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Abstract In this paper, we study the global existence of solutions to the Vlasov–Poisson–
Fokker–Planck system in the whole space by using the refined energy method. In the proof,
the a priori estimates on the macroscopic and microscopic components of solutions are
obtained by use of the macroscopic balance laws. As a by-product, the algebraic decay rate
of solutions converge to the global Maxwellian, which established by employing the Fourier
analysis.
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1 Introduction

We are concerned with the following Vlasov–Poisson–Fokker–Planck system

⎧
⎪⎪⎨

⎪⎪⎩

∂tF + v · ∇xF + ∇xφ · ∇vF = LFP F, t ≥ 0, x, v ∈R
3,

�xφ = ´
R3 Fdv − 1,

lim
|x|→∞

φ(t, x) = 0, ∀ t ≥ 0,

(1.1)

with initial data

F(0, x, v) = F0(x, v), (1.2)

where F(t, x, v) is the distribution function of particles at time t ≥ 0, position x =
(x1, x2, x3) ∈ R

3 with velocity v = (v1, v2, v3) ∈ R
3. The potential function φ = φ(t, x) is
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coupled with the distribution function F(t, x, v) through the Poisson equation. The Fokker–
Planck operator LFP is defined by

LFP F = ∇v · (∇vF + vF ).

We next consider the global solutions to Eq. (1.1) near a global Maxwellian μ(v) =
(2π)− 3

2 e− |v|2
2 . The perturbation f (t, x, v) to μ is defined by F = μ + μ

1
2 f . Then Eq. (1.1)

for the perturbation f (t, x, v) can be rewritten as

⎧
⎨

⎩

∂tf + v · ∇xf + ∇xφ · ∇vf − 1
2v · ∇xφf − ∇xφ · vμ

1
2 = LFP f,

�xφ = ´
R3 μ

1
2 f dv, lim|x|→∞φ(t, x) = 0,

(1.3)

with initial data

f (0, x, v) = f0(x, v) = μ− 1
2 (F0 − μ). (1.4)

The Fokker–Planck operator is given by

LFP f = μ− 1
2 ∇v · [μ∇v(μ

− 1
2 f )] = �vf + 1

4
(6 − |v|2)f.

For any fixed (t, x), we define the v-orthogonal projection

P : L2(R3) → span{μ 1
2 , vjμ

1
2 }, (j = 1,2,3)

by

Pf (t, x, v) = {a(t, x) + b(t, x) · v}μ 1
2 , (1.5)

where a, b = (b1, b2, b3) are called the coefficient of the macroscopic component of Pf ,
and evidently, a(t, x) = 〈μ 1

2 , f 〉, and b(t, x) = 〈vμ
1
2 , f 〉.

For fixed (t, x), f (t, x, v) can be uniquely decomposed as

f (t, x, v) = Pf (t, x, v) + {I − P }f (t, x, v), (1.6)

where I denotes the identity operator, Pf and {I − P }f are called the macroscopic and the
microscopic component of f , respectively.

For any function f (t, x, v), we denote

P0f (t, x, v) = a(t, x)μ
1
2 and P1f (t, x, v) = b(t, x) · vμ

1
2 ,

then P can be written as P = P0 ⊕ P1.
Notations. Throughout this paper, we assume that N ≥ 4, and C denotes a positive con-

stant which may change from line to line and only depends on η in some place. In addition,
A ∼ B means that there exists a positive constant c > 0 such that cB ≤ A ≤ 1

c
B . We use 〈·, ·〉

to denote the standard L2 inner product in R
3
v , and (·, ·) to denote the L2 inner product in

R
3
x ×R

3
v or R3

x . The corresponding norms are denoted by | · |2 and ‖ · ‖, respectively. Let the
multi-indices α = (α1, α2, α3), and β = (β1, β2, β3), we denote ∂α

β = ∂
α1
x1 ∂

α2
x2 ∂

α3
x3 ∂β1

v1
∂β2

v2
∂

β3
v3 .

The length of α and β denote by |α| = α1 + α2 + α3 and |β| = β1 + β2 + β3, respectively.
β ≤ α means that βj ≤ αj for j = 1,2,3, while β < α means that β ≤ α and |β| < |α|. We
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use Cβ
α to denote the usual binomial coefficient. Finally, we use HN to denote the Sobolev

space HN(R3
x ×R

3
v) or HN(R3

x).
For the velocity weight function ν = ν(v) is denoted by ν(v) = 1 + |v|2, we define

|f |2ν =
ˆ

R3

(
ν(v)|f |2 + |∇vf |2

)
dx, ‖f ‖2

ν =
ˆ

R3

ˆ

R3

(
ν(v)|f |2 + |∇vf |2

)
dxdv.

The instant energy functional

EN(f (t)) ∼
∑

|α|+|β|≤N

‖∂α
β f (t)‖2 + ‖∇xφ(t)‖2

HN , (1.7)

and the dissipation rate

DN(f (t)) =
∑

0<|α|≤N

‖∂αPf (t)‖2 + ‖b‖2 +
∑

|α|+|β|≤N

‖∂α
β {I − P }f (t)‖2

ν + ‖∇xφ(t)‖2
HN .

(1.8)
In the following, we define the space Z1 = L2(R3

v;L1(R3
x)) with the norm

‖f ‖Z1 =
(ˆ

R3

(ˆ

R3

|f (x, v)|dx
)2

dv
) 1

2
.

For any integrable function f :R3 →R, we define the Fourier transform as follows

f̂ (ξ) = Ff (ξ) =
ˆ

R3

e−2πix·ξf (x)dx,

where x · ξ = ∑3
j=1 xj ξj , for ξ ∈ R

3, and i = √−1 ∈ C is the imaginary unit. And the dot

product a · b̄ = (a | b) for any a, b ∈C
3.

Our main result is stated as follows.

Theorem 1.1 Let F0(x, v) = μ + μ
1
2 f0(x, v) ≥ 0, suppose that EN(f0) is small enough.

Then the system (1.3) has a unique global smooth solution f (t, x, v), which satisfies

f (t, x, v) ∈ C([0,∞);HN(R3 ×R
3)), F (t, x, v) = μ + μ

1
2 f (t, x, v) ≥ 0, (1.9)

and the Lyapunov-type inequality

d

dt
EN(f (t)) + λDN(f (t)) ≤ 0 for any t ≥ 0. (1.10)

Moreover, if we further assume that ‖f0‖Z1 is bounded, then the algebraic decay rate

EN(f (t)) ≤ C(EN(f0) + ‖f0‖2
Z1

)(1 + t)− 3
2

holds for any t ≥ 0.

Remark 1.1 In [17] and [18], the authors obtained the following Lyapunov-type inequality

d

dt
EN(t) +DN(t) ≤ 0.
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Since EN(t) ≤ CDN(t), it follows that

EN(t) ≤ EN(0)e−Ct ,

where EN(t) ∼ ∑
|α|≤N(‖∂αf ‖2 +‖∂α∇φ‖2) in [17], and EN(t) ∼ ∑

|α|≤N ‖∂αf ‖2 +‖∇φ‖2

in [18]. For the case of |β| �= 0, the method to deal with problems is more complicated.
Moreover, our decay result is obtained by using the Fourier analysis, and their is just a
direct result of Lyapunov-type inequality.

Remark 1.2 By the elliptic theory, one has

‖∇xφ‖2
HN ≥ C‖a‖2,

it follows from (1.7) and (1.8) that there exist constants C1 > 0 and C2 > 0, such that

DN(f (t)) ≥ C1

∑

|α|+|β|≤N

‖∂α
β f (t)‖2 + ‖∇xφ(t)‖2

HN ≥ C2EN(f (t)).

By virtue of (1.10), we can get the same result as [17] and [18].

At the end of this section, we briefly review the existence theory for the Vlasov–Poisson–
Fokker–Planck (VPFP for short) system. For this system, there have been many literatures
on the global existence of weak solutions, classic solutions, regular solutions, smooth so-
lutions and time-periodic solutions and so on. For example, Carrillo [5] and Victory [22],
they constructed the global weak solutions to the VPFP system. For the classical solutions,
Hwang and Jang [17] established the global existence and the exponential time decay to the
VPFP system by taking advantage of the standard energy method [14]. And in the relativistic
sense, Luo and Yu [18] also constructed global solutions of the VPFP system and obtained
exponential time decay by using a new energy method developed by Yang and Yu [25–28]
through the combination of the Kawashima compensating function and the standard en-
ergy method. In [19], Ono established the global existence of regular solutions to the VPFP
system. In [2], Bouchut proved the existence and uniqueness of global smooth solutions in
L1(R3) and obtained the smoothing effect in [3]. In [11], Duan and Liu studied the existence
and uniqueness of the time-periodic solutions to the VPFP system by using Serrin’s method.
Besides the results mentioned above, the asymptotic behavior and the long-time behavior
of solutions to the VPFP system, we can refer to [1, 4, 7] and [21]. For other topics related
to the VPFP system, the interested readers can also refer to [6, 9, 10, 13, 16, 20, 23] and
references therein.

In this paper, motivated by [12], and by using the refined energy method, which is based
on the macro–micro decomposition near global Maxwellians, we can also get the global
classical solutions of the VPFP system, and present the algebraic time decay of solutions
which is different from the exponential decay results in Luo et al. [18] and Hwang et al. [17].
Compared with [18], we didn’t use the Kawashima compensating function, and with [17],
the instant energy functional and the dissipation only included the pure spatial derivatives,
but we contained the spatial and the velocity derivatives. In such case, we will deal with
the complex space-velocity-mixed derivatives estimate. Moreover, it should be pointed out
that the time rate of convergence to equilibrium is an important topic in the mathematical
theory of the physical background. As Villani [24] said that there exist general structures in
which the interaction between a conservative part and a degenerate dissipative part lead to
convergence to equilibrium, where this property was called hypocoercivity. In Theorem 1.1,
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we give a concrete example of the hypocoercivity property for the VPFP system in the
framework of perturbations.

