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Abstract In this paper, we study the global existence of solutions to the Vlasov—Poisson—
Fokker—Planck system in the whole space by using the refined energy method. In the proof,
the a priori estimates on the macroscopic and microscopic components of solutions are
obtained by use of the macroscopic balance laws. As a by-product, the algebraic decay rate
of solutions converge to the global Maxwellian, which established by employing the Fourier
analysis.

Mathematics Subject Classification 35Q84 - 82D05

Keywords Energy method - Global existence - Decay rate - Macro—micro decomposition -
Fourier analysis

1 Introduction

We are concerned with the following Vlasov—Poisson—Fokker—Planck system

HF +v-ViF+Vp-VoF=LppF, t>0, x,veR3,

Ax¢=fR3 Fdv—1, (1.1)
‘l‘im ¢(t,x)=0, V=0,

with initial data
F(0,x,v) = Fo(x,v), (1.2)

where F(t,x,v) is the distribution function of particles at time ¢ > 0, position x =
(x1, %2, x3) € R? with velocity v = (v, v2, v3) € R3. The potential function ¢ = ¢ (¢, x) is
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coupled with the distribution function F (¢, x, v) through the Poisson equation. The Fokker—
Planck operator L p is defined by

LppF =V, - (V,F4+vF).

We next consider the global solutions to Eq. (1.1) near a global Maxwellian p(v) =

v2
(271)_%3_% . The perturbation f (¢, x, v) to u is defined by F = p + ,u% f. Then Eq. (1.1)
for the perturbation f (¢, x, v) can be rewritten as

Of+v-Vif + V¢ -Vof —4v.Vipf —Vip - vut =Lppf,

1.3
Avp = [os n fdv, Jim g, x) =0, (43
X [— 00
with initial data
1
FQO,x,v) = folx,v) =pu"2(Fo— p). (1.4)
The Fokker—Planck operator is given by
| | 1
Lppf=pu 2V [uVou 2 H1=Auf + 26 =) f.
For any fixed (¢, x), we define the v-orthogonal projection
P:LAR®) — span{u?, v}, (j=1,2,3)
by
Pf(t,x,v) =1{a(t, ) +b(t, x) - v}u?, (1.5)

where a, b = (b, by, b3) are called the coefficient of the macroscopic component of Pf,
and evidently, a(z, x) = (M%, f),and b(t,x) = (v,u,%, f).
For fixed (¢, x), f(¢, x, v) can be uniquely decomposed as

flt,x,v)y=Pf(t,x,v)+{I — P}f(t,x,v), (1.6)

where I denotes the identity operator, Pf and {I — P} f are called the macroscopic and the
microscopic component of f, respectively.
For any function f(¢, x, v), we denote

Pof(t,x,v)=a(t,x)u? and P f(t,x,0)=b(t,x) vu?,

then P can be writtenas P = Py @ P;.

Notations. Throughout this paper, we assume that N > 4, and C denotes a positive con-
stant which may change from line to line and only depends on 7 in some place. In addition,
A ~ B means that there exists a positive constant ¢ > O suchthatcB < A < %B. We use (-, -)
to denote the standard L? inner product in R, and (-, -) to denote the L? inner product in

R3 x R? or R3. The corresponding norms are denoted by | - |» and || - ||, respectively. Let the
multi-indices & = (@, @2, @3), and B = (B, B2, B3), we denote df = o5, x5 s 951972 .

The length of o and B denote by |o| = @ + @ + o3 and |B| = B; + B2 + Bs, respectively.
B < a means that 8; < «; for j =1, 2,3, while 8 < « means that 8 <« and |B] < |a|. We
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The Vlasov—Poisson—Fokker—Planck System 855

use C# to denote the usual binomial coefficient. Finally, we use HY to denote the Sobolev
space HY(R3 x R®) or HY (R?).
For the velocity weight function v = v(v) is denoted by v(v) = 1 + |v|2, we define

rB= [ (vonsre s mp)ax, k= [ [ (s@1rP 9 se)dnd.
R3 R3 R3

The instant energy functional

ENCF@)~ Y a5 FOI + IV 1w (1.7)

la|+IBI=N

and the dissipation rate

Dy(f (@)= Z 10 Pf I + 1511 + Z g (1 = PYSOIL + IV @) ]5;n-
O<la|<N la|+IBI=N
(1.8)
In the following, we define the space Z; = Lz(Ri’,; L! (Ri)) with the norm

2 1
1712 = ([ ([ 1rrwdx) av)”
R} R}
For any integrable function f : R® — R, we define the Fourier transform as follows
f&=Fre = / e f(o)dx,
R3

where x - & = Zj‘:l x;&;, for & € R3, and i = +/—1 € C is the imaginary unit. And the dot
product a - b = (a | b) for any a, b € C.
Our main result is stated as follows.

