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Abstract In this work, we study the split null point problem and the fixed point problem in
Hilbert spaces. We introduce a self-adaptive algorithm based on the viscosity approximation
method without prior knowledge of the operator norm for finding a common solution of
the considered problem for maximal monotone mappings and demicontractive multivalued
mappings. A strong convergence result of our proposed algorithm is established under some
suitable conditions. Some convergence results for the split feasibility problem and the split
minimization problem are consequences of our main result. Finally, we also give numerical
examples for supporting our main result.
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Mathematics Subject Classification 47H10 · 47J25 · 54H25

1 Introduction

Throughout this work, we assume that H, H1 and H2 are real Hilbert spaces with inner prod-
ucts 〈·, ·〉 and the induced norms ‖ · ‖, and let I be the identity operator on a Hilbert space.
Denote by N and R the set of positive integers and the set of real numbers, respectively.

The split inverse problem (SIP) concerns a model of finding a point

x∗ ∈ H1 that solves IP1 such that Ax∗ ∈ H2 solves IP2, (1.1)

where IP1 and IP2 denote inverse problems formulated in H1 and H2, respectively, and
A : H1 → H2 is a bounded linear operator. In 1994, Censor and Elfving [7] introduced the
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first instance of the split inverse problem which is the split feasibility problem (SFP). After
that, various split problems were introduced and studied such as the split common fixed
point problem (SCFPP) [8], the split common null point problem (SCNPP) [5], the split
variational inequality problem (SVIP) [11], the split equilibrium problem (SEP) [23], the
split minimization problem (SMP), etc. Recently, the split inverse problem has been widely
studied by many authors (see [4, 5, 7–9, 11, 15, 17, 23]) due to its model can be applied in
various problems related to significant real-world applications. For example, in signal and
image processing can be formulated as the equation system:

y = Ax + ε, (1.2)

where y ∈ R
M is the vector of noisy observations, x ∈ R

N is a recovered vector, ε is the
noise, and A :RN →R

M is a bounded linear observation operator. It is known that (1.2) can
be modeled as the constrained least-squares problem:

min
x∈RN

1

2
‖y − Ax‖2

2 subject to ‖x‖1 ≤ σ, (1.3)

for any nonnegative real number σ . Then, we can apply SIP model (1.1) to Problem (1.3)
as follows: Find a point x ∈ R

N such that ‖x‖1 ≤ σ and Ax = y. In addition, Kotzer et al.
[24] used the formulation of the split feasibility problem to model the design of a nonlinear
synthetic discriminant filter for optical pattern recognition. In [13], the convex feasibility
problem in image recovery was discussed. Censor et al. [9, 10] studied the inverse problem in
intensity-modulated radiation therapy. López et al. [25] introduced a self-adaptive algorithm
for the split feasibility problem and applied to signal processing.

In this paper, we focus our attention on the split null point problem (SNPP) which was
introduced by Byrne et al. in 2012 (see [5]). This split problem is the problem of finding a
point of the null point set of a multivalued mapping in a Hilbert space such that its image
under a given bounded linear operator belongs to the null point set of another multivalued
mapping in the image space.

Given two multivalued mappings B1 : H1 → 2H1 and B2 : H2 → 2H2 , a bounded linear
operator A : H1 → H2, then the SNPP is formulated as finding a point x∗ ∈ H1 such that

x∗ ∈ B−1
1 0 and Ax∗ ∈ B−1

2 0, (1.4)

where B−1
1 0 := {x ∈ H1 : 0 ∈ B1x} and B−1

2 0 are null point sets of B1 and B2, respectively.
To study the SNPP (1.4), we often consider in the case of maximal monotone mappings B1

and B2 (see [1, 2, 5, 31, 32]). The subdifferential of a lower semicontinuous and convex
function is an important example of maximal monotone mappings and its resolvents are
often used to construct algorithms for solving the minimization problem of the function. For
example in [14], Combettes and Pesquet introduced proximal splitting methods constructed
by the resolvent operators of the subdifferential of functions and also discussed in signal
processing.

Byrne et al. [5] proposed two iterative algorithms for solving the SNPP (1.4) for two
maximal monotone mappings B1 and B2 as follows:

xn+1 = J
B1
λ (xn − γA∗(I − J

B2
λ )Axn), n ∈N, (1.5)

and {
u ∈ H1,

xn+1 = αnu + (1 − αn)J
B1
λ (xn − γA∗(I − J

B2
λ )Axn), n ∈N,

(1.6)
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where J
B1
λ and J

B2
λ are resolvents of B1 and B2, respectively, A∗ is the adjoint operator of

A. They also proved a weak convergence result of Algorithm (1.5) and a strong convergence
result of Algorithm (1.6) when γ ∈ (

0,2/‖A‖2
)
, αn ∈ (0,1), limn→∞ αn = 0 and

∑∞
n=1 αn =

∞. We observe that the parameter λ in above mentioned algorithms depend on the norm of
the operator A; however, the calculation of ‖A‖ is not an easy work in general practice.

In 2015, the problem of finding a common solution of the null point and fixed point
problem was first considered by Takahashi et al. [34]. In 2017, Eslamain et al. [16] studied
the problem of finding a common solution of the split null point problem and the fixed
point problem for maximal monotone mappings and demicontractive mappings, respectively
(also see [20, 21]). It is well known that the class of demicontractive mappings [18, 27]
includes several common types of classes of mappings occurring in nonlinear analysis and
optimization problems.

In our work, inspired and motivated by these researches, we are interested to study the
split null point problem and the fixed point problem for multivalued mappings in Hilbert
spaces. Our main objective is to construct a strongly convergent algorithm without prior
knowledge of the operator norm for solving the considered problem on the class of maximal
monotone mappings and the class of demicontractive multivalued mappings. The paper is
organized as follows. Basic definitions and some useful lemmas for proving our main re-
sult are given in the preliminaries section. Section 3 is our main result. In this section, we
introduce a viscosity-type algorithm [28] by selecting the stepsizes in the similar adaptive
way to López et al. [25] for finding a common solution of the split null point problem and
the fixed point problem for maximal monotone mappings and demicontractive multivalued
mappings, and prove a strong convergence result of the proposed algorithm under some suit-
able conditions. In Sect. 4, we apply our main problem to the split feasibility problem and
the split minimization problem. Finally, in Sect. 5, we provide some numerical results to
demonstrate the convergence behavior of our algorithm and to support our main theorem.