Finally, before concluding this section, we simply sketch the main ideas used in ob-
taining our results. Using the macro–micro decomposition and the dissipative properties of
LFP , one can get the weighted energy estimates which are the estimates of the microscopic
component, and the estimate of the macroscopic component can be obtained by defining a
temporal energy functional. It is worth pointing out that we also need to the dissipation of
∇xφ, which is different from the reference [12]. Therefore, with the help of the uniform-
in-time estimate, the global existence of solutions can be proved by employing the standard
continuity argument. On the other hand, we construct a linearized Cauchy problem with
a non-homogeneous term to establishing the time decay of solutions by using the Fourier
analysis.

The rest of this paper is organized as follows. In Sect. 2, we employ the macro–micro
decomposition to obtaining the a prior energy estimate of the macroscopic component by
defining a temporal energy functional. In Sect. 3, we list the dissipative properties of the
linear Fokker–Planck operator LFP and get the weighted energy estimates, which play an
important role in establishing the global existence. Finally, we devote ourselves to obtaining
the global existence and the algebraic rate of convergence of solutions in Sect. 4 and Sect. 5,
respectively.

2 Macro–Micro Decomposition

In this section, we next shall obtain the dissipation rate of the right macroscopic term. Notice
that the following equivalent relation

∑

0<|α|≤N

‖∂αPf (t)‖2 ∼
∑

|α|≤N−1

‖∂α∇x(a, b)‖2,

from Eq. (1.1), taking the velocity integration over R
3, and using the collision invariant

property, we get the following local macroscopic balance laws

{
∂t

´
R3 Fdv + ∇x · ´

R3 vFdv = 0,

∂t

´
R3 vFdv + ∇x · ´

R3 v ⊗ vFdv − ∇xφ
´
R3 Fdv + ´

R3 vFdv = 0.
(2.1)

By using the perturbed expression of F and the decomposition (1.5), we obtain from the
macroscopic balance laws (2.1) and (1.3)2 that

⎧
⎪⎪⎨

⎪⎪⎩

∂ta + ∇x · b = 0,

∂tb + ∇xa + ∇x · 〈(v ⊗ v − 1)M
1
2 , {I − P }f 〉 − ∇xφ(1 + a) + b = 0,

�xφ = a.

(2.2)

Now, we can rewrite (1.3)1 as

∂tPf + v · ∇xPf + ∇xφ · ∇vPf − 1

2
v · ∇xφPf − (∇xφ − b) · vM

1
2

= −∂t {I − P }f + � + r,

(2.3)
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where

� = −v · ∇x{I − P }f + LFP {I − P }f,

and

r = 1

2
v · ∇xφ{I − P }f − ∇xφ · ∇v{I − P }f.

Define the high-order moment function A = (Ajm)3×3 by

Ajm(f ) = 〈(vj vm − 1)μ
1
2 , f 〉.

Applying Ajm to (2.3), it follows from (2.2)1 that

{
∂tAjm({I − P }f ) + ∂jbm + ∂mbj − (∂jφbm + ∂mφbj ) = Ajm(� + r),

∂tAjj ({I − P }f ) + 2∂jbj − 2∂jφbj = Ajj (� + r),
(2.4)

where the derivation of the system (2.4) similar to [12]. Hence, the details are omitted for
simplicity.

In what follows, we introduce the temporal energy functional E0(f ) by

E0(f )(t) =
∑

|α|≤N−1

∑

1≤j,m≤3

ˆ

R3

∂α(∂jbm + ∂mbj )∂
αAjm({I − P }f )dx

−
∑

|α|≤N−1

ˆ

R3

∂αa∂α∇ · bdx,

to obtaining the dissipation of ‖∇x(a, b)‖2
HN−1 .

Lemma 2.1 For smooth solutions of the system (1.3), we have

d

dt
E0(f )(t) + λ‖∇x(a, b)‖2

HN−1 ≤ C‖∇xφ‖2
HN + C‖b‖2

HN + C‖{I − P }f ‖2
HN

+ C‖∇xφ‖2
HN (‖∇x(a, b)‖2

HN−1 + ‖{I − P }f ‖2
HN ).

(2.5)

Proof Using integration by parts and (2.4)1, we have

2(‖∇x∂
αb‖2 + ‖∇x · ∂αb‖2)

=
∑

1≤j,m≤3

‖∂α(∂jbm + ∂mbj )‖2

=
∑

1≤j,m≤3

ˆ

R3

∂α(∂jbm + ∂mbj )∂
α[(∂jφbm + ∂mφbj )

− ∂tAjm({I − P }f ) + Ajm(� + r)] dx

= − d

dt

∑

1≤j,m≤3

ˆ

R3

∂α(∂jbm + ∂mbj )∂
αAjm({I − P }f ) dx
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+
∑

1≤j,m≤3

ˆ

R3

∂α(∂j ∂tbm + ∂m∂tbj )∂
αAjm({I − P }f ) dx

+
∑

1≤j,m≤3

ˆ

R3

∂α(∂jbm + ∂mbj )∂
α[(∂jφbm + ∂mφbj ) + Ajm(� + r)] dx.

We denote the second and third terms of the last equal sign by I1 and I2, respectively.
For I1 and I2, by the Sobolev imbedding, i.e. L3(R3) ↪→ H 1(R3) and L6(R3) ↪→ Ḣ 1(R3),
it holds that

‖∂α(∂jφa)‖2 ≤ C‖∂α−α′
∂jφ‖2

L3‖∂α′
a‖2

L6 ≤ C
∑

|α|≤N

‖∂α∇xφ‖2
∑

|α|≤N−1

‖∂α∇xa‖2.

Thus, one has

I1 = −2
∑

1≤j,m≤3

ˆ

R3

∂α∂tbj ∂
α∂mAjm({I − P }f ) dx

= 2
∑

1≤j,m≤3

ˆ

R3

∂α[∂ja +
∑

1≤j,m≤3

∂mAjm({I − P }f )

− ∂jφ + bj − ∂jφa]∂α∂mAjm({I − P }f ) dx

≤ η(‖∂α∇xa‖2 + ‖∂α+1b‖2) + ‖∂α+1∇xφ‖2 + C‖∇xφ‖2
HN ‖∇xa‖2

HN−1

+ C‖{I − P }f ‖2
HN ,

and

I2 ≤ 1

2

∑

1≤j,m≤3

‖∂α(∂jbm + ∂mbj )‖2 + C
∑

1≤j,m≤3

‖∂α(∂jφbm + ∂mφbj )‖2

+ C
∑

1≤j,m≤3

(‖∂αAjm(�)‖2 + ‖∂αAjm(r)‖2)

≤ 1

2

∑

1≤j,m≤3

‖∂α(∂jbm + ∂mbj )‖2 + C‖{I − P }f ‖2
HN

+ C‖∇xφ‖2
HN (‖∇x{I − P }f ‖2

HN−1 + ‖∇xb‖2
HN−1),

where we used (2.2)2, integration by parts, and the following estimates

‖∂αAjm(�)‖ = ‖Ajm(∂α�)‖
=

∥
∥
∥

〈
(vj vm − 1)μ

1
2 ,−v · ∇x∂

α{I − P }f + LFP ∂α{I − P }f
〉∥
∥
∥

≤
∥
∥
∥

〈
− v(vjvm − 1)μ

1
2 ,∇x∂

α{I − P }f
〉∥
∥
∥

+
∥
∥
∥

〈
LFP

(
(vj vm − 1)μ

1
2

)
, ∂α{I − P }f

〉∥
∥
∥

≤ C‖∇x∂
α{I − P }f ‖ + C‖∂α{I − P }f ‖,
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and

‖∂αAjm(r)‖ = ‖Ajm(∂αr)‖

=
∥
∥
∥

〈
(vj vm − 1)μ

1
2 , ∂α

(1

2
v · ∇xφ{I − P }f − ∇xφ · ∇v{I − P }f

)〉∥
∥
∥

=
∑

α′≤α

Cα′
α

∥
∥
∥

〈
(vj vm − 1)μ

1
2 ,

1

2
v · ∂α−α′∇xφ∂α′ {I − P }f

− ∇x∂
α−α′

φ · ∇v∂
α′ {I − P }f

〉∥
∥
∥

≤
∑

α′≤α

Cα′
α

(∥
∥
∥

〈1

2
v(vjvm − 1)μ

1
2 , ∂α−α′∇xφ∂α′ {I − P }f

〉∥
∥
∥

+
∥
∥
∥

〈
∇v

(
(vj vm − 1)μ

1
2

)
,∇x∂

α−α′
φ∂α′ {I − P }f

〉∥
∥
∥

)

≤ C‖∇xφ‖HN ‖∇x{I − P }f ‖HN−1 .

By collecting the above estimates and taking summation over |α| ≤ N − 1, we obtain

d

dt

∑

|α|≤N−1

∑

1≤j,m≤3

ˆ

R3

∂α(∂jbm + ∂mbj )∂
αAjm({I − P }f ) dx

+ 2
∑

|α|≤N−1

(‖∇x∂
αb‖2 + ‖∇x · ∂αb‖2)

≤ η
∑

1≤|α|≤N

(‖∂αa‖2 + ‖∂αb‖2) +
∑

1≤|α|≤N

‖∂α∇xφ‖2 + C‖{I − P }f ‖2
HN

+ C‖∇xφ‖2
HN (‖∇x{I − P }f ‖2

HN−1 + ‖∇x(a, b)‖2
HN−1).

