(u, v) < ∞.
Then

‖u(t)‖m
∞ + ‖u(t)‖2(m−1)

∞ ‖∇v(t)‖2
∞ � c(T − t)−1 for all t ∈ [0, T ),

where c = c(N,m,�) > 0. (Here, when m < 1, we make the convention ∞/∞ = ∞.) If
1 � m < 2, then we have in particular

‖u(t)‖∞ + ‖∇v(t)‖
2

2−m∞ � c((T − t)−1/m for all t ∈ [0, T ).

For the proof of Theorem 5.12 and Theorem 5.13, we refer to Theorems 1.1 and 1.2 [114].
For the sake of clearness, due to the vast literature existing on the Keller-Segel system,
we shall only mention results that studied for the two and three dimensional setting. In
[43], Corrias et al. have focused the issues regarding the system (1.1) with φ(u, v) = 1,
ψ(u,v) = 1, f (u, v) = 0, d = 1, g(u, v) = u and h(u, v) = α in R

n, when the initial data
belong to scaling invariant Lebesgue spaces. In particular, they have established the global
existence of integral solutions, uniqueness, optimal time decay and positivity, together with
the uniqueness of self-similar solutions. It is very interesting to see that they have also proved
that the solutions behave like self-similar solutions in the absence of the degradation term
α = 0 and the solution behave like the heat kernel, when the presence of the degradation
term α > 0. The main results are summarized as follows:

Theorem 5.14 (Local and global existence) Let ε > 0, α � 0, u0 ∈ L1(R2) and v0 ∈
Ḣ 1(R2). There exist δ = δ(‖u0‖L1(R2), ε) > 0 and T = T (‖u0‖L1(R2), ε) > 0 such that if
‖∇v0‖L2(R2) < δ there exist an integral solution (u, v) of (1.1) with φ(u, v) = 1, ψ(u,v) =
1, f (u, v) = 0, d = 1, g(u, v) = u and h(u, v) = α in R

n with u ∈ L∞((0, T );L1(R2)) and
|∇v| ∈ L∞((0, T );L2(R2)). Moreover, the total mass M is conserved and there exists a
constant C = C(ε) such that if ‖u0‖L1(R2) < C(ε), the solution is global and

t
(1− 1

p )‖u(t)‖Lp(R2) � C(‖u0‖L1(R2), ε), t > 0, (5.21)
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t (
1
2 − 1

r )‖∇v(t)‖Lr (R2) � C(‖u0‖L1(R2), ε), t > 0, (5.22)

for all p ∈ [1,∞] and r ∈ [2,∞].

For the proof of Theorem 5.14, we refer to Theorem 2.1 [43].

Corollary 5.1 (Uniqueness and positivity). The global solution (u, v) given by Theo-
rem 5.14 is unique. Moreover, it is non-negative whenever u0 and v0 are non-negative.

For the proof of the above Corollary 5.1, we refer to Corollary 2.7 [43].
In order to prove non-negative global integral solutions behave like self-similar solutions

for large t , when α = 0, they have introduced the following space-time rescaled functions
(ũ, ṽ) by

u(x, t) = 1

(t + 1)
ũ

(
x√
t + 1

, log(t + 1)

)

and v(x, t) = ṽ

(
x√
t + 1

, log(t + 1)

)

,

(5.23)

or equivalently

ũ(ξ, s) = esu(ξe
s
2 , es − 1) and ṽ(ξ, s) = v(ξe

s
2 , es − 1) (5.24)

where ξ = x√
t+1

and s = log(t + 1). Then (ũ, ṽ) satisfies the parabolic-parabolic system

ũs = 	ũ + ξ

2
· ∇ũ + ũ − ∇ · (ũ∇ṽ), εṽs = 	ṽ + ε

ξ

2
· ∇ṽ + ũ, (5.25)

where the differential operators are taken with respect to ξ and ũ(ξ,0) = u0(ξ), ṽ(ξ,0) =
v0(ξ). For the long time behaviour of solutions, when α = 0, we refer to the Proposition 4.2
and Theorem 4.3 [43]. In the presence of the degradation term (α > 0), the global solutions
behaved like the heat kernel.

Remark 5.1 [43] In the case α > 0, the following system

{
∂tu = 	u − ∇ · (u∇v),

ε∂tv = 	v − αv + u,
(5.26)

is no more invariant under the space time scaling uλ(x, t) = λ2u(λx,λ2t), vλ(x, t) =
v(λx,λ2t), λ > 0. Therefore self-similar solutions do not exist. Under this case they proved
that the global solutions of (5.26) behaved as the heat kernel G(t) as t → ∞.

To the best of our Knowledge, the paper [144] only considered the Keller-Segel model
with Dirichlet boundary conditions. They have established the existence and uniqueness of
solutions by using Galerkin’s method and non-variational methods. In [94], the global weak
solutions are established for (1.65) with τ = 1 and f (u) = κu − μu2 and any μ > 0. For
sufficiently small κ , the author also proved that the weak solutions become smooth after
certain finite time. The global bounded weak solutions of degenerate quasilinear system
(1.26) in 
 ⊂R

n, n � 2, established in [166]. He assumed that

φ(u) ∈ C2([0,∞)),φ(u) � φ0u
m−1, (5.27)
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for all u � 0, and

φ(u) � φ1(u + 1)k−mum−1, (5.28)

for all u � 0 with some positive constants φ0, φ1, m � 1 and k � 1. And also assumed that
S(u, v, x) = (sij )n×n is a chemotactic sensitivity matrix with

sij ∈ C2([0,∞) × [0,∞) × 
), (5.29)

for i = 1,2, . . . , n and j = 1,2, . . . , n.

|S(u, v, x)| � ul−2S̃(v), (5.30)

for all (u, v, x) ∈ ([0,∞) × [0,∞) × 
), where l � 2, S̃(v) is a nondecreasing function on
[0,∞) and |S| denotes the Frobenius norm of matrix and

f (u) ∈ C1([0,∞)), (5.31)

is a non-negative with f (0) = 0. He summarized his results as follows:

Theorem 5.15 Let 
 ⊂ R
n, (n � 2) be a bounded domain with smooth boundary. Assume

that S(u) and f (u) satisfy (5.29) (5.30) and (5.31). Suppose that φ(u) satisfies (5.27) and
(5.28) with m > l − 2

n
.

Then for any choice of the initial data (u0, v0) fulfilling u0 � 0, v0 � 0, u0 ∈ L∞(
),

W 1,∞(
), system (1.26) possesses at least one non-negative global bounded weak solution
(u, v).

For the proof of Theorem 5.15, we refer to Theorem 1.1 [166]. For suitably arbitrary
regular initial data u0 � 0, v0 > 0, Winkler [183] extended the global existence of general-
ized solutions of (1.79) from one dimensional to two dimensional setting. His results mainly
based on the derivation of a priori estimates of the terms ∇ ln(u + 1) and ∇v in L2 spaces.
Further boundedness and compactness results are derived by using Moser-Trudinger in-
equality. But Viglialoro [164] provided the definition of very weak solutions to (1.65) with
τ = 1 and then he proved that the existence of global solutions under the assumptions of
initial condition (u0, v0) ∈ C0(
) × C2(
). It would be interesting to know whether the
Keller-Segel model that allows the global existence and the cell aggregation phenomenon at
the same time. Very recently, it is investigated by Yoon and Kim. They were introduced a
new Keller-Segel model with Fokker-Plank diffusion in [211]. The difference between the
Keller-Segel model with Fokker-Planck type and the Keller-Segel type models is in the first
equation where the Fokker-Planck type diffusion was introduced. The global existence and
the instability of constant steady states were obtained for (1.35) in R

n in [211]. For the sack
of simplicity, they have assumed that a and b are equal to one. Further, they have assumed
that the chemotactic sensitivity function γ (v) := c0v

−k and the global existence results were
proved for all k > 0 with a smallness assumption on c0 > 0. In addition to this, the constant
steady states were shown as unstable only if k > 1 and ε > 0 is small. Moreover, they have
found the threshold diffusivity ε1 > 0 and observed that any constant steady state is unstable
and an aggregation pattern appears provided if ε < ε1. They have summarized the results as
follows:
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Theorem 5.16 (Local existence) Let the initial values f ∈ C0(
) and g ∈ W 1,p(
)(p > n)

be nonnegative. Then there exists a solution of (1.35) in the classical sense, i.e.,

ud, vd ∈ C0(
 × [0, Tmax)) ∩ C2,1(
 × (0, Tmax)),

where Tmax denotes the maximal existence time. This solution is unique and nonnegative.
Moreover, if Tmax < ∞, then

‖ud(·, t)‖L∞(
) + ‖vd(·, t)‖L∞(
) → ∞ as t → Tmax.

For the proof of Theorem 5.16, we refer to Theorem 2.6 [211].

Theorem 5.17 Let (u, v) be the solution of (1.35) with boundary ∂νu = ∂νv = 0 and initial
conditions u(x,0) = f (x) � 0 and v(x,0) = g(x) > 0. The motility function γ is given by
γ (v) = c0

vk , c0 > 0, k > 0 with a small c0 > 0. Suppose that t ∈ (0, Tmax) is the maximal time
domain for the solution. Then, there exists a constant C > 0 such that

‖u‖L∞(
×(0,Tmax )) + ‖v‖L∞(
×(0,Tmax )) � C.

Furthermore, the solution is global, i.e, Tmax = ∞.

For the proof of Theorem 5.17, we refer to Theorem 2.9 [211].
For the nonexistence of non-constant steady state solutions, we refer to Theorem 3.3

[211]. The instability conditions for a constant steady state solution is obtained in Theorem
3.4 [211]. Cieslak and Winkler [41] proved the existence of global classical solutions for
(1.68) under the assumptions that if φ and ψ are smooth enough nonnegative functions
which satisfy

k1e
−β−s � φ(s) � k2e

−β+s (5.32)

for all s � 0 where k1 > 0, k2 > 0, β+ and β− � β+ then whenever ψ satisfies

ψ(u)

φ(u)
� k3s

α (5.33)

for all s � 0, with k3 > 0 and α ∈ (0,1), and for nonnegative regular initial data, the model
(1.68) has a global classical solution and the solution u is bounded. We summarize their
main results as

Theorem 5.18 Let 
 ⊂ R
2 be a bounded domain with smooth boundary. Assume that φ and

ψ satisfy φ ∈ C1+ν([0,∞)) is positive and ψ ∈ C1+ν([0,∞)) is nonnegative with ψ(0) = 0
and the assumptions (5.32), (5.33) hold and α(0,1). Then for any u0, v0 satisfying u0 ∈
W 1,l(
) for some l > 2 with u0 > 0 in 
 and v0 ∈ W 1,l(
) for some l > 2 with v0 � 0 in 
,
the problem (1.68) possesses a uniquely determined global classical solution (u, v) with

{
u ∈ C0(
 × [0,∞)) ∩ C2,1(
 × (0,∞)),

v ∈ C0(
 × [0,∞)) ∩ C2,1(
 × (0,∞)) ∩ L∞
loc([0,∞);W 1,l(
)),

(5.34)

such that both u and v are nonnegative in 
 × (0,∞). Moreover, ‖u(·, t)‖L∞(
) � c for all
t > 0.
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For the proof of Theorem 5.18, we refer to Theorem 1.1 [41]. In order to obtain the
boundedness of u, they used ODI and the Moser-Trudinger inequality.

In [157], the model (1.35) with ε = a = b = 1, is considered in smooth domain when
space dimension is greater than or equal to two. As we know already that in the two-
dimensional case, the solutions of the classical Keller-Segel model may blow up in finite
time under large initial data, in stark contrast to this, the authors in [157] have estab-
lished the globally bounded classical solution for (1.35) with ε = a = b = 1 with suit-
ably regular initial data provided that the uniform positive motility function φ belongs to
C3([0,∞)) ∩ W 1,∞(0,∞). Further, they assumed that the function kφ � φ(s) � Kφ , for
all s � 0, |φ′(s)| � Kφ′ , for all s � 0 with certain positive constants kφ , Kφ and Kφ′ . Th e
initial data are assumed to be in u0 ∈ C0(
) is non-negative, u �= 0 and v0 ∈ W 1,∞(
) is
non-negative. As the main results, they summarized as follows:

Theorem 5.19 Let 
 ⊂ R
2 be a bounded convex domain with smooth boundary, and sup-

pose that φ satisfies φ ∈ C3([0,∞)), kφ � φ(s) � Kφ and |φ′(s)| � Kφ′ , for all s � 0 with
kφ,Kφ,Kφ′ > 0. Then for all u0 ∈ C0(
) and v0 ∈ W 1,∞(
) fulfilling u0 ∈ C0(
) is non-
negative, u �= 0 and v0 ∈ W 1,∞(
) is non-negative, the problem (1.35) with ε = a = b = 1,
homogeneous Neumann boundary conditions for u and v, and initial conditions u(x,0) =
u0(x) and v(x,0) = v0(x) possesses a global classical solution (u, v) ∈ (C0(
 × [0,∞)) ∩
C2,1(
 × (0,∞)))2 such that both u and v are non-negative in 
 × (0,∞), and such that
(u, v) is bounded in the sense that

‖u(·, t)‖L∞(
) + ‖v(·, t)‖L∞(
) � C for all t > 0 (5.35)

with some constant C > 0.