Theorem 1.1 Let Fy(x,v) = u + p,% fo(x,v) >0, suppose that Ey(fo) is small enough.
Then the system (1.3) has a unique global smooth solution f(t, x,v), which satisfies

f(t,x,v) € C([0,00); HY (R} x RY), F(t,x,0) =pu+pu? f(t,x,v)>0, (1.9

and the Lyapunov-type inequality

%sw(z)) LD (F(B) <0 foranyt =0, (1.10)

Moreover, if we further assume that || follz, is bounded, then the algebraic decay rate

EnNCF (D) < CES) + IS5 (1 +1)73
holds for any t > 0.

Remark 1.1 In [17] and [18], the authors obtained the following Lyapunov-type inequality
dg (t)+Dy() <0
dr N M=
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Since Ey(t) < CDy (1), it follows that
En(t) < En(0)e ™,

where Ey (1) ~ 3, <n (104 FI? +118*V@[1*) in [17], and E (1) ~ 3=, <y 19 FIIP + [ VI
in [18]. For the case of || # 0, the method to deal with problems is more complicated.
Moreover, our decay result is obtained by using the Fourier analysis, and their is just a
direct result of Lyapunov-type inequality.

Remark 1.2 By the elliptic theory, one has
IVl = Cllall?,

it follows from (1.7) and (1.8) that there exist constants C; > 0 and C, > 0, such that

Dy(f@)=C Y 105 fOIP + IVap )y = C2n (£ (1))

la|+IBI=N

By virtue of (1.10), we can get the same result as [17] and [18].

At the end of this section, we briefly review the existence theory for the Vlasov—Poisson—
Fokker—Planck (VPFP for short) system. For this system, there have been many literatures
on the global existence of weak solutions, classic solutions, regular solutions, smooth so-
Iutions and time-periodic solutions and so on. For example, Carrillo [5] and Victory [22],
they constructed the global weak solutions to the VPFP system. For the classical solutions,
Hwang and Jang [17] established the global existence and the exponential time decay to the
VPFP system by taking advantage of the standard energy method [14]. And in the relativistic
sense, Luo and Yu [18] also constructed global solutions of the VPFP system and obtained
exponential time decay by using a new energy method developed by Yang and Yu [25-28]
through the combination of the Kawashima compensating function and the standard en-
ergy method. In [19], Ono established the global existence of regular solutions to the VPFP
system. In [2], Bouchut proved the existence and uniqueness of global smooth solutions in
L'(IR?) and obtained the smoothing effect in [3]. In [11], Duan and Liu studied the existence
and uniqueness of the time-periodic solutions to the VPFP system by using Serrin’s method.
Besides the results mentioned above, the asymptotic behavior and the long-time behavior
of solutions to the VPFP system, we can refer to [1, 4, 7] and [21]. For other topics related
to the VPFP system, the interested readers can also refer to [6, 9, 10, 13, 16, 20, 23] and
references therein.

In this paper, motivated by [12], and by using the refined energy method, which is based
on the macro—micro decomposition near global Maxwellians, we can also get the global
classical solutions of the VPFP system, and present the algebraic time decay of solutions
which is different from the exponential decay results in Luo et al. [18] and Hwang et al. [17].
Compared with [18], we didn’t use the Kawashima compensating function, and with [17],
the instant energy functional and the dissipation only included the pure spatial derivatives,
but we contained the spatial and the velocity derivatives. In such case, we will deal with
the complex space-velocity-mixed derivatives estimate. Moreover, it should be pointed out
that the time rate of convergence to equilibrium is an important topic in the mathematical
theory of the physical background. As Villani [24] said that there exist general structures in
which the interaction between a conservative part and a degenerate dissipative part lead to
convergence to equilibrium, where this property was called hypocoercivity. In Theorem 1.1,
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The Vlasov—Poisson—Fokker—Planck System 857

we give a concrete example of the hypocoercivity property for the VPFP system in the
framework of perturbations.