(2.6)

Next, we shall give the dissipation of
∑

1≤|α|≤N ‖∂αa‖2.
Using (2.2)2 again, we have

‖∂α∇xa‖2

=
∑

1≤j≤3

ˆ

R3

∂α∂ja∂α∂ja dx

=
∑

1≤j≤3

ˆ

R3

∂α∂ja∂α
[
− ∂tbj + ∂jφ − bj −

∑

1≤j,m≤3

∂mAjm({I − P }f ) + ∂jφa
]

dx

= − d

dt

∑

1≤j≤3

ˆ

R3

∂α∂ja∂αbj dx +
∑

1≤j≤3

ˆ

R3

∂α∂j ∂ta∂αbj dx

+
∑

1≤j≤3

ˆ

R3

∂α∂ja∂α
[
∂jφ − bj −

∑

1≤j,m≤3

∂mAjm({I − P }f ) + ∂jφa
]

dx :=
5∑

j=3

Ij .
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For I3 and I4, we have I3 = d
dt

´
R3 ∂αa∂α∇x · b dx, and

I4 = −
ˆ

R3

∂α∂ta∂α∇x · b dx = ‖∂α∇x · b‖2.

For I5, similar as I1, one has

I5 ≤ 1

2
‖∇x∂

αa‖2 + ‖∂α∇xφ‖2 + ‖∂αb‖2 + C‖∂α∇x{I − P }f ‖2

+ C‖∇xφ‖2
HN ‖∇xa‖2

HN−1 .

Combining the above estimates and taking summation over |α| ≤ N − 1, we obtain

− d

dt

∑

|α|≤N−1

ˆ

R3

∂αa∂α∇x · b dx + 1

2

∑

1≤|α|≤N

‖∂αa‖2

≤ ‖∇xφ‖2
HN−1 + ‖b‖2

HN + C‖∇x{I − P }f ‖2
HN−1 + C‖∇xφ‖2

HN ‖∇xa‖2
HN−1 .

(2.7)

Therefore, the desired estimate (2.5) follows from (2.6) and (2.7). �

In what follows, we introduce an equivalent energy functional

E(f )(t) ∼
∑

|α|+|β|≤N

‖∂α
β f (t)‖2 + ‖∇xφ‖2

HN + E0(f )(t) −
∑

|α|≤N

ˆ

R3

∂αb∂α∇xφdx.

We now give the dissipation of ‖∇xφ‖2
HN , let |α| ≤ N , by applying ∂α to (2.2)2 and

taking the inner product of the resulting equation with ∂α∇xφ over R3 and using (2.2)3, we
obtain

‖∂α∇xφ‖2 =
ˆ

R3

∂t∂
αb∂α∇xφdx +

ˆ

R3

∂α∇xa∂α∇xφdx +
ˆ

R3

∇x · A({I − P }∂αf )∂α∇xφdx

+
ˆ

R3

∂αb∂α∇xφdx −
ˆ

R3

∂α(a∇xφ)∂α∇xφdx :=
10∑

i=6

Ii .

For I6, one has

I6 = d

dt

ˆ

R3

∂αb∂α∇xφdx −
ˆ

R3

∂αb∂α∇x∂tφdx

Denote the right second term by I ′
6 of I6, using (2.2)1, we have

I ′
6 =

ˆ

R3

∂α∇x · b∂α�−1
x ∂tadx = −

ˆ

R3

∂α∇x · b∂α�−1
x ∇x · bdx

=
ˆ

R3

|∇x�
−1
x ∂α∇x · b|2dx ≤ C‖∂αb‖2,

where we used the operator ∇x�
−1
x ∇x · is bounded from L2 to L2.
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Thus,

I6 ≤ d

dt

ˆ

R3

∂αb∂α∇xφdx + C‖∂αb‖2.

For I7, when α = 0,

ˆ

R3

∇xa∇xφdx ≤ 1

2
‖∇xφ‖2 + 1

2
‖∇xa‖2,

when 1 ≤ |α| ≤ N ,

−
ˆ

R3

∂α∇xa∂α∇xφdx = ‖∂αa‖2.

For I8, using integration by parts, we get

I8 =
∑

1≤j,m≤3

ˆ

R3

∂mAjm({I − P }∂αf )∂α∂jφdx

= −
∑

1≤j,m≤3

ˆ

R3

Ajm({I − P }∂αf )∂α∂j ∂m�−1
x adx

≤ η‖∂α∂j ∂m�−1
x a‖2 + Cη‖A({I − P }∂αf )‖2 ≤ η‖∂αa‖2 + Cη‖{I − P }∂αf ‖2.

For I9 and I10, by direct computation, one has

I9 ≤ η‖∂α∇xφ‖2 + Cη‖∂αb‖2 and I10 ≤ C‖a‖HN ‖∇xφ‖2
HN .

Collecting the above estimates, and using Young’s inequality, and then taking summation
over |α| ≤ N , we obtain

− d

dt

∑

|α|≤N

ˆ

R3

∂αb∂α∇xφdx + λ(
∑

1≤|α|≤N

‖∂αa‖2 + ‖∇xφ‖2
HN )

≤ C‖b‖2
HN + C‖{I − P }f ‖2

HN + C‖a‖2
HN ‖∇xφ‖2

HN .

(2.8)

Remark 2.1 Here, we need the dissipation of ∇xφ, because the estimate (2.5) includes this
term, which can’t be absorbed by other terms so that we can’t establish the Lyapunov-type
inequality to proving the global existence of solutions to the VPFP system.

3 Energy Estimates

In this section, we shall establish the energy estimates in order to obtain the global existence
of solutions. For the linear Fokker–Planck operator LFP , its the dissipative properties are
listed as follows, which its proofs, we can refer to [8] and [12].
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Lemma 3.1 LFP is a self-adjoint operator, and the following conclusions hold

(1) There exists a constant λ > 0 such that the coercivity inequality

−〈LFP f,f 〉 ≥ λ|{I − P }f |2ν + |b|2

holds.
(2) There exists a constant λ0 > 0 such that

−〈LFP f,f 〉 ≥ λ0|{I − P0}f |2ν .

Remark 3.1 Using the self-adjoint of LFP and (ii), then (i) holds.

Lemma 3.2 For smooth solutions of the system (1.3), we have

1

2

d

dt

(
‖f ‖2 + ‖∇xφ‖2

)
+ λ‖{I − P }f ‖2

ν + ‖b‖2

≤ C‖∇xφ‖HN

(
‖a‖2 + ‖∇x(a, b)‖2 + ‖{I − P }f ‖2

ν

)
.

(3.1)

Proof For Eq. (1.3)1, taking the inner product of it with f over R3 × R
3 with respect to x

and v, one has

1

2

d

dt
‖f ‖2 − (∇xφ · vμ

1
2 , f ) = 1

2
(v · ∇xφf,f ) + (LFP f,f ). (3.2)

We now estimate terms in (3.2). For the second term on the left side of (3.2), we get

−(∇xφ · vμ
1
2 , f ) = −

ˆ

R3

∇xφbdx =
ˆ

R3

φ∇x · bdx = −
ˆ

R3

φ∂tadx

= −
ˆ

R3

φ�x∂tφdx = 1

2

d

dt
‖∇xφ‖2,

where (2.2)1 and (2.2)3 are used.
For the first and second terms on the right side of (3.2), using the decomposition of f in

(1.6), we obtain

1

2
(v · ∇xφf,f ) = 1

2
(v · ∇xφ, |Pf |2) + (v · ∇xφPf, {I − P }f )

+ 1

2
(v · ∇xφ, |{I − P }f |2) :=

3∑

i=1

Ii .

(3.3)

Next, we deal with the term Ii (i = 1,2,3). For I2 and I3, we have

I2 ≤
ˆ

R3

|∇xφ||Pf |2|{I − P }f |νdx ≤ ‖∇xφ‖L3‖|Pf |2‖L6‖{I − P }f ‖ν

≤ C‖∇xφ‖H 1‖∇x(a, b)‖‖{I − P }f ‖ν ≤ C‖∇xφ‖H 1(‖∇x(a, b)‖2 + ‖{I − P }f ‖2
ν),
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since

‖|Pf |2‖L6 ≤ |‖Pf ‖L6 |2 ≤ C|‖∇xPf ‖|2 ≤ C‖∇x(a, b)‖,
where we used the Minkowski inequality and the Sobolev imbedding theorem.

And

I3 ≤ 1

2
‖∇xφ‖L∞‖{I − P }f ‖2

ν ≤ C‖∇2
xφ‖H 1‖{I − P }f ‖2

ν .

For I1, one has

I1 = 1

2
(v · ∇xφ, [(a + b · v)μ

1
2 ]2) = (∇xφ, ab · vvM)

=
∑

ij

¨

R3×R3

∂iφμabjvjvidxdv =
∑

j

¨

R3×R3

∂jφμabjv
2
j dxdv

=
ˆ

R3

∇xφ · badx

ˆ

R3

|v|2
3

Mdv =
ˆ

R3

∇xφ · badx

≤ ‖∇xφ‖L3‖b‖L6‖a‖ ≤ C‖∇xφ‖H 1‖∇xb‖‖a‖ ≤ C‖∇xφ‖H 1(‖∇xb‖2 + ‖a‖2).

By Lemma 3.1, we see that

−(LFP f,f ) ≥ λ‖{I − P }f ‖2
ν + ‖b‖2.

Combining the above estimates, we obtain the desired estimated (3.1). This completes
the proof of Lemma 3.2. �

Lemma 3.3 For smooth solutions of the system (1.3), we have

1

2

d

dt

∑

1≤|α|≤N

(‖∂αf ‖2 + ‖∇x∂
αφ‖2) + λ

∑

1≤|α|≤N

‖∂α{I − P }f ‖2
ν +

∑

1≤|α|≤N

‖∂αb‖2

≤ C‖∇xφ‖HN (
∑

1≤|α|≤N

‖∂α{I − P }f ‖2
ν +

∑

1≤|α|≤N−1

‖∂α∇v{I − P }f ‖2

+ ‖∇x(a, b)‖2
HN−1).