For the proof of Theorem 5.19, we refer to Theorem 1.1 [157]. From the above theo-
rem there is a natural question arises as what about the existence of solutions in the higher
dimensional cases? The answer is in the following Theorem:

Theorem 5.20 Let n � 3, and assume that 
 ⊂ R
n is a bounded domain with smooth

boundary. Moreover, suppose that φ satisfies φ ∈ C3([0,∞)), kφ � φ(s) � Kφ and |φ′(s)| �
Kφ′ , for all s � 0 with kφ,Kφ,Kφ′ > 0. Then for all u0 ∈ C0(
) and v0 ∈ W 1,∞(
) fulfilling
u0 ∈ C0(
) is non-negative, u �= 0 and v0 ∈ W 1,∞(
) is non-negative, the problem (1.35)
with ε = a = b = 1, homogeneous Neumann boundary conditions for u and v, and initial
conditions u(x,0) = u0(x) and v(x,0) = v0(x) possesses at least one global weak solution
in the sense of Definition 5.1 in [157] and this solution can be gained as the limit a.e. in

 × (0,∞) of solutions (uε, vε) to the regularized problems

{
∂tuε = 	(γ (vε)uε),

∂tvε = ε	vε + f (uε) − vε,

for ε ∈ (0,1), where fε(s) := s
1+s

, s � 0, along a suitably chosen sequence (εk)k∈N ⊂ (0,1)

such that ε ↘ 0 as k → ∞.

For the proof of Theorem 5.20, we refer to Theorem 1.1 [157]. Under the smallness as-
sumptions on the initial data, they also proved the global boundedness of classical solutions.
The global-in-time existence of solutions to (1.71) studied in higher dimensions by Mimura
in [112]. The author’s approach is to rewrite the problem as a gradient flow on the Wasser-
stein space. Finally, when time step size goes to zero, the author proved the discrete solutions
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are converge to a weak solution of the main system. The Lyapunov functional corresponding
to (1.71) is defined by

φm(u, v) := 1

m − 1

ˆ




umdx − χ

ˆ




uvdx + χ

2α
|∇v|2 + γ v2dx.

To prove the results, the functional space is XM(
) := {(u, v) ∈ (L1(
) ∩ Lm(
)) ×
H 1

0 (
); ‖u‖L1 = M,u � 0, v � 0} and μM(
) := inf(u,v)∈XM(
) φm(u, v), M∗(
) :=
sup{M � 0;μM(
) > −∞}. The author has derived theorems based on the properties of
M∗. The main global existence result is sated as follows:

Theorem 5.21 Let m � 2 − 2/d . For any u0 ∈ L2(
) ∩ Lm(
) and v0 ∈ H 1
0 (
) with u0,

v0 � 0 there exists a weak solution (u, v) of (1.71) with this initial data that exists globally
for all t � 0 provided that u0 satisfies

´



u0dx < M∗.

For the proof of Theorem 5.21, we refer to Theorem 1.4 [112].
It was unknown that whether the solutions of the model (1.37) will exist globally, when

μ > 0 in higher dimensions. Wang and Wang answered for this question in [167]. As we
explained earlier, the strong logistic source term in classical Keller-Segel model will prevent
blow-up of solutions. The authors were introduced a strong logistic term in the model in
order to prevent blow-up of solutions in the higher dimensions. When μ > 0 is large, they
proved the global existence and boundedness of the solution to (1.37). For their analysis of
the model (1.37), they assumed that

(i) γ ∈ C3([0,∞)), γ (s) > 0, γ ′(s) < 0 and |γ ′(s)| � R in [0,∞) with positive constant
R and limν→∞ γ (v) = 0.

(ii) The initial data u0, v0 are satisfy 0 � u0 �= and 0 � v0 �= 0, u0, v0 ∈ W 1,∞(
).

They summarized the main results as follows:

Theorem 5.22 Let a > 0, n � 3 and 
 ⊂ R
n be a bounded convex domain with a

smooth boundary. Suppose that conditions γ ∈ C3([0,∞)), γ (s) > 0, γ ′(s) < 0 in
[0,∞), lims→∞ γ (s) = 0 and lims→∞ γ ′(s)

γ (s)
exists and (i) hold. Then there exists μ̂ > 0

such that, when μ � μ̂, the problem (1.37) admits a unique nonnegative global classical
solution (u, v) ∈ [C0(
×[0,∞))∩C2,1(
× (0,∞))]2, which is bounded in the sense that
there exists C > 0 such that

‖u(·, t)‖L∞(
) + ‖v(·, t)‖W1,∞(
) � C, t > 0.

In [83], the authors considered the model (1.38) in the space of dimension two and as-
sumed that the motility function γ (v) ∈ C3([0,∞)), γ (v) > 0, γ ′(v) < 0 for all v � 0, and
in limv→∞ γ (v) = 0 and limv→∞ γ ′(v)

γ (v)
exists. This proposed model has very interesting bio-

logical properties. This density-suppressed will produce spatio-temporal pattern formation
through self-trapping. The major difficulty in the analysis of the model (1.38) is the degen-
eracy of diffusion. They derived a priori L∞-bound of v to eliminate the degeneracy and
proved the global existence of classical solutions with uniform boundedness in-time by us-
ing the function γ (v) as weight function and applying method of weighted energy estimates.
Moreover, by constructing a Lyapunov functional, they obtained the large time behavior of
solutions as well. They stated the main results as follows:



6 Page 48 of 82 G. Arumugam, J. Tyagi

Theorem 5.23 Let 
 be a bounded domain in R
2 with smooth boundary and the assump-

tion γ (v) ∈ C3([0,∞)), γ (v) > 0, γ ′(v) < 0 for all v � 0, and in limv→∞ γ (v) = 0 and
limv→∞ γ ′(v)

γ (v)
exists, holds. Suppose that (u0, v0)∈[W 1,∞(
)]2 with u0, v0 � 0(�= 0). Then,

the problem (1.38) has a unique nonnegative global solution (u, v) ∈ [C0([0,∞) × 
) ∩
C2,1((0,∞) × 
) ∩ L∞

loc([0,∞);W 1,∞(
))]2 satisfying

‖u(·, t)‖L∞(
) + ‖v(·, t)‖W1,∞(
) � C, for all t > 0,

where C > 0 is a constant independent of t . Furthermore, if μ >
K0
16 with K0 =

max0�v�∞ |γ ′(v)|2
γ (v)

, the constant steady state (1.38) is globally asymptotically stable in the
sense that

lim
t→∞(‖u(·, t) − 1‖L∞(
) + ‖v(·, t) − 1‖L∞(
)) = 0.

For the proof of Theorem 5.23, we refer to Theorem 1.1 [83]. Besides these results by
Tao and Winkler and those of Yoon and Kim, and Jin, Kim, Wang, and, Wang and Wang,
we are not aware of any other results regarding the model related to (1.35).

It is worth to notice that their resulting model is closely related to the logarithmic model.
Even though Winkler has introduced the Lyapunov function to prove the blow-up of solu-
tions, it does not work well for the degenerate parabolic-parabolic model (1.17) with τ = 1.
However, the authors in [67] devised the new estimates for the Lyapunov function. The finite
time blow-up of solutions of quasilinear degenerate parabolic-parabolic model of the form
(1.17) with τ = 1 studied in [67]. They considered the model in a ball of RN , N � 2, m � 1,
q � 2. Further, they have answered for the unsolved problem stated as whether the blow-up
time is finite or infinite for quasilinear degenerate model considered in [67]. That is, when
q > m + 2

N
, they have established the finite time blow-up of energy solutions.

When we are exploring the literature, it is exciting to know the existence results of the full
Keller-Segel chemotaxis model. In this direction, under the suitable regularity assumptions
on the initial data, the authors in [76] have proved that the full Keller-Segel model (1.48) is
well-posed on nonsmooth domains. Their idea is based on an abstract theorem by Amann for
nonlocal quasilinear equations. Seemingly, this is the first result concerning the full Keller-
Segel model. Their main aim was to prove the existence of local-in-time solutions of (1.48)
in a general nonsmooth domain, that is, in a Lipschitz domain. In addition to the classical
Keller-Segel model, there are multi species Keller-Segel models are also available in the
literature. In the following table, we review the existence, blow-up, boundedness of solutions
of parabolic-parabolic Keller-Segel models. In [82], the authors have considered the model
(1.36) with consumption of chemoattractant in three space dimension and established the
blow-up of solutions of (1.36). Yan and Li [209] proved that the existence of generalized
solution to the model (1.15) under the condition that m > 1 + n−2

2n
. To be precise, they stated

their main result as follows:

Theorem 5.24 Let 
 ⊂ R
n, n � 2 be a bounded domain with smooth boundary. Then for

all u0 and v0 satisfying u0 ∈ C0(
),u0 � 0 in 
,u0 �≡ 0, v0 ∈ W 1,∞(
), v0 > 0 in 
, the
model (1.15) for m > 1 + n−2

2n
has at least one global generalized solution in the sense of

Definition 2.1(see p. 290, [209]).

For the proof of Theorem 5.24, we refer to Theorem 1.1 [209]. As far as we know, for
large initial data, the global existence of classical solutions to (1.15) with m = 1 are available
in the one dimensional case only (see [106, 160]). However, the same results available [107]
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to the particular case of (1.15) with m = 1 without the diffusion term in the second equa-
tion in higher dimension case provided for smallness on initial data. Without any restriction
on the initial data and space dimension, Winkler [186] proved the existence of global gen-
eralized solution to (1.15) with m = 1 in the case of radially symmetric. He assumed that

 = BR(0) ⊂ R

n, n � 2,R > 0 and initial data satisfy

{
u0 ∈ C0(
) is radially symmetric with u0 � 0 in 
,

v0 ∈ W 1,∞(
) is radially symmetric with v0 > 0 in 
,
(5.36)

and he summarized his results as follows:

Theorem 5.25 Let n � 2,R > 0 and 
 = BR(0) ⊂ R
n, and suppose that u0, v0 satisfy

(5.36). Then there exists at least one pair (u, v) of radially symmetric functions
{

u ∈ L∞((0,∞);L1(
)) ∩ C0((
\{0} × [0,∞)) ∩ C2,1((
\{0} × (0,∞)),

v ∈ L∞(
 × (0,∞)) ∩ C0((
\{0} × [0,∞)) ∩ C2,1((
\{0} × (0,∞)),
(5.37)

such that u � 0 and v > 0 in 
\{0} × [0,∞), that

∇u

u + 1
∈ L2

loc(
 × [0,∞)) and
∇v

v
∈ L2

loc(
 × [0,∞)),

and that (u, v) is a global renormalized solution of (1.1) with m = 1 in the sense of Defini-
tion 2.9 in Sect. 2. Moreover, (u, v) solves (1.15) with m = 1 classically in (
\{0}×[0,∞)).

For the proof of Theorem 5.25, we refer to Theorem 1.1 [186]. Lankeit and Lankeit
studied the global existence of classical solution to the model (1.16) with k = 2 in [98]. In

particular, they have established it under the assumptions of 0 < χ <

√
2
n

and μ > n−2
n

, n �
2, r � 0 and the initial data u0 ∈ C0(
), v0 ∈ W 1,∞(
), u0 � 0, v0 > 0 in 
. When we look
for the range of the parameter χ , the immediate question arises as what will happen in other
range of the parameter χ? In this direction, Lankeit and Lankeit answered for the following
question:

(i) What will happen for small values of μ > 0 when n � 3, and

(ii) what if the assumption χ <

√
2
n

is removed?

For any value μ, r,χ > 0, k = 2 and initial data of the model (1.16) in 
 ⊂ R
n, n � 1, the

generalized global solution is proved by Lankeit and Lankeit in [97]. The main result is
presented as follows:

Theorem 5.26 Let 
 ⊂ R
n, n � 1 be a smooth and bounded domain and let u0 ∈ C0(
) be

nonnegative and v0 ∈ W 1,∞(
) be positive in 
. Let the chemotactic coefficient χ � 0, r �
0,μ > 0 be arbitrary. Then the model (1.16) with k = 2 possesses a global generalized
solution in the sense of Definition 2.12.

For a proof of Theorem 5.26, we refer to Theorem 1.1 [97]. But for the same model (1.16)
in 
 ⊂ R

n, n � 1, Zhao and Zheng [216] showed the global existence of classical solution
under the conditions that k > 1 for n = 1 or k > 1 + n

2 for n � 2. Moreover, the asymptotic
behaviour of solutions was also established under suitable assumptions. The main results
are summarized as follows:
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Theorem 5.27 Under the initial data
{

u0(x) ∈ C0((
)),u0(x) � 0, with u0(x) �≡ 0, x ∈ 


v0(x) ∈ W 2,∞(
), v0(x) > 0, x ∈ 
, and ∂v0
∂n

= 0, x ∈ ∂
,
(5.38)

the model (1.16) has a unique positive global classical solution provided k > 1 with n = 1
or k > 1 + n

2 with n � 2.

Theorem 5.28 Let n = 2. If k > 2, there exists μ∗ > 0 such that
(

u,v,
|∇v|

v

)

→
(

(r/μ)
1

k−1 ,0,0

)

in L∞(
) as t → ∞ (5.39)

provided μ > μ∗.