Finally, before concluding this section, we simply sketch the main ideas used in ob-
taining our results. Using the macro—micro decomposition and the dissipative properties of
Lrp, one can get the weighted energy estimates which are the estimates of the microscopic
component, and the estimate of the macroscopic component can be obtained by defining a
temporal energy functional. It is worth pointing out that we also need to the dissipation of
V., ¢, which is different from the reference [12]. Therefore, with the help of the uniform-
in-time estimate, the global existence of solutions can be proved by employing the standard
continuity argument. On the other hand, we construct a linearized Cauchy problem with
a non-homogeneous term to establishing the time decay of solutions by using the Fourier
analysis.

The rest of this paper is organized as follows. In Sect. 2, we employ the macro—micro
decomposition to obtaining the a prior energy estimate of the macroscopic component by
defining a temporal energy functional. In Sect. 3, we list the dissipative properties of the
linear Fokker—Planck operator Lrp and get the weighted energy estimates, which play an
important role in establishing the global existence. Finally, we devote ourselves to obtaining
the global existence and the algebraic rate of convergence of solutions in Sect. 4 and Sect. 5,
respectively.

2 Macro-Micro Decomposition

In this section, we next shall obtain the dissipation rate of the right macroscopic term. Notice
that the following equivalent relation

Yo NPF@OIP~ D 10V, )P,

0<la|<N le|<N—1

from Eq. (1.1), taking the velocity integration over R3, and using the collision invariant
property, we get the following local macroscopic balance laws
O [ps Fdv+ V- [p3 vFdv =0,

2.1
O [z vFdv+ V.- [(3v @ vFdv — V¢ [o3 Fdv+ [ vFdv=0.

By using the perturbed expression of F and the decomposition (1.5), we obtain from the
macroscopic balance laws (2.1) and (1.3), that

o,a+V,-b=0,
ob+Via+V, - (v®v— I)M%,{I—P}f) —V,¢p(14+a)+b=0, (22)
Ay¢p=a.

Now, we can rewrite (1.3); as

AP+ VPS4 Vi VoPf — 30 Vi Pf — (Vg —b) - vM .

=3I — P)f + L+,
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where
t=—v-V{I = P}f+Lpp{l — P}f,
and
r= 30Vl = PYf Vi Vll ~ P
Define the high-order moment function A = (A ,,)3x3 by
Ajn(f) = (030, = D, f).
Applying A j,, to (2.3), it follows from (2.2), that

0 Aj({I = P}f)+0;by + 0ubj — (3jpby + 0,pbj) = A}, (€4 1),
0, A;;({I — PYf)+20;b; —23;¢b; = Aj;(£+r),

2.4

where the derivation of the system (2.4) similar to [12]. Hence, the details are omitted for
simplicity.
In what follows, we introduce the temporal energy functional & /(f) by

SHO= Y Y [ 8%@bu + b)) A (I — P}f)dx

el <N =1 1=jm=335

- Z 8%ad*V - bdx,
‘D“SN_I]R3

2

to obtaining the dissipation of ||V, (a, b)|| yN-1-

Lemma 2.1 For smooth solutions of the system (1.3), we have

d
SN0 +4Vo(a, DY 3n-1 < ClIVedlsn + ClIbIZy + CI{T = PYf 7w

+ ClIIVepl 0 (IVia, D)1 3n-s + {1 = PYf 150
2.5)

Proof Using integration by parts and (2.4),, we have
2(IV0bI* + [V, - 8°DII)

> 10%(@bm + dub )

1<jm=3

3 [ 6t + 0081000 + D)
1§j$m§3R3

— A ({I =PYf)+ Aj,(+71)]dx

1<jm=375

d
I > /3“(8jbn,+3mb_,~)a“A_,~m({1—P}f)dx
R
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The Vlasov—Poisson—Fokker—Planck System 859

£ Y [0 @b+ 8,058 A0 11~ PLF) dn

|§j,m§31R3

+ Y / 0% (3;bm + Db )0 [(3;0b + dnbby) + A (€ + )] dix.

lsj,m53]R3

We denote the second and third terms of the last equal sign by /; and I, respectively.
For I, and I, by the Sobolev imbedding, i.e. L*(R?) — H'(R?) and LS(R?) — H'(R?),
it holds that

18%@;pa)> < Cll0“ 8,012, 10 all2e <C Y 10V, > 19V,al.
|| <N le|=N—1
Thus, one has

L=-2 %" /a“a,bja“amAjm({I—P}f)dx

l<jm=3p;

=2 Z /8“[8ja+ Z amAJm({I_P}f)

1=jm=375 1<jm=3

—3jp+bj —3;¢ald*d,A;,({I — P} f)dx
< n(18*Vyall® + 1T B + 3T VoI + ClIV 120 I Vealln
+ CI{I = PYfIl5,n

and

L <

> 0@+ 0ub)DIP+C Y 109(D0bm + b))

1<j,m=<3 1<j,m=<3

+C Y U0 Am O + 10 Ajm () 17)

1<j,m=<3

N —

=

> 10%@;bm + 0ub)I + CIUT = PYF I

1<jm<3

+ CIV@l5n (VT = P vt + IVebl v,

N =

where we used (2.2),, integration by parts, and the following estimates
0% Ajm (Ol = IAjm (3O
= (o = Db~ V01T = PYf + Lepd® (1 = P
= |(= vjon = Dut, Voot - Pys)|
+ (L (o = Di ) 5011 = P17

< C||V:0{I = P}fII+ Cllo*{1 — P} [,
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and
10%Ajm ()] = 1A jm (@7l

= J(@svn— et (Go - vest = Prf — Vap - vt = 27|

:ZC;“

o <a

l a /
<(Ujvm - 1)/”/%3 EU N 80(_“ vx¢8a {I - P}f
— V0.V, 0% (I — P}f>H
/ 1 ! !
< Z ¢z (|(5vemm = Dud e viga' 1 - pif)

+ H(Vv((u,um —_ 1),&), V0% $3% (I — P}f)H)

< ClIIV@llgn IVa{I = PYf |l gy

By collecting the above estimates and taking summation over |o| < N — 1, we obtain

S0 > [ 890k + 8ub))8" A (I — PYf) dx

le|<N—1 lij,m§3]R3

+2 ) (IV*BIP + IV - 8°B1%)

la|<N—1 (2.6)
<7 Z (19%all* + 110*b11*) + Z 10“V,llI* + CII{I = P} fll3yn
1<|a|=N I<|e|<N

+ ClIVe@ll5n (VT = P wer + Ve (a, D))

Next, we shall give the dissipation of ZISIaISN l9%al|?.
Using (2.2), again, we have

199Vyall®

> [ 89;a0%0;a dx

1<j=3p3

3 / 00,00 = 8b; + ;6 —b; = 3 BuAu(l = PYf) + ;0] dx

15,‘53R3 1<jm<3
- Z/a“aaa“b dx+2/aaa,aabdx
1<]<3 1</<2
5
+ Y /a“a_iaa“[aj¢—bj— > a,,,Ajm({I—P}f)+a_,~¢a] dx:=Y I,
1<j<3p; 1<j,m=<3 j=3
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For I and I, we have I; = % Jgs 89ad*Vy - b dx, and

Iy = _/80‘31118an +bdx = 0"V, - b|>.
R3

For I5, similar as /;, one has
1
Is < Envxaaan2 +113°V. > + 13°b|1> + Cl13* V. {I — P} f*

+ ClIVeplyn I Vaallynor-
Combining the above estimates and taking summation over |o| < N — 1, we obtain
_4 > /a“aa“v bdx+ > le%al?
dt * 2
ler|<N—1 23 I<la|<N 2.7
<UIVellynas + 1615w + CIVAL = PYf vt + Vi@l Vel s
Therefore, the desired estimate (2.5) follows from (2.6) and (2.7). O

In what follows, we introduce an equivalent energy functional

ELIO~ D 195 L O+ Ve +E(HO) = Y / 0*bd°*Vpdx.

el +1BI<N el <N

We now give the dissipation of ||Vx¢||§1,v, let x| < N, by applying 9% to (2.2), and
taking the inner product of the resulting equation with 3%V, ¢ over R? and using (2.2);, we
obtain

||8°‘ng{>||2:/afaabaavxqﬁdx—l—/B“ana"‘ngbdx—i-/Vx-A({I— P}3% £)8° V. pdx

R3 R3 R3

10
+/8°‘b8°‘Vx¢dx —/a“(av@)a“vxwx =Y I

e e i=6

For I, one has
d
Is = ’r 0°bo*V, pdx — | 0*b3*V,0;¢pdx
R3 R3
Denote the right second term by /¢ of I, using (2.2);, we have
I = /a“vx -bd*A;'dadx = —/a“vx -b3*A['V, - bdx
R3 R3
:/mg‘a"vx -b|*dx < C||3°b|?,
R3

where we used the operator V, A !V, is bounded from L?* to L.
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Thus,

d
I < - / 393V, pdx + C||3°b|%.
]R3

For I7, when o =0,
1 2 1 2
VaVypdx < EIIV)APII + EIIanII ,
R3
when 1 < |a| <N,
—/B“VXaE)“VXd)dx: l0%al®.

R3

For I3, using integration by parts, we get

= ) /BmA_fm({I — P}0% f)398,pdx

15./',mS3]R3

=— Y [ Al = PY* £)0°0;0, A adx

1§jJn§3R3
<nl[0%9;0. A7 all* + CyllA(T — PY3* )II* < nlld®all® + C,I{I — P}o* f|>.
For Iy and I, by direct computation, one has
Iy < nl[0“Vp|> + C,19°bI* and 1o < Cllall g | Vedlln

Collecting the above estimates, and using Young’s inequality, and then taking summation
over |a| < N, we obtain

_4 Z/a‘”baﬂ‘v bdx +1( Y 0%l +1V:,)

|ot\<N I<|a|<N 2.8)
< Clbl3,w + CIHT = PYf 13w + Cllallsn Vel n -
Remark 2.1 Here, we need the dissipation of V,¢, because the estimate (2.5) includes this

term, which can’t be absorbed by other terms so that we can’t establish the Lyapunov-type
inequality to proving the global existence of solutions to the VPFP system.

3 Energy Estimates

In this section, we shall establish the energy estimates in order to obtain the global existence
of solutions. For the linear Fokker—Planck operator Lgp, its the dissipative properties are
listed as follows, which its proofs, we can refer to [8] and [12].
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Lemma 3.1 Lgp is a self-adjoint operator, and the following conclusions hold

(1) There exists a constant . > O such that the coercivity inequality
~(Lrp f. f) = M = PYfI; + b

holds.
(2) There exists a constant Ay > 0 such that

—(Lrp f, f) = holll = P} 13,
Remark 3.1 Using the self-adjoint of L pp and (ii), then (i) holds.

Lemma 3.2 For smooth solutions of the system (1.3), we have

1d 2 2 2 2
S (1P +19012) + 201 = PYLFIE + 1] o

= CIVly (el + 1 Veta, B + 11 = PIFIZ).

Proof For Eq. (1.3),, taking the inner product of it with f over R® x R3 with respect to x
and v, one has

1d | 1
Eallfll2 — Va2, f) = S Vidf, )+ (Lepf, ). (3.2

We now estimate terms in (3.2). For the second term on the left side of (3.2), we get

(Vo -vul, f) = —/vmbdx :/¢vx bdx = —/¢8,adx
R3 R3

R3
1d
= Ax = 5. Vv 27
/¢ 0, pdx Zdt” <ol
R3

where (2.2); and (2.2); are used.
For the first and second terms on the right side of (3.2), using the decomposition of f in
(1.6), we obtain

1 1
S0 Vibf, )=V, IPP) + (v Vi PL AT = PYf)
| 3 (3.3)
+ 5 Vg W = P =D

i=1
Next, we deal with the term I; (i =1, 2, 3). For I, and I5, we have

b S/IVX¢||Pf|2|{1 — PYfldx < |IVadll 31 Pflallie T = PYSIL

R3

< CIV@llg IVela, DL = PYflly < CUIV@ll g1 (I Ve (@, DI + 1T = PYFID),
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since
Pfl2llgs < IPSfllsla < ClIVePfll2 < ClIVi(a, b,

where we used the Minkowski inequality and the Sobolev imbedding theorem.
And

1
= SVl It = PYfIL < CIIVE I I = PYFIL.

For I, one has

I = %(v Vb, [@+b-v)ut) = (Yo, ab - voM)

=Z // 8i¢uaijjv,-dxdv=2 // 8j¢uaij§dxdv

Y R3IxR3 ) R3xR3

lv]?

=/Vx¢'badx TMdv:/Vqu«badx

R3 R3 R3

< IVe@llslIbllsllall < CUIV.@ll i I Vibllall < CUIVi@ll g1 (VDI + llall).

By Lemma 3.1, we see that

—(Lrpