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Abstract In this paper, we study an SEIR model with both infection and latency ages and
also a very general class of nonlinear incidence. We first present some preliminary results on
the existence of solutions and on bounds of solutions. Then we study the global dynamics
in detail. After proving the existence of a global attractor A, we characterize it in two cases
distinguished by the basic reproduction number R0. When R0 < 1, we apply the Fluctuation
Lemma to show that the disease-free equilibrium E0 is globally asymptotically stable, which
means A = {E0}. When R0 > 1, we show the uniform persistence and get A = {E0} ∪ C ∪
A1, where C consists of points with connecting orbits from E0 to A1 and A1 attracts all
points with initial infection force. Under an additional condition, we employ the approach
of Lyapunov functional to find that A1 just consists of an endemic equilibrium.
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1 Introduction

It is well-known that the SIR epidemic model is one of the most studied systems in mathe-
matical epidemiology, where the population is split into three classes, susceptible (denoted
by S), infected (denoted by I ), and recovered (denoted by R). Since the first such model
was presented by Kernack and Mckendrick [18], significant achievement has been made in
analyzing its variations for different situations. These models include ordinary differential
equation models [18, 21], reaction diffusion models [14], delayed models [15, 22], and age-
structured models [6, 17, 23]. The main goal in most of the works is to determine the global
behavior of solutions in terms of the basic reproduction number R0. Usually, a threshold
dynamics is established. Roughly speaking, when R0 < 1 the infection disappears from the
population while when R0 > 1 the infection persists (see, for instance, [12, 19–21]).

In the last decade, a large amount of attention has been paid to age-structured models.
One of the first such models is presented and studied by Magal et al. [23]. The model they
investigated is as follows.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dS(t)

dt
= � − μS(t) − S(t)

∫ ∞
0 β(a)i(t, a)da,

∂i(t,a)

∂t
+ ∂i(t,a)

∂a
= −δ(a)i(t, a),

i(t,0) = S(t)
∫ ∞

0 β(a)i(t, a)da,

S(0) = S0 ∈R
+, i(0, ·) = i0 ∈ L1+(R+),

(1)

where L1+(R+) is the space of integrable and positive functionals. i(t, a) is the density of
infected individuals at time t with infection age a (time passed since being infected); β(a)

and δ(a) are the transmission coefficient and the exit (or (and) mortality or (and) recovery)
rate of infected individuals, respectively; � is the entering flux into the susceptible class;
and μ represents the mortality rate of the population. For the first time, the approach of Lya-
punov functional has been applied to prove the global stability of the endemic equilibrium.
This has been further generalized to investigate age-structured SIR models with nonlinear
incidences (see, for example, [1, 5]).

Though it is true that the transmission rate β(a) can take into account the exposed stage,
it has been shown that the age-structured SIR model (1) in general and β(a) in particular
loses its biological precision in the case of infectious diseases with large latent periods such
as tuberculosis and HIV [24], where the latent period can vary from months to years or
even decades before the disease becomes contagious. Also, for the purpose of treatment,
recognizing the disease in its earliest stage is crucial in obtaining a proper treatment strategy.
For example, for brucellosis, if the treatment is retarded, then this infection can lead to
infertility for human. Therefore, McCluskey [24] introduced a latent class and investigated
the following model,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= � − μS(t) − S(t)

∫ ∞
0 β(a)i(t, a)da,

∂e(t,a)

∂t
+ ∂e(t,a)

∂a
= −(γ (a) + μ(a))e(t, a),

∂i(t,a)

∂t
+ ∂i(t,a)

∂a
= −ν(a)i(t, a),

e(t,0) = S(t)
∫ ∞

0 β(a)i(t, a)da,

i(t,0) = ∫ ∞
0 γ (a)e(t, a)da,

(2)

where e(t, a) is the density of exposed individuals at time t with exposure time a, individuals
who have been in the exposed class can progress to the I class with the rate γ (a), μ(a) is the
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removal rate from the exposed class, ν(a) is the rate of individuals removed from infectious
class. The asymptotic smoothness of the semi-flow generated by solutions of system (2)
and uniform persistence are proven by reformulating the system as a system of Volterra
integral equations. The global stability of the endemic equilibrium depending on the basic
reproduction number is obtained by constructing suitable Lyapunov functionals. Later on,
these results have been generalized to system (2) with immigration of the infected [25]
and further to a general separable incidence function β(a)f (S(t))h(i(t, a)) [31]. Further,
other nonlinear incidence functions appear in other works such as S(t)f (i(t)) in an SIVR
model [30], ϕ

(
S(t),

∫ ∞
0 β(a)i(t, a)

)
in an SVEIR model [29], and other generalizations as

the incidence functions used in the papers [1, 7].
Motivated by the above works, in this paper, we further the study of age-structured mod-

els by considering the following SEIR model that incorporates ages of latency and infection
and also a nonlinear incidence,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= � − μS(t) − G(S(t), J (t)),

∂e(t,a)

∂t
+ ∂e(t,a)

∂a
= −(μ + ζ1(a) + ζ2(a))e(t, a),

∂i(t,a)

∂t
+ ∂i(t,a)

∂t
= −(μ + δ1(a) + δ2(a))i(t, a),

dR(t)

dt
= ∫ ∞

0 δ1(a)i(t, a)da − (μ + μ̂)R(t),

(which is decoupled from the others and hence its evolution

will not be considered in the sequel)

e(t,0) = G(S(t), J (t)),

i(t,0) = L(t),

S(0) = S0 ∈ R
+, e(0, .) = e0 ∈ L1+(R+), i(0, .) = i0 ∈ L1+(R+),

(3)

where

J (t) =
∫ ∞

0
β(a)i(t, a)da and L(t) =

∫ ∞

0
ζ1(a)e(t, a)da.

Besides the same biological meanings of the same parameters in (2), ζ1(a) is the age de-
pendent progression rate from exposed to infected and δ1(a) is the recovery rate of infected.
Unlike most work in the literature, we have also included extra death rates ζ2(a) and δ2(a)

induced by the disease, and μ̂ in the exposed, infected, and recovered, respectively. The in-
cidence is described by the nonlinear function G, where, in epidemiology, J (t) is referred
to as the infection force at time t . Mathematically, the latent compartment generates a big
difficulty in constructing a proper Lyapunov functional. In this paper, we develop new forms
that help us to determine the global behavior of the equilibria.

As we will not study the evolution of R(t), for simplicity of notation, we denote
ζ1(a) + ζ2(a) as ζ(a) and δ1(a) + δ2(a) as δ(a). We make the following assumptions on
the parameters that are biologically relevant.

(H1(a)) �, μ > 0.
(H1(b)) β , ζ1, ζ2, δ ∈ L∞+ (R+) with the respective essential upper bounds β̄ , ζ̄1, ζ̄2, δ̄. More-

over, β and ζ are uniformly continuous on R+.
(H1(c)) The function κ : R+ → R

+ defined by

κ(a) = ∫ a

0 ζ1(τ )π(τ)β(a − τ)ν(a − τ)dτ(
= ∫ a

0 β(τ)ν(τ )ζ1(a − τ)π(a − τ)dτ
) (4)
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is not zero a.e., where

π(a) = e− ∫ a
0 [μ+ζ(s)]ds and ν(a) = e− ∫ a

0 [μ+δ(s)]ds for a ≥ 0. (5)

From (H1(c)), we know that ζ(a) ≤ ζ̄1 + ζ̄2 := ζ̄ . The biological meaning of (H1(c)) is
very clear. Note that π(a) and ν(a) are the survival probabilities of the exposed and infected
individuals to latency and infection age a, respectively. Given a > 0, let us consider the
process of a susceptible individual who can get infected and still have infectivity a time
units after. During the process, the susceptible can get infected (with latency age 0), who
can stay in E class for any τ units of time (with τ ∈ [0, a]), then enters I class with rate
ζ1(τ )π(τ) (with infection age 0). It follows that the individual survives to infection age
a − τ and hence the possibility of transmitting infection is β(a − τ)ν(a − τ). Therefore,
κ(a) is the ability of transmitting infection of a susceptible individual after a units of time
since being infected. If κ is zero a.e., then the infection cannot continue. In fact, this can
be confirmed later on. If κ is zero a.e., then the basic reproduction number R0 = 0 and the
disease-free equilibrium is globally asymptotically stable. This is not the situation we are
considering.

We mention that nonlinear incidences have been considered by many authors (to name
a few, see [1, 3, 7, 10, 29, 30]). Here we assume that the incidence G(S,J ) satisfies the
following properties.

(H2(a)) G(S,J ) is differentiable and ∂G(S,J )

∂S
> 0 for S > 0 and J > 0, ∂G(S,J )

∂J
> 0 for S > 0

and J ≥ 0. Moreover, G(0, J ) = G(S,0) = 0 for all S ≥ 0 and J ≥ 0.

(H2(b)) The function
∂G

∂J
(S,J ) is continuous at (S0,0), where S0 = �

μ
. Moreover, for

given S ≥ 0, G(S, ·) is concave down.
(H2(c)) The function G is locally Lipschitz continuous in S and J , i.e., for every C > 0

there exists some K := KC > 0 such that

|G(S2, J2) − G(S1, J1)| ≤ K(|S2 − S1| + |J2 − J1|),
whenever 0 ≤ S2, S1, J2, J1 ≤ C.

Clearly, G(S,J ) includes some in the literature as special cases, for example,
f (S(t))

∫ ∞
0 h(i(t, a))da in [31]. But it also contains cases that the above mentioned pa-

pers are inapplicable to, which include the Beddington-DeAngelis [2, 4] incidence

G(S,J ) = SJ

1 + c1S + c2J

and the Crowley-Martin [26, 28] incidence

G(S,J ) = SJ

1 + c1S + c2J + c1c2SJ
.

We mention that model (3) is a special case of that studied by Wang et. al. [29] with
p = 0. However, in this and similar works, there are some critical issues. On the one hand,
no one has ever proved that 
0 (or similar notations) is positively invariant with respect to
the solution semiflow. This fact is used in the proof of the uniform weak ρ-persistence of the
semiflow. During the arguments, translations have been made. After translations, without the
invariance of 
0, the transferred initial condition may not be in 
0. In fact, many claimed
the positive invariance after establishing the uniform weak ρ-persistence. This results in the
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first loop in the discussion. In this work, for the first time, we have recognized this issue
and solved it successfully. On the other hand, if we do not know that 
0 is closed, then we
could not get the existence of a global compact attractor in 
0 by using [11, Theorem 3.4.6].
Actually, this approach requires that the semiflow be uniform ρ-persistence. But, in these
works, this is deduced from the existence of a global compact attractor in 
0. This gives
another loop. Here we shall provide a different approach based on the theory developed by
Smith and Thieme [27] to solve this dilemma. We reiterate that the main contribution of this
work is to use a concrete example to give a rigorous discussion of epidemic models with
age structures. This new approach can be adopted to fill the gaps in existing literature and to
deal with some new models.

The main result of this paper is a threshold dynamics determined by the basic repro-
duction number. We first give some preliminary results on existence of solutions and their
bounds in Sect. 2. Section 3 is the main part of this paper, which deals with the global dy-
namics. We first show the existence of a global attractor, followed is the global stability of
the disease-free equilibrium when the basic reproduction number R0 < 1. Then we establish
the existence of an endemic equilibrium when R0 > 1. In order to study the global stability
of the endemic equilibrium by the approach of Lyapunov functional, we first establish the
uniform persistence. Here for the first time, some new arguments are developed. The paper
concludes with a brief discussion.

2 Preliminary Results

The phase space of (3) is � = R
+ × L1+(R+) × L1+(R+), the positive cone of the Banach

space R× L1(R+) × L1(R+) equipped with the norm

‖(x,ϕ,ψ)‖ = |x| +
∫ ∞

0
|ϕ(a)|da +

∫ ∞

0
|ψ(a)|da

for (x,ϕ,ψ) ∈ R × L1(R+) × L1(R+). For γ0 = (S0, e0, i0) ∈ �, problem (3) has a unique
and continuous solution (S(t), e(t, a), i(t, a)) on R

+, which satisfies (S(t), e(t, ·), i(t, ·)) ∈
� for all t ∈ R

+. This can be established through standard arguments (see, for example, [8,
9]). Therefore, we can obtain a continuous semi-flow � :R+ × � → � defined by solutions
of (3),

�(t, γ0) = (S(t), e(t, .), i(t, .)) for (t, γ0) ∈R
+ × �,

where (S(t), e(t, ·), i(t, ·)) is the solution of (3) with the initial condition γ0.
Note that, for (t, γ0) ∈ R

+ × �,

‖�(t, γ0)‖ = S(t) +
∫ ∞

0
e(t, a)da +

∫ ∞

0
i(t, a)da.

Then

d

dt
‖�(t, γ0)‖

= [� − μS(t) − G(S(t), J (t))] +
∫ ∞

0

∂e(t, a)

∂t
da +

∫ ∞

0

∂i(t, a)

∂t
da

= [� − μS(t) − G(S(t), J (t))] −
∫ ∞

0

[
∂e(t, a)

∂a
+ (μ + ζ(a))e(t, a)

]

da
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−
∫ ∞

0

[
∂i(t, a)

∂a
+ (μ + δ(a))i(t, a)

]

da

= [� − μS(t) − G(S(t), J (t))]

−
[

e(t,∞) − e(t,0) −
∫ ∞

0
(μ + ζ(a))e(t, a)da − L(t)

]

−
[

i(t,∞) − i(t,0) −
∫ ∞

0
(μ + δ(a))i(t, a)da

]

.

This, combined with the boundary conditions in (3), gives

d‖�(t, γ0)‖
dt

≤ � − μ‖�(t, γ0)‖

and hence

‖�(t, γ0)‖ ≤ e−μt‖γ0‖ + �

μ

(
1 − e−μt

)
. (6)

Then (6) immediately implies the following result on the boundedness of solutions of (3).

Proposition 1

(i) ‖�(t, γ0)‖ ≤ max{�
μ
,‖γ0‖} for (t, γ0) ∈R

+ × �.

(ii) lim supt→∞ ‖�(t, γ0)‖ ≤ �
μ

for (t, γ0) ∈ R
+ × �. Thus � is point-dissipative, that is,

there is a bounded set that attracts all points in �.
(iii) The set


 =
{

γ0 ∈ � : ‖γ0‖ ≤ �

μ

}

is a positively invariant and attracting set of �.
(iv) Let B ⊂ � be bounded. Then {�(t, γ ) : (t, γ ) ∈ R

+ × B} is bounded. In particular, �

is eventually bounded on B .

Since we are mainly concerned with limiting behavior of solutions of (3), sometimes
we assume that the initial values are in 
 and let K be the local Lipschitz constant of G

associated with C = max{�
μ
, �

μ
β̄} when there is no confusion.

Proposition 2 lim inft→∞ S(t) ≥ ξ � �
μ+K

for any solution with initial values in 
.

Proof For any γ0 ∈ 
, we have ‖i(t, ·)‖1 ≤ �
μ

and hence J (t) ≤ �
μ
β̄ for t ≥ 0. It follows

from this and Lipschitz continuity of G that

dS(t)

dt
≥ � − μS(t) − KS(t),

which implies that lim inft→∞ S(t) ≥ ξ . �

We give the expressions of e(t, a) and i(t, a) to conclude this section.
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Let ν and π be defined by (5). Integrating the partial differential equations for e and i

in (3) respectively along the characteristic lines t − a = c, where c is a constant, gives us

e(t, a) =
{

G(S(t − a), J (t − a))π(a), t > a ≥ 0

e0(a − t) π(a)

π(a−t)
, a > t ≥ 0

(7)

and

i(t, a) =
{

L(t − a)ν(a), t > a ≥ 0,

i0(a − t) ν(a)

ν(a−t)
, a > t ≥ 0.

(8)

3 Global Dynamics

3.1 Existence of a Global Attractor

The roughest result on the global dynamics of (3) is the existence of a global attractor. We
employ Theorem 2.33 of Smith and Thieme [27] to establish it.

We first verify the asymptotical smoothness of �. A semi-flow is called asymptotically
smooth if each forward invariant bounded closed set is attracted by a nonempty compact
set. The asymptotic smoothness of � is obtained by using the following result, which is a
special case of Theorem 2.46 [27].

Theorem 1 The semi-flow � : R+ × � → � is asymptotically smooth if there are maps �,
� : R+ × � → � such that �(t, γ ) = �(t, γ ) + �(t, γ ) and the following hold for any
bounded closed set C that is forward invariant under �:

– limt→∞ diam�(t,C) = 0,
– there exists tC such that �(t,C) has a compact closure for each t ≥ tC .

The following Frechet-Kolomogorov Theorem characterizes the compactness of subsets
in L1(R+).

Theorem 2 [27] Let F be a subset of L1(R+). Then F has compact closure if and only if
the following conditions hold:

1. supf ∈F

∫ ∞
0 |f (a)|da < ∞,

2. limr→∞
∫ ∞

r
|f (a)|da = 0 uniformly in f ∈ F ,

3. limh→0

∫ ∞
0 |f (a + h) − f (a)|da = 0 uniformly in f ∈ F ,

4. limh→0

∫ h

0 |f (a)|da = 0 uniformly in f ∈ F .

In order to apply Theorems 1 and 2, we need the following result.

Proposition 3 Let B ⊂ � be bounded. Then, for any ε > 0, there exists t0 > 0 such that, for
all t ≥ 0, h ∈ (0, t0), and γ0 ∈ B ,

|J (t + h) − J (t)| ≤ ε and |L(t + h) − L(t)| ≤ ε.
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Proof Let C > �
μ

be a bound for B . For t ≥ 0, h > 0, and γ0 ∈ B , we have

|J (t + h) − J (t)|

=
∣
∣
∣
∣

∫ ∞

0
β(a)i(t + h,a)da −

∫ ∞

0
β(a)i(t, a)da

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ h

0
β(a)i(t + h,a)da +

∫ ∞

h

β(a)i(t + h,a)da −
∫ ∞

0
β(a)i(t, a)da

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ h

0
β(a)L(t + h − a)ν(a)da +

∫ ∞

0
β(a + h)i(t + h,a + h)da

−
∫ ∞

0
β(a)i(t, a)da

∣
∣
∣
∣ .

By Proposition 1, for t ≥ 0, we have ‖e(t, ·)‖1 ≤ C and ‖i(t, ·)‖1 ≤ C, and hence L(t) ≤
ζ̄C. Then we get

|J (t + h) − J (t)| ≤ β̄ζ̄Ch +
∣
∣
∣
∣

∫ ∞

0
β(a + h)i(t + h,a + h)da −

∫ ∞

0
β(a)i(t, a)da

∣
∣
∣
∣ .

It follows easily from (8) that i(t + h,a + h) = i(t, a)e− ∫ a+h
a (μ+δ(s))ds . Thus

|J (t + h) − J (t)|

≤ β̄ζ̄Ch +
∣
∣
∣
∣

∫ ∞

0
β(a + h)i(t, a)e− ∫ a+h

a (μ+δ(s))dsda −
∫ ∞

0
β(a)i(t, a)da

∣
∣
∣
∣

= β̄ζ̄Ch +
∣
∣
∣
∣

∫ ∞

0
(β(a + h)e− ∫ a+h

a (μ+δ(s))ds − β(a))i(t, a)da

∣
∣
∣
∣

≤ β̄ζ̄Ch +
∫ ∞

0
β(a + h)

∣
∣
∣e

− ∫ a+h
a (μ+δ(s))ds − 1

∣
∣
∣i(t, a)da

+
∫ ∞

0
|β(a + h) − β(a)|i(t, a)da.

Noting 0 ≥ − ∫ a+h

a
(μ + δ(s))ds ≥ −μh, we have 1 ≥ e− ∫ a+h

a (μ+δ(s))ds ≥ e−μh ≥ 1 − μh,
where the last inequality comes from the fact that ex lies above its tangent. Then β(a +
h)

∣
∣
∣e− ∫ a+h

a (μ+δ(s))ds − 1
∣
∣
∣ ≤ β̄μh. Therefore,

J (t + h) − J (t) ≤ β̄ζ̄Ch + β̄μCh +
∫ ∞

0
|β(a + h) − β(a)|i(t, a)da.

Now it is clear from the uniform continuity of β that there exists t1 > 0 such that

|J (t + h) − J (t)| ≤ ε for all t ≥ 0, h ∈ (0, t1), and γ0 ∈ B .

Similarly, we can obtain a t2 > 0 such that

|L(t + h) − L(t)| ≤ ε for all t ≥ 0, h ∈ (0, t2), and γ0 ∈ B .

Letting t0 = min{t1, t2} finishes the proof. �
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Now, we are ready to prove the asymptotic smoothness of �.

Theorem 3 � is asymptotically smooth.

Proof To apply Theorem 1, we decompose � as follows. Define �, � : R+ × � → � re-
spectively by

�(t, γ0) = (0, ẽ(t, ·), ĩ(t, ·)), �(t, γ0) = (S(t), ê(t, ·), î(t, ·))

for (t, γ0) ∈R
+ × �, where

ẽ(t, a) =
{

0, t ≥ a ≥ 0
e(t, a), a ≥ t ≥ 0

}

=
{

0, t ≥ a ≥ 0,

e0(a − t) π(a)

π(a−t)
, a ≥ t ≥ 0,

}

ĩ(t, a) =
{

0, t ≥ a ≥ 0
i(t, a), a ≥ t ≥ 0

}

=
{

0, t ≥ a ≥ 0,

i0(a − t) ν(a)

ν(a−t)
, a ≥ t ≥ 0,

}

and

ê(t, a) = e(t, a) − ẽ(t, a), î(t, a) = i(t, a) − ĩ(t, a).

Then � = � + � . Note that for t ≥ 0,

ê(t, a) =
{

e(t, a), t ≥ a ≥ 0
0, a ≥ t ≥ 0

}

=
{

G(S(t − a), J (t − a))π(a), t ≥ a ≥ 0
0, a ≥ t ≥ 0

}

and

î(t, a) =
{

i(t, a), t ≥ a ≥ 0
0, a ≥ t ≥ 0

}

=
{

L(t − a)ν(a), t ≥ a ≥ 0
0, a ≥ t ≥ 0

}

Let B ⊂ � be bounded with a bound C. Without loss of generality, we assume C > �
μ

.
First, we have

||�(t, γ0)||

= |0| +
∫ ∞

0
ẽ(t, a)da +

∫ ∞

0
ĩ(t, a)da,

=
∫ ∞

t

e0(a − t)
π(a − t)

π(a)
da +

∫ ∞

t

i0(a − t)
ν(a − t)

ν(a)
da,

=
∫ ∞

0
e0(s)

π(s + t)

π(s)
ds +

∫ ∞

0
i0(s)

ν(s + t)

ν(s)
ds,

=
∫ ∞

0
e0(s)e

− ∫ s+t
s (μ+ζ(σ ))dσ ds +

∫ ∞

0
i0(s)e

− ∫ s+t
s (μ+δ(σ ))dσ ds,

≤ e−μt

∫ ∞

0
e0(s)ds + e−μt

∫ ∞

0
i0(s)ds

≤ e−μt‖γ0‖.
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Then we immediately see that the first condition in Theorem 1 holds.
Next, we verify the second condition of Theorem 1. By Proposition 1, S(t) ∈ [0,C] for

t ≥ 0 and hence {S(t) : γ0 ∈ B} is precompact for every t ≥ 0. In the following we only show
{ê(t, ·) : γ0 ∈ B} is precompact in L1(R+) for every t ≥ 0 as the proof of {î(t, ·) : γ0 ∈ B}
being precompact is similar.

Observe that ê(t, a) ≤ KCe−μa by the Lipschtiz continuity of G and S(t) ≤ C. Then
conditions 1, 2, and 4 of Theorem 2 immediately follows from this. Now, we verify the third
condition of this theorem. For h ∈ (0, t), we have

∫ ∞

0

∣
∣ê(t, a + h) − ê(t, a)

∣
∣da

=
∫ t−h

0
|G(S(t − a − h), J (t − a − h))π(a + h)

−G(S(t − a), J (t − a))π(a)|da,

+
∫ t

t−h

|0 − G(S(t − a), J (t − a))π(a)|da,

≤ Kβ̄Ch +
∫ t−h

0
G(S(t − a − h), J (t − a − h)) |π(a + h) − π(a)|da,

+
∫ t−h

0
|G(S(t − a − h), J (t − a − h)) − G(S(t − a), J (t − a))|π(a)da

≤ Kβ̄Ch + Kβ̄C

∫ t−h

0
|π(a + h) − π(a)|da

+K

∫ t−h

0

(|S(t − a − h) − S(t − a)| + |J (t − a − h) − J (t − a)|)π(a)da.

Recall that π(a) is a decreasing function. It follows that

∫ t−h

0
|π(a + h) − π(a)|da =

∫ t−h

0
π(a) − π(a + h)da,

=
∫ t−h

0
π(a)da −

∫ t−h

0
π(a + h)da,

=
∫ t−h

0
π(a)da −

∫ t

h

π(s)ds,

=
∫ h

0
π(a)da −

∫ t

t−h

π(a)da,

≤
∫ h

0
π(a)da,

≤ h.

Therefore,

∫ ∞

0

∣
∣ê(t, a + h) − ê(t, a)

∣
∣da ≤ 2Kβ̄Ch + K

∫ t−h

0

(|S(t − a − h) − S(t − a)|
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+|J (t − a − h) − J (t − a)|)da.

Now Proposition 1 and the first equation of (3) imply that | dS(t)

dt
| ≤ � + μC + G(C, β̄C)

for all t ≥ 0 and γ0 ∈ B . This, combined with Proposition 3, immediately show that
limh→0

∫ ∞
0 ê(t, a + h) − ê(t, a)|da = 0 uniformly on B . Thus we have shown that �(t,B)

is precompact for all t ≥ 0. By applying Theorem 1, we know that � is asymptotically
smooth. �

By now, we have shown that � is point-dissipative, eventually bounded on bounded sets,
and asymptotically smooth (see Proposition 1 and Theorem 3), namely, we have verified
all the assumptions of Theorem 2.33 [27]. So we have arrived at the main result of this
subsection.

Theorem 4 The semi-flow � has a global attractor A in �, which attracts any bounded set
of �.

Clearly, the global attractor A ⊂ 
. Since it is invariant, it can only contain points with to-
tal �-trajectories through them. A total �-trajectory is a function γ (t) = (S(t), e(t, .), i(t, .))

such that γ (t + r) = �(t, γ (r)) for all t ∈R and r ≥ 0. For a total �-trajectory, we can get

dS(t)

dt
= � − μS(t) − G(S(t), J (t)),

e(t, a) = e(t − a,0)π(a) = G(S(t − a), J (t − a))π(a),

i(t, a) = i(t − a,0)ν(a) = L(t − a)ν(a),

J (t) = ∫ ∞
0 β(a)L(t − a)ν(a)da,

L(t) = ∫ ∞
0 ζ1(a)G(S(t − a), J (t − a))π(a)da,

(9)

for all t ∈R and a ∈R+.
In the following, we describe the global attractor A.

3.2 The Global Stability of the Disease-Free Equilibrium

System (3) always has the disease-free equilibrium E0 = (S0,0,0). Recall that S0 = �
μ

.
We first study the local stability of E0. Through linearization, we can get the character-

istic equation at an arbitrary equilibrium E∗ = (S∗, e∗, i∗),

(λ + μ)

[
∂G(S∗, J∗)

∂J

∫ ∞

0
e−λaβ(a)ν(a)da

∫ ∞

0
e−λaζ1(a)π(a)da − 1

]

− ∂G(S∗, J∗)
∂S

= 0,

(10)

where J∗ = ∫ ∞
0 β(a)i∗(a)da. Then E∗ is locally (asymptotically) stable if all roots of (10)

have negative real parts and otherwise it is unstable. For detail, we refer to [16], for example.
Before moving forward, we introduce the basic reproduction number R0 defined by

R0 = ∂G(S0,0)

∂J

∫ ∞

0
β(a)ν(a)da

∫ ∞

0
ζ1(a)π(a)da. (11)

Recall that π(a) and ν(a) are respectively the survival probabilities of the exposed and
infected individuals to latency and infection age a. It follows that

∫ ∞
0 β(a)ν(a)da is the
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average transmission rate and
∫ ∞

0 ζ1(a)π(a)da is the conversion rate from exposed to in-

fected. As ∂G(S0,0)

∂J
is the initial spread rate, it follows that R0 is the average number of

second infected cases generated by introducing one infected individual into a population of
susceptible only. This agrees with the definition of basic reproduction number.

Proposition 4 The disease-free equilibrium E0 is locally asymptotically stable if R0 < 1
while it is unstable if R0 > 1.

Proof Since G(S0,0) = 0, it follows that ∂G(S0,0)

∂S
= 0. Then by (10), the characteristic equa-

tion at E0 is

(λ + μ)

[
∂G(S0,0)

∂J

∫ ∞

0
e−λaβ(a)ν(a)da

∫ ∞

0
e−λaζ1(a)π(a)da − 1

]

= 0.

Obviously, the stability of E0 is determined by roots of F0(λ) = 0, where

F0(λ) = ∂G(S0,0)

∂J

∫ ∞

0
e−λaβ(a)ν(a)da

∫ ∞

0
e−λaζ1(a)π(a)da − 1.

If R0 > 1, then F0(0) = R0 − 1 > 0. Since limλ→∞ F0(λ) = −1 < 0. By the intermediate
value theorem, F0(λ) = 0 has a positive root. Thus E0 is unstable if R0 > 1. Now, assume
that R0 < 1. We claim that all roots of F0(λ) = 0 have negative real parts. If this does not
hold, then there exists λ0 with Re(λ0) ≥ 0 such that F0(λ0) = 0. Thus we have

1 =
∣
∣
∣
∣
∂G(S0,0)

∂J

∫ ∞

0
e−λ0aβ(a)ν(a)da

∫ ∞

0
e−λ0aζ1(a)π(a)da

∣
∣
∣
∣ ,

≤ ∂G(S0,0)

∂J

∫ ∞

0

∣
∣e−λ0aβ(a)ν(a)

∣
∣da

∫ ∞

0

∣
∣e−λ0aζ1(a)π(a)

∣
∣da,

≤ ∂G(S0,0)

∂J

∫ ∞

0
β(a)ν(a)da

∫ ∞

0
ζ1(a)π(a)da,

= R0,

a contradiction to R0 < 1. This proves the claim and hence E0 is locally asymptotically
stable when R0 < 1. �

Actually, E0 is globally stable when it is locally stable. We shall apply the Fluctuation
Lemma [13] to prove it. For a bounded function f :R+ → R, we denote

f∞ = lim inf
t→∞ f (t) and f ∞ = lim sup

t→∞
f (t).

The following technical result will be useful in the coming discussion.

Lemma 1 [16] Suppose that k ∈ L1+(R+) and f :R+ →R is a bounded function. Then

lim sup
t→∞

∫ t

0
k(θ)f (t − θ)dθ ≤ f ∞‖k‖1.
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Theorem 5 Suppose R0 < 1. Then the disease-free equilibrium E0 is globally asymptoti-
cally stable in �.

Proof By Proposition 4, it suffices to show that E0 is attractive in �. Let γ0 ∈ �. As 
 is
attractive and positively invariant, without loss of generality, we can assume that γ0 ∈ 
. By
Proposition 1, ‖�(t, γ0)‖ ≤ �

μ
and J (t) and L(t) are also bounded.

We first show J∞ = L∞ = 0. By (8),

J (t) =
∫ ∞

0
β(a)i(t, a)da =

∫ t

0
β(a)i(t, a)da +

∫ ∞

t

β(a)i(t, a)da,

=
∫ t

0
β(a)L(t − a)ν(a)da +

∫ ∞

t

β(a)i0(a − t)
ν(a)

ν(a − t)
da,

≤
∫ t

0
β(a)L(t − a)ν(a)da + e−μt β̄

∫ ∞

t

i0(a − t)da,

≤
∫ t

0
β(a)L(t − a)ν(a)da + e−μt β̄

∫ ∞

0
i0(a)da.

Applying Lemma 1, we get

J∞ ≤ L∞
∫ ∞

0
β(a)ν(a)da. (12)

Similarly, using the monotonicity and concavity of G(S,J ), we can get

L(t) =
∫ t

0
ζ1(a)G(S(t − a), J (t − a))π(a)da

+
∫ ∞

t

ζ1(a)e0(a − t)
π(a)

π(a − t)
da

≤
∫ t

0
ζ1(a)G(S0, J (t − a))π(a)da + e−μt ζ̄1

∫ ∞

0
e0(a)da

≤ ∂G(S0,0)

∂J

∫ t

0
ζ1(a)π(a)J (t − a)da + e−μt ζ̄1

∫ ∞

0
e0(a)da.

Applying Lemma 1 again gives us

L∞ ≤ ∂G(S0,0)

∂J
J∞

∫ ∞

0
ζ1(a)π(a)da. (13)

It follows from (12) and (13) that

J∞ ≤ R0J
∞.

Since R0 < 1 and J∞ ≥ 0, we have J∞ = 0 and hence L∞ = 0 from (13).
Secondly, similar arguments as those for estimating J∞ and L∞ will produce ‖e(t, ·)‖1

→ 0 and ‖i(t, ·)‖1 → 0 as t → ∞. For example,

‖i(t, ·)‖1 =
∫ t

0
L(t − a)ν(a)da +

∫ ∞

t

i0(a − t)
ν(a)

ν(a − t)
da
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≤
∫ t

0
L(t − a)ν(a)da + e−μt

∫ ∞

0
i0(a)da.

With the help of Lemma 1, we have lim supt→∞ ‖i(t, ·)‖1 ≤ L∞‖ν‖1 = 0 and hence
limt→∞ ‖i(t, ·)‖1 = 0.

Finally, we show that limt→∞ S(t) = S0. By the Fluctuation Lemma, there exists a se-
quence {tn} such that tn → ∞, S(tn) → S∞, and dS(tn)

dt
→ 0 as n → ∞. Using the Lipschitz

continuity of G, we have

dS(tn)

dt
= � − μS(tn) − G(S(tn), J (tn)) ≥ � − μS(tn) − KJ(tn). (14)

Note that limt→∞ J (t) = 0 as limt→∞ ‖i(t, ·)‖1 = 0. Letting n → ∞ in (14) gives

0 ≥ � − μS∞,

or S∞ ≥ S0. As S∞ ≤ S0, it follows that limt→∞ S(t) = S0.
In summary, we have shown that limt→∞ �(t, γ0) = E0. This completes the proof. �

3.3 Existence and Local Stability of Endemic Equilibria

Theorem 5 implies that A = {E0} when R0 < 1. Thus the infection dynamics is quite simple
in this case, namely, the disease will become extinct.

In the following, we consider the case where R0 > 1. We begin with the existence of
equilibria other than the disease-free equilibrium.

Let (S∗, e∗, i∗) ∈ � (and in fact in 
) be an equilibrium of (3) or equivalently of �. Then

0 = � − μS∗ − G(S∗, J ∗), (15a)

de∗(a)

da
= −(μ + ζ(a))e∗(a), (15b)

di∗(a)

da
= −(μ + δ(a))i∗(a), (15c)

e∗(0) = G(S∗, J ∗), (15d)

i∗(0) =
∫ ∞

0
ζ1(a)e∗(a)da, (15e)

J ∗ =
∫ ∞

0
β(a)i∗(a)da.

It follows from (15b) and (15c) that

e∗(a) = e∗(0)π(a) and i∗(a) = i∗(0)ν(a), (16)

respectively. This and (15e) give us

i∗(0) = e∗(0)

∫ ∞

0
ζ1(a)π(a)da, (17)

which implies that an equilibrium rather than E0 must be endemic. Moreover, (15d) com-
bined with (15a) tells us that

S∗ = � − e∗(0)

μ
,
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which also implies that e∗(0) ≤ �. Substituting what we have got into (15d), we obtain
e∗(0) ∈ [0,�) is a zero of P (x), where

P (x) = x − G

(
� − x

μ
,x

∫ ∞

0
ζ1(a)π(a)da

∫ ∞

0
β(a)ν(a)da

)

.

Clearly, P (0) = 0, which means that (3) always has the disease-free equilibrium E0. Noting
P ′(0) = 1 − R0 < 0, we know that P (x) is negative for x > 0 sufficiently small. This,
together with P (�) = � > 0, implies the existence of a positive zero of P in (0,�). To
summarize, we have shown the following result.

Proposition 5 Suppose R0 > 1. Then besides the disease-free equilibrium E0, (3) also has
at least one endemic equilibrium.

Note that at that moment the assumptions on G may not be enough to guarantee the unique-
ness of endemic equilibria.

Proposition 6 Suppose that R0 > 1 and E∗ = (S∗, e∗, i∗) is an endemic equilibrium of (3).
Then E∗ is locally asymptotically stable.

Proof Recall that the characteristic equation at E∗ is given by (10), that is,

(λ + μ)
[

∂G(S∗,J ∗)

∂J

∫ ∞
0 e−λaβ(a)ν(a)da

∫ ∞
0 e−λaζ1(a)π(a)da − 1

]
= ∂G(S∗,J ∗)

∂S
, (18)

where J ∗ = ∫ ∞
0 β(a)i∗(a)da. We claim that all roots of (18) have negative real parts. By way

of contradiction, suppose that (18) has a root λ0 with Re(λ0) ≥ 0. Then we can rewrite (18)
to get

1 =
∣
∣
∣
∣
(λ0+μ)

∂G(S∗,J∗)
∂J

∫ ∞
0 e−λ0 ζ1(a)π(a)da

∫ ∞
0 e−λ0aβ(a)ν(a)da

λ0+μ+ ∂G(S∗,J∗)
∂S

∣
∣
∣
∣

< ∂G(S∗,J ∗)

∂J

∫ ∞
0 ζ1(a)π(a)da

∫ ∞
0 β(a)π(a)da.

(19)

However, with the assistance of the concavity of G and e∗(0) = G(S∗, J ∗), we get

e∗(0) ≥ ∂G(S∗, J ∗)
∂J

J ∗.

It follows from (16) and (17) that

J ∗ =
∫ ∞

0
β(a)i∗(a)ν(a)da =

∫ ∞

0
β(a)ν(a)da

∫ ∞

0
ζ1(a)π(a)dae∗(0).

Thus

e∗(0) ≥ ∂G(S∗, J ∗)
∂J

∫ ∞

0
β(a)ν(a)da

∫ ∞

0
ζ1(a)π(a)dae∗(0),

or

1 ≥ ∂G(S∗, J ∗)
∂J

∫ ∞

0
β(a)ν(a)da

∫ ∞

0
ζ1(a)π(a)da.

This contradicts with (19) and hence the claim is proved. By the claim, we see that E∗ is
locally asymptotically stable. �
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We mention that, later on, for the global stability of the endemic equilibrium, we do not
need to prove its local stability first. However, in Theorem 7, we need an additional condition
and here we only require R0 > 1.

In order to study the global stability of the endemic equilibria, we need the uniform
persistence.

3.4 Uniform Persistence

The uniform persistence is established by applying Theorem 5.2 in [27]. For this purpose,
we define ρ : � →R

+ by

ρ(γ0) =
∫ ∞

0
β(a)i0(a)da where γ0 = (S0, e0, i0) ∈ �.

Denote

�0 = {γ ∈ � : ρ(�(t, γ )) = 0 for all t ≥ 0}.
Clearly �0 �= ∅ as E0 ∈ �0. We say that � is uniformly weakly ρ-persistent, if there exists
η > 0 such that

lim sup
t→∞

ρ(�(t, γ0)) > η whenever ρ(γ0) > 0,

and is uniformly (strongly) ρ-persistent if we can replace lim sup by lim inf above.
Note that ρ(�(t, γ0)) = J (t) for all t ≥ 0. Using (7) and (8), we obtain

J (t)

=
∫ t

0
β(a)i(t, a)da +

∫ ∞

t

β(a)i(t, a)da,

=
∫ t

0
β(a)i(t − a,0)ν(a)da +

∫ ∞

t

β(a)i0(a − t)
ν(a)

ν(a − t)
da,

=
∫ t

0
β(a)ν(a)L(t − a)da +

∫ ∞

t

β(a)i0(a)
ν(a)

ν(a − t)
da,

=
∫ t

0
β(a)ν(a)

∫ ∞

0
ζ1(σ )e(t − a,σ )dσda +

∫ ∞

t

β(a)i0(a − t)
ν(a)

ν(a − t)
da,

=
∫ t

0
β(a)ν(a)

[∫ t−a

0
ζ1(σ )e(t − a,σ )dσ +

∫ ∞

t−a

ζ1(σ )e(t − a,σ )dσ

]

da

+
∫ ∞

t

β(a)i0(a − t)
ν(a)

ν(a − t)
da,

=
∫ t

0
β(a)ν(a)

∫ t−a

0
ζ1(σ )π(σ )G(S(t − a − σ), J (t − a − σ))dσda + R̃(t),

where

R̃(t) =
∫ t

0
β(a)ν(a)

∫ ∞

t−a

ζ1(σ )e0(σ − t + a)
π(σ )

π(σ − t + a)
dσda

+
∫ ∞

t

β(a)i0(a − t)
ν(a)

ν(a − t)
da.
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For the first part in the above expression for J (t), we first make the change τ = a + σ to get
∫ t

0
β(a)ν(a)

∫ t−a

0
ζ1(σ )π(σ )G(S(t − a − σ), J (t − a − σ))dσda

=
∫ t

0
β(a)ν(a)

∫ t

a

ζ1(τ − a)G(S(t − τ), J (t − τ))π(τ − a)dτda.

Then we change the order of integration to obtain
∫ t

0
β(a)ν(a)

∫ t−a

0
ζ1(σ )π(σ )G(S(t − a − σ), J (t − a − σ))dσda

=
∫ t

0
G(S(t − τ), J (t − τ))

[∫ τ

0
β(a)ζ1(τ − a)ν(a)π(τ − a)da

]

dτ.

Therefore, we have arrived at

J (t) =
∫ t

0
G(S(t − τ), J (t − τ))κ(τ )dτ + R̃(t), (20)

where κ is defined in (4).
The following result is needed in the proof of the uniform weak ρ-persistence of �.

Lemma 2 Let γ0 ∈ � such that ρ(γ0) > 0. Then there exists a T ≥ 0 such that ρ(�(t, γ0)) >

0 for all t ≥ T .

Proof Since J (0) > 0, there exists a δ > 0 such that J (t) > 0 for t ∈ [0, δ]. More-
over, there exists ς > 0 such that J (t) ≤ ς for t ≥ 0. Note that S(t) > 0 for t > 0 and
lim inft→∞ S(t) > 0 (which can be proved in a similar manner as that for Proposition 2).
Thus ξ � inft∈[ δ

2 ,∞) S(t) > 0. Define γ̂ : R → � by γ̂ (t) = �(t + δ
2 , γ0) = �(t, (�( δ

2 , γ0))

for t ≥ 0. Then by (20), we get

Ĵ (t) =
∫ t

0
G(Ŝ(t − τ), Ĵ (t − τ))κ(τ )dτ + ˜̂

R(t),

≥
∫ t

0
G(ξ, Ĵ (t − τ))κ(τ )dτ + ˜̂

R(t),

≥
∫ t

0

∂G(ξ, ς)

∂J
Ĵ (t − τ)κ(τ )dτ + ˜̂

R(t).

Here we have used the monotonicity of G in S and of the concavity in J . Note that ˜̂
R(t)

is continuous at 0 and ˜̂
R(0) = J ( δ

2 ) > 0. Under assumption (H1(c)), by Corollary B.6 [27],

there exists T̂ > 0 (which only depends on κ) such that Ĵ (t) = J (t + δ
2 ) > 0 for t ≥ T̂ . The

desired result holds with T = T̂ + δ
2 . �

Proposition 7 Suppose that R0 > 1. Then � is uniformly weakly ρ-persistent.

Proof Since R0 > 1 and ∂G(S,J )

∂J
is continuous at (S0,0) (see assumption (H2(b))), we can

choose ε > 0 small enough such that

� > G(S0 + ε, ε) − με
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and

∂G(�−G(S0+ε,ε)

μ
− ε, ε)

∂J
L[βν](ε)L[ζ1π](ε) > 1. (21)

Here L[·] represents the Laplace transform.
With contradictive argument, suppose that � is not uniformly weakly ρ-persistent. Then

there exists γ0 with ρ(γ0) > 0 such that

lim sup
t→∞

ρ(�(t, γ0)) = lim inf
t→∞ J (t) < ε.

This and Proposition 1 imply that there exists t0 ≥ 0 such that

J (t) ≤ ε and S(t) ≤ S0 + ε for t ≥ t0.

Without loss of generality, we assume that t0 = 0 as we can replace γ0 with �(max{t0, T }, γ0),
where T is the number guaranteed in Lemma 2. Note that Lemma 2 also implies that
ρ(�(max{t0, T }, γ0)) > 0. Then for t ≥ 0, it follows from the monotonicity of G that

S ′(t) ≥ � − μS(t) − G(S0 + ε, ε),

which implies that lim inft→∞ S(t) ≥ �−G(S0+ε,ε)

μ
. Without loss of generality again, we can

assume that S(t) ≥ �−G(S0+ε,ε)

μ
− ε for t ≥ 0. Then, for t ≥ 0, it follows from the mono-

tonicity and concavity of G and (20) that

J (t) ≥
∫ t

0
G

(
� − G(S0 + ε, ε)

μ
− ε, J (t − τ)

)

κ(τ)dτ

≥ ∂G(�−G(S0+ε,ε)

μ
− ε, ε)

∂J

∫ t

0
J (t − τ)κ(τ )dτ.

Taking the Laplace transforms of both sides of the above inequality gives

L[J ](s) ≥ ∂G(�−G(S0+ε,ε)

μ
− ε, ε)

∂J
L[J ](s)L[κ](s)

for any s ≥ 0. Since J (0) > 0 as mentioned before, we have L[J ](s) > 0 for all s ≥ 0.
Therefore, taking s = ε in the previous inequality involving Laplace transforms gives

∂G(�−G(S0+ε,ε)

μ
− ε, ε)

∂J
L[κ](ε) ≤ 1.

Now, we first change the order of integration and then make the change of variable τ −a = s

to get

L[κ](ε) =
∫ ∞

0
e−ετ

∫ τ

0
β(a)ν(a)ζ1(τ − a)π(τ − a)dadτ = L[βν](ε)L[ζ1π](ε).

Therefore, we can get

∂G(�−G(S0+ε,ε)

μ
− ε, ε)

∂J
L[βν](ε)L[ζ1π](ε) ≤ 1,
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a contradiction to (21). This completes the proof. �

In the proof of Proposition 7, we have used the fact that L[J ](s) > 0 for s ≥ 0, which
requires J (t) > 0 for some t ≥ 0. Unfortunately, this is not guaranteed without Lemma 2
since we only have J (0) > 0 but we have made translations in the discussion. In the literature
so far, to the best of knowledge, no researchers have realized this and it is just taken for
granted.

In order to apply Theorem 5.2 [27], we still need to check the hypothesis (H1) in it.

Lemma 3 Let γ (t) = (S(t), e(t, ·), i(t, ·)) be a total �-trajectory. If J (t) = 0 for all t ≤ 0
then J (t) = 0 for all t ≥ 0.

Proof It follows from (9) and the Lipschitz continuity of G that

J (t) =
∫ ∞

0
β(a)i(t − a,0)ν(a)da,

=
∫ ∞

0
β(a)ν(a)

∫ ∞

0
ζ1(σ )G(S(t − a − σ), J (t − a − σ))π(σ )dσda

≤ K

∫ ∞

0
β(a)ν(a)

∫ ∞

0
ζ1(σ )π(σ )J (t − a − σ)dσda.

Making a change of variable t − a → a gives us

J (t) ≤ K

∫ t

−∞
β(t − a)ν(t − a)

∫ ∞

0
ζ1(σ )π(σ )J (a − σ)dσda.

With another change of variable a − σ → σ , we get

J (t) ≤ K

∫ t

−∞
β(t − a)ν(t − a)

∫ a

−∞
ζ1(a − σ)π(a − σ)J (σ )dσda.

Since J (t) = 0 for all t ≤ 0, π(a) ≤ 1, ν(a) ≤ 1, we get

J (t) ≤ Kβ̄ζ̄

∫ t

0

∫ a

0
J (σ )dσda.

Let J(t) = ∫ t

0 J (s)ds. Then

dJ(t)

dt
= J (t) ≤ Kβ̄ζ̄

∫ t

0
J(a)da.

Since J(0) = 0, Gronwall’s inequality leads to J(t) = 0 for t ≥ 0 and hence J (t) = 0 for
t ≥ 0. �

Lemma 4 Let γ (t) = (S(t), e(t, ·), i(t, ·)) be a total �-trajectory in A. Then S(t) is strictly
positive and (either J (t) = 0 for all t ∈R or J (t) is positive on R).

Proof Since γ (t) ∈ A, by Propositions 1 and 2, we know that S(t) ≥ ξ > 0 and J (t) ≤ β̄S0

for t ∈ R. For the second part, from Lemma 3 by performing appropriate direction, we see
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the following alternatives: either J (t) = 0 for all t ≥ r if J (t) = 0 for all t ≤ r or there exists
a sequence {tn} satisfying tn → −∞ as n → ∞ and J (tn) > 0. We assume the second.

For every n, define Jn, Sn : R → R by Jn(t) = J (t + tn) and Sn(t) = S(t + tn) for t ∈R.
Then similar arguments as those in the proof of Lemma 2 will yield a T > 0 (independent
of n) such that Jn(t) > 0 for t ≥ T and every n. This is a contradiction and hence the proof
is completed. �

By now we have verified all the assumption of Theorem 5.7 [27]. It is not difficult to
show that limt→∞ �(t, γ0) = E0 for γ0 ∈ �0. Therefore, we have obtained the following
result.

Theorem 6 The global attractor A is the disjoint union

A = {E0} ∪ C ∪A1,

where C and A1 are invariant sets and A1 is compact. Moreover, the following hold.

(i) A1 attracts all solutions with initial conditions belonging to � \ �0 and is uniformly
ρ-positive, i.e., there exists some η > 0 such that

∫ ∞

0
β(a)i0(a)da ≥ η for all γ0 = (S0, e0, i0) ∈ A1.

In particular, A1 is stable.
(ii) If γ0 ∈ � \ A1 and γ is a total �-trajectory through γ0 with precompact range, then

limt→−∞ γ (t) = E0.
If γ0 ∈ � \ {E0} and γ is a total �-trajectory through γ0 with precompact range,

then γ (t) → A1 as t → ∞.
In particular, the set C consists of those γ0 ∈ A through which there exists a total

�-trajectory γ with γ (−t) → E0 and γ (t) → A1 as t → ∞.

Corollary 1 Suppose R0 > 1. Let γ (t) = (S(t)e(t, ·), i(t, ·)) be a total �-trajectory in A1.
Then there exists ε0 > 0 such that S(t), e(t,0), i(t,0) ≥ ε0 for all t ∈ R.

Proof Since A1 is invariant, by Proposition 2, we have S(t) ≥ ξ for t ∈ R. Moreover, by
Theorem (6), there exists η > 0 such that ρ(γ (t)) = J (t) > η for all t ∈R. Then we have

e(t,0) = G(S(t), J (t)) ≥ G(ξ,η) for t ∈R,

by the monotonicity of G(S,J ) with respect to both S and J . Thus

i(t,0) =
∫ ∞

0
ζ1(a)e(t, a)da

=
∫ ∞

0
ζ1(a)e(t − a,0)π(a)da

≥ G(ξ,η)

∫ ∞

0
ζ1(a)π(a)da,

for t ∈ R. Letting ε0 = min{ξ,G(ξ, η),G(ξ, η)
∫ ∞

0 ζ(a)π(a)da} completes the proof. �
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3.5 Global Stability of Endemic Equilibria

Let E∗ = (S∗, e∗, i∗) be an endemic equilibrium of (3). In this subsection, we prove the
global stability of E∗ under an additional assumption. During the discussion, we need some
further information on solutions and a technical lemma.

Lemma 5 For each solution γ (t) = (S(t), e(t, ·), i(t, ·)) of (3), we have

∫ ∞

0
ζ1(a)e∗(a)

[
e(t, a)

e∗(a)
− i(t,0)

i∗(0)

]

da = 0, (22)

∫ ∞

0
β(a)i∗(a)

[
i(t, a)

i∗(a)
− J (t)

J ∗

]

da = 0. (23)

Proof Using the boundary condition given in (3), we observe that

0 = i(t,0) − i∗(0)i(t,0)

i∗(0)

=
∫ ∞

0
ζ1(a)e(t, a)da −

∫ ∞

0
ζ1(a)e∗(a)da

i(t,0)

i∗(0)

=
∫ ∞

0
ζ1(a)e∗(a)

[
e(t, a)

e∗(a)
− i(t,0)

i∗(0)

]

da.

This proves (22). Similarly we have

0 = J (t) − J ∗J (t)

J ∗

=
∫ ∞

0
β(a)i(t, a)da −

∫ ∞

0
β(a)i∗(a)da

J (t)

J ∗

=
∫ ∞

0
β(a)i∗(a)

[
i(t, a)

i∗(a)
− J (t)

J ∗

]

da,

which gives (23). �

Lemma 6 Let χ be a non-negative, bounded Lebesgue measurable function. Suppose that
z1 and z2 are non-zero solutions of

∂z

∂t
+ ∂z

∂a
= −χ(a)z(t, a),

for t ∈R and a > 0 with zi(t,0) = Zi(t) > 0 for all t ∈ R and i = 1, 2. Define

F(t) =
∫ ∞

0
ε(a)H

(z1(t, a)

z2(t, a)

)
da,

where H is continuous and ε(a) = ∫ ∞
a

ω(a)da with ε, ω ∈ L1. Then

dF(t)

dt
=

∫ ∞

0
ω(a)

[

H
(z1(t,0)

z2(t,0)

)
− H

(z1(t, a)

z2(t, a)

)]

da.
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Proof Let ϑ(a) = e− ∫ a
0 χ(s)ds for a ≥ 0. Then

zi(t, a) = Zi(t − a)ϑ(a) for all t ∈R, a ≥ 0, and i = 1, 2. (24)

Thus zi(t, a) is positive for all t ∈ R, a ≥ 0, and i = 1, 2. It follows that

dF(t)

dt
= d

dt

∫ ∞

0
ε(a)H

(Z1(t − a)

Z2(t − a)

)
da.

Making the substitution σ = t − a gives us

dF(t)

dt
= d

dt

(∫ t

−∞
ε(t − σ)H

(Z1(σ )

Z2(σ )

)
dσ

)

,

= ε(0)H
(Z1(t)

Z2(t)

)
+

∫ t

−∞
ε ′(t − σ)H

(Z1(σ )

Z2(σ )

)
dσ,

= ε(0)H
(Z1(t)

Z2(t)

) +
∫ ∞

0
ε ′(a)H

(Z1(t − a)

Z2(t − a)

)
dσ.

For the last equality, we have used the substitution t − σ = a. Now, with the help of (24),
ε(0) = ∫ ∞

0 ω(a)da, and ε′(a) = −ω(a), we immediately get the required result. �

Now, we are ready to state and prove the main result of this subsection.

Theorem 7 Assume that R0 > 1. Let E∗ = (S∗, e∗, i∗) be an endemic equilibrium of (3)
satisfying

(H3) For S > 0,
{

x
J ∗ < G(S,x)

G(S,J ∗)
< 1 for 0 < x < J ∗,

1 < G(S,x)

G(S,J ∗)
< x

J ∗ for x > J ∗.

Then E∗ is globally asymptotically stable in � \ �0.

Remark 1 There are many functionals that can verify the condition (H3) as example
Beddington–DeAngelis incidence functional and Crowely–Martin incidence functional and
the Holling (I − III ) incidence functional. In [19–21], it is mentioned that the concave in-
cidence functionals with respect to the first variable verifies the condition (H3). Obviously,
the previously mentioned incidence functionals verifies this condition.

Proof By Theorem 6, it suffices to show that A1 = {E∗}.
For γ0 = (S0, e0, i0) ∈ A1, we define a Lyapunov functional V (γ0) = VS(γ0) + VE(γ0) +

VI (γ0) with

VS(γ0) = AB(S0 −
∫ S0

S∗

G(S∗, J ∗)
G(ξ, J ∗)

dξ),

VE(γ0) = B

∫ ∞

0
ζE(a)g

( e0(a)

e∗(a)

)
da,

VI (γ0) =
∫ ∞

0
βI (a)g

( i0(a)

i∗(a)

)
da,
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where

A =
∫ ∞

0
ζ1(a)π(a)da,

B =
∫ ∞

0
β(a)ν(a)da,

ζE(a) =
∫ ∞

a

ζ1(s)e
∗(s)ds,

βI (a) =
∫ ∞

a

β(s)i∗(s)ds,

g(x) = x − 1 − lnx, x > 0.

Note that V is well-defined by Corollary 1. Denote γ (t) = (S(t), e(t, ·), i(t, ·)) to be the
total �-trajectory in A1 with γ (0) = γ0. In the following we shall find the derivatives of VS ,
VE , and VI one by one before combining them to get the derivative of V .

Firstly,

d

dt
VS(γ (t)) =ABμ

(

1 − G(S∗, J ∗)
G(S(t), J ∗)

)

(S∗ − S(t))

+
(

1 − G(S∗, J ∗)
G(S(t), J ∗)

)

ABG(S∗, J ∗)

−
(

1 − G(S∗, J ∗)
G(S(t), J ∗)

)

ABG(S(t), J (t)).

(25)

Next, with the help of Lemma 6, we can get

dVE

dt
(γ (t)) = B

∫ ∞

0
ζ1(a)e∗(a)

[

g
(e(t,0)

e∗(0)

)
− g

(e(t, a)

e∗(a)

)]

da,

= B

∫ ∞

0
ζ1(a)e∗(a)

[
e(t,0)

e∗(0)
− e(t, a)

e∗(a)
+ ln

e(t, a)

e∗(a)
− ln

e(t,0)

e∗(0)

]

da.

Similarly, we have

dVI

dt
(γ (t)) =

∫ ∞

0
β(a)i∗(a)

[

g
( i(t,0)

i∗(0)

)
− g

( i(t, a)

i∗(a)

)
da

]

,

=
∫ ∞

0
β(a)i∗(a)

[
i(t,0)

i∗(0)
− i(t, a)

i∗(a)
+ ln

i(t, a)

i∗(a)
− ln

i(t,0)

i∗(0)

]

da.

Now, we can use (22) and (23) to cancel terms e(t,a)

e∗(a)
and i(t,a)

i∗(a)
to get

dVE

dt
(γ (t)) = B

∫ ∞

0
ζ1(a)e∗(a)

[
e(t,0)

e∗(0)
+ ln

e(t, a)

e∗(a)
− ln

e(t,0)

e∗(0)
− i(t,0)

i∗(0)

]

da, (26)

and

dVI

dt
(γ (t)) =

∫ ∞

0
β(a)i∗(a)

[
i(t,0)

i∗(0)
+ ln

i(t, a)

i∗(a)
− ln

i(t,0)

i∗(0)
− J (t)

J ∗

]

da. (27)
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Note that
∫ ∞

0
β(a)i∗(a)da =

∫ ∞

0
β(a)i∗(0)v(a)da = Bi∗(0) = B

∫ ∞

0
ζ1(a)e∗(a)da.

This, combined with (25), (26), and (27), gives us

dV

dt
(γ (t)) = ABμ

(

1 − G(S∗, J ∗)
G(S(t), J ∗)

)

(S∗ − S(t))

+
(

1 − G(S∗, J ∗)
G(S(t), J ∗)

)

ABG(S∗, J ∗)

−
(

1 − G(S∗, J ∗)
G(S(t), J ∗)

)

ABG(S(t), J (t))

+B

∫ ∞

0
ζ1(a)e∗(a)

[

ln
e(t, a)

e∗(a)
− ln

i(t,0)

i∗(0)

]

da

+B

∫ ∞

0
ζ1(a)e∗(a)

[
G(S(t), J (t))

G(S∗, J ∗)
− ln

G(S(t), J (t))

G(S∗, J ∗)

]

da

+
∫ ∞

0
β(a)i∗(a)

[

ln
i(t, a)

i∗(a)
− J (t)

J ∗

]

da.

Using ln G(S(t),J (t))

G(S∗,J ∗)
= ln G(S(t),J (t))

G(S(t),J ∗)
+ ln G(S(t),J ∗)

G(S∗,J ∗)
, and adding and subtracting

∫ ∞
0 β(a)i∗(a) ln J (t)

J ∗ da into the last integral, we can rewrite dV
dt

(γ (t)) as

dV

dt
(γ (t))

= ABμ

(

1 − G(S∗, J ∗)
G(S(t), J ∗)

)

(S∗ − S(t)) +
(

1 − G(S∗, J ∗)
G(S(t), J ∗)

)

ABG(S∗, J ∗)

−
(

1 − G(S∗, J ∗)
G(S(t), J ∗)

)

ABG(S(t), J (t))

+B

∫ ∞

0
ζ1(a)e∗(a)

[
G(S(t), J (t))

G(S∗, J ∗)
− ln

G(S(t), J (t))

G(S(t), J ∗)
− ln

G(S(t), J ∗)
G(S∗, J ∗)

]

da

+B

∫ ∞

0
ζ1(a)e∗(a)

[

ln
e(t, a)

e∗(a)
− ln

i(t,0)

i∗(0)

]

da

+
∫ ∞

0
β(a)i∗(a)

[

ln
i(t, a)J ∗

i∗(a)J (t)
− J (t)

J ∗ + ln
J (t)

J ∗ + 1 − 1

]

da.

With a simple calculation and using properties of logarithms, we can get

dV

dt
(γ (t)) = ABμ

(

1 − G(S∗, J ∗)
G(S(t), J ∗)

)

(S∗ − S(t))

+
(

1 − G(S∗, J ∗)
G(S(t), J ∗)

− ln
G(S(t), J ∗)
G(S∗, J ∗)

)

ABG(S∗, J ∗)

+ABG(S∗, J ∗)
(

−1 + G(S(t), J (t))

G(S(t), J ∗)
− ln

G(S(t), J (t))

G(S(t), J ∗)

)
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+B

∫ ∞

0
ζ1(a)e∗(a)

[

ln
e(t, a)i∗(0)

e∗(a)i(t,0)

]

da

+
∫ ∞

0
β(a)i∗(a)

[

ln
i(t, a)J ∗

i∗(a)J (t)
− g

(J (t)

J ∗
)]

da.

Equality (22) implies
∫ ∞

0 ζ1(a)e∗(a)
[
1 − e(t,a)i∗(0)

e∗(a)i(t,0)

]
da = 0 whereas (23) implies

∫ ∞
0 β(a)i∗(a)

[
1 − i(t,a)J ∗

i∗(a)J (t)

]
da = 0. Adding them to the above expression for dV

dt
(γ (t))

gives

dV

dt
(γ (t)) = ABμ

(

1 − G(S∗, J ∗)
G(S(t), J ∗)

)

(S∗ − S(t))

+
(

1 − G(S∗, J ∗)
G(S(t), J ∗)

− ln
G(S(t), J ∗)
G(S∗, J ∗)

)

ABG(S∗, J ∗)

+ABG(S∗, J ∗)
(

g
(G(S(t), J (t))

G(S(t), J ∗)

)
− g

(J (t)

J ∗
))

+B

∫ ∞

0
ζ1(a)e∗(a)

[

ln
e(t, a)i∗(0)

e∗(a)i(t,0)
+ 1 − e(t, a)i∗(0)

e∗(a)i(t,0)

]

da

+
∫ ∞

0
β(a)i∗(a)

[

ln
i(t, a)J ∗

i∗(a)J (t)
+ 1 − i(t, a)J ∗

i∗(a)J (t)

]

da

= ABμ

(

1 − G(S∗, J ∗)
G(S(t), J ∗)

)

(S∗ − S(t))

+
(

1 − G(S∗, J ∗)
G(S(t), J ∗)

− ln
G(S(t), J ∗)
G(S∗, J ∗)

)

ABG(S∗, J ∗)

+ABG(S∗, J ∗)
(

g
(G(S(t), J (t))

G(S(t), J ∗)

)
− g

(J (t)

J ∗
))

−B

∫ ∞

0
ζ1(a)e∗(a)g

(e(t, a)i∗(0)

e∗(a)i(t,0)

)
da

−
∫ ∞

0
β(a)i∗(a)g

( i(t, a)J ∗

i∗(a)J (t)

)
da.

Note that g is decreasing on (0,1) and increasing on (1,∞). By (H3), we have
{

J (t)

J ∗ < G(S(t),J (t))

G(S(t),J ∗)
< 1 if 0 < J(t) < J ∗,

1 < G(S(t),J (t))

G(S(t),J ∗)
< J(t)

J ∗ if J (t) > J ∗.

It follows that g(G(S(t),J (t))

G(S(t),J ∗)
) ≤ g( J(t)

J ∗ ). Furthermore, since G is non-decreasing with respect

to S and g(x) ≥ 0 for x > 0, we easily see that dV
dt

(γ (t)) ≤ 0.
Now, suppose that dV

dt
(γ (t)) = 0. Then S(t) = S∗ for all t ∈ R. This combined with the

first equation of (9) gives

� − μS∗ = G(S∗, J (t)).

This and (15a) together imply that G(S∗, J (t)) = G(S∗, J ∗) for all t ∈R. This, together with
the second equation in (9), yields e(t, a) = G(S∗, J ∗)π(a) = e∗(a) (see (15d) and (16)) for
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all t ∈R and a ≥ 0. Similarly, we can get from (9), (16), and (17) that i(t, a) = i∗(a) for all
t ∈ R and a ≥ 0. By Theorem 2.53 [27], A1 = {E∗}. This completes the proof. �

4 Discussion

It is well-known that the incidence rate is responsible for describing the way, speed, and
severity of infection. In [24], McCluskey studied (2) (where the bilinear incidence is used)
and established the global behavior. We know for certainty that the transmission varies from
one population to another (more generally from one country to another) for the same infec-
tion, where culture, environment, treatment availability, and health life style play important
roles in the spread of infection. In order to model such big variation, we considered a broad
class of general nonlinear incidence G(S,J ).

Moreover, tuberculosis and other similar infectious diseases have large latency periods.
It is crucial to diagnose the infection in the earliest stage. This point of view has been con-
sidered for the first time in the case of age-structured models by McCluskey [24]. Our main
interest here was to generalize the results of McCluskey [24] for (2) to the case with a wide
class of incidence. More precisely, we got a threshold dynamics determined completely by
the basic reproduction number. When R0 < 1, the disease-free equilibrium is globally sta-
ble and when R0 > 1, the system is uniformly persistent and the endemic equilibrium is
globally asymptotically stable (under some biological meaningful condition). How R0 de-
pends on the choice of the incidence function is clearly shown in the expression (11). We
reiterate it again that, in the literature, there are some gaps in establishing the uniform weak
ρ-persistence and the uniform ρ-persistence. Here these gaps have been filled.
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