(3.4)

Proof Applying ∂α(1 ≤ |α| ≤ N) to Eq. (1.3)1, we get

∂t∂
αf + v · ∇x∂

αf + ∇xφ · ∇v∂
αf − ∂α(

1

2
v · ∇xφf )

− ∇x∂
αφ · vμ

1
2 +

∑

α′<α

Cα′
α ∂α−α′∇xφ · ∇v∂

α′
f = LFP ∂αf.

(3.5)

Taking the inner product of (3.5) with ∂αf over R3 ×R
3, similarly, one has

(−∇x∂
αφ · vμ

1
2 , ∂αf ) = (−∇x∂

αφ, ∂αb) = 1

2

d

dt
‖∇x∂

αφ‖2.
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For the fourth term of the left side of (3.5), using the decomposition of f , we have

(∂α(
1

2
v · ∇xφf ), ∂αf )

= (∂α(
1

2
v · ∇xφPf ), ∂αf )

+ (∂α(
1

2
v · ∇xφ{I − P }f ), ∂αPf ) + (∂α(

1

2
v · ∇xφ{I − P }f ), ∂α{I − P }f ).

(3.6)

The terms of (3.6) can be estimated as follows

∑

|α′ |≤|α|
Cα′

α (
1

2
v · ∇x∂

α−α′
φ∂α′

Pf, ∂αf ) ≤ C
∑

|α′ |≤|α|

ˆ

R3

|∇x∂
α−α′

φ||∂α′
(a, b)||∂αf |νdx := I4.

When |α′| ≤ N
2 , one has

I4 ≤ sup
x∈R3

|∂α′
(a, b)|‖∇x∂

α−α′
φ‖‖∂αf ‖ν

≤ C‖∇xφ‖HN

∑

1≤|α|≤N

(‖∂α{I − P }f ‖2
ν + ‖∂α(a, b)‖2),

where the Sobolev imbedding is used. When |α′| ≥ N
2 , we similarly obtain

I4 ≤ sup
x∈R3

|∇x∂
α−α′

φ|‖∂α′
(a, b)‖‖∂αf ‖ν

≤ C‖∇xφ‖HN

∑

1≤|α|≤N

(‖∂α{I − P }f ‖2
ν + ‖∂α(a, b)‖2).

For the second term on the right side of (3.6), using the same procedure as above, we get

(∂α(
1

2
v · ∇xφ{I − P }f ), ∂αPf )

≤ C
∑

|α′ |≤|α|

ˆ

R3

|∇x∂
α−α′

φ||∂α′ {I − P }f |ν |∂α(a, b)|dx

≤ C‖∇xφ‖HN

∑

1≤|α|≤N

(‖∂α{I − P }f ‖2
ν + ‖∂α(a, b)‖2),

and

(∂α(
1

2
v · ∇xφ{I − P }f ), ∂α{I − P }f )

≤ C
∑

|α′ |≤|α|

ˆ

R3

|∇x∂
α−α′

φ||∂α′ {I − P }f |ν |∂α{I − P }f |νdx

≤ C‖∇xφ‖HN

∑

1≤|α|≤N

‖∂α{I − P }f ‖2
ν .



866 X. Wang

Thus, we obtain from the above estimates that

(∂α(
1

2
v · ∇xφf ), ∂αf ) ≤ C‖∇xφ‖HN

∑

1≤|α|≤N

(‖∂α{I − P }f ‖2
ν + ‖∂α(a, b)‖2).

For the last term on the left side of (3.5), one has
∑

α′<α

Cα′
α (∂α−α′∇xφ · ∇v∂

α′
f, ∂αf )

=
∑

α′<α

Cα′
α (∂α−α′∇xφ · ∇v∂

α′
Pf, ∂αf )

+
∑

α′<α

Cα′
α (∂α−α′∇xφ · ∇v∂

α′ {I − P }f, ∂αf ) := I5 + I6.

For I5 and I6, similarly, we have

I5 ≤
ˆ

R3

|∂α−α′∇xφ||∂α′
(a, b)||∂αf |2dx

≤ C‖∇xφ‖HN (
∑

1≤|α|≤N

‖∂α{I − P }f ‖2
ν + ‖∇x(a, b)‖2

HN−1),

and

I6 ≤
ˆ

R3

|∂α−α′∇xφ||∇v∂
α′ {I − P }f |2|∂αf |2dx

≤ C‖∇xφ‖HN (
∑

1≤|α′ |≤N−1

‖∂α′∇v{I − P }f ‖2 +
∑

1≤|α|≤N

‖∂α{I − P }f ‖2
ν

+ ‖∇x(a, b)‖2
HN−1).

By Lemma 3.1, one has

−(LFP ∂αf, ∂αf ) ≥ λ‖{I − P }∂αf ‖2
ν + ‖∂αb‖.

Collecting the above estimates, and then taking summation over 1 ≤ |α| ≤ N , which
yields the desired estimate (3.4). We have thus completed the proof of Lemma 3.3. �

Remark 3.2 From Lemmas 3.2 and 3.3, we can obtain the dissipation of ‖b‖2
HN .

Lemma 3.4 Let 1 ≤ k ≤ N , for smooth solutions of the system (1.3), we have

1

2

d

dt

∑

|α|+|β|≤N,|β|=k

‖∂α
β {I − P }f ‖2 + λ

∑

|α|+|β|≤N,|β|=k

‖∂α
β {I − P }f ‖2

ν

≤ C‖∇xφ‖HN (
∑

|α|+|β|≤N

‖∂α
β {I − P }f ‖2 + ‖∇x(a, b)‖2

HN−1)

+ C
∑

|α|≤N−k+1

‖∂α{I − P }f ‖2
ν + C

∑

|α|≤N−k

‖∂α∇x(a, b)‖2

+ Cχ{2≤k≤N}
∑

|α|+|β|≤N,1≤|β|≤k−1

‖∂α
β {I − P }f ‖2

ν,

(3.7)

where χA denotes the characteristic function of a set A.
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Proof Applying the microscopic projection {I − P } to Eq. (1.3), one has

∂t {I − P }f + {I − P }v · ∇xf + {I − P }(∇xφ · ∇vf − 1

2
v · ∇xφf ) = LFP {I − P }f,

where {I − P }P = 0 and {I − P }vμ
1
2 = 0 are used.

We can further obtain from the above equation that

∂t {I − P }f + v · ∇x{I − P }f + ∇xφ · ∇v{I − P }f

= LFP {I − P }f + 1

2
v · ∇xφ{I − P }f

+ P (v · ∇x{I − P }f − 1

2
v · ∇xφ{I − P }f + ∇xφ · ∇v{I − P }f )

− {I − P }(v · ∇xPf − 1

2
v · ∇xφPf + ∇xφ · ∇vPf ),

(3.8)

where we used {I − P }LFP = LFP {I − P }.
For 1 ≤ k ≤ N , we apply ∂α

β (|α| + |β| ≤ N, |β| = k) to Eq. (3.8), and take the inner
product of the resulting equation with ∂α

β {I − P }f over R3 ×R
3, we have

1

2

d

dt
‖∂α

β {I − P }f ‖2

= −
ˆ

R3

〈∂α
β (v · ∇x{I − P }f + ∇xφ · ∇v{I − P }f ), ∂α

β {I − P }f 〉dx

+
ˆ

R3

〈∂α
β (LFP {I − P }f ), ∂α

β {I − P }f 〉dx +
ˆ

R3

1

2
〈∂α

β (v · ∇xφ{I − P }f ),

∂α
β {I − P }f 〉dx +

ˆ

R3

〈∂α
β (P (v · ∇x{I − P }f − 1

2
v · ∇xφ{I − P }f

+ ∇xφ · ∇v{I − P }f )), ∂α
β {I − P }f 〉dx −

ˆ

R3

〈∂α
β ({I − P }(v · ∇xPf

− 1

2
v · ∇xφPf + ∇xφ · ∇vPf )), ∂α

β {I − P }f 〉dx :=
11∑

j=7

Ij .

(3.9)

Next, we estimate terms in (3.9) one by one. For I7, using integration by parts, we get

I7 = −
∑

1≤|β ′ |≤|β|
C

β ′
β

ˆ

R3

〈∂β ′v · ∇x∂
α
β−β ′ {I − P }f, ∂α

β {I − P }f 〉dx

−
∑

1≤|α′ |≤|α|
Cα′

α

ˆ

R3

〈∇x∂
α′

φ · ∇v∂
α−α′
β {I − P }f, ∂α

β {I − P }f 〉dx

:= I ′
7 + I ′′

7 .
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We deal with the term I ′
7 and I ′′

7 as follows

I ′
7 ≤ η‖∂α

β {I − P }f ‖2 + Cη(
∑

|α|≤N−k

‖∂α∇x{I − P }f ‖2

+ χ{2≤k≤N}
∑

|α|+|β|≤N,1≤|β|≤k−1

‖∂α
β {I − P }f ‖2),

and

I ′′
7 ≤ C

∑

1≤|α′ |≤|α|

ˆ

R3

|∇x∂
α′

φ||∇v∂
α−α′
β {I − P }f |2|∂α

β {I − P }f |2dx

≤ C
∑

|α|≤N−1

‖∂α∇xφ‖
∑

|β|=1

sup
x∈R3

‖∇v∂
β{I − P }f ‖‖∂α

β {I − P }f ‖

+ C
∑

1≤|α′ |≤N−2

‖∂α′∇xφ‖∞
∑

1≤|α′ |≤|α|
‖∇v∂

α−α′
β {I − P }f ‖‖∂α

β {I − P }f ‖

≤ C
∑

|α|≤N−1

‖∂α∇xφ‖
∑

|α|≤1,|β|=1

‖∇x∇v∂
β{I − P }f ‖‖∂α

β {I − P }f ‖

+ C
∑

2≤|α|≤N

‖∂α∇xφ‖
∑

|α|+|β|≤N

‖∂α
β {I − P }f ‖‖∂α

β {I − P }f ‖

≤ C‖∇xφ‖HN

∑

|α|+|β|≤N

‖∂α
β {I − P }f ‖2.