For the proof of Theorem 5.27 and Theorem 5.28, we refer to Theorems 1 and 2 [216]. Li
[102] proved the global existence of classical solutions to model (1.61), which is uniformly
bounded. Moreover, Li assumed that the model in a bounded domain with smooth boundary
in R

3 but without convexity of the domain and the function |ψ(u)| � |χ |uq , u � 0 with
χ ∈R, q > 0. In addition, the logistic source function f (u) satisfies f (u) � a −buα , u � 0,
where a � 0, b > 0 and α � 1, the production function is 0 � g(u) � kuγ , u � 0 and the
initial data u0(x) ∈ C(
), v0(x) ∈ W 1,∞(
), u0 �≡ 0, v0 �≡ 0 in 
.

For the two species Keller-Segel model (1.83), the global existence of nonnegative so-
lutions is proved in [63]. The global existence of classical solutions is established in [191]
for (1.1) with f (u, v) = 0, g(u, v) = u, h(u, v) = 1 and τ = d = 1. Under the assumptions
that if φ(u, v) is positive smooth function and decays at most algebraically with respect
to u, then it is shown that ψ(u,v) = ψ(u) with ψ(0) = 0. Furthermore, if 
 ⊂ R

n, n � 2
is a ball, then infinite time blow-up of solution is shown under some additional assump-
tions on φ(u, v) = (u + 1)m−1 and ψ(u,v) = u(u + 1)σ−1, u � 0, v � and m,σ ∈ R satisfy
m − n−2

n
< σ � 0 and the author assumed that the set of initial data is dense in the set of

positive and radially symmetric functions over 
. It is important to observe that the blow-up
of solutions of more general quasilinear models depends on the size of ψ relative to φ. For
the global solvability, he assumed that

{
φ ∈ C2([0,∞)2) satisfies φ > 0 in [0,∞)2

ψ ∈ C2([0,∞)2) is nonnegative and such that ψ(0, v) = 0 for all v � 0.
(5.40)

Further, suppose that φ satisfies

φ(u, v) � k(v)(u + 1)m−1 for all u � 0, v � 0, (5.41)

where k(v) is a nonincreasing positive function and some m ∈R. In addition to this assump-
tion, we also need

ψ(u,v) � c, for all u � 0, v � 0, (5.42)

where c > 0 and

∂ψ(u, v)

∂v
� −cψu−λ(v + 1)−μ, for all u � 0, v � 0, (5.43)

where cψ > 0, λ > 0, μ ∈R. He summarized the existence result as follows:
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Theorem 5.29 Let n � 2 and 
 ⊂ R
n be a bounded domain with smooth boundary and

suppose that φ and ψ satisfy (5.40) as well as (5.41)-(5.43) fulfilling λ > n−2
n

(1−μ)+. Then
for any choice of u0, v0 satisfying u0 ∈ W 1,∞(
) with u0 > 0 in 
 and v0 ∈ W 1,∞(
) with
u0 > 0 in 
, the problem (1.1) with f (u, v) = 0, g(u, v) = u, h(u, v) = 1, φ(u, v) = φ(u),
ψ(u,v) = ψ(u) and τ = d = 1 possesses a global classical solution (u, v) such that

{
u ∈ C0(
 × [0,∞)) ∩ C2,1(
 × (0,∞)),

v ∈ ∩q>nC
0([0,∞);W 1,q (
)) ∩ C2,1(
 × (0,∞)),

(5.44)

and both u and v are positive in 
 × (0.∞).

For the proof of Theorem 5.29, we refer to Theorem 1.1 [191]. For the proof of un-
bounded solutions, we refer to Theorem 1.3 [191]. The global existence of weak solutions
to one dimensional case of (1.65) with f (u) = τ = 0 is studied in [195]. To prove his re-
sults, he assumed that μ0 ∈ M(
), μ0 � 0, v0 ∈ L2(
), v0 � 0, where M(
) denotes the
space of Radon measures over 
 and used the identification M(
) ≡ (C0(
))∗. Tao and
Winkler considered Keller-Segel type new model (1.38) in [158] in a bounded convex do-
main 
 ⊂R

n, n � 2, which describes the processes of stripe pattern formation in biological
tissues. They established the following results:

(i) obtained the globally bounded classical solutions in two dimension to (1.38) with a = 0,
for all sufficiently regular initial data and the uniformly positive motility function γ ∈
C3([0,∞)) ∩ W 1,∞((0.∞)).

(ii) proved the global existence of weak solutions in higher dimensional setting and fur-
thermore this solution is classical and bounded in three dimensional only provided the
initial data are sufficiently small in L2(
) × W 1,4(
).

Studying blow-up rate is very important to understand the blow-up phenomena. Very re-
cently, Mizoguchi [115] has proved that each blow-up is of type II without any extra con-
ditions to (1.3) with d = χ = γ = 1. The author has used a new approach to generalize the
case rather than improving [113], where the main ingredient therein is to combine both iso-
lation of blow-up points and backward uniqueness theorem in a half space. Here is the main
result:

Theorem 5.30 Let 
 be a smoothly bounded domain in R
2 or 
 =R

2. If a solution of (1.3)
with d = χ = γ = 1 blow-up in finite time then the blow-up is type II.

For the proof of Theorem 5.30, we refer to Theorem 1.1 [115]. The authors have consid-
ered the model (1.45) in [6] and established the existence of weak solutions to the considered
system by using Schauder’s fixed point theorem, a priori energy estimates and the compact-
ness results. They used the crucial assumption d > δ

2 + χ

2γ
K for the regularised system of

(1.45) to prove the uniform positive definiteness of the diffusion matrix provided γ � 1, χ ,
d1, d2 are positive constants. First, they proved existence of weak solutions to the regularised
system and then they shown the existence for the original system (1.45) by letting ε → 0.

In the past few years, there are many findings in the literature related to chemotaxis in
fluid environment. In this direction, Winkler [184] considered (1.92) in an open bounded
domain in R

3 with the assumptions on � ∈ W 2,∞(
), f ∈ C1([0,∞)) and χ ∈ C2([0,∞))

are nonnegative and f (0) = 0. Basically this model describes the mutual interaction of pop-
ulations of swimming aerobic bacteria with the surrounding fluid. He obtained the global
weak solutions from derived energy estimates and compactness arguments. Under the as-
sumptions on arbitrary regular initial data and S(n) � ks(n + 1)−α , ∀n � 0 and α > 1

3 , the
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global existence and boundedness of classical solutions to (1.94) in three dimensional set-
ting are proved by Wang and Xiang in [168]. Winkler [187] investigated the global existence
of solutions to (1.94) with |S(n)| � ks(n + 1)−α , ∀ n � 0 and some α, ks > 0. He has en-
sured that the assumption |S(n)| � ks(n + 1)−α , ∀ n � 0 and α > 1

3 is sufficient to prevent
forming singularities in (1.94). In addition to this, he also assumed that φ ∈ C2(
) and
f ∈ C1(
 × [0,∞);R3) ∩ L∞(
 × (0,∞);R3). Due to the refined modelling approach,
Winkler considered the matrix valued chemotactic sensitivity in [189], in particular, he con-
sidered the model (1.95) in a bounded domain in R

2. This modifications brought new chal-
lenges in mathematical analysis of this model. For this model, he proved the global mass-
preserving generalized weak solutions under smooth enough functions S, f and � and in
addition S is bounded and f is nonnegative function.

Black et al. [18] proved the global existence of solutions to (1.93) in a bounded domain

 ⊂ R

n, n = 2,3 if

χ <

{∞, n = 2,
5
3 , n = 3.

Wang et al. considered (1.97) in a bounded convex domain in [170]. From their results, it can
also be noted that we could prevent blow-up for (1.97) by choosing chemotactic sensitivity
function in such a way that its algebraic saturation is very small. That is, for c > 0, and
α > 0, the function ψ satisfies |ψ(x,n, c)| � c(1+n)−α for all x ∈ 
,n � 0, c � 0. Authors
also assumed that the potential function � ∈ W 2,∞(
) and ψ ∈ C2(
 × [0,∞)2;R2×2) To
obtain global-in-time bounded classical solutions, authors also assumed that the potential
function � ∈ W 2,∞(
) and ψ ∈ C2(
 × [0,∞)2;R2×2). Furthermore, their analysis were
performed by using three energy functionals. Winkler [194] considered the model (1.85) in
a smooth bounded planar domains. It is surprising to see his results regarding the model
(1.85), that is, in contrast to the classical Keller-Segel system, he proved the global classical
existence of solutions to (1.85) for arbitrarily large initial data. He summarized the main
result as follows:

Theorem 5.31 Suppose that 
 ⊂ R
2 is a bounded domain with smooth boundary, that

� ∈ W 2,∞(
) holds and that n0, c0 and u0 satisfy n0 ∈ C0(
) is nonnegative with n0 > 0,
c0 ∈ W 1,∞(
) is nonnegative and u0 ∈ W 2,2(
;R) ∩ W 1,2

σ (
), W
1,2
0,σ (
) := W

1,2
0 (
;R2) ∩

L2
σ (
) := {ϕ ∈ L2(
;R2)|∇ · ϕ ∈ D(
)}. Then there exist functions n, c and u uniquely

determined by the inclusions

⎧
⎨

⎩

n ∈ C0(
 × [0,∞)) ∩ C2,1(
 × (0,∞)),

c ∈ ∩q>2C
0([0,∞);W 1,q (
)) ∩ C1,2(
 × (0,∞)),

u ∈ ∩α∈( 1
2 ,1)C

0([0,∞);D(Aα)) ∩ C1,2(
 × (0,∞);R2)

(5.45)

such that n > 0 and c � 0 in 
 × (0,∞) and that (1.85) is satisfied in the classical sense
with some P ∈ C0(
 × [0,∞)).

For the proof of Theorem 5.31, we refer to Theorem 1.1 [194], where A = P	 is the
realization of the Stokes operator in L2(
;R2) and D(
) = W 2,2(
;R2) ∩ W

1,2
0,σ (
) and

P is denoting the Helmholtz projection on L2(
;R2). The corresponding chemoattraction
system of (1.85) possesses exploding solutions. With some general functions D(u) and S(u)

in (1.87), for some relaxing effects of repulsion when compared with attraction, one can see
([53, 93]). The pointwise convergence of solutions to (1.95) and its associated parabolic-
elliptic counterpart is addressed in [172]. Furthermore, the authors applied the general result
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to other two problems. For regular initial data, Winkler [198] also proved the global exis-
tence of classical solution (n, c,u,P ) to (1.86). Further, he obtained that the cell density n

is still uniformly bounded. The summarized result is as follows:

Theorem 5.32 Let 
 ⊂ R
2 a bounded domain with smooth boundary and assume that � ∈

W 1,∞(
) holds and that n0 and u0 comply with n0 ∈ C0(
) is nonnegative with n0 > 0 and
that u0 ∈ W 2,2(
;R2) ∩ W

1,2
0,σ (
). Then there exist functions

⎧
⎪⎪⎨

⎪⎪⎩

n ∈ C0(
 × [0,∞)) ∩ C2,1(
 × (0,∞)),

c ∈ C2,0(
 × (0,∞)),

u ∈ ∩α∈( 1
2 ,1)C

0([0,∞);D(Aα)) ∩ C2,1(
 × (0,∞);R2) and

P ∈ C1,0(
 × (0,∞))

(5.46)

uniquely determined up to addition of constants to P , such that n > 0 and c > 0 in 
 ×
(0,∞) that (n, c,u,P ) solves (1.86) classically in 
 × (0,∞) and that

sup
t>0

‖n(·, t)‖L∞(
) < ∞.

For the proof of Theorem 5.32, we refer to Theorem 1.1 [198]. Kang et al. [85] improved
the result of [156] to the whole space R

3 instead of proving in a bounded domain with the
restriction μ � 23. To prove their results, they assumed that the assumptions for d = 2,3
and n0 ∈ (L1 ∩ H 2)(Rd), c0 ∈ (Lq ∩ H 3)(Rd), u0 ∈ H 3(Rd), x ∈ R

d , n0 � 0, c0 � 0 and for
given q > 2 − 1

d
, d = 2,3, a number r satisfies 2 < r < 2q if d = 2 and 5

3 � r <
3q

2 if d = 3
and let r ′ := dr

d+r
. The initial data (n0, c0, u0) satisfy

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n0 ∈ (L1 ∩ H 2)(R2), c0 ∈ (L
r
2 ∩ W 1,r ∩ W 1,r ′ ∩ H 3)(R2),

u0 ∈ (W 2,r ′ ∩ H 3)(R2), if d = 2,

n0 ∈ (L1 ∩ H 2)(R3), c0 ∈ (L
3r
5 ∩ W 1,r ∩ H 3)(R3),

u0 ∈ (W 2,r ′ ∩ H 3)(R3) if d = 3,

n0(x), c0(x) � 0, x ∈R
3.

(5.47)

The existence of regular solution is summarized as follows:

Theorem 5.33 Let μ > 0. Suppose that either q � 2, (κ, d) = (1,2) or q > 2, (κ, d) =
(0,3). If the initial data (n0, c0, u0) satisfy the above stated assumption, then (1.89) pos-
sesses the unique regular solution (n, c,u) of (1.89) satisfying for any T < ∞ (n, c,u) ∈
L∞(0, T ;H 2(Rd)×H 3((R)d)×H 3(Rd)), (∇n,∇c,∇u) ∈ L2(0, T ;H 2(Rd)×H 3((R)d)×
H 3(Rd)).

For the proof of Theorem 5.33, we refer to Theorem 1.1 [85]. To prove there exists at least
one global weak solution to (1.90), Winkler [196] assumed that supt>0

´ t+1
t

‖g(·, t)‖
L

6
5

ds to

be finite and the initial data are sufficiently regular. Moreover, he proved that the global weak
solutions are bounded uniformly in the space L1(
)×L6(
)×L2(
;R3). For more results
related to Keller-Segel Navier-Stokes models one can refer [51, 92, 103, 105, 154, 181, 182,
192, 212, 218] and the references therein. As far as we know, the solutions behaviour far
from equilibrium seems not well understood for parabolic-parabolic Keller-Segel models
and models with high diffusion as well. In this scenario, Winkler developed an approach
for parabolic-parabolic Keller-Segel model in [185]. His results will help for the better un-
derstanding of the dynamical emergence of structures in models with large diffusion. He
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provided the results by focusing only on the proliferation parameter of the model. The main
result is summarized as follows:

Theorem 5.34 Let n � 3 and 
 = BR(0) ⊂ R
n with some R > 0, let a � 0 and suppose that

u0 ∈ C0(
) and v0 ∈ W 1,∞(
) are radially symmetric and positive in 
. Then for all K > 0
and each T ∈ (0,1) there exist sequences (u0k)k∈N ∈ C0(
) and (v0k)k∈N ⊂ W 1,∞(
) of
radially symmetric positive functions u0k and v0k on 
 such that

´



u0k = ´



u0 for all k ∈N,
that u0k → u0 in Lp(
) for all p ∈ [1, 2n

n+2 ) and v0k → v0 in W 1,2(
) as k → ∞ and that for
all k ∈ N, and ε ∈ (0,1) one can find tε,k ∈ (0, T ) with the property that (1.72) with ε instead
of μ, possesses a classical solution (uε,k, vε,k) ∈ (C0(
 × [0, tε,k]) ∩ C2,1(
 × (0, tε,k)))

2

which is such that uε,k(xε,k, tε,k) > K
ε

for some xε,k ∈ 
.

For the proof of Theorem 5.34, we refer to Theorem 1.1 [185]. Based on Theorem 5.34,
he also added one more result which deals with the effects of large chemotactic sensitivities
with fixed logistic source. Urban crime propagation model (1.74) is considered in [190]. The
author assumed that the functions B1,B2 ∈ Cν

loc(
 × [0,∞)), ν ∈ (0,1) are nonnegative
and radially symmetric and initial data u0 ∈ Cν

loc(
) v0 ∈ W 1,∞(
) are radially symmetric
and nonnegative. Under these assumptions, the global existence of renormalized solution to
(1.74) is proved. In [199] Winkler considered the model (1.4) in a ball which is a subset
of Rn, n � 2. He asserted that any radial classical solution (which has finite time blow-up)
has a unique blow-up profiles and satisfying pointwise upper inequality as well, which can
be obtained through pointwise time-independent estimates of radially symmetric solutions.
Further, the next result states that the extensibility of non-global solution beyond its blow-up
time which is avoiding breakdown of well-posedness of the model (1.4). As we know from
the above discussed results, mostly the global existence and blow-up of solutions depend
on the initial data. While proving existence of the global solutions to the degenerate Keller-
Segel model (1.81), Wang et al. [171] derived a new relationship between the sharp constant
of Sobolev inequality and initial data. Thus the range of exponent of diffusion coefficient is

2n
2+n

< m < 2 − 2
n

. They have shown that the smallness of initial condition is not necessary
to prove the global existence of weak solution to (1.81). We would notice that to perform
the analysis, they transformed the original model (1.81) into gradient flow structures. Very
recently, the existence of nonnegative weak solutions to the time fractional Keller-Segel
system is studied in [3].

6 Boundedness of Solutions of Parabolic-Parabolic Models

Horstmann et al. [75] studied the global existence and boundedness of solutions to (1.52)
with φ(u) = 1 and f (u) = 0. The authors have assumed that ψ ∈ C1+θ ([0,∞)) and the non-
negative initial data u0 ∈ C0(
) and v0 ∈ ∪q>nW

1,q (
). The main result is the following

Theorem 6.1 If n � 1 and ψ satisfies ψ(u) � c0u
α,∀u ∈ (1,∞) for some c0, α > 0, α < 2

n
,

then all solutions of (1.52) are global in time and uniformly bounded. Moreover, given � > 0
and τ ∈ (0,1), there exist c(�, τ) > 0, m > 0 and ν > 0 such that ‖u0‖L1(
) � � and
‖v0‖L1(
) � � implies

‖u(t)‖L∞(
) + ‖v(t)‖L∞(
) � c(�, τ)(1 + Km(τ)e−νt ) ∀ t � τ.

Also

‖u(t)‖Cδ(
) + ‖v(t)‖C2+δ (
) � c(δ,�, τ)(1 + Km(τ)e−νt ) ∀ t � τ,
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for any δ ∈ (0,1) with m = m(δ) and ν = ν(δ). Here, we have set K(τ) :=
maxt∈[ τ

4 ,τ ](‖u(t)‖L∞(
) + ‖∇v(t)‖L2(
)).

For the proof of Theorem 6.1, we refer to Theorem 4.1 [75]. In [177], the author proved
that the model (1.9) with φ(v) = 1, χ(v) � χ0

(1+αv)k
, χ0 > 0, α > 0, k > 1, v � 0,D = 1,

f (v) = k(v) = 1 and u0 ∈ C0(
), v0 ∈ W 1,r (
), r > n admits a unique global classical
solution which is uniformly bounded in time. However, we can not directly apply his method
to the singular case. He concluded the main result as follows:

Theorem 6.2 The solution (u, v) of (1.9) with φ(v) = 1, χ(v) = χ0
(1+αv)2 , v � 0,D = 1,

f (v) = k(v) = 1 is global and bounded.

For the proof of Theorem 6.2, we refer to Theorem 3.2 [177]. It is to be noticed that there
was a gap between the singular case 0 < χ(v) � χ0

vk , χ0 > 0, k > 1 and the regular case
0 < χ(v) � χ0

(1+αv)k
, α > 0, χ0, k > 1 (see [177]). This gap was filled by Fujie and Yokota in

[58]. Their main result is as follows:

Theorem 6.3 Suppose that χ satisfies χ ∈ C1+δ
loc ((0.∞)) for some δ > 0 and 0 < χ(v) �

χ0
vk for some χ0 > 0, k > 1 and assume that u0 ∈ C0(
),u0 � 0 in 
,u0 �= 0, and v0 ∈
W 1,∞(
), v0 > 0 in 
. Then the problem (1.9) with φ(v) = 1, D = 1, f (v) = k(v) = 1 has
a global classical solution (u, v) and moreover the solution is bounded in the sense that
there exists C > 0 such that ‖u(·, t)‖L∞(
) � C for all t > 0.

For the proof of Theorem 6.3, we refer to Theorem 1.1 [58].
Wang et al. [169] proved the global existence and boundedness of solutions to (1.52).

They summarized their main result as follows:

Theorem 6.4 Let 
 ⊂ R
n(n � 2) be a bounded convex domain with smooth boundary, and

initial data u0 and v0 be non-negative functions with u0 ∈ C0(
) and v0 ∈ W 1,θ (
) (with
some θ > n). Assume that f (u) � a − buγ for all u � 0 with a � 0, b > 0, moreover, φ,
ψ satisfy φ ∈ C2([0,∞)), ψ ∈ C2([0,∞)) with φ(0) = 0 and φ(u) � M1(u + 1)−α for
all u � 0, ψ(u) � M2(u + 1)β for all u � 0, α,β ∈ R, M1,M2 > 0 with 0 < α + β < 2

n
.

Then problem (1.52) with φ(u) = (u + 1)−α , ψ(u) = u(u + 1)β−1, α,β ∈ R possesses a
unique global classical solution (u, v) for which both (u, v) are non-negative and uniformly
bounded 
 × (0,∞).

For the proof of Theorem 6.4, we refer to Theorem 1.1 [169]. Though Winkler [178]

first proved the global existence of classical solutions when χ0 <

√
2
n

and global existence

of weak solutions when χ0 <

√
n+2

3n−4 to the Keller-Segel model (1.49), his results could not

arrive at boundedness of solutions to the same model.
Later, the uniform-in time boundedness of solutions to the model (1.49) was established

by Fujie in [56]. The author solved the open problem proposed by Winkler in [178]. That

is, the author derived uniform-in-time boundedness of solutions of (1.49) for χ <

√
2
n

. He
summarized his main result as follows:
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Theorem 6.5 Let n � 2. Assume that χ satisfies 0 < χ <

√
2
n

, and suppose that u0 ∈
C0(
),u0 � 0 in 
,u0 �= 0 and v0 ∈ W 1,∞(
), v0 > 0 in 
. Then the global solution of
(1.49) is bounded in the sense that there exists C > 0 such that

‖u(·, t)‖L∞(
) � C for all t > 0.

For the proof of Theorem 6.5, we refer to [56]. Lankeit [95] introduced a new technique
to obtain the boundedness of solutions to parabolic-parabolic chemotaxis model (1.49) with
singular sensitivity. He proved the global existence and boundedness of solutions to (1.49)
for χ ∈ (0, χ0), χ0 > 1, in smooth, convex and bounded domain in two dimension. In order
to prove his results, he mainly used the energy functional

Fa,b(u, v) =
ˆ




u lnu − a

ˆ




u lnv + b

ˆ




|∇√
v|2,

where a > 0, b � 0. His main result is stated as follows:

Theorem 6.6 [95] Let 
 ⊂ R
2 be a convex, bounded domain with smooth boundary. Let

0 � u0 ∈ C0(
), u0 �= 0, 0 < v0 ∈ ∪q>2W
1,q (
). Then there exists χ0 > 1 such that for any

χ ∈ (0, χ0), the system (1.49) has a global classical solution, which is bounded.

For the proof of Theorem 6.6, we refer to Theorem 1.1 [95]. At this point, it is important
to observe that the results in [177] are affected by the results in [58]. That is, Mizukami and
Yokota [116] pointed out that they could not verify the results in [177], that is the global
existence and boundedness hold for χ0 > 0 due to the issue in finding the derivative of
ψ(s) := (1 + αs)−2k(1 + βs)k+2, where s ∈ (0,2k − 2), α,β > 0. Winkler’s proof for the
boundedness of solutions is based on the large value of β . However, Mizukami and Yokota
[116] stated that it is not possible to take large value of β to obtain ψ ′(s) � 0. Later on, the
author [57] made an attempt to resolve this issue. It was difficult to prove globally bounded
solutions for arbitrary χ0 >. In order to overcome this, the authors [116] introduced an uni-
fied treatment to obtain the boundedness of solutions for parabolic-parabolic Keller-Segel
model (1.9) with φ(v) = 1, D = 1, f (v) = k(v) = 1 with singular sensitivity χ(v). More-
over, they have assumed the general assumption on the sensitivity to fill the gap between the
cases k = 1 and k > 1 as

χ ∈ C1+λ((0,∞))and 0 � χ(s) � χ0

(a + s)k
, s > 0, (6.1)

with λ > 0, a � 0, χ > 0 satisfying

χ0 < k(a + η)k−1

√
2

n
, (6.2)

where

η := sup
τ>0

(

min{e−2τ min
x∈


v0(x), c0‖u0‖L1(
)(1 − e−τ )}
)

= c0‖u0‖L1(
)

(

1 −
−c0‖u0‖L1(
) +

√

c2
0‖u0‖2

L1(
)
+ 4c0‖u0‖L1(
) min

x∈


v0(x)

2 minx∈
 v0(x)

)

. (6.3)
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They summarized their main result as follows:

Theorem 6.7 Let n � 2 and let 
 ⊂ R
n be a bounded domain with smooth boundary. As-

sume that χ satisfies (6.1) with same λ > 0, k � 1, a � 0, χ0 > 0 satisfying (6.2). Then
for any u0, v0 satisfying 0 � u0 ∈ C(
){0} and 0 < v0 ∈ W 1,q (
), (∃q > n) if a = 0, and
0 � v0 ∈ W 1,q (
), (∃q > n) if a > 0, there exists an exactly one pair (u, v) of solutions

u,v ∈ C(
 × [0,∞)) ∩ C2,1(
 × (0,∞)),

which solves (1.9) with φ(v) = 1, D = 1, f (v) = k(v) = 1. Moreover, the solution (u, v) is
uniformly bounded, that is, there exists a constant C > 0 such that

‖u(·, t)‖L∞(
) + ‖v(·, t)‖W1,∞(
) � C, ∀ t > 0.

For the proof of Theorem 6.7, we refer to Theorem 1.1 [116]. They also have assured the
connection with the results of [56] through the above unified assumption (6.1) together with
χ0 > 0 satisfying (6.2). In two dimensional case, Black [17] proved that the global existence
of solutions to (1.73), which is uniformly bounded in time under the assumptions that f to
be constant and initial data are nonnegative such that

´



u0dx < 4π . In addition, the author
extended the results of Nagai, Senba and Yoshida to the classical Keller-Segel model to
(1.73). Furthermore, under suitable assumption, the author extended Winkler’s results for
the classical Keller-Segel model to (1.73).

The global existence of classical solutions to (1.66) in a smooth bounded domain R
n, n �

2 is studied in [96]. Moreover, the author assumed that the strict positivity for the nonlinear
diffusion coefficient φ � δum−1, where some δ > 0 provided m > 1+ N

4 . Since the solutions
are locally bounded, it does not blow-up in finite time. The main results are summarized as
follows:

Theorem 6.8 Let n � 2 and 
 ⊂ R
n be a bounded smooth domain. Then for every

δ > 0 and m � 1 satisfying m > 1 + n
4 , every φ ∈ C+(δ,m) := {d ∈ C1([0,∞));d(s) �

δsm−1 for all s ∈ [0,∞) and d(0) > 0} and every pair (u0, v0) fulfilling u0 ∈ Cα(
) for
some α ∈ (0,1), v0 ∈ W 1,∞(
), u0 � 0, v0 > 0 in 
, the following problem

{
∂tu = ∇ · (φ(u)∇u) − ∇(

u

v
∇v), in 
 × (0, Tmax),

∂tv = 	v − uv, in 
 × (0, Tmax),
(6.4)

has a classical solution (u, v) ∈ (C0(
×[0, Tmax))∩C2,1(
×[0, Tmax)))
2 which is global

in time.

For the proof of Theorem 6.8, we refer to Theorem 1.1 [96]. Without using strict posi-
tivity of φ(u), we prove global existence of weak solutions by an approximation technique.
The global existence result is

Theorem 6.9 Let n � 2 and 
 ⊂ R
n be a bounded smooth domain. Then for every δ > 0

and m > 1 + n
4 , every initial data u0 ∈ Lmax{1,m−1}(
), v0 ∈ W 1,∞(
), u0 � 0, v0 > 0 and

every φ ∈ Cδ,m, the problem (6.4) has a globally bounded weak solution (u, v), which in
particular satisfies ‖u‖L∞(
×(0,T )) < ∞ for every T ∈ (0,∞).
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For the proof of Theorem 6.9, we refer to Theorem 1.2 [96].
In [206], author obtained the global existence and boundedness of solutions to (1.52) with

φ(u) = 1, ψ(u) = u and f (u) = u − μu2 in 3D. He also established a global existence of
bounded solutions to (1.58) in a nonconvex domains under the condition μ > μ0χ = 9√

10−2
χ

in [205]. Moreover, he assumed that the logistic source f :R →R is smooth and f (0) � 0,
and f (u) � a − μu2, ∀u � 0 for some a � 0,μ > 0. The logistic source term will affect the
Keller-Segel mode’s behaviour. The next important question is that how the logistic growth
source influence the boundedness of solutions to a general Keller-Segel system? By using
the criteria on the boundedness (see [180, 204]), the author in [205] derived lower bounded
for logistic damping rate μ. His main results stated as follows:

Theorem 6.10 Let 
 ⊂ R
n, n � 3 be a bounded smooth domain, the initial data (u0, v0)

satisfy u0 ∈ C(
) and v0 ∈ W 1,p0(
) with some p0 > n and let f satisfies f (0) � 0, and
f (u) � a − μu2, ∀u � 0 for some a � 0,μ > 0 and d1, d2, α,β > 0, a � 0 and χ ∈R.

• For n = 3, let the lower logistic damping rate μ0 = μ0(3, d1, d2, α,χ) of μ be explicitly
given by

μ0 =
{

3
4d1

αχ, if d1 = d2, χ > 0 and 
 is convex,
3√

10−2
( 1

d1
+ 2

d2
)αχ, otherwise; (6.5)

• For n = 4,5, the lower logistic damping rate μ0 = μ0(n, d1, d2, α,χ) of μ be explicitly
given by

μ0 =
⎧
⎨

⎩

n
4d1

αχ, if d1 = d2, χ > 0 and 
 is convex,

max

{
1
3h(n, d1, d2),

n√
2n+4−2

( 1
d1

+ 2
d2

)

}

α|χ |, otherwise; (6.6)

with

h(n, d1, d2) = inf
0<ε<d−1,0<η<d2

{√
n

18d2ε
+

√
1

2ε
(

1

η
+ η

2d2
) +

√
1

(d2 − η)
(

2

η
+ η

2d2
)

[√
2

+ (d1 + d2)

2
√

(d1 − ε)(d2 − η)

]}

.

Then, whenever μ > μ0, the model (1.58) has a unique global-in-time classical solution
(u, v) for which both u and v are positive and uniformly bounded in 
 × (0,∞).

For the proof of Theorem 6.10, we refer to Theorem 1.1 [205]. Xiang [207] studied the
blow-up prevention for (1.65) in two dimension. Winkler and Yokota [201] established the
stabilization to the model (1.69) in a bounded domain 
 ⊂ R

n, n � 2 under the suitable

assumptions on χ <

√
2
n

and d > 0, which reduced to χ2

d
is sufficiently very small.

Tao et al. [161] studied the boundedness of solutions to (1.54) under suitable assumptions
on φ(u), ψ(u), f (u) and g(u), by which they have improved the existing results. Their goal
was to obtain the global existence of bounded solutions to (1.54). Their main results are the
following:
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Theorem 6.11 Let n � 2, f ≡ 0 and the initial conditions satisfy u0 ∈ C0(
), u0 �≡ 0,
v0 ∈ C1(
) are nonnegative. Suppose that φ(u), ψ(u) and g(u) satisfy φ,ψ ∈ C2([0,∞)),
ψ(0) = 0 and

d0(1 + u)−α � φ(u) � d1(1 + u)−α1 ,0 � ψ(u) � s1u(1 + u)β−1,

for all u � 0, d0, d1, s1 > 0 and α,α1, β ∈ R and f ∈ C0([0,∞)) with f (0) � 0 and g ∈
C1([0,∞)) such that f (u) � ru−μuk , 0 � g(u) � g1u

γ , ∀u � 0, with r ∈ R, μ,g1, γ > 0,
k > 1. If 0 < γ � 1 and

α + β + γ < 1 + 2

n
,

then (1.54) has a nonnegative classical solution (u, v), which is globally bounded.

For the proof of Theorem 6.11, we refer to Theorem 1.1 [161].

Theorem 6.12 Let n � 2, f ≡ 0 and the initial conditions satisfy u0 ∈ C0(
), u0 �≡ 0,
v0 ∈ C1(
) are nonnegative. Suppose that φ(u), ψ(u) and g(u) satisfy φ,ψ ∈ C2([0,∞)),
ψ(0) = 0 and

d0(1 + u)−α � φ(u) � d1(1 + u)−α1 ,0 � ψ(u) � s1u(1 + u)β−1,

for all u � 0, d0, d1, s1 > 0 and α,α1, β ∈ R and f ∈ C0([0,∞)) with f (0) � 0 and g ∈
C1([0,∞)) such that f (u) � ru−μuk , 0 � g(u) � g1u

γ , ∀u � 0, with r ∈ R, μ,g1, γ > 0,
k > 1.

• If β + γ < k, then (1.54) has a nonnegative classical solution (u, v), which is globally
bounded.

• Assume β + γ = k. Then there exists μ0 > 0 such that if μ � μ0, then (1.54) has a
nonnegative classical solution (u, v), which is globally bounded.

For the proof of Theorem 6.12, we refer to Theorem 1.2 [161]. Since the model (1.54)
has a logistic source term, we can discuss about the bounded solutions which we have ob-
tained in Theorem 6.12 to stabilize towards the homogeneous steady states. Tao et al. stated
this as their conjecture (see, p. 735 [161]). Fuest [55] obtained the blow-up of solutions to
(1.77) in a ball 
 ⊂ R

n, n � 2, and derived the blow-up profile as well under the follow-
ing assumptions on φ and ψ such that φ(u, v) = (u + 1)m−1 and ψ(u,v) = u(u + 1)q−1,
where m,q ∈ R. Thus, the blow-up profile U : 
 {0} → [0,∞) is obtained provided
m > n−2

n
, m − q > − 1

n
and u, v are nonnegative radially symmetric classical blow-up

solutions of (1.77). It should also be noted that for α > n and α > n(n−1)

(m−q)n+1 , we have
U(x) � C|x|−α,C > 0, ∀x ∈ 
. In Table 4 and Table 5, we review the existence, blow-
up and boundedness results to a variety of parabolic-parabolic models. Further, we present
the existing results of Keller-Segel-Navier-Stokes models in Table 6.

7 Numerical Analysis of Keller-Segel Models

The fundamental idea of any of the numerical methods is to discretize the continuous prob-
lem with infinitely many Degrees of Freedom (DoF) to get discrete problem with finitely
many DoF. Here, we recall and review some of the numerical methods to Keller-Segel mod-
els. Even though theoretical aspects of the Keller-Segel model is well developed, there are
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Table 4 Summary of the existing results for parabolic-parabolic models

Model Results Reference

(1.3) Global existence & regularity [120]

(1.17) Global existence [29]

(1.3) Global existence [90]

(1.3) Global existence [91]

(1.9) Decay [132]

(1.3) with d = 1 Globally bounded [174]

(1.49) Global solutions [175]

(1.1) (particular case) Blow-up [176]

(5.15) Local & Global solutions [203]

(1.49) Global existence [13]

(1.18) Global existence, boundedness [155]

(1.32) Blow-up(Non-degenerate) [40]

(1.32) Blow-up(degenerate) [79]

(1.47) Global existence [30]

(1.3) with d = 1, χ = 1 Blow-up [179]

(1.1) (particular case) Blow-up [80]

(1.11) with d = 1 Global existence & boundedness [118]

(1.37) Global boundedness [167]

(1.38) Global existence & boundedness [83]

(1.48) Well-posedness [76]

(1.83) Global existence [63]

(1.1) Global existence [191]

(1.36) Blow-up [82]

(1.15) Existence [209]

(1.15),m = 1 Global existence [186]

(1.19) Global existence and blow-up [11]

(1.20) Blow-up [114]

(1.1) Global existence [43]

(1.26) Global bounded solutions [166]

(1.35) Global existence [211]

(1.35)(particular case) Blow-up [157]

very few articles only available for the numerical analysis. Exploration of the literature re-
veals that there are different types of numerical methods available for solving the following
Keller-Segel chemotaxis models.

{
∂tu = k	u − ∇ · (χu∇v), in QT ,

τ∂tv = 	v − v + u, in QT .
(7.1)

{
∂tu = k	u − ∇ · (χu∇v), in QT ,

τ∂tv = 	v − αvv + αuu, in QT .
(7.2)

Let us mention some of the main ones.
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Table 5 Summary of the existing results for parabolic-parabolic models

Model Results Reference

(1.8) Global existence [150]

(1.21) Global existence [59]

(1.7) Blow-up and global existence [39]

(1.25) Global existence [153]

(1.10) Global existence [90]

(1.3) Global existence for small initial data [91]

(1.3) with d = 1 Global existence and boundedness [174]

(1.49) Global existence [175]

(1.1) related type Blow-up of solutions [176]

(1.17), degenerate case Blow-up of solutions [67]

(1.52) Global existence & boundedness [75]

(1.9)(particular case) Global & boundedness [177]

(1.52) Global & boundedness [169]

(1.49) Global existence [178]

(1.49) Boundedness [56]

(1.49) (singular sensitivity) Boundedness [95]

(1.9)(singular sensitivity) Boundedness [116]

(1.52)(particular case) Global existence & boundedness [206]

(1.58)(singular sensitivity) Global existence & boundedness [205]

(1.54) Boundedness [161]

(1.16) Global generalized solution [97]

(1.16) Global existence [98]

(1.16) Global existence [216]

(1.61) Global existence [102]

(1.65) Global existence [207]

(1.66) Global existence [96]

(1.67) Global existence & stabilization [159]

(1.68) Global existence & boundedness [41]

(1.69) Global existence [201]

(1.70) Convergence of solutions [84]

(1.71) Stabilization [112]

(1.72) Existence [185]

(1.73) Global existence [17]

(1.74) Global existence [190]

(1.77) Blow-up [55]

(1.79) Global existence [183]

(1.81) Global existence [171]

7.1 Finite Difference Method (FDM)

The main idea in finite difference method is that we are replacing the derivatives in the
continuous PDEs by the difference quotients to obtain discrete problem. In this section, let
us briefly explain about the finite difference method for Keller-Segel models. It is to be noted
that a crucial property of solutions to (7.1) with k = χ = 1, τ = 0, and v = av, where a is
a positive constant. In [138], Saito and Suzuki made a finite difference scheme to satisfy
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Table 6 Summary of the existing results for Keller-Segel-Navier-Stokes models

Model Results Reference

(1.85) Global existence [197]

(1.86) Global existence [198]

(1.88) Global existence [156]

(1.89) Existence [85]

(1.90) Global existence [196]

(1.92) Global existence [184]

(1.93) Global existence [18]

(1.94) Global existence [187]