2 Preliminaries

We denote the weak and strong convergence of a sequence {xn} ⊂ H to x ∈ H by xn ⇀ x

and xn → x, respectively.
Let E be a nonempty closed convex subset of H. The (metric) projection from H onto

E, denoted by PE is defined for each x ∈ H, PEx is the unique element in E such that

‖x − PEx‖ = d(x,E) := inf{‖x − z‖ : z ∈ E}.

It is well known that u = PEx if and only if 〈x − u, z − u〉 ≤ 0 for all z ∈ E. A mapping
T : E → E is called directed if F(T ) := {x ∈ E : T x = x} �= ∅ and

‖x − T x‖2 ≤ 〈x − T x,x − p〉 for all x ∈ E,p ∈ F(T ).

Let D be a nonempty subset of E. A mapping f : E → E is called a β-contraction with
respect to D, where β ∈ [0,1) if ‖f (x) − f (z)‖ ≤ β‖x − z‖ for all x ∈ E,z ∈ D; f is
called a β-contraction if f is a β-contraction with respect to E.

We now recall some notations and definitions on multivalued mappings. Let U : E → 2E

be a multivalued mapping. An element p ∈ E is called a fixed point of U if p ∈ Up. The
set of all fixed points of U is also denoted by F(U). We say that U satisfies the endpoint
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condition if Up = {p} for all p ∈ F(U). We denote by CB(E) the family of all nonempty
closed bounded subsets of E. The Pompeiu-Hausdorff metric on CB(E) is defined by

H(C,D) := max

{
sup
x∈C

d(x,D), sup
z∈D

d(z,C)

}

for all C,D ∈ CB(E).

Definition 2.1 Let E be a nonempty closed convex subset of H. A multivalued mapping
U : E → CB(E) is said to be

(i) nonexpansive if

H(Ux,Uz) ≤ ‖x − z‖ for all x, z ∈ E,

(ii) quasi-nonexpansive if F(U) �= ∅ and

H(Ux,Up) ≤ ‖x − p‖ for all x ∈ E,p ∈ F(U),

(iii) demicontractive [12, 19] if F(U) �= ∅ and there exists κ ∈ [0,1) such that

H(Ux,Up)2 ≤ ‖x − p‖2 + κd(x,Ux)2 for all x ∈ E,p ∈ F(U).

It is observed in Definition 2.1 that the class of demicontractive mappings includes
classes of quasi-nonexpansive mappings and nonexpansive mappings with nonempty fixed
point sets. We give an example of demicontractive multivalued mappings which is not quasi-
nonexpansive as follows.

Example 2.2 [22] Let H = R. For each i ∈ N, define Ui :R→ 2R by

Uix =
{

[− (2i+1)x

2 ,−(i + 1)x], if x ≤ 0,

[−(i + 1)x,− (2i+1)x

2 ], if x > 0.

Then, Ui is demicontractive with a constant κi = 4i2+8i

4i2+12i+9
∈ (0,1).

Lemma 2.3 Let E be a nonempty closed convex subset of H. Let U : E → CB(E) be a
κ-demicontractive multivalued mapping. Then we have

(i) F(U) is closed;
(ii) If U satisfies the endpoint condition, then F(U) is convex.

Proof (i) Let {pn} ⊂ F(U) be a sequence such that pn → p as n → ∞. Since U is κ-
demicontractive, we have

d(p,Up) ≤ ‖p − pn‖ + d(pn,Up)

≤ ‖p − pn‖ + H(Upn,Up)

≤ 2‖p − pn‖ + √
κd(p,Up).

By taking n → ∞ into above inequality, we have d(p,Up) ≤ √
κd(p,Up). This implies

that d(p,Up) = 0, that is, p ∈ F(U). Hence F(U) is closed.
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(ii) Suppose that Up = {p} for all p ∈ F(U). Let x, y ∈ F(U) and α ∈ (0,1). Take
z := αx + (1 − α)y, and let v ∈ Uz. By the demicontractivity of U , we have

d(z,Uz)2 ≤ ‖z − v‖2

= ‖α(x − v) + (1 − α)(y − v)‖2

= α‖x − v‖2 + (1 − α)‖y − v‖2 − α(1 − α)‖x − y‖2

= αd(v,Ux)2 + (1 − α)d(v,Uy)2 − α(1 − α)‖x − y‖2

≤ αH(Uz,Ux)2 + (1 − α)H(Uz,Uy)2 − α(1 − α)‖x − y‖2

≤ α‖x − z‖2 + (1 − α)‖y − z‖2 − α(1 − α)‖x − y‖2 + κd(z,Uz)2

= α(1 − α)2‖x − y‖2 + α2(1 − α)‖x − y‖2 − α(1 − α)‖x − y‖2 + κd(z,Uz)2

= α(1 − α)(1 − α + α − 1)‖x − y‖2 + κd(z,Uz)2 = κd(z,Uz)2,

which implies d(z,Uz)2 = 0, i.e., z ∈ F(U). Therefore, F(U) is convex. �

Definition 2.4 Let E be a nonempty closed convex subset of H and let U : E → CB(E) be
a multivalued mapping. We say that I − U is demiclosed at zero if for any sequence {xn} in
E which converges weakly to p ∈ E and the sequence {‖xn − zn‖} converges strongly to 0,
where zn ∈ Uxn, then p ∈ F(U).

Let us recall the maximal monotone mapping.

Definition 2.5 A multivalued mapping B : H → 2H is called maximal monotone if B is
monotone, i.e.,

〈x − z,u − w〉 ≥ 0 for all x, z ∈ dom(B),u ∈ Bx,w ∈ Bz,

where dom(B) := {x ∈ H : Bx �= ∅}, and the graph G(B) of B ,

G(B) := {(x,u) ∈ H×H : u ∈ Bx},

is not properly contained in the graph of any other monotone mapping.