For I8, using the commutator operator, i.e. [A,B] = AB − BA, one has

ˆ

R3

〈∂α
β LFP {I − P }f, ∂α

β {I − P }f 〉dx

=
ˆ

R3

〈∂α[∂β,−|v|2]{I − P }f, ∂α
β {I − P }f 〉dx

+
ˆ

R3

〈LFP ∂α
β {I − P }f, ∂α

β {I − P }f 〉dx := I ′
8 + I ′′

8 ,

where we used [∂β,LFP ] = [∂β,−|v|2].
For I ′

8 and I ′′
8 , we obtain

I ′
8 ≤ η‖∂α

β {I − P }f ‖2 + Cη‖[∂β,−|v|2]∂α{I − P }f ‖2

≤ η‖∂α
β {I − P }f ‖2 + Cη(

∑

|α|≤N−k

‖∂α{I − P }f ‖2
ν

+ χ{2≤k≤N}
∑

|α|+|β|≤N,1≤|β|≤k−1

‖∂α
β {I − P }f ‖2

ν),
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and

−I ′′
8 ≥ λ0‖{I − P0}∂α

β {I − P }f ‖2
ν ≥ λ0

2
‖∂α

β {I − P }f ‖2
ν − λ0‖P0∂

α
β {I − P }f ‖2

ν

≥ λ0

2
‖∂α

β {I − P }f ‖2
ν − C‖∂α{I − P }f ‖2

ν,

where we have used Lemma 3.1.
For I9, similar to Lemma 3.3, we have

1

2

ˆ

R3

〈∂α
β (v · ∇xφ{I − P }f ), ∂α

β {I − P }f 〉dx

= 1

2

∑

|α′ |≤|α|,|β ′ |≤|β|
Cα′

α C
β ′
β

ˆ

R3

〈∂β ′v · ∇x∂
α′

φ∂α−α′
β−β ′ {I − P }f, ∂α

β {I − P }f 〉dx

≤ C‖∇xφ‖HN

∑

|α|+|β|≤N

‖∂α
β {I − P }f ‖2.

For I10 and I11, one has

I11 ≤ η‖∂α
β {I − P }f ‖2 + Cη‖∇x(a, b)‖2

HN−k + C‖∇xφ‖HN ‖∇x(a, b)‖2
HN−1 ,

and

I10 ≤ η‖∂α
β {I − P }f ‖2 + Cη

∑

|α′ |≤N−k

‖∇x∂
α′ {I − P }f ‖2

+ C‖∇xφ‖HN

∑

|α′ |+|β ′|≤N

‖∂α′
β ′ {I − P }f ‖2.

Combining the above estimates, and taking summation over |α|+|β| ≤ N, |β| = k, and then
choosing η > 0 small enough, we obtain the desired estimate (3.7). We have thus proved
Lemma 3.4. �

4 Global Existence

In this section, in order to obtain the global existence and uniqueness of solutions to the
system (1.3)–(1.4), we first study the local existence and uniqueness of it. The iterative
sequence {f n(t, x, v)}∞

n=0 of solutions to the following system

⎧
⎪⎪⎨

⎪⎪⎩

∂tf
n+1 + v · ∇xf

n+1 + ∇xφ
n · ∇vf

n+1 = LFP f n+1 + 1
2v · ∇xφ

nf n+1 + ∇xφ
n+1 · vμ

1
2 ,

�xφ
n = ´

R3 μ
1
2 f ndv, lim

|x|→∞
φn(t, x) = 0,

f n+1(0, x, v) = f0(x, v).

(4.1)
Here n ≥ 0, and f 0 = 0 is the starting value of iteration. The solution space X(0, T ;M)

defined by

X(0, T ;M) = {f ∈ C([0,∞);HN(R3 ×R
3)) : sup

0≤t≤T

EN(f (t)) ≤ M,μ + √
μf ≥ 0}.
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The main result of this section is as follows.

Theorem 4.1 Let N ≥ 4, there exist ε0 > 0, T ∗ > 0 and M0 > 0 such that if f0 ∈ HN(R3 ×
R

3) with F0 = μ + √
μf0 ≥ 0 and EN(f0) ≤ ε0, then for each n ≥ 1, f n is well-defined with

f n ∈ X(0, T ∗;M0). Moreover, one has the following conclusions

(1) {f n}n≥0 is a Cauchy sequence in the Banach space C([0, T ∗];HN−1(R3 ×R
3)).

(2) The corresponding limit function denoted by f belongs to X(0, T ∗;M0), and f is a
solution to the Cauchy problem (1.3)–(1.4).

(3) f is unique in X(0, T ∗;M0) for the Cauchy problem (1.3)–(1.4).

Proof Using induction, we assume that f n ∈ X(0, T ∗;M0) holds true for n ≥ 0. In order to
take the forthcoming calculations, one can suppose that f n is smooth enough. Otherwise,
one can study the following regularized iterative system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tf
n+1,ε + v · ∇xf

n+1,ε + ∇xφ
n,ε · ∇vf

n+1,ε

= LFP f n+1,ε + 1
2v · ∇xφ

n,εf n+1,ε + ∇xφ
n+1,ε · vμ

1
2 ,

�xφ
n,ε = ´

R3 μ
1
2 f n,εdv, lim|x|→∞φn,ε(t, x) = 0,

f n+1,ε(0, x, v) = f ε
0 (x, v),

for any ε > 0, where f ε
0 is a smooth approximation of f0. One can carry out the following

same procedures for f n,ε and pass to the limit by letting ε → 0.
Applying ∂α(|α| ≤ N) to (4.1)1, multiplying the result equation by ∂αf n+1, and then

taking integration over R3 ×R
3 with respect to x, v, one has

1

2

d

dt
(‖∂αf n+1‖2 + ‖∂α∇xφ

n+1‖2) + λ0‖{I − P0}∂αf n+1‖2
ν

=
∑

α′<α

Cα′
α

ˆ

R3

〈∂α−α′∇xφ
n · ∇v∂

α′
f n+1, ∂αf n+1〉dx + 1

2

ˆ

R3

〈∂α(v · ∇xφ
nf n+1), ∂αf n+1〉dx

≤ C‖∇xφ
n‖HN

x

∑

|α|+|β|≤N

‖∂α
β f n+1‖2

ν

By a sample calculation, and taking summation over |α| ≤ N , one has

d

dt
(
∑

|α|≤N

‖∂αf n+1‖2 + ‖∇xφ
n+1‖2

HN
x

) + λ0

∑

|α|≤N

‖∂αf n+1‖2
ν

≤ C‖∇xφ
n‖HN

x

∑

|α|+|β|≤N

‖∂α
β f n+1‖2

ν + C‖f n+1‖2
L2

v(HN
x )

.

(4.2)

Applying {I − P } and ∂α
β (|α| + |β| ≤ N) to (4.1)1, successively, and then multiplying

the result by ∂α
β {I − P }f n+1, similarly as before, we obtain that

d

dt

∑

|α|+|β|≤N

‖∂α
β {I − P }f n+1‖2 + λ0

∑

|α|+|β|≤N

‖∂α
β {I − P }f n+1‖2

ν

≤ C‖∇xφ
n‖HN

x

∑

|α|+|β|≤N

‖∂α
β f n+1‖2

ν + C
∑

|α|+|β|≤N

‖∂α
β {I − P }f n+1‖2

ν .

(4.3)
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Combining (4.2) and (4.3), one has

d

dt
(
∑

|α|≤N

‖∂αf n+1‖2 + ‖∇xφ
n+1‖2

HN
x

+
∑

|α|+|β|≤N

‖∂α
β {I − P }f n+1‖2)

+ λ0(
∑

|α|≤N

‖∂αf n+1‖2
ν +

∑

|α|+|β|≤N

‖∂α
β {I − P }f n+1‖2

ν)

≤ C‖∇xφ
n‖HN

x

∑

|α|+|β|≤N

‖∂α
β f n+1‖2

ν + C
∑

|α|+|β|≤N

‖∂α
β {I − P }f n+1‖2

ν + C‖f n+1‖2
L2

v(HN
x )

.

(4.4)

Defining Mn(T ) = sup0≤t≤T EN(f n(t)), by (4.4), then for any 0 ≤ t ≤ T ≤ T ∗, we have

d

dt
EN(f n+1(t)) + λ0

∑

|α|+|β|≤N

‖∂α
β f n+1‖2

ν

≤ C1

√
Mn(T )

∑

|α|+|β|≤N

‖∂α
β f n+1‖2

ν + C2Mn+1(T ),

(4.5)

where we used the fact that

EN(f n+1(t)) ∼
∑

|α|≤N

‖∂αf n+1‖2 + ‖∇xφ
n+1‖2

HN
x

+
∑

|α|+|β|≤N

‖∂α
β {I − P }f n+1‖2,

and
∑

|α|+|β|≤N

‖∂α
β f n+1‖2

ν ∼
∑

|α|≤N

‖∂αf n+1‖2
ν +

∑

|α|+|β|≤N

‖∂α
β {I − P }f n+1‖2

ν .

Letting C1
√

Mn(T ) ≤ C1M0 ≤ λ0
2 , and taking time integration to (4.5), one has

Mn+1(T ) + λ0

2

T̂

0

∑

|α|+|β|≤N

‖∂α
β f n+1‖2

νds ≤ EN(f0) + C2T Mn+1(T ). (4.6)

Choosing T ∗ = 1
2C2

and ε0 = 1
2M0, then

Mn+1(T
∗) ≤ 2ε2

0 + 2C2T
∗Mn+1(T

∗) ≤ 1

2
M2

0 + 1

2
M2

0 = M2
0 ,

therefore, we obtain that sup0≤t≤T ∗ EN(f n+1(t)) ≤ M0.
Next, similarly to (4.5), for any 0 ≤ s ≤ t ≤ T ∗, one has

|EN(f n+1(t)) − EN(f n+1(s))| =
∣
∣
∣

tˆ

s

d

dθ
EN(f n+1(θ))dθ

∣
∣
∣

≤ CM0

∑

|α|+|β|≤N

tˆ

s

‖∂α
β f n+1‖2

νdθ + CM2
0 |t − s|,

(4.7)
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by (4.6), ‖∂α
β f n+1‖2

ν is integrable over [0, T ∗], thus f n ∈ X(0, T ∗;M0) holds true for n+ 1.
Therefore, by the inductive hypothesis, the conclusion holds true.