(1.95) Qualitative property [172]

(1.96) Global mass-preserving weak solutions [189]

(1.97) Blow-up prevention [170]

(1.98) Global existence &stabilization [51]

the conservation of a discrete L1 norm by applying the upwind technique. For the sake of
simplicity, we recall the finite difference method in one dimensional case only to (7.1) with
k = χ = 1, τ = 0, and v = av, where a is a positive constant. Take 
 = (0,1) and consider
(7.1) with k = χ = 1, τ = 0, and v = av in dimension one as follows:

{
ut = uxx − (uvx)x, 0 < x < 1,0 < t � T ,

0 = vxx − av + u, 0 < x < 1,0 < t � T .
(7.3)

Choose a positive integer N and h = 1/N . Now, we introduce two types of mesh points as
xi = (i − 1

2 )h, i = 0, . . . ,N + 1 and x̂i = ih, i = −1, . . . ,N + 1, and define the intervals

Ji = (x̂i−1, x̂i ), i = 1, . . . ,N and Ĵ = (xi, xi+1), i = 0, . . . ,N . In addition, we define

Vh =
{ N∑

i=1

αiχi

∣
∣
∣
∣{αi}N

i=1 ⊂ R

}

and V̂h =
{ N∑

i=1

βiχ̂i

∣
∣
∣
∣{βi}N

i=1 ⊂ R

}

,

where the characteristic functions of Ji and Ĵi ∩ [0,1] are χi and χ̂i , respectively. We seek
the unknowns un

h, bn
h, Fn

h , vn
h as follows:

un
h =

N∑

i=1

un
i χi ≈ u(x, tn), un

i ∈R,

bn
h =

N∑

i=1

bn
i χi ≈ vx(x, tn), bn

i ∈R,

F n
h =

N∑

i=0

Fn
i χ̂i ≈ Fn ≡ (u − uvx)(x, tn), F n

i ∈R,

vn
h =

N∑

i=1

vn
i χ̂i ≈ v(x, tn), vn

i ∈ R, i = 0,1, . . . ,m.
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Now, we describe the proposed FDM for (7.3). Assume that un−1
h has been calculated. By

using the relation vn−1
h = Ghu

n−1
h , we can compute vn

h . Utilizing the upwind approximation,
the flux can be approximated as follows:

Fn
i = un

i+1 − un
i

h
− b

n−1,+
i un

i + b
n−1,−
i+1 un

i+1, i = 1, . . . ,N − 1,

where bn−1
i = vn−1

i
−vn−1

i−1
h

, b
n−1,+
i = max{0, bn−1

i }, b
n−1,−
i = max{0,−bn−1

i }. The FDM is for-
mulated as follows

un
i − un−1

i

τn

= θ [	hu
n
i − Dh(b

n−1,+
i un

i ) + D+
h (b

n−1,−
i un

i )]

+ (1 − θ)[	hu
n−1
i − Dh(b

n−1,+
i un−1

i ) + D+
h (b

n−1,−
i un−1

i ), (7.4)

with

Dhu
n
1 − b

n−1,+
0 un

0 + b
n−1,−
1 un

1 = 0, Dhu
n
N − b

n−1,+
N un

N + b
n−1,−
N+1 un

N+1 = 0,

where Dhφi = φi−φi−1
h

, D+
h φi = φi+1−φi

h
, 	h = DhD

+
h = D+

h Dh, θ ∈ [0,1]. This method is
called explicit method when θ = 0 and semi-implicit method when θ = 1. As we know
already that an important feature of (7.1) is the existence of a Lyapunov function, that is, the
following function

W(u,v) =
ˆ




(u logu − u)dx − 1

2
uvdx, (7.5)

exists such that

d

dt
W(u(·, t), v(·, t)) � 0, t ∈ [0, T ]. (7.6)

It is interesting to note that Saito and Suzuki proved the property (7.6) in discrete level by
introducing the following time discretization scheme

⎧
⎪⎪⎨

⎪⎪⎩

un+1 − un

τn

= ∇ · (∇un+1 − un+1∇vn), in 
,

∂un+1

∂ν
− un+1 ∂vn

∂ν
= 0, in 
,

(7.7)

where τn > 0 is the mesh size at the nth time level and un and vn denote the approximate
solutions at n-th times step. The conservative property is very important in the numerical
analysis. So, we have to design numerical schemes to satisfy conservative property at dis-
crete level. In this direction, Saito [136] introduced the conservative finite difference method
for (1.28). It satisfies the conservation of positivity and total mass.

7.2 Finite Volume Methods (FVMs)

Finite volume method is a type of numerical approximation method which is used to ap-
proximate the solutions of a wide range of conservation type PDEs. In FVM, the domain 
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is decomposed by control volumes or cells, denoted as 
i with center ci . These control vol-
umes or cells are either constructed from the elements of cell center scheme and cell vertex
scheme or the elements of triangulation. Then on each such component 
i , the function (or
solution) ui(·, t) is approximated by its mean value all over the cell 
i instead of approxi-
mating by its value at the center ci of 
i . Hence, ui(·, t) is treated as a constant inside the
control volumes 
i , which is given by

ui(t) ∼= 1

|
i |
ˆ


i

u(x, t)dx,

where |
i | denotes the area of 
i . It is also a robust numerical scheme. Some of the impor-
tant features of the FVM are similar to those of the FEM. We shall use this FVM on general
domains by using arbitrary meshes such as structured or unstructured. The main feature in
this method is that the numerical fluxes are locally conserved. For more details on FVM,
one can refer [64].

Let us define an admissible mesh of 
 as a family T of control volumes and E is a
family of edges and a family of points (xK)K∈T . This leads to the straight line between two
adjacent centers of cells (xK, xL) is orthogonal to the edge σ = K|L. The set of interior
edges and boundary edges are denoted by EintK and EextK , respectively. The set all edges
E = EintK ∪ EextK . The distance in R

2 is denoted by d and the Lebesgue measure in R
2 or

R is denoted by m. Further, we assume that the mesh which we have constructed satisfies
the regularity property as follows:

d(xK,σ ) � ξd(xK, xL), for K ∈ T , for σ ∈ EintK,σ = K|L. (7.8)

In order to apply discrete Sobolev-type inequalities, the above regularity property is re-
quired. The δ denotes the mesh size which is defined as follows

δ = max
K∈T

(diam(K)), (7.9)

and the transmissibility coefficient is defined for all σ ∈ E as follows:

τσ =
{ m(σ)

d(xK ,xL)
, for σ ∈ Eint , σ = K|L,

m(σ)

d(xK ,σ )
, for σ ∈ EextK.

(7.10)

Let T be a final time and let MT be the total number of time steps. The step sizes are defied
as follows:

	t = T

MT

, tk = k	t, 0 � k � MT .

The set of all linear space of functions from 
 →R is denoted by X(T ), which are constants
on each K ∈ T . Let us define the approximations of initial datum u0 by L2 projection as

u0
T =

∑

KT

u0
T 1K, where u0

T = 1

m(K)

ˆ

K

u0(x)dx, (7.11)

where 1K is the characteristic function on K . Filbet [52] applied the finite volume method
to solve (1.34) with a = b = 0. The approximations of mean value of u(·, tk) and v(·, tk) are
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denoted by uk
K and vk

K , respectively. The finite volume scheme is formulated as follows

m(K)
uk+1

K − uk
K

	t
−

∑

σ∈EK

τσ Duk+1
K,σ

+ χ
∑

σ∈EK,σ=K|L
τσ

[(

Dvk+1
K,σ

)+
uk+1

K −
(

Dvk+1
K,σ

)−
uk+1

L

]

= 0, (7.12)

and

−
∑

σ∈EK

τσ Dvk+1
K,σ = m(K)

(

uk+1
K − vk+1

K

)

, (7.13)

for all K ∈ T and 0 � k � MT − 1, and η+ = max(η,0), η− = max(−η,0) and

Dvk
K,σ =

{
vk

L − vk
K, if σ = K|L ∈ Eint,K,

0, if σ = K|L ∈ Eext,K,
(7.14)

for all K ∈ T and 0 � k � MT . For the proposed finite volume scheme, he proved exis-
tence and uniqueness of a numerical solution and derived a priori estimates. Andreianov
et al. applied FVM for the degenerate system (1.32) with φ(u) = a(u), ψ(u) = χ(u) in
[5]. To establish the numerical analysis they assumed ψ : [0,1] �→ R is continuous and
ψ(0) = ψ(1) = 0; and φ : [0,1] �→ R

+ is continuous φ(0) = φ(1) = 0 and φ(s) > 0 for
0 < s < 1. They have established the existence of discrete solution by using fixed point ar-
gument and established the compactness arguments for the discrete solutions. Bessemoulin-
Chatard and Jüngel [31] analyzed the finite volume scheme for (1.44) with τ = 0. The main
characteristic of the model is that it admits a new entropy functional. They have proved that
the existence of solutions for the discrete problem and established convergence of discrete
solutions to the continuous solution. Very recently, the authors in [4], they applied the semi-
implicit time discretization and an upwind finite volume approximation for (1.34) in two
and three space dimensions. In addition, they proved the existence, uniqueness and nonneg-
ativity of the numerical solutions. Zhou and Saito [220] were applied linear FV scheme for
(1.34) with χ = a = b = 1 and derived few discrete free energy inequalities. They derived
error estimates in Lp norm when p > 2 in spatial dimension two under suitable assumptions
on admissible meshes, the regularity of solutions and a priori estimates of the numerical
solution. In particular they considered the admissible Voronoi mesh which has a dual trian-
gulation and used the idea of [32] to the error analysis. Chertock and Kurganov [34] studied
the finite-volume central-upwind method for (7.1) with k = τ = 1. This method preserves
the positivity for a second order numerical method. In addition, their numerical simulations
show high resolution, robustness and stability of the proposed method.

7.3 Finite Element Method (FEM)

Let us briefly mention about finite element method. It is one of the robust numerical methods
for finding approximation solutions to the partial differential equations. It is based on the
weak formulation/variational formulation of the given differential equations. It expresses
the unknowns in terms of linear combination of constructed basis functions. By which we
can reduce the weak formulation/variational formulation of the continuous problem into a
finite dimensional approximation problem. Let V be a Hilbert space and let a : V × V →R
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be the continuous and coercive bilinear form. And let the linear functional f : V → R be
continuous. Now, we consider the variational problem

a(u, v) = f (v) ∀ v ∈ V,

where u is the solution of the variational problem. Let Vh be a finite dimensional subspace
of V . The discrete problem is defined as follows: seek uh ∈ Vh such that

a(uh, vh) = f (vh) ∀ vh ∈ Vh.

Since Vh is a subspace of V , the discrete bilinear form ah is coercive and continuous. Ac-
cording to the Lax-Milgram lemma, we can show that the existence and uniqueness of so-
lution uh ∈ Vh. The discrete space Vh is constructed by dividing the problem domain into a
family of subdomains T and define a space of polynomials on this subdomains T . If Vh is
a subspace of V , then the FEM is called a conforming FEM. If Vh is not a subspace of V ,
then the FEM is called a nonconforming FEM. For more details on FEM, one can refer to
the books [24, 25, 33, 38, 62, 163]. Let us recall that on the following grounds, the finite
element method performs better than the finite difference method:

• comparatively the complex geometry of the domain, more general boundary conditions
and continuously varying material properties can be handled easily.

• the finite element method is more adaptable and explicit so that the software developed
can be applied to a wider range of applications.

• the theoretical foundations are strong enough which give it more authenticity and there-
fore the possibility of expecting sharp error estimates are good enough in finite element
solutions.

The important properties of the solutions of Keller-Segel models are the conservation of
mass ˆ




|u(t)|dx =
ˆ




|u0|dx,

for all t ∈ (0, T ) which is the consequence of positivity u,v > 0, (x, t) ∈ 
× (0, T ) and the
conservation of total mass ˆ




u(x, t)dx =
ˆ




u0(x)dx,

for all t ∈ (0, T ). Let Th be a family of triangulation of 
 and the set of all vertices of Th be
denoted by {Ph} = {Pi}N

i=1. In order to apply FEM to the model (7.1) with τ = 0, first, we
introduce the following variational formulation to the model (7.1) with τ = 0 as

(ut , ϕ) + a(u,ϕ) + χb(u,u,ϕ) = 0, ∀ ϕ ∈ H 1(
),∀ t ∈ (0, T ), (7.15)

where a(u,ϕ) = (k∇u,∇ϕ) and b(u,u,ϕ) = (χ∇u,∇u,∇ϕ). Next, we define the finite
element formulation to (7.15) as follows

{
(∂τnu

n
h,χh)h + (k∇un

h,∇χh) + λbh(u
n−1
h , un

h,χh) = 0, ∀ χh ∈ Xh,

∀ n � 1, u0
h = u0h,

(7.16)
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where Xh is the finite element space. Marrocco studied mixed finite element method
(MFEM) for the following model

{
∂tu − div(Db grad u − ku grad v) = 0, in QT ,

−div(Dcgrad v) − αu = 0, in QT ,
(7.17)

in [111]. He introduced a scaling on the variable v via the parameter q , v = ṽ
q

and a new

variable ϕn by u = u(ṽ, ϕn) = u0e
ṽ+ϕn

z , where z is a constant and z = qDb

k
. After that he

has rewritten the above model by using new variables and then discretized by mixed finite
element. Also, we mention a paper [27] for mixed finite element discretization of a Keller-
Segel model with nonlinear diffusion. Strehl et al. [148] applied an implicit finite element
method for the following Keller-Segel model (7.18)

{
∂tu = ∇ · (D(u)∇u − A(u)B(v)C(∇v)) + q(u),

∂tv = d	v − s(u)v + g(u)u.
(7.18)

Their aim was to maintain mass conservation and positivity of solutions in discrete case
as well. By solving blow-up problems, they proved the efficiency and robustness of the
proposed numerical scheme. Saito [135] applied the upwind finite element scheme for (7.1).
It is to be noted that for the acute type triangulation one can prove upwind finite element
scheme preserves L1-norm of solutions. With suitable assumptions on partition of triangle
and the regularity of solutions he has established the error estimates as Theorem 7.1. In order
to prove error estimates, he assumed the following hypothesis:

(H1) Acuteness. It is assumed that

max{cos(∇φT
i ,∇φT

j )|1 � i, j � d + 1} � 0 ∀T ∈ Th ∈ {Th},

where {φT
i }d+1

i=1 represent the barycentric coordinates of T with respect to the vertices
of T .

(H2) Quasiuniformity assumption. There exists a positive constant γ2 such that

γ2h � hT , ∀T ∈ Th ∈ {T }.
(R) Elliptic regularity. There exists μ ∈ (d,∞) such that the following holds true: For any

p ∈ (1,μ) and f ∈ Lp(
), the linear elliptic problem

−	v + v = f in 
,
∂v

∂ν
= 0 on ∂
, (7.19)

admits a unique solution v ∈ Wp that satisfies ‖v‖2,p � C‖f ‖p , with a constant C =
C(p,
) > 0.

Theorem 7.1 Suppose that (H1), (H2) and (R) are satisfied. Assume that

{
( du(t)

dt
, χ) + (k∇u(t),∇χ) + λb(u(t), u(t),χ) = 0 ∀χ ∈ H 1,

∀t ∈ (0, J ), u(0) = u0 ∈ H 1,
(7.20)

admits a unique solution u satisfying u ∈ C([0, T ] : Wp), u′ ∈ C([0, J ] : W 1,p)∩Cσ ([0, J ] :
Lp) for some p ∈ (d,μ) and σ ∈ (0,1]. Moreover, let u0h ∈ Xh be chosen as

‖u0 − u0h‖p � α0,ph1−d/p,
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with some α0,p = α0,p(u0) > 0. Then, there exist positive constants h0, τ0 depending on 
,
J , k, λ, p, σ , γ ′

i s and α′
i,ps such that we have the error estimates

sup
0�n�l

‖u(tn) − un
h‖p � C1(h

1−d/p + τ σ ), (7.21)

sup
0�n�l

‖Gu(tn) − Ghu
n
h‖1,∞ � C2(h

1−d/p + τ σ ), (7.22)

for h ∈ (0, h0) and τ ∈ (0, τ0), where l = l(τ, h) = max{n ∈ N |tn < J }, {un
h}n�0 ⊂ Xh is

the solution of (7.16). Furthermore, the constants C1 and C2 can be taken as Ci = C(J +
1)(α0,p + α2

1,p + α2
2,p + α3,p) exp[C ′(1 + α2

1,p)J ], i = 1,2, where C and C ′ are positive
constants that depend only on 
, k, λ, γ ′

i s, h0 and τ0.

For the proof of Theorem 7.1, we refer to Theorem 2.3 [135]. In [137], the author studied
the error analysis of conservative FEM for fully parabolic-parabolic Keller-Segel model.
For the efficient and robust finite element solver of parabolic-parabolic Keller-Segel model
one can refer [147]. Nakaguchi and Yagi [122] applied Galerkin finite element and Runge-
Kutta approximations for (7.17) with D(u) = a, A(u) = u, B(v) = 1, C(∇v) = ∇B(v),
q(u) = c(u), g(u) = f and s(u) = g. They derived the error estimates and stability for the
proposed scheme by using semigroup theory. Moreover, they generalized their obtained re-
sults to abstract evolution equations of quasilinear parabolic type. In order to over come
the computational difficulty, Zhang et al. developed a new numerical method that is the
characteristic splitting mixed finite element method for (3.4) with d = γ = α = 1 in [214].
Because when we apply the classical mixed FEM, it needs the Ladyzhenskaya-Babuska-
Brezzi (LBB) condition which leads to saddle-point problems. In practical computation, the
LBB condition is not necessary, so some general piecewise polynomial spaces can be chosen
as the corresponding finite element approximate spaces. And the flux equation is separated
from the second equation. In addition, they have also used a mass conservative characteris-
tic FEM to solve the first equation to avoid the nonphysical oscillations and maintain mass
balance. In [66], Gurusamy and Balachandran studied FEM for (1.46). First, they were in-
troduced a semi-implicit scheme for weak formulation of the problem and then a fixed point
formulation is defined for the corresponding scheme. Next, the existence of approximate so-
lutions was established by using Schauder’s fixed point theorem. In addition, a priori error
estimate for the approximate solutions were also established.

7.4 Discontinuous Galerkin Finite Element Methods (DGFEM)

In standard finite element methods, functions used in finite element spaces for the dis-
cretization of second-order PDEs are continuous across interelement boundaries whereas
the DGFEMs use completely discontinuous piecewise polynomial space for the test and trial
functions. That is the functions in the finite element spaces are totally discontinuous across
interelement boundaries which is called discontinuous finite elements. In recent years, there
has been increasing interest in discontinuous Galerkin methods for a wide spectrum of par-
tial differential equations. This is due to their attractive features such as local mesh adap-
tivity and elementwise mass conservation, flexibility to use high-order polynomial and non-
polynomial basis functions, ability to easily increase the order of approximation on each
mesh element independently and block diagonal mass matrices which are of great compu-
tational advantage if an explicit time integration is used and suitability for parallel compu-
tations owing to local data communications. The DGFEM is a natural generalization of the
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finite volume method (FVM) and finite element method (FEM) and it appears to be suitable
for problems with solutions containing discontinuous and or steep gradients. These methods
have both the advantages of FVM and FEM. Similarly as in the FVM, the DGFEM uses
discontinuous piece- wise constant approximations and element boundary fluxes are evalu-
ated with the aid of a numerical flux which allows precise capturing of discontinuities and
steep gradient solutions. As in the FEM, it uses higher degree polynomial approximations
of solutions which in turn produce an accurate resolution in regions where the solution is
smooth. Moreover, a good exposure regarding DG methods for elliptic, parabolic and hy-
perbolic problems can be found in the recent books, see [44, 68, 134]. For the more details
on DGFEM, we refer to [44, 134] and a research report [133].

Since the Keller-Segel model is convection-dominated convection-diffusion equations.
So when we apply the standard finite element method, this leads to spurious oscillations
in the computational domain. It would be difficult to capture the blow-up of solutions of
Keller-Segel chemotaxis model and is really a challenging problem as well. Epshteyn and
Kurganov [49] introduced a new interior penalty discontinuous Galerkin FEMs for classical
Keller-Segel chemotaxis model (7.1) with k = τ = 1. This method is designed to handle
rectangular domains. It is to be noticed that the convective part of (7.1) with k = τ = 1 is
of a mixed hyperbolic-eliptic type. In order to apply the DG method, they reformuled the
original model (7.1) with k = τ = 1 in the form of convection-diffusion-reaction system
with hyperbolic convective part as

⎧
⎨

⎩

∂tu + (χuρ)x + (χuη)y = 	u,

∂tv = 	v − v + u,

ρ = vx, η = vy.

(7.23)

These new unknowns satisfy the following boundary conditions ∇u · n = ∇v · n = (u, v)T ·
n = 0, (x, y) ∈ ∂
. The above system (7.23) could be treated as a convection-diffusion-
reaction system

kQt + F(Q)x + G(Q)y = k	Q + R(Q), (7.24)

where Q:=(u, v,ρ, η)T , where F(Q):=(χuρ,0,−v,0)T and G(Q):=(χuη,0,0,−v)T and
R(Q) := (0, u−v,−ρ,−η). The DG formulation of the system (7.23) is defined as follows:
Seek (uDG(·, t), vDG(·, t), ρDG(·, t), ηDG(·, t)) ∈ Wu

ru,h ×Wv
rv,h ×Wρ

rρ ,h ×Wη

rη,h

ˆ




∂tu
DGϕu+

∑

E∈Eh

ˆ

E

∇uDG∇ϕu −
∑

e∈�h

ˆ

e

{∇uDG · ne}[ϕu]+ ε
∑

e∈�h

ˆ

e

{∇ϕu · ne}[uDG]

+ σu

∑

e∈�h

r2
u

|e|
ˆ

e

[uDG][ϕu] −
∑

EEh

ˆ

E

χuDGρDG(ϕu)x +
∑

e∈γ ver
h

ˆ

e

(χuDGρDG)∗nx[ϕu]

−
∑

EEh

ˆ

E

χuDGηDG(ϕu)y +
∑

e∈γ hor
h

ˆ

e

(χuDGηDG)∗ny[ϕu] = 0, (7.25)

ˆ




∂tv
DGϕv+

∑

E∈Eh

ˆ

E

∇vDG∇ϕv −
∑

e∈�h

ˆ

e

{∇vDG · ne}[ϕv] + ε
∑

e∈�h

ˆ

e

{∇ϕv · ne}[vDG]

+ σv

∑

e∈�h

r2
v

|e|
ˆ

e

[vDG][ϕv] +
ˆ




vDGϕv −
ˆ




uDGϕv = 0, (7.26)
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ˆ




ρDGϕρ +
∑

E∈Eh

ˆ

E

vDG(ϕρ)x +
∑

e∈�ver
h

ˆ

e

(−vDG)∗
ρnx[ϕρ] −

∑

e∈∂
ver

ˆ

e

vDGnxϕ
ρ

+ σρ

∑

e∈�h∪∂
ver

r2
ρ

|e|
ˆ

e

[ρDG][ϕρ] = 0, (7.27)

ˆ




ηDGϕη +
∑

E∈Eh

ˆ

E

vDG(ϕη)y +
∑

e∈�hor
h

ˆ

e

(−vDG)∗
ηny[ϕη] −

∑

e∈∂
hor

ˆ

e

vDGnyϕ
η

+ ση

∑

e∈�h∪∂
hor

r2
η

|e|
ˆ

e

[ηDG][ϕη] = 0. (7.28)

In order to prove the well-posedness, they proved existence of solutions by using Schauder’s
fixed point theorem. The assumptions for the error analysis of dG solutions are the follow-
ing:

(u, v,ρ, η) ∈ Hs1([0, T ]) ∩ Hs2(
), s1 > 3/2, s2 � 3, (7.29)

which is needed for the h-analysis, or

(u, v,ρ, η) ∈ Hs1([0, T ]) ∩ Hs2(
), s1 > 3/2, s2 � 5, (7.30)

which is needed for the r-analysis. Their existence and error estimates are sated as follows.

Theorem 7.2 (L2(H 1)- and L∞(L2)- error estimates) Let the solution of the Keller-Segel
system (7.23) satisfy the smoothness assumption (7.30). If the penalty parameters σu, σv , σρ

and ση in the DG method (7.25)-(7.28) are sufficiently larger and rmin � 2, then there exist
constants Cu and Cv , independent of h, ru, rv , rρ and rη , such that the following two error
estimates hold:

‖uDG − u‖L∞([0,T ];L2(
)) + ‖∇(uDG − u)‖L2([0,T ];L2(
))

+
( T̂

0

∑

e∈�h

r2
u

|e| ‖[u
DG − u]‖2

0,e

) 1
2

� CuE,

‖vDG − v‖L∞([0,T ];L2(
)) + ‖∇(vDG − v)‖L2([0,T ];L2(
))

+
( T̂

0

∑

e∈�h

r2
v

|e| ‖[v
DG − v]‖2

0,e

) 1
2

� CvE,

where E := ∑
α∈{u,v,ρ,η}

hmin(rα+1,sα )−1

r
sα−2
α

.

For the proof of Theorem 7.2, we refer to Theorem 5.5 [49]. In this theorem, we can
observe that they obtained h-optimal but only sub-optimal for r . Later, this sub-optimal has
improved by Li et al. in [108] by using local discontinuous Galerkin method (LDG). It is
very important to find the blow-up time of the solutions of Keller-Segel models. The next
theorem states that upper bound for the blow-up time of its exact solutions.
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Theorem 7.3 Let us denote by tb the blow-up time of the exact solution of the Keller-Segel
system (7.1) with k = τ1 and by tDG

b , the blow-up time of the DG solution of (7.25)-(7.28).
Then tb � tDG

b .

For the proof of Theorem 7.3, we refer to Theorem 5.6 [49]. Epshteyn and Izmirlioglu
[48] introduced the fully discrete numerical scheme for the model (7.1) with k = τ = 1. They
used the DGFEMs for the spatial discretization and the temporal discretization was per-
formed by either the second order explicit total variation diminishing (TVD) Runge-Kutta
or Forward Euler schemes. As we mentioned in the above, Li et al. [108] have improved
the results of [49] and obtained optimal order of convergence rate by using suitable finite
element spaces but it is before blow up happens. Their LDG method is defined as follows:

Local discontinuous Galerkin method:
Let us define a finite element space Vk

h as Vk
h = {φ : φ|T ∈ P k(T ),∀ T ∈ 
h}, where h

is a diameter of an element T ,h = maxT hT . In order to introduce the LDG method, we
need to introduce the axillary variables p = ∇u and r = ∇v, therefore the model (7.1) with
k = τ = 1 rewritten as

ut = − ∇ · (ru) + ∇ · p,

p =∇u,

vt =∇ · r + u − v,

r =∇v,

where P k(T ) is the set of polynomials of degree up to k in each element T . The proposed
LDG method is to seek uh ∈ Vk1

h , ph ∈ Vk1
h , vh ∈ Vk2

h and rh ∈ Vk2
h such that

(uht , φu)T = (rhuh − ph,∇φu)T − 〈(r̂huh − p̂h) · nT ,φu〉∂T

(ph,φp)T = −(uh,∇ · φp)T + 〈̂uh,φp · nT 〉∂T ,

(vht , φv)T = −(rh,∇φv)T + 〈r̂h · nT ,φv〉∂T + (uh − vh,φv)T ,

(rh,φr)T = −(vh,∇ · φr)T + 〈̂vh,φr · nT 〉∂T ,

where (u, v)T = ´
T

uvdxdy, (u,v)T = ´
T

u · vdxdy and 〈u,v〉∂T = ´
∂T

uvds. And also the
numerical fluxes defined on e ∈ �h are ûh, v̂h, p̂h, r̂h and r̂huh. Their main results stated as
follows:

Theorem 7.4 Suppose u,v ∈ H min{k1,k2}+1(
), r is uniformly bounded for t � T . The nu-
merical approximations uh ∈ Vk1

h , ph ∈ Vk1
h , vh ∈ Vk2

h and rh ∈ Vk2
h . The initial discretization

is given as the standard L2− projection (Pu, v)T = (u, v)T , ∀ v ∈ P k(T ) and α is chosen
to be a bounded constant independent of h. If we take k1 � 1 and k2 � 2, then there exists
an H = 1

2C
such that for any h < H , if the numerical approximations obtained from

(uht , φu) = Lc(rh, uh,φu) −Ld(ph,φu),

(ph,φp) = −Q(uh,φp),

(vht , φv) = −Ld(rh,φv) + (uh − vh,φv),

(rh,φr) = −Q(vh,φr),
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where

Lc(r, u,φ) = (ru,∇φ) −
∑

T ∈
h

〈r̂huh · nT ,φ〉∂T ,

Ld(p, φ) = (p,∇φ) −
∑

T ∈
h

〈̂p · nT ,φ〉∂T ,

Q(u,φ) = (u,∇ · φ) −
∑

T ∈
h

〈û, φ · nT 〉∂T ,

exist for all t ∈ [0, T ], where T is the time that the smooth solution u and v of the KS model
(3.4) with d = 1 exist in [0, T ], then

‖(u − uh)(t)‖ + ‖(v − vh)(t)‖ � Chmin{k1+1,k2}, ∀t ∈ [0, T ], (7.31)

where the positive constant C does not depend on h.

For the proof of Theorem 7.4, we refer to Theorem 3.1 [108]. For energy dissipative
LDG Methods of Keller-Segel chemotaxis model one can refer [65]. Operator splitting com-
bined with positivity-preserving discontinuous Galerkin method for the chemotaxis model
(7.1) when k = τ = 1 studied in [213]. Further, the implementation of DG methods for
chemotaxis-haptotaxis model was presented by Epshteyn in [47].

7.5 Potential Difference Methods, Hybrid Finite Volume Methods-Finite
Difference (FVFD)

Epshteyn introduced DGFEMs to handle rectangular regions. Even though there are several
advantages in DGFEMs, there are also some drawbacks with it. These are due to high mem-
ory and high computational costs and very involved implementation compare to continuous
Galerkin finite element, finite volume, or finite difference methods. Epshteyn [46] developed
a novel upwind-difference potentials method for the model (7.1) with k = τ = 1, that can
be used to approximate problems in complex geometries. In this method, the unstructured
meshes is not required to handle complex geometries and this method can be utilized with
poisson solvers. It combines the positivity preserving upwind method for chemotaxis mod-
els on cartesian grids and with the flexibility of the Difference Potentials method. Chertock
et al. [35] developed a novel higher order hybrid finite-volume-finite-difference methods for
(7.2). In order to derive higher order positivity preserving numerical methods for Keller-
Segel models (7.2), it would be convenient to re-write the original model as follows:

{
ut + (χuw1 − ux)x + (χuw2 − uy)y = 0,

τvt = 	v − αvv + αuu, w1 := vx, w2 := vy,
(7.32)

Let 
 be a square domain in R
2 and consider the model (7.32) in 
. Next, we define the

Cartesian mesh using Ij,k := [xj− 1
2
, xj+ 1

2
]×[yk− 1

2
, kj+ 1

2
] and assumed to satisfy the uniform

size 	x	y, where 	x = xj− 1
2
, xj+ 1

2
for every j and 	y = yk− 1

2
, yk+ 1

2
for every k. The

semi-discrete hybrid FVFD method for (7.32) is defined on the above mesh Ij,k as follows:

⎧
⎪⎨

⎪⎩

duj,k

dt
= −

Fj+ 1
2
−Fj− 1

2 ,k

	x
−

Gj,k+ 1
2
− Gj,k− 1

2

	y
,

τ
dvj,k

dt
= 	j,kv − αvvj,k + αuuj,k,

(7.33)
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Table 7 Summary of the numerical analysis results of Keller-Segel models

Model Results Reference

(7.1) with k = χ = 1, τ = 0, and v = av FDM [45]

(1.28) FDM [136]

(1.34) with a = b = 0 FVM [52]

(1.32) with φ(u) = a(u), ψ(u) = χ(u) FVM [5]

(1.34) FVM [4]

(1.44) with τ = 0 FVM [31]

(1.34) with χ = a = b = 1 FVM [220]

(7.17) MFEM [111]

(7.18) FEM [148]

(7.1) FEM [135]

(7.17)(particular case) FEM [122]

(1.3) with d = γ = α = 1 MFEM [214]

(1.46) FEM [66]

(7.1) with k = τ = 1 DGFEM [49]

(7.1) with k = τ = 1 DGFEM [48]

(7.1) with k = τ = 1 LDG [108]

(7.1) when k = τ = 1 DGFEM [213]

(7.1) with k = τ = 1 PUD [46]

(7.1) with k = τ = 1 DMM [26]

(1.43) SDS [20]

(7.2) HFVFD [35]

where the cell averages of the density uj,k ≈ 1
	x	y

˜
Ij,k

u(x, y, t)dxdy and the chemical
concentration point values vj,k ≈ v(xj , yk, t), both are evolved with respect to time. The
numerical fluxes in the x- and y- directions are Fj+ 1

2 ,k and Gj,k+ 1
2
, respectively. The uj,k ≈

u(xj , yk, t) denotes the approximated point values of the cell density and 	j,k denotes the
discrete Laplacian.

Budd et al. computed the behaviour of the blow-up of solutions of (7.1) with k = τ = 1
by using the dynamic moving-mesh method in [26]. In [20], Blanchet et al. considered a
variational steepest descent approximation method for (1.43) with a logarithmic interaction
kernel in any dimension. The numerical scheme based on difference potentials method for
chemotaxis models in three dimensions with Neumann boundary conditions is introduced
in [50]. In Table 7, we review the numerical methods of Keller-Segel models.

8 Discussions and Future Perspectives

We briefly summarize the review on Keller-Segel chemotaxis models during the last few
decades. From a mathematical point of view, it is a meaningful question whether solutions
blow-up or remain bounded. More precisely, it would be interesting to study the global ex-
istence vs. finite-time blow-up of solutions in Keller-Segel chemotaxis models. One of the
reasons is that blow-up expresses the aggregation of cells and boundedness implies that the
power of diffusion is stronger than that of chemotaxis. When we explore the literature, we
got important possible future extensions regarding Keller-Segel models and listed a few open
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problems. In this review, we observed that how strong the logistic damping source affects
the boundedness and global-in-time existence of solutions to a variety of models. Clearly,
the lower bound for the logistic damping rate depends on the various parameters such as
diffusion, degradation and creation rates and which is independent of degradation rate, the
domain 
, the birth rate, initial conditions and embedding constants. It is interesting to note
that the small diffusion or nonlinear diffusion will lead to the occurrence of blow-up of solu-
tions in Keller-Segel models (see [205]). The existence and blow-up of solutions also depend
on the value of the chemotactic constant χ . For parabolic-parabolic and parabolic-elliptic
models, upto now threshold level for χ is N

N−2 , where N is the space of the dimension. Re-
garding the numerical solutions, authors in [49] have used rectangular subdivision for the
proposed DGFEM of (7.1) with k = τ = 1 but the DGFEM with triangle subdivision is still
open.

Next, we recollect the following problems for future investigation.

• We have already seen that the global existence of classical solutions to (1.16) with k = 2

is obtained under the assumptions that 0 < χ <

√
2
n

and μ > n−2
n

sufficiently large. But
from the biological point of view, the values of μ is small and positive. This condition
μ > n−2

n
is acceptable in dimension n = 2, nevertheless, the interesting cases are open in

higher dimensions (see [97]).
• The blow-up is not possible for the model (1.61) when the cells are repelled by the stim-

uli. In this case, the chemotactic coefficient χ < 0. In this situation, the existence and
uniqueness are proved for the models with logistic source or repulsive case of the model
with nonlinear diffusion coefficient or in the lower dimensional case. However, the same
results for higher dimension are open.

• Threshold value for the global existence and blow-up of solutions is available only for
classical parabolic-elliptic and parabolic-parabolic Keller-Segel models.

• This optimal critical mass value is still not yet found for all the extended models.
• There has not been any analysis on the model (1.41) for general case of φ(u, v) and

ψ(u,v). We have seen in the review that the blow-up of solutions to (1.40) is proved when
q � p. In contrast to this case, the global existence is established when p > q + 1 − 1

n
.

Here, we could see that the critical case p = q when n = 1. But other than the case n = 1,
the solution behaviour is still open in the range q < p � q + 1 − 1

n
.

• The blow-up prevention by introducing additional cross-diffusion is only available up to
three space dimension. Hence, this result is open for n � 4, (see [30]).

• To obtain existence, blow-up and numerical analysis for a general class of local-nonlocal
Keller-Segel models.

• It would be interesting to study the Keller-Segel models with p(x)-Laplacian. To the
best of our knowledge, there is no work available for the Keller-Segel models with p(x)-
Laplacian.

• To extend more case studies of chemotactic sensitivity functions in the Keller-Segel model
with Fokker-Plank diffusion. There are a variety of chemotactic sensitivity functions
which are available in the literature and require further investigation. One can think of
to establish the existence and blow-up of solutions with various initial conditions. For
example, initial conditions in the interpolation spaces.

• In literature, there is an introduction of a logistic growth restriction. In view of this, there
is a natural question to ask. How strong a logistic damping can prevent blow-up for (1.37),
see [167]?

• The available numerical methods are almost for simplified versions of Keller-Segel mod-
els only. The same numerical methods for Keller-Segel model with various types of
chemotactic coefficient, logistic source and diffusion coefficient are still open.
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• For (1.61) with f (u) = κu − μup and τ = 1„ we know that the term μup,μ > 0, p > 1
suppress the finite-time blow-up. But the range of exponents μ and p to ensure the global
existence is still open.

• For models related to (1.68) with exponentially decreasing diffusion coefficient, the ques-
tions on the boundedness of solutions for possibly slow growth of ψ relative to φ are still
open, (cf. [41]).

• Biologically, the value of μ in logistic growth term is very small. For very small value of
μ, proving global existence of solutions is a challenging problem. For instance, authors
in [156] proved existence of solutions to (1.88) for the value of μ � 23. For small range
of μ, the existence of solutions to (1.88) is still open and for higher dimension d � 4 as
well.

• Even for lower dimension, the existence questions to (1.88) seems unaddressed for q ∈
(0,2).

• The literature has left the question “whether blow-up may occur in three-dimensional
version of (1.90) in cases when μ is positive but small”.

• The additional cross-diffusion term in the chemical concentration equation of Keller-
Segel model has been studied in the literature to avoid blow-up upto three space dimen-
sion. We would mention that the same results are still open for higher dimensions and for
other models as well.

• The global existence of renormalized solution to (1.74) is still open for dimension n � 3.
The available result is only for a disk in R

2.
• We would mention that for various types of Keller-Segel-Navier-Stokes system, the

knowledge on the convergence of solutions of parabolic-parabolic counter part of Keller-
Segel-Navier-Stokes system to its associated parabolic-elliptic counter-part is not fully
developed.

• The extensibility of non-global solutions of (1.4) beyond its blow-up time has been re-
stricted to the radial case only. This result to the same model and its variants in the non-
radial case seems open.

• From the literature, Winkler left the following question as open, “how far the statement
of Theorem 1.5 [199] is to be valid for general geometric settings?”
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