Let B : H → 2H be a maximal monotone mapping and λ > 0. The resolvent of B with
parameter λ is defined by

JB
λ := (I + λB)−1.

It is well known [3] that JB
λ : H → dom(B) is single-valued, firmly nonexpansive, i.e., for

any x, z ∈ H,

‖JB
λ x − JB

λ z‖2 ≤ 〈JB
λ x − JB

λ z, x − z〉.
Moreover, F(JB

λ ) = B−10 and I − JB
λ is demiclosed at zero.

Let g : H → (−∞,∞] be proper. A subdifferential ∂g of g at x ∈ H is defined by

∂g(x) := {u ∈ H : g(x) + 〈u, z − x〉 ≤ g(z), ∀z ∈ H}.
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The set of minimizers of g is defined by

Argming := {x ∈ H : g(x) ≤ g(z), ∀z ∈ H}.
Note that if g is a proper, lower semicontinuous and convex function, then ∂g is a maximal
monotone mapping (see [29]). In this case, the resolvent J

∂g

λ of ∂g is called the proximity
operator [3] of λg, and is denoted by Proxλg .

Example 2.6 Let E be a nonempty closed convex subset of H. Define an indicator function
iE : H → (−∞,∞] of E by

iE(x) :=
{

0, if x ∈ E,

∞, if x /∈ E.

One can see that

∂iE(x) = NE(x) :=
{

{u ∈ H : 〈u, z − x〉 ≤ 0, ∀z ∈ E}, if x ∈ E,

∅, otherwise.

Since iE is a proper, lower semicontinuous and convex function, we have ∂iE = NE is max-
imal monotone and J

∂iE
λ = J

NE
λ = PE for all λ > 0. Note that we call NE the normal cone

to E.

We next give some significant facts and tools for proving our main result.

Lemma 2.7 Let x, z ∈ H, ϑ ∈R. Then the following inequalities hold on H:

(i) ‖x + z‖2 ≤ ‖x‖2 + 2〈z, x + z〉;
(ii) ‖ϑx + (1 − ϑ)z‖2 = ϑ‖x‖2 + (1 − ϑ)‖z‖2 − ϑ(1 − ϑ)‖x − z‖2.

Lemma 2.8 ([35]) Suppose that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − μn)an + μnσn + τn, n ∈ N,

where {μn}, {σn} and {τn} satisfy the following conditions:

(i) {μn} ⊂ [0,1], ∑∞
n=1 μn = ∞;

(ii) lim supn σn ≤ 0 or
∑∞

n=1 |μnσn| < ∞;
(iii) τn ≥ 0 for all n ∈N,

∑∞
n=1 τn < ∞.

Then limn→∞ an = 0.

Lemma 2.9 ([26]) Let {rn} be a sequence of real numbers such that there exists a subse-
quence {ni} of {n} which satisfies rni

< rni+1 for all i ∈ N. Define a sequence of positive
integers {ρ(n)} by

ρ(n) := max{m ≤ n : rm < rm+1}
for all n ≥ n0 (for some n0 large enough). Then {ρ(n)} is a nondecreasing sequence such
that ρ(n) → ∞ as n → ∞, and it holds that

rρ(n) ≤ rρ(n)+1, rn ≤ rρ(n)+1.



A Self-Adaptive Algorithm for Split Null Point Problems and Fixed Point. . . 889

3 Main Result

To prove our main result, we need the following useful lemma.

Lemma 3.1 Let A : H1 → H2 be a bounded linear operator, and let T : H2 → H2 be a
directed mapping with A−1(F (T )) �= ∅. If x ∈ H1 with Ax �= T (Ax) and p ∈ A−1(F (T )),
then

‖x − γA∗(I − T )Ax − p‖2 ≤ ‖x − p‖2 − (2 − ξ)ξ
‖(I − T )Ax‖4

‖A∗(I − T )Ax‖2
, (3.1)

where

γ := ξ‖(I − T )Ax‖2

‖A∗(I − T )Ax‖2

and ξ ∈ (0,2).

Proof Let x ∈ H1 with Ax �= T (Ax) and p ∈ A−1(F (T )). If A∗(I − T )Ax = 0, by the
property of a directed mapping T , we have

‖(I − T )Ax‖2 ≤ 〈(I − T )Ax,Ax − Ap〉 = 〈A∗(I − T )Ax,x − p〉 = 0,

which is a contradiction. Thus, A∗(I − T )Ax �= 0 and hence γ is well defined. Since T is
directed,

‖x − γA∗(I − T )Ax − p‖2 = ‖x − p‖2 − 2γ 〈A∗(I − T )Ax,x − p〉
+ γ 2‖A∗(I − T )Ax‖2

= ‖x − p‖2 − 2γ 〈(I − T )Ax,Ax − Ap〉
+ γ 2‖A∗(I − T )Ax‖2

≤ ‖x − p‖2 − 2γ ‖(I − T )Ax‖2 + γ 2‖A∗(I − T )Ax‖2

= ‖x − p‖2 − (2 − ξ)ξ
‖(I − T )Ax‖4

‖A∗(I − T )Ax‖2
. �

We now state and prove our main theorem.

Theorem 3.2 Let H1 and H2 be two real Hilbert spaces and C be a nonempty closed
convex subset of H1. Let A : H1 → H2 be a bounded linear operator. Let U : C → CB(C)

be a κ-demicontractive multivalued mapping. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be
maximal monotone mappings such that dom(B1) is included in C, and let J

B1
λ and J

B2
λ

be resolvents of B1 and B2, respectively for λ > 0. Assume that � := F(U) ∩ � �= ∅, where
� = {

x ∈ B−1
1 0 : Ax ∈ B−1

2 0
}
. Let f : C → C be a β-contraction with respect to �. Suppose

that {xn} is a sequence generated iteratively by x1 ∈ C and

⎧⎪⎨
⎪⎩

yn = J
B1
λn

(xn − γnA
∗(I − J

B2
λn

)Axn),

un = (1 − ϑn)yn + ϑnzn,

xn+1 = αnf (xn) + (1 − αn)un, n ∈N,

(3.2)
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where zn ∈ Uyn, the stepsize γn is selected in such a way:

γn :=

⎧⎪⎨
⎪⎩

ξn

∥∥∥(I−J
B2
λn

)Axn

∥∥∥2

∥∥∥A∗(I−J
B2
λn

)Axn

∥∥∥2 , if Axn /∈ B−1
2 0,

1, otherwise,

(3.3)

and the real sequences {αn}, {λn}, {ϑn} and {ξn} satisfy the following conditions:

(C1) αn ∈ (0,1) such that limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) λn ∈ (0,∞) such that lim infn→∞ λn > 0;
(C3) 0 < a ≤ ϑn ≤ b < 1 − κ ;
(C4) 0 < c ≤ ξn ≤ d < 2.

If U satisfies the endpoint condition and I −U is demiclosed at zero, then the sequence {xn}
converges strongly to a point x∗ ∈ �, where x∗ = P�f (x∗).

Proof By Lemma 2.3, we have F(U) is closed and convex, and hence � is also closed and
convex. One can show that P�f is a contraction on � and it follows from Banach fixed point
theorem that x∗ = P�f (x∗) for some x∗ ∈ �. By characterization of the metric projection
P�, we have

〈f (x∗) − x∗,p − x∗〉 ≤ 0 for all p ∈ �. (3.4)

Since x∗ ∈ �, we have Ux∗ = {x∗}, J
B1
λn

x∗ = x∗ and J
B2
λn

(Ax∗) = Ax∗. We first show that
{xn} is bounded. By Lemma 2.7 (ii) and the demicontractivity of U with the constant κ , we
have

‖un − x∗‖2 = ∥∥(1 − ϑn)(yn − x∗) + ϑn(zn − x∗)
∥∥2

= (1 − ϑn)‖yn − x∗‖2 + ϑn‖zn − x∗‖2 − ϑn(1 − ϑn)‖yn − zn‖2

= (1 − ϑn)‖yn − x∗‖2 + ϑnd(zn,Ux∗)2 − ϑn(1 − ϑn)‖yn − zn‖2

≤ (1 − ϑn)‖yn − x∗‖2 + ϑnH(Uyn,Ux∗)2 − ϑn(1 − ϑn)‖yn − zn‖2

≤ (1 − ϑn)‖yn − x∗‖2 + ϑn

(‖yn − x∗‖2 + κ d(yn,Uyn)
2
)

− ϑn(1 − ϑn)‖yn − zn‖2

≤ (1 − ϑn)‖yn − x∗‖2 + ϑn‖yn − x∗‖2 + ϑnκ‖yn − zn‖2

− ϑn(1 − ϑn)‖yn − zn‖2

= ‖yn − x∗‖2 − ϑn(1 − κ − ϑn)‖yn − zn‖2. (3.5)

By the firm nonexpansivity of J
B2
λn

, we have J
B2
λn

is a directed mapping. If Axn /∈ B−1
2 0, then

J
B2
λn

(Axn) �= Axn and it follows from Lemma 3.1 that

‖yn − x∗‖2 = ‖JB1
λn

(xn − γnA
∗(I − J

B2
λn

)Axn) − x∗‖2

≤ ‖xn − γnA
∗(I − J

B2
λn

)Axn − x∗‖2

≤ ‖xn − x∗‖2 − (2 − ξn)ξn

‖(I − J
B2
λn

)Axn‖4

‖A∗(I − J
B2
λn

)Axn‖2
(3.6)
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≤ ‖xn − x∗‖2 − (2 − ξn)ξn

‖A‖2
‖(I − J

B2
λn

)Axn‖2. (3.7)

Note that in the case of Axn ∈ B−1
2 0, we have J

B2
λn

(Axn) = Axn. This implies that ‖yn −
x∗‖2 = ‖JB1

λn
xn − J

B1
λn

x∗‖2 ≤ ‖xn − x∗‖2 and hence (3.7) still holds. By substituting (3.7)
into (3.5), we have

‖un − x∗‖2 ≤ ‖xn − x∗‖2 − (2 − ξn)ξn

‖A‖2
‖(I − J

B2
λn

)Axn‖2

− ϑn(1 − κ − ϑn)‖yn − zn‖2. (3.8)

It follows that ‖un − x∗‖ ≤ ‖xn − x∗‖. Thus, we have

‖xn+1 − x∗‖ = ‖αn(f (xn) − x∗) + (1 − αn)(un − x∗)‖
≤ αn‖f (xn) − x∗‖ + (1 − αn)‖un − x∗‖
≤ αn(‖f (xn) − f (x∗)‖ + ‖f (x∗) − x∗‖) + (1 − αn)‖xn − x∗‖
≤ αn(β‖xn − x∗‖ + ‖f (x∗) − x∗‖) + (1 − αn)‖xn − x∗‖

= (1 − αn(1 − β))‖xn − x∗‖ + αn(1 − β)
‖f (x∗) − x∗‖

1 − β

≤ max

{
‖xn − x∗‖, ‖f (x∗) − x∗‖

1 − β

}
.

By mathematical induction, we obtain

‖xn − x∗‖ ≤ max

{
‖x1 − x∗‖, ‖f (x∗) − x∗‖

1 − β

}

for all n ∈ N. Therefore, {xn} is bounded. This implies that {f (xn)} and {yn} are also
bounded. Now, from (3.8), we have

‖xn+1 − x∗‖2 = ‖αn(f (xn) − x∗) + (1 − αn)(un − x∗)‖2

≤ αn‖f (xn) − x∗‖2 + (1 − αn)‖un − x∗‖2

≤ αn‖f (xn) − x∗‖2 + ‖xn − x∗‖2 − (2 − ξn)ξn

‖A‖2
‖(I − J

B2
λn

)Axn‖2

− ϑn(1 − κ − ϑn)‖yn − zn‖2. (3.9)

By (3.9), we obtain the following two inequalities

(2 − ξn)ξn

‖A‖2
‖(I − J

B2
λn

)Axn‖2 ≤ αn‖f (xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 (3.10)

and

ϑn(1 − κ − ϑn)‖yn − zn‖2 ≤ αn‖f (xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2. (3.11)

We next divide the rest of the proof into two cases.



892 S. Suantai, P. Jailoka

Case 1: Assume that there exists n0 ∈ N such that {‖xn − x∗‖}n≥n0 is either nonincreas-
ing or nondecreasing. Since {‖xn − x∗‖} is bounded, then it converges and ‖xn − x∗‖2 −
‖xn+1 − x∗‖2 → 0 as n → ∞. Inequalities (3.10), (3.11) and our control conditions (C1)–
(C4) yield

lim
n→∞‖(I − J

B2
λn

)Axn‖ = 0 (3.12)

and

lim
n→∞‖yn − zn‖ = 0. (3.13)

If Axn ∈ B−1
2 0, then γn‖A∗(I − J

B2
λn

)Axn‖ = 0. Thus, we assume that Axn /∈ B−1
2 0. By

substituting (3.6) into (3.5), we have

‖un − x∗‖2 ≤ ‖xn − x∗‖2 − (2 − ξn)γn‖(I − J
B2
λn

)Axn‖2,

which implies that

‖xn+1 − x∗‖2 ≤ αn‖f (xn) − x∗‖2 + (1 − αn)‖un − x∗‖2

≤ αn‖f (xn) − x∗‖2 + ‖xn − x∗‖2 − (2 − ξn)γn‖(I − J
B2
λn

)Axn‖2

or

(2 − ξn)γn‖(I − J
B2
λn

)Axn‖2 ≤ αn‖f (xn) − x∗‖2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2.

It follows from (C1), (C2) and (C4) that γn‖(I − J
B2
λn

)Axn‖2 → 0 as n → ∞. This implies
that

lim
n→∞γn‖A∗(I − J

B2
λn

)Axn‖ = 0. (3.14)

By the firm nonexpansivity of J
B1
λn

and Lemma 3.1, we have

‖yn − x∗‖2 = ‖JB1
λn

(xn − γnA
∗(I − J

B2
λn

)Axn) − J
B1
λn

x∗‖2

≤ 〈JB1
λn

(xn − γnA
∗(I − J

B2
λn

)Axn) − J
B1
λn

x∗, xn − γnA
∗(I − J

B2
λn

)Axn − x∗〉
= 〈yn − x∗, xn − γnA

∗(I − J
B2
λn

)Axn − x∗〉

= 1

2

(
‖yn − x∗‖2 + ‖xn − γnA

∗(I − J
B2
λn

)Axn − x∗‖2

− ‖yn − xn − γnA
∗(J B2

λn
− I )Axn‖2

)

≤ 1

2

(
‖yn − x∗‖2 + ‖xn − x∗‖2 − ‖yn − xn − γnA

∗(J B2
λn

− I )Axn‖2
)

= 1

2

(
‖yn − x∗‖2 + ‖xn − x∗‖2 − ‖yn − xn‖2 − γ 2

n ‖A∗(J B2
λn

− I )Axn‖2

+ 2γn〈yn − xn,A
∗(J B2

λn
− I )Axn〉

)
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≤ 1

2

(
‖yn − x∗‖2 + ‖xn − x∗‖2 − ‖yn − xn‖2 − γ 2

n ‖A∗(J B2
λn

− I )Axn‖2

+ 2γn‖yn − xn‖‖A∗(J B2
λn

− I )Axn‖
)
,

which implies that

‖yn − x∗‖2 ≤ ‖xn − x∗‖2 − ‖yn − xn‖2 + 2γn‖yn − xn‖‖A∗(I − J
B2
λn

)Axn‖. (3.15)

Since U is κ-demicontractive, it follows from (3.15) that

‖xn+1 − x∗‖2 ≤ αn‖f (xn) − x∗‖2 + (1 − αn)‖un − x∗‖2

≤ αn‖f (xn) − x∗‖2 + (1 − αn)
(
(1 − ϑn)‖yn − x∗‖2 + ϑn‖zn − x∗‖2

)
≤ αn‖f (xn) − x∗‖2 + (1 − ϑn)‖yn − x∗‖2 + ϑn d(zn,Ux∗)2

≤ αn‖f (xn) − x∗‖2 + (1 − ϑn)‖yn − x∗‖2 + ϑnH(Uyn,Ux∗)2

≤ αn‖f (xn) − x∗‖2 + (1 − ϑn)‖yn − x∗‖2 + ϑn‖yn − x∗‖2

+ ϑnκ d(yn,Uyn)
2

≤ αn‖f (xn) − x∗‖2 + ‖yn − x∗‖2 + ϑnκ‖yn − zn‖2

≤ αn‖f (xn) − x∗‖2 + ‖xn − x∗‖2 − ‖yn − xn‖2

+ 2γn‖yn − xn‖‖A∗(I − J
B2
λn

)Axn‖ + ϑnκ‖yn − zn‖2. (3.16)

By (3.12), (3.13), (3.14) and (3.16), we deduce that

‖yn − xn‖2 ≤ αn‖f (xn) − x∗‖2 + 2γn‖yn − xn‖‖A∗(I − J
B2
λn

)Axn‖ + ϑnκ‖yn − zn‖2

+ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 → 0

as n → ∞, which implies that ‖yn − xn‖ → 0 as n → ∞. We next show that

lim sup
n→∞

〈f (x∗) − x∗, xn − x∗〉 ≤ 0.

To show this, let {xnj
} be a subsequence of {xn} such that

lim
j→∞

〈f (x∗) − x∗, xnj
− x∗〉 = lim sup

n→∞
〈f (x∗) − x∗, xn − x∗〉.

Since {xnj
} is bounded, there exists a subsequence {xnjk

} of {xnj
} and p ∈ H1 such that

xnjk
⇀ p. Without loss of generality, we can assume that xnj

⇀ p. Since A is a bounded
linear operator, we have 〈z,Axnj

− Ap〉 = 〈A∗z, xnj
− p〉 → 0 as j → ∞, for all z ∈ H2,

this implies that Axnj
⇀ Ap. From (3.12) and by the demiclosedness of I −J

B2
λn

at zero, we

get Ap ∈ F(J
B2
λn

) = B−1
2 0. Since xnj

⇀ p and ‖yn − xn‖ → 0 as n → ∞, we have ynj
⇀ p.

From (3.13) and by the demiclosedness of I − U at zero, we obtain p ∈ F(U). Now let us
show that p ∈ B−1

1 0. From yn = J
B1
λn

(xn − γnA
∗(I − J

B2
λn

)Axn), then we can easily prove
that

1

λn

(xn − yn − γnA
∗(I − J

B2
λn

)Axn) ∈ B1yn.
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By the monotonicity of B1, we have

〈yn − v,
1

λn

(xn − yn − γnA
∗(I − J

B2
λn

)Axn) − w〉 ≥ 0

for all (v,w) ∈ G(B1). Thus, we also have

〈ynj
− v,

1

λnj

(xnj
− ynj

− γnA
∗(I − J

B2
λnj

)Axnj
) − w〉 ≥ 0 (3.17)

for all (v,w) ∈ G(B1). Since ynj
⇀ p, ‖xnj

− ynj
‖ → 0 and ‖(I − J

B2
λnj

)Axnj
‖ → 0 as

j → ∞, then by taking the limit as j → ∞ in (3.17) yields

〈p − v,−w〉 ≥ 0

for all (v,w) ∈ G(B1). By the maximal monotonicity of B1, we get 0 ∈ B1p, i.e., p ∈ B−1
1 0.

Therefore, p ∈ �. Since x∗ satisfies inequality (3.4), we have

lim sup
n→∞

〈f (x∗) − x∗, xn − x∗〉 = lim
j→∞

〈f (x∗) − x∗, xnj
− x∗〉 = 〈f (x∗) − x∗,p − x∗〉 ≤ 0.

By Lemma 2.7 (i), we have

‖xn+1 − x∗‖2 = ‖(1 − αn)(un − x∗) + αn(f (xn) − x∗)‖2

≤ (1 − αn)
2‖un − x∗‖2 + 2αn〈f (xn) − x∗, xn+1 − x∗〉

= (1 − αn)
2‖un − x∗‖2 + 2αn〈f (xn) − f (x∗), xn+1 − x∗〉

+ 2αn〈f (x∗) − x∗, xn+1 − x∗〉
≤ (1 − αn)

2‖xn − x∗‖2 + 2αnβ‖xn − x∗‖‖xn+1 − x∗‖
+ 2αn〈f (x∗) − x∗, xn+1 − x∗〉

≤ (1 − αn)
2‖xn − x∗‖2 + αnβ(‖xn − x∗‖2 + ‖xn+1 − x∗‖2)

+ 2αn〈f (x∗) − x∗, xn+1 − x∗〉.

Thus,

‖xn+1 − x∗‖2 ≤ (1 − αn)
2 + αnβ

1 − αnβ
‖xn − x∗‖2 + 2αn

1 − αnβ
〈f (x∗) − x∗, xn+1 − x∗〉

=
(

1 − (1 − β)αn

1 − αnβ

)
‖xn − x∗‖2 + (αn − (1 − β))αn

1 − αnβ
‖xn − x∗‖2

+ 2αn

1 − αnβ
〈f (x∗) − x∗, xn+1 − x∗〉

≤
(

1 − (1 − β)αn

1 − αnβ

)
‖xn − x∗‖2

+ (1 − β)αn

1 − αnβ

{(
αn

1 − β
− 1

)
M + 2

1 − β
〈f (x∗) − x∗, xn+1 − x∗〉

}
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= (1 − μn)‖xn − x∗‖2 + μnσn, (3.18)

where M = sup{‖xn − x∗‖2 : n ∈ N}, μn = (1−β)αn

1−αnβ
, and σn =

(
αn

1−β
− 1

)
M + 2

1−β
〈f (x∗) −

x∗, xn+1 − x∗〉. Clearly, {μn} ⊂ [0,1], ∑∞
n=1 μn = ∞ and lim supn σn ≤ 0. Hence, by apply-

ing Lemma 2.8 to (3.18), we can conclude that xn → x∗ as n → ∞.

Case 2: Suppose that {‖xn − x∗‖} is not a monotone sequence. Then there exists a sub-
sequence {ni} of {n} such that ‖xni

− x∗‖ < ‖xni+1 − x∗‖ for all i ∈ N. We now define a
positive integer sequence {ρ(n)} by

ρ(n) := max{m ≤ n : ‖xm − x∗‖ < ‖xm+1 − x∗‖}

for all n ≥ n0 (for some n0 large enough). By Lemma 2.9, we have {ρ(n)} is a nondecreasing
sequence such that ρ(n) → ∞ as n → ∞ and

‖xρ(n) − x∗‖2 − ‖xρ(n)+1 − x∗‖2 ≤ 0

for all n ≥ n0. From (3.10), we obtain

lim
n→∞‖(I − J

B2
λρ(n)

)Axρ(n)‖ = 0. (3.19)

From (3.11), we have

lim
n→∞‖yρ(n) − zρ(n)‖ = 0. (3.20)

By (3.19), (3.20) and by the same proof as in Case 1, we obtain

lim sup
n→∞

〈f (x∗) − x∗, xρ(n) − x∗〉 ≤ 0.

By the same computation as in Case 1, we deduce that

‖xρ(n)+1 − x∗‖2 ≤ (1 − μρ(n))‖xρ(n) − x∗‖2 + μρ(n)σρ(n), (3.21)

where μρ(n) = (1−β)αρ(n)

1−αρ(n)β
, σρ(n) =

(
αρ(n)

1−β
− 1

)
M + 2

1−β
〈f (x∗) − x∗, xρ(n)+1 − x∗〉 and M =

sup{‖xρ(n) − x∗‖2 : n ∈ N}. Clearly, lim supn σρ(n) ≤ 0. Since ‖xρ(n) − x∗‖2 ≤ ‖xρ(n)+1 −
x∗‖2, it follows from (3.21) that ‖xρ(n) − x∗‖2 ≤ σρ(n). This implies that ‖xρ(n) − x∗‖ → 0
as n → ∞. It follows from Lemma 2.9 and (3.21) that

0 ≤ ‖xn − x∗‖ ≤ ‖xρ(n)+1 − x∗‖ → 0

as n → ∞. Hence {xn} converges strongly to x∗. This completes the proof. �

Remark 3.3 We have some observations on Theorem 3.2.

(i) The stepsize γn defined by (3.3) does not depend on ‖A‖ (in fact, it depends on xn).
(ii) Taking f (x) = u for some u ∈ C, Algorithm (3.2) becomes the Halpern-type algorithm.

In particular, if u = 0 (in the case that 0 ∈ C), then {xn} converges to x∗, where x∗ is the
minimum norm solution in �.
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4 Applications

4.1 The Split Feasibility Problem

Let C and Q are nonempty closed convex subsets of H1 and H2, respectively, and let A :
H1 → H2 be a bounded linear operator. Recall that the split feasibility problem (SFP) is to
find a point

x∗ ∈ C such that Ax∗ ∈ Q. (4.1)

Applying Theorem 3.2, we obtain a strongly convergent algorithm which is independent
of the operator norms for finding a common solution of the SFP (4.1) and the fixed point
problem for demicontractive multivalued mappings as follows.

Theorem 4.1 Let C and Q be nonempty closed convex subsets of H1 and H2, respec-
tively, and let A : H1 → H2 be a bounded linear operator. Let U : C → CB(C) be
a κ-demicontractive multivalued mapping. Assume that � := F(U) ∩ A−1(Q) �= ∅. Let
f : C → C be a β-contraction with respect to �. Suppose that {xn} is a sequence generated
iteratively by x1 ∈ C and

⎧⎪⎨
⎪⎩

yn = PC(xn − γnA
∗(I − PQ)Axn),

un = (1 − ϑn)yn + ϑnzn,

xn+1 = αnf (xn) + (1 − αn)un, n ∈N,

(4.2)

where zn ∈ Uyn, the stepsize γn is selected in the same way as in [25]:

γn :=
⎧⎨
⎩

ξn‖(I−PQ)Axn‖2

‖A∗(I−PQ)Axn‖2 , if Axn /∈ Q,

1, otherwise,
(4.3)

and the sequences {αn}, {ϑn} and {ξn} satisfy (C1), (C3) and (C4) in Theorem 3.2. If U

satisfies the endpoint condition and I − U is demiclosed at zero, then the sequence {xn}
converges strongly to a point x∗ ∈ �, where x∗ = P�f (x∗).

Proof Setting B1 := NC = ∂iC and B2 := NQ = ∂iQ, we have B1 and B2 are maximal mono-
tone. We also have J

B1
λ = PC and J

B2
λ = PQ for λ > 0, and B−1

1 0 = C and B−1
2 0 = Q. Thus,

the result is obtained directly by Theorem 3.2. �

4.2 The Split Minimization Problem

Let g1 : H1 → (−∞,∞] and g2 : H2 → (−∞,∞] be two proper, lower semicontinuous and
convex functions, and let A : H1 → H2 be a bounded linear operator. The split minimization
problem (SMP) is to find a point x∗ ∈ H1 such that

x∗ ∈ Argming1 and Ax∗ ∈ Argming2. (4.4)

Applying Theorem 3.2, we get a strongly convergent algorithm which is independent
of the operator norms for finding a common solution of the SMP (4.4) and the fixed point
problem for demicontractive multivalued mappings as follows.
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Theorem 4.2 Let A : H1 → H2 be a bounded linear operator. Let U : H1 → CB(H1) be a
κ-demicontractive multivalued mapping. Let g1 : H1 → (−∞,∞] and g2 : H2 → (−∞,∞]
be two proper, lower semicontinuous and convex functions. Assume that � := F(U)∩� �= ∅,
where � = {x ∈ Argming1 : Ax ∈ Argming2}. Let f : H1 → H1 be a β-contraction with
respect to �. Suppose that {xn} is a sequence generated iteratively by x1 ∈ H1 and

⎧⎪⎨
⎪⎩

yn = Proxλng1(xn − γnA
∗(I − Proxλng2)Axn),

un = (1 − ϑn)yn + ϑnzn,

xn+1 = αnf (xn) + (1 − αn)un, n ∈N,

(4.5)

where zn ∈ Uyn, the stepsize γn is selected in such a way:

γn :=

⎧⎪⎨
⎪⎩

ξn

∥∥∥(I−Proxλng2 )Axn

∥∥∥2

∥∥∥A∗(I−Proxλng2 )Axn

∥∥∥2 , if Axn /∈ Argming2,

1, otherwise,

(4.6)

and the sequences {αn}, {λn}, {ϑn} and {ξn} satisfy (C1)–(C4) in Theorem 3.2. If U satisfies
the endpoint condition and I − U is demiclosed at zero, then the sequence {xn} converges
strongly to a point x∗ ∈ �, where x∗ = P�f (x∗).

Proof Taking C = H1, B1 := ∂g1 and B2 := ∂g2, we have B1 and B2 are maximal mono-
tone. One can show that Argming1 = (∂g1)

−10 = B−1
1 0 and Argming2 = (∂g2)

−10 = B−1
2 0.

Therefore, the result is obtained immediately by Theorem 3.2. �

5 Numerical Examples

We first give a numerical example of Theorem 3.2 to demonstrate the convergence behavior
of Algorithm (3.2).

Example 5.1 Let H1 = C = R and H2 = R
3 with the usual norms. Define a multivalued

mapping U :R → CB(R) by

Ux :=
{[− 11x

2 ,−6x
]
, if x ≤ 0,[−6x,− 11x

2

]
, if x > 0.

By Example 2.2, U is demicontractive with a constant κ = 140
169 . Let B1 :R→ 2R be defined

by

B1(x) :=
{{

u ∈R : z2 + xz − 2x2 ≥ (z − x)u, ∀z ∈ [−9,3]} , if x ∈ [−9,3],
∅, otherwise.

By [33, Theorem 4.2], B1 is maximal monotone. Define a maximal monotone mapping
B2 :R3 → 2R

3
by B2 := ∂g, where g :R3 →R is a function defined by

g(x, y, z) = |2x − 5y + 3z|2
2

.
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Table 1 Numerical experiment
of Algorithm (5.1) f (x) = x/2

n xn En

1 10 –

2 1.2416232 8.7583768

3 0.1269221 1.1147011

4 0.0112343 0.1156878

5 0.0008861 0.0103483

6 0.0000635 0.0008226

7 0.0000042 0.0000593

8 0.0000003 0.0000039

9 1.501E-08 0.0000002

10 8.247E-10 1.418E-08

Thus, the explicit forms of the resolvents of B1 and B2 can be written by J
B1
1 x = x/4 and

J
B2
1 = Proxg = P −1, where

P =
⎛
⎝ 5 −10 6

−10 26 −15
6 −15 10

⎞
⎠,

see [14, 30]. Define a bounded linear operator A : R → R
3 by Ax := (15x,6x,−27x). Let

� := F(U) ∩ �, where � = {
x ∈ B−1

1 0 : Ax ∈ B−1
2 0

}
. Put the following control sequences:

αn = 1
n+3 , ϑn = n

6n+1 , ξn =
√

3n+1
n+2 , λn = 1 and take zn = − 23

4 yn. Thus, Algorithm (3.2) in

our main theorem becomes

xn+1 = 1

n + 3
f (xn) + 1

16

(
n + 2

n + 3

)(−3n + 4

6n + 1

)(
xn − γnA

� (
I − P −1

)
Axn

)
, (5.1)

where

γn =
⎧⎨
⎩

√
3n+1
n+2

‖(I−P−1)Axn‖2

‖A�(I−P−1)Axn‖2 , if Axn �= P −1(Axn),

1, otherwise,

and f : R→R is a contraction with respect to �.
Let us start with the initial point x1 = 10 and the stopping criterion for our testing pro-

cess is set as: En := |xn − xn−1| < 10−7. In Table 1, a numerical experiment of Algorithm
(5.1) is shown by taking f (x) = x/2. In Table 2, we show the numbers of iterations of Al-
gorithm (5.1) by considering different contractions in the form of f (x) = βx (0 < β < 1)

and constant functions.

Remark 5.2 By testing the convergence behavior of Algorithm (5.1) in Example 5.1, we
observe that

(i) Algorithm (5.1) converges to a solution, i.e., xn → 0 ∈ �.
(ii) A contraction f in our algorithm influences the convergence behavior. Namely, se-

lecting non-constant functions make our algorithm more efficient than using constant
functions in terms of the number of iterations and the approximate solution. So, our
algorithm is more general and desirable than the Halpern-type method.
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Table 2 The numbers of
iterations of Algorithm (5.1) by
choosing different contractions

Choices of f n (No. of iterations) xn En

f (x) = βx β = 0.1 7 1.197E-09 5.407E-08

β = 0.3 9 4.349E-10 1.049E-08

β = 0.5 10 8.247E-10 1.418E-08

β = 0.7 11 8.357E-10 1.150E-08

β = 0.9 11 8.164E-09 9.002E-08

f (x) = u u = 0.1 1010 0.0001010 9.987E-08

u = 0.5 2259 0.0002260 9.999E-08

u = 0.9 3032 0.0003031 9.995E-08

u = 1 3196 0.0003196 9.995E-08

u = −1.5 3914 −0.0003914 9.998E-08

Next, we give an example in the infinite-dimensional space L2 for supporting Theo-
rem 3.2.

Example 5.3 Let H1 = C = H2 = L2([0,1]). Let x ∈ L2([0,1]). Define a bounded linear
operator A : L2([0,1]) → L2([0,1]) by

(Ax)(t) :=
∫ 1

0
(t2 + 1)x(t)dt.

Define a mapping U : L2([0,1]) → L2([0,1]) by

(Ux)(t) := sin(x(t)).

Then, U is demicontractive. Let

E1 =
{
u ∈ L2([0,1]) :

∫ 1

0
w(t)u(t)dt ≤ 0

}
,

where 0 �= w ∈ L2([0,1]), and let

E2 = {u ∈ L2([0,1]) : u ≥ 0}.

Define two maximal monotone mappings B1,B2 : L2([0,1]) → 2L2([0,1]) by B1 := NE1 and
B2 := NE2 (see Example 2.6). We can write the explicit forms of the resolvents of B1 and
B2 as follows:

J
B1
λ x = PE1x =

⎧⎨
⎩x −

∫ 1
0 w(t)x(t)dt∫ 1

0 w2(t)dt
w, if x /∈ E1,

x, if x ∈ E1

and J
B2
λ x = PE2x = x+, where x+(t) = max{x(t),0} (see [6]). Now, Algorithm (3.2) has

the following form:{
yn = PE1(xn − γnA

∗(I − PE2)Axn),

xn+1 = αnf (xn) + (1 − αn)((1 − ϑn)yn + ϑnUyn),
(5.2)
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where

γn =

⎧⎪⎨
⎪⎩

ξn

∥∥∥(I−PE2 )Axn

∥∥∥2

∥∥∥A∗(I−PE2 )Axn

∥∥∥2 , if Axn /∈ E2,

1, otherwise.

By choosing a contraction f : L2([0,1]) → L2([0,1]) and the control sequences {αn}, {ϑn}
and {ξn} satisfying the conditions (C1), (C3) and (C4) in Theorem 3.2, it can guarantee that
the sequence {xn} generated by (5.2) converges strongly to 0 ∈ � := F(U)∩E1 ∩A−1(E2).

6 Conclusion

In this paper, we consider a problem of finding a common solution of the split null point
problem and the fixed point problem for multivalued mappings in Hilbert spaces. We focus
on the class of maximal monotone mappings and the class of demicontractive multivalued
mappings which including several common types of classes of mappings occurring in non-
linear analysis and optimization problems. Various algorithms were introduced for solving
the problem and most of them depend on the norms of the bounded linear operators; how-
ever, the calculation of the operator norm is not an easy work in general practice. We present
a viscosity-type algorithm which is independent of the operator norms for solving the prob-
lem by selecting the stepsizes in the similar adaptive way to López et al. [25], and obtain
some sufficient conditions for strong convergence of our proposed algorithm. Moreover, our
main result can be applied to solving the split feasibility problem and the split minimization
problem. Numerical examples are also given to support our main result.
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