Now, we study the following system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t (f
n+1 − f n) + v · ∇x(f

n+1 − f n) + ∇xφ
n · ∇v(f

n+1 − f n) + ∇x(φ
n − φn−1) · ∇vf

n

= LFP (f n+1 − f n) + 1
2 v · ∇xφ

n(f n+1 − f n)

+ 1
2 v · ∇x(φ

n − φn−1)f n + ∇x(φ
n+1 − φn) · vμ

1
2 ,

�x(φ
n − φn−1) = ´

R3 μ
1
2 (f n − f n−1)dv, lim

|x|→∞
(φn − φn−1) = 0,

(f n+1 − f n)(0, x, v) = 0.

Similarly to (4.5), one has

d

dt
EN−1(f

n+1(t) − f n(t)) + λ0

∑

|α|+|β|≤N−1

‖∂α
β (f n+1 − f n)‖2

ν

≤ C‖∇xφ
n‖

HN−1
x

∑

|α|+|β|≤N−1

‖∂α
β (f n+1 − f n)‖2

ν

+ C‖∇x(φ
n − φn−1)‖

HN−1
x

∑

|α|+|β|≤N

‖∂α
β f n‖ν

∑

|α|+|β|≤N−1

‖∂α
β (f n+1 − f n)‖ν

+ C
∑

|α|+|β|≤N−1

‖∂α
β (f n+1 − f n)‖2 ≤ CEN−1(f

n(t) − f n−1(t)),

where we used the Sobolev embedding H 2(R3) ↪→ L∞(R3). Since EN(f0), T ∗,M0 are suf-
ficiently small, it follows from (4.6) that

sup
n

T ∗ˆ

0

∑

|α|+|β|≤N

‖∂α
β f n+1‖2

νds

is also sufficiently small. Thus, there exists a constant μ < 1, such that

sup
0≤t≤T ∗

EN−1(f
n+1(t) − f n(t)) ≤ μ sup

0≤t≤T ∗
EN−1(f

n(t) − f n−1(t)), (4.8)

which implies that {f n}n≥0 is a Cauchy sequence in the Banach space C([0, T ∗];HN−1(R3 ×
R

3)). Therefore, there exists a limit function f ∈ C([0, T ∗];HN−1(R3 ×R
3)), such that f is

a solution to the Cauchy problem (1.3)–(1.4) by letting n → ∞. From the fact that the point-
wise convergence of f n to f by the Sobolev embedding theorem, the lower semi-continuity
of the norms, and f n ∈ X(0, T ∗;M0), it follows that

F(t, x, v) = μ + μ
1
2 f (t, x, v) ≥ 0, sup

0≤t≤T ∗
EN(f (t)) ≤ M0.

Similarly to the proof of (4.7), one has f ∈ C([0, T ∗];HN(R3 × R
3)), thus, one can con-

clude that f ∈ X(0, T ∗;M0).
Finally, let g ∈ X(0, T ∗;M0) be another solution to the Cauchy problem (1.3)–(1.4).

Taking the similar process of the proof of (4.8), one has

sup
0≤t≤T ∗

EN(f (t) − g(t)) ≤ μ sup
0≤t≤T ∗

EN(f (t) − g(t))

for μ < 1. Then, one can deduce that f ≡ g. This completes the proof of Theorem 4.1. �
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In this moment, in order to obtain the uniform-in-time estimate, we assume that the
Cauchy problem of the system (1.3)–(1.4) has a smooth solution f (t, x, v) over 0 ≤ t ≤ T

for 0 < T < ∞, which satisfies

sup
0≤t≤T

EN(f (t)) ≤ ε0, (4.9)

where ε0 is a sufficiently small constant. Now, we can apply Lemmas 3.2–3.4 to f (t, x, v)

and give proof of the first part in Theorem 1.1.

Proof of global existence and uniqueness in Theorem 1.1 First, from (3.1) and (3.4), we ob-
tain

1

2

d

dt

∑

|α|≤N

(‖∂αf ‖2 + ‖∇x∂
αφ‖2) + λ

∑

|α|≤N

‖∂α{I − P }f ‖2
ν + λ

∑

|α|≤N

‖∂αb‖2

≤ C‖∇xφ‖HN

( ∑

|α|≤N

‖∂α{I − P }f ‖2
ν +

∑

1≤|α|≤N−1

‖∂α∇v{I − P }f ‖2

+ ‖∇x(a, b)‖2
HN−1 + ‖b‖2

)
.

(4.10)

By adding M0 × (2.8) to (2.5), and then adding M1 × (4.10) to the resulting equation, we
get

d

dt

[M1

2
(‖∂αf ‖2 + ‖∇x∂

αφ‖2) + E0(f )(t) − M0

∑

|α|≤N

ˆ

R3

∂αb∂α∇xφdx
]

+ λ
∑

|α|≤N

‖∂αb‖2 + λ
∑

|α|≤N

‖∂α{I − P }f ‖2
ν

+ λ‖∇x(a, b)‖2
HN−1 + λ‖∇xφ‖2

HN

≤ C(ε0 + √
ε0)DN(f )(t) + C

√
ε0

∑

1≤|α|≤N−1

‖∂α∇v{I − P }f ‖2,

(4.11)

where M0 and M1 large enough.
On the other hand, it follows from (4.9) and the linear combination of (3.7) over 1 ≤ k ≤

N that

d

dt

∑

1≤k≤N

Ck

∑

|α|+|β|≤N,|β|=k

‖∂α
β {I − P }f ‖2 + λ

∑

|α|+|β|≤N,|β|≥1

‖∂α
β {I − P }f ‖2

ν

≤ C
√

ε0DN(f )(t) + C
∑

|α|≤N

‖∂α{I − P }f ‖2
ν + C‖∇x(a, b)‖2

HN−1 ,

(4.12)

for some properly positive constants Ck .
By letting ε0 small enough, the further linear combination of (4.12) and (4.11) yields the

following Lyapunov-type inequality

d

dt
EN(f (t)) + λDN(f (t)) ≤ 0, (4.13)

for any 0 ≤ t ≤ T .
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Now, by taking time integration to (4.13), we obtain

sup
0≤t≤T

(
EN(f (t)) + λ

tˆ

0

DN(f (s))ds
)

≤ EN(f0).

By the standard continuity argument, the global existence and uniqueness of solutions to
the system (1.3)–(1.4) follows from the above uniform-in-time estimate together with the
local existence obtained in Theorem 4.1, and for any t ≥ 0, (1.9)–(1.10) hold. The concrete
details can refer to [14], here we omit it for simplicity. This completes the proof of global
existence and uniqueness in Theorem 1.1. �

5 Time Decay

In this section, we devote ourselves to establishing the time decay of solutions f (t, x, v) to
the VPFP system (1.1)–(1.2). Now, we consider the following Cauchy problem

{
∂tf = Bf + h, t > 0, x ∈ R

3,

f (0, x, v) = f0(x, v),
(5.1)

where h = h(t, x, v) is given, and the linear operator B is defined by

Bf = LFP f − v · ∇xf + b · vM
1
2 , LFP f = �vf + 1

4
(6 − |v|2)f.

If h = 0, we denote eBt as the solution operator to the Cauchy problem (5.1)1, then the
solution to the Cauchy problem (5.1) can be written as follows

f (t) = eBt f0 +
tˆ

0

eB(t−s)h(s)ds.

With the above preparation, we have the following decay results.

Theorem 5.1 (1) Let α ≥ α′ ≥ 0, and the initial data f0 satisfies ∂αf0 ∈ L2(R3 ×R
3) and

∂α′
f0 ∈ Z1, we have

‖∂αeBt f0‖ ≤ C(1 + t)− 2k+3
4 (‖∂αf0‖ + ‖∂α′

f0‖Z1), for any t > 0, (5.2)

where k = |α − α′| and the constant C > 0 only depends on m.
(2) Let α ≥ α′ ≥ 0, and the non-homogeneous term h satisfies ν− 1

2 ∂αh ∈ L2(R3 ×R
3) and

ν− 1
2 ∂α′

h ∈ Z1, and if further assume that
ˆ

R3

μ
1
2 hdv =

ˆ

R3

vμ
1
2 hdv = 0, (t, x) ∈R+ ×R

3. (5.3)

Then, we have

∥
∥
∥∂α

tˆ

0

eB(t−s)h(s)ds

∥
∥
∥

2 ≤ C

tˆ

0

(1 + t − s)− 2k+3
2

(
‖ν− 1

2 ∂αh(s)‖2 + ‖ν− 1
2 ∂α′

h(s)‖2
Z1

)
ds,

(5.4)
for any t > 0, where k = |α − α′| and the constant C > 0 only depends on k.
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Remark 5.1 Notice that, it from the assumption (5.3) in (ii) follows that Ph = 0, which will
be used later.

In what follows, we can further rewrite (5.1) as

∂tPf + v · ∇xPf = ∂t {I − P }f − v · ∇x{I − P }f + LFP f + h.

Similarly as before, we obtain the following macroscopic balance laws:
⎧
⎪⎪⎨

⎪⎪⎩

∂ta + ∇x · b = 0,

∂tbj + ∂ja + ∑

1≤m≤3
∂mAjm({I − P }f ) = 0,

∂j bm + ∂mbj = −∂tAjm({I − P }f ) + Ajm(� + h),

(5.5)

where � = −v · ∇x{I − P }f + LFP f .
Before providing proof of Theorem 5.1, by using the above balance laws, we have an im-

portant fact that the macroscopic coefficient b = (b1, b2, b3) satisfies an elliptic-type equa-
tion, which is initially observed in Guo [15]. Next, we describe it in the following lemma
and omit its proof for brevity.

Lemma 5.1 For 1 ≤ m ≤ 3, we have

− �xbm + ∂t

[1

2

∑

j

∂mAjj ({I − P }f ) −
∑

j

∂jAjm({I − P }f )
]

= 1

2

∑

j

∂mAjj (� + h) −
∑

j

∂jAjm(� + h), t ≥ 0, x ∈R
3.

(5.6)

Proof of Theorem 5.1 This proof is similar to Theorem 3.1 of [12], but we prove it for the
convenience of the readers. By applying the Fourier transform to (5.6) with respect to x, one
has

|ξ |2b̂m + ∂t

[1

2

∑

j

iξmAjj ({I − P }f̂ ) −
∑

j

iξjAjm({I − P }f̂ )
]

= 1

2

∑

j

iξmAjj (�̂ + ĥ) −
∑

j

iξjAjm(�̂ + ĥ),

(5.7)

and then by taking the inner product of the resulting equation with ¯̂
bm yields

|ξ |2|b̂m|2 + ∂t

(1

2

∑

j

iξmAjj ({I − P }f̂ ) −
∑

j

iξjAjm({I − P }f̂ | b̂m

)

=
(1

2

∑

j

iξmAjj (�̂ + ĥ) −
∑

j

iξjAjm(�̂ + ĥ) | b̂m

)

+
(1

2

∑

j

iξmAjj ({I − P }f̂ ) −
∑

j

iξjAjm({I − P }f̂ | ∂t b̂m

)

:= I1 + I2.

(5.8)
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The estimates of I1 and I2 are as follows.

I1 ≤ 1

2
|ξ |2|b̂m|2 + C

∑

jm

(|Ajm(�̂)|2 + |Ajm(ĥ)|2)

≤ 1

2
|ξ |2|b̂m|2 + C(1 + |ξ |2)|{I − P }f̂ |22 + C|ν− 1

2 ĥ|22,

where we have used the following estimates

|Ajm(�̂)| =
∣
∣
∣

ˆ

R3

(vj vm − 1)μ
1
2 (−iv · ξ{I − P }f̂ + LFP {I − P }f̂ )dv

∣
∣
∣

=
∣
∣
∣

ˆ

R3

[−iv · ξ(vjvm − 1)μ
1
2 + LFP ((vj vm − 1)μ

1
2 )]{I − P }f̂ dv

∣
∣
∣

≤ | − iv · ξ(vjvm − 1)μ
1
2 + LFP ((vjvm − 1)μ

1
2 )|2|{I − P }f̂ |2

≤ C(1 + |ξ |)|{I − P }f̂ |2,
and

|Ajm(ĥ)| =
∣
∣
∣

ˆ

R3

(vj vm − 1)μ
1
2 ĥdv

∣
∣
∣ ≤ C|ν− 1

2 ĥ|2.

For I2, using the Fourier transform of (5.5)2, one has

∂t b̂j + iξj â +
∑

1≤m≤3

iξmAjm({I − P }f̂ ) = 0, (5.9)

thus, we have

I2 =
(1

2

∑

j

iξmAjj ({I −P }f̂ )−
∑

j

iξjAjm({I −P }f̂ | −iξmâ −
∑

1≤k≤3

iξkAmk({I −P }f̂ )
)

≤ η|ξ |2|â|2 + Cη(1 + |ξ |2)|{I − P }f̂ |22.
Therefore, we obtain

1

2
|ξ |2|b̂m|2 + ∂t

(1

2

∑

j

iξmAjj ({I − P }f̂ ) −
∑

j

iξjAjm({I − P }f̂ | b̂m

)

≤ η|ξ |2|â|2 + C(1 + |ξ |2)|{I − P }f̂ |22 + C|ν− 1
2 ĥ|22.

(5.10)

For the dissipation of |ξ |2|â|2, by taking the inner product of (5.9) with −iξj
¯̂a, we get

(−∂t iξ · b̂ | â) + |ξ |2|â|2 +
∑

1≤j,m≤3

(
iξj ξmAjm({I − P }f̂ ) | â

)
= 0 (5.11)

For the first and third terms on the left side of (5.11), using the Fourier transform of (5.5)1,
one has

(−∂t iξ · b̂j | â) = ∂t (−iξ · b̂j | â) + (iξ · b̂j | ∂t â) = ∂t (−iξ · b̂j | â) − |ξ · b̂|2,
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and
∣
∣
∣

∑

1≤j,m≤3

(
iξj ξmAjm({I − P }f̂ ) | â

)∣
∣
∣

≤ η|ξ |2|â|2 + Cη|ξ |2
∑

1≤j,m≤3

|Ajm({I − P }f̂ )|2 ≤ η|ξ |2|â|2 + Cη|ξ |2|{I − P }f̂ |2.

Thus, taking the real part of (5.11), we obtain

∂tRe(−iξ · b̂j | â) + 1

2
|ξ |2|â|2 ≤ C|ξ |2|b̂|2 + C|ξ |2|{I − P }f̂ |2. (5.12)

Define

E(f̂ ) = 3

2

∑

1≤j,m≤3

iξm

1 + |ξ |2 (Ajj ({I − P }f̂ | b̂m)

− 3
∑

1≤j,m≤3

iξj

1 + |ξ |2 (Ajm({I − P }f̂ | b̂m) − iξ

1 + |ξ |2 · (b̂ | â),

then, it follows from (5.11) and (5.12) that

d

dt
ReE(f̂ ) + |ξ |2

4(1 + |ξ |2) (|â|2 + |b̂|2) ≤ C|{I − P }f̂ |2 + C|ν− 1
2 ĥ|22. (5.13)

On the other hand, by using LFP f = LFP {I − P }f − b · vμ
1
2 , and taking the Fourier

transform (5.1)1, which yield

∂t f̂ + iv · ξ f̂ = LFP {I − P }f̂ + ĥ,

and further taking the product of the above equation with ¯̂
f , we obtain

1

2

d

dt
|f̂ |2 + λ|{I − P }f̂ |2ν ≤ |〈ĥ,

¯̂
f 〉|,

where we used (iii) of Lemma 3.1 and {I − P0}{I − P } = {I − P }.
For the right side term, since the condition Ph = 0, we have

|〈ĥ,
¯̂

f 〉| = |〈ĥ, {I − P }f̂ 〉| ≤ η|{I − P }f̂ |2ν + Cη|ν− 1
2 ĥ|22,

thus, we get

d

dt
|f̂ |2 + λ|{I − P }f̂ |2ν ≤ C|ν− 1

2 ĥ|22. (5.14)

By taking K large enough, we set Ẽ(f̂ ) = K|f̂ |2 + ReE(f̂ ), and combine (5.13) and
(5.14), then

d

dt
Ẽ(f̂ ) + λ

[
|{I − P }f̂ |2ν + |ξ |2

1 + |ξ |2 (|â|2 + |b̂|2)
]

≤ C|ν− 1
2 ĥ|22, t > 0, ξ ∈R

3. (5.15)
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Notice that Ẽ(f̂ ) ∼ |f̂ |22 ≤ |{I − P }f̂ |2ν + |â|2 + |b̂|2, hence, we have

d

dt
Ẽ(f̂ ) + λ

|ξ |2
1 + |ξ |2 Ẽ(f̂ ) ≤ C|ν− 1

2 ĥ|22,

which implies that

Ẽ(f̂ ) ≤ e
−λ

|ξ |2
1+|ξ |2 t

Ẽ(f̂0) + C

tˆ

0

e
−λ

|ξ |2
1+|ξ |2 (t−s)|ν− 1

2 ĥ|22ds,

where we used the Gronwall inequality. Finally, we get

|f̂ |22 ≤ Ce
−λ

|ξ |2
1+|ξ |2 t |f̂0|22 + C

tˆ

0

e
−λ

|ξ |2
1+|ξ |2 (t−s)|ν− 1

2 ĥ|22ds, t > 0, ξ ∈R
3. (5.16)

Next, let h = 0, from (5.16), then

‖∂αeBt f0‖2 =
ˆ

R3

|ξα|2|f̂ |22dξ ≤ C

ˆ

R3

|ξα|2e−λ
|ξ |2

1+|ξ |2 t |f̂0|22dξ

≤ C

ˆ

|ξ |≤1

|ξα−α′ |2e−λ
|ξ |2

1+|ξ |2 t |ξα′ |2|f̂0|22dξ + C

ˆ

|ξ |≥1

|ξα|2e−λ
|ξ |2

1+|ξ |2 t |f̂0|22dξ

:= CI3 + CI4.

For I3, we have

|I3| ≤
ˆ

|ξ |≤1

|ξα−α′ |2e−λt
|ξ |2

2 |ξα′
f̂0|22dξ

≤ sup
|ξ |≤1

|ξα′
f̂0|22

ˆ

|ξ |≤1

|ξα−α′ |2e−λt
|ξ |2

2 dξ ≤ C(1 + t)− 2m+3
2 ‖∂α′

f0‖2
Z1

,

since
ˆ

|ξ |≤1

|ξα−α′ |2e−λt
|ξ |2

2 dξ ≤ C(1 + t)− 2m+3
2 ,

and

sup
|ξ |≤1

|ξα′
f̂0|22 ≤ sup

ξ∈R3
|ξα′

f̂0|22 ≤ | sup
ξ∈R3

ξα′
f̂0|22 ≤ |‖∂α′

f0‖L1
x
|2
L2

v
= ‖∂α′

f0‖2
Z1

,

where we used the property of the Fourier transform.
By a simple calculation, I4 ≤ e−λt/2‖∂αf0‖2.
Thus, it holds that

‖∂αeBt f0‖2 ≤ Ce−λt/2‖∂αf0‖2 + C(1 + t)− 2m+3
2 ‖∂α′

f0‖2
Z1

≤ C(1 + t)− 2m+3
2 (‖∂αf0‖2 + ‖∂α′

f0‖2
Z1

).
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On the other hand, let the initial data f0 = 0, then

f (t) =
tˆ

0

eB(t−s)h(s)ds.

From (5.16), we obtain

‖∂α

tˆ

0

eB(t−s)h(s)ds‖2 ≤
tˆ

0

ˆ

R3

|ξα|2e−λ
|ξ |2

1+|ξ |2 (t−s)|ν− 1
2 ĥ|22dξds. (5.17)

By the same argument as above, it follows from (5.17) that the estimate (5.4) holds. The
proof of Theorem 5.1 is now complete. �

Proof of time decay in Theorem 1.1 Let h = h1 + h2, where

h1 = 1

2
v · ∇xφ{I − P }f − ∇xφ · ∇v{I − P }f,

and

h2 = 1

2
v · ∇xφPf − ∇xφ · ∇vPf + (∇xφ − b) · vM

1
2 ,

where from integration by parts, it holds that
ˆ

R3

μ
1
2 h1dv =

ˆ

R3

vμ
1
2 h1dv = 0.

Next, we set

E∞(t) = sup
0≤s≤t

(1 + s)
3
2 EN(f (s)).

By Theorem 5.1 and the Lyapunov-type inequality (1.10), one has

‖f ‖2 ≤ (EN(f0) + ‖f0‖2
Z1

)(1 + t)− 3
2 +

tˆ

0

(1 + t − s)− 3
2 (‖ν− 1

2 h1(s)‖2

+ ‖ν− 1
2 h2(s)‖2

Z1
)ds +

(
tˆ

0

(1 + t − s)− 3
4 (‖h1(s)‖ + ‖h2(s)‖Z1)ds

)2

≤ (EN(f0) + ‖f0‖2
Z1

)(1 + t)− 3
2 +

tˆ

0

(1 + t − s)− 3
2 EN(f (s))2ds

+
(

tˆ

0

(1 + t − s)− 3
4 EN(f (s))ds

)2

≤ (EN(f0) + ‖f0‖2
Z1

)(1 + t)− 3
2 + ‖f0‖2

HN

tˆ

0

(1 + t − s)− 3
2 EN(f (s))ds (5.18)
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+ ‖f0‖
1
3
HN

(
tˆ

0

(1 + t − s)− 3
4 EN(f (s))

5
6 ds

)2

≤ (EN(f0) + ‖f0‖2
Z1

)(1 + t)− 3
2 + ‖f0‖2

HN E∞

tˆ

0

(1 + t − s)− 3
2 (1 + s)− 3

2 ds

+ ‖f0‖
1
3
HN E

5
3∞
(

tˆ

0

(1 + t − s)− 3
4 (1 + s)− 5

4 ds
)2

≤
(
EN(f0) + ‖f0‖2

Z1
+ ‖f0‖2

HN E∞ + ‖f0‖
1
3
HN E

5
3∞
)
(1 + t)− 3

2 ,

where we have used the following estimates

‖ν− 1
2 h1(s)‖2 + ‖ν− 1

2 h2(s)‖2
Z1

≤ EN(f (s))2, and ‖h1(s)‖ + ‖h2(s)‖Z1 ≤ EN(f (s)),

tˆ

0

(1 + t − s)− 3
2 (1 + s)− 3

2 ds ≤ (1 + t)− 3
2 , and

tˆ

0

(1 + t − s)− 3
4 (1 + s)− 5

4 ds ≤ (1 + t)− 3
4 .

From (1.10), one has

d

dt
EN(f (t)) + λEN(f (t)) ≤ C‖a‖2,

by the Gronwall inequality, then it follows from (5.18) that

E∞ ≤ EN(f0) + ‖f0‖2
Z1

+ ‖f0‖2
HN E∞ + ‖f0‖

1
3
HN E

5
3∞, for any t ≥ 0.

Since the smallness of ‖f0‖HN , we get

sup
t≥0

E∞ ≤ EN(f0) + ‖f0‖2
Z1

.

Thus, we have completed the proof of time decay in Theorem 1.1. �

Acknowledgement The work is supported by the National Natural Science Foundation of China under
Grant No. 41962019. The author would like to thank the referee for the valuable comments and suggestions.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Bonilla, L.L., Carrillo, J.A., Soler, J.: Asymptotic behavior of an initial–boundary value problem for the
Vlasov–Poisson–Fokker–Planck system. SIAM J. Appl. Math. 57, 1343–1372 (1997)

2. Bouchut, F.: Existence and uniqueness of a global smooth solution for the Vlasov–Poisson–Fokker–
Planck system in three dimensions. J. Funct. Anal. 111, 239–258 (1993)

3. Bouchut, F.: Smoothing effect for the non-linear Vlasov–Poisson–Fokker–Planck system. J. Differ. Equ.
122, 225–238 (1995)



The Vlasov–Poisson–Fokker–Planck System 881

4. Carpio, A.: Long-time behaviour for solutions of the Vlasov–Poisson–Fokker–Planck equation. Math.
Methods Appl. Sci. 21, 985–1014 (1998)

5. Carrillo, J.A.: Global weak solutions for the initial–boundary value problems to the Vlasov–Poisson–
Fokker–Planck system. Math. Methods Appl. Sci. 21, 907–938 (1998)

6. Carrillo, J.A., Soler, J.: On the initial value problem for the Vlasov–Poisson–Fokker–Planck system with
initial data in Lp spaces. Math. Methods Appl. Sci. 18, 825–839 (1995)

7. Carrillo, J.A., Soler, J., Vazquez, J.L.: Asymptotic behaviour and self-similarity for the three-dimensional
Vlasov–Poisson–Fokker–Planck system. J. Funct. Anal. 141, 99–132 (1996)

8. Carrillo, J.A., Duan, R.J., Moussa, A.: Global classical solutions close to equilibrium to the Vlasov–
Fokker–Planck–Euler system. Kinet. Relat. Models 4, 227–258 (2011)

9. Castella, F.: The Vlasov–Poisson–Fokker–Planck system with infinite kinetic energy. Indiana Univ.
Math. J. 47, 939–964 (1998)

10. Duan, R.J., Liu, S.Q.: Cauchy problem on the Vlasov–Fokker–Planck equation coupled with the com-
pressible Euler equations through the friction force. Kinet. Relat. Models 6, 687–700 (2013)

11. Duan, R.J., Liu, S.Q.: Time-periodic solutions of the Vlasov–Poisson–Fokker–Planck system. Acta
Math. Sci. Ser. B Engl. Ed. 3, 876–886 (2015)

12. Duan, R.J., Fornasier, M., Toscani, G.: A kinetic flocking model with diffusion. Commun. Math. Phys.
300, 95–145 (2010)

13. Glassey, R., Schaeffer, J., Zheng, Y.X.: Steady states of the Vlasov–Poisson–Fokker–Planck system.
J. Math. Anal. Appl. 202, 1058–1075 (1996)

14. Guo, Y.: The Vlasov–Poisson–Boltzmann system near Maxwellians. Commun. Pure Appl. Math. 55,
1104–1135 (2002)

15. Guo, Y.: The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53, 1081–1094 (2004)
16. Hérau, F., Thomann, L.: On global existence and trend to the equilibrium for the Vlasov–Poisson–

Fokker–Planck system with exterior confining potential. J. Funct. Anal. 271, 1301–1340 (2016)
17. Hwang, H.J., Jang, J.: On the Vlasov–Poisson–Fokker–Planck equation near Maxwellian. Discrete Con-

tin. Dyn. Syst., Ser. B 18, 681–691 (2013)
18. Luo, L., Yu, H.J.: Global solutions to the relativistic Vlasov–Poisson–Fokker–Planck system. Kinet.

Relat. Models 9, 393–405 (2016)
19. Ono, K.: Global existence of regular solutions for the Vlasov–Poisson–Fokker–Planck system. J. Math.

Anal. Appl. 263, 626–636 (2001)
20. Pulvirenti, M., Simeoni, C.: L∞-estimates for the Vlasov–Poisson–Fokker–Planck equation. Math.

Methods Appl. Sci. 23, 923–935 (2000)
21. Soler, J.: Asymptotic behaviour for the Vlasov–Poisson–Fokker–Planck system. Nonlinear Anal. 30,

5217–5228 (1997)
22. Victory, H.D.: On the existence of global weak solutions for Vlasov–Poisson–Fokker–Planck systems.

J. Math. Anal. Appl. 160, 525–555 (1991)
23. Victory, H.D., O’Dwyer, B.P.: On classical solutions of Vlasov–Poisson–Fokker–Planck systems. Indi-

ana Univ. Math. J. 39, 105–156 (1990)
24. Villani, C.: Hypocoercivity. Mem. Amer. Math. Soc., vol. 202, (2009)
25. Yang, T., Yu, H.J.: Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole

space. J. Differ. Equ. 248, 1518–1560 (2010)
26. Yang, T., Yu, H.J.: Global classical solutions for the Vlasov–Maxwell–Fokker–Planck system. SIAM J.

Math. Anal. 42, 459–488 (2010)
27. Yang, T., Yu, H.J.: Optimal convergence rates of classical solutions for Vlasov–Poisson–Boltzmann sys-

tem. Commun. Math. Phys. 301, 319–355 (2011)
28. Yang, T., Yu, H.J.: Global solutions to the relativistic Landau–Maxwell system in the whole space.

J. Math. Pures Appl. 97, 602–634 (2012)


	Global Existence and Long-Time Behavior of Solutions to the Vlasov-Poisson-Fokker-Planck System
	Abstract
	Introduction
	Macro-Micro Decomposition
	Energy Estimates
	Global Existence
	Time Decay
	Acknowledgement
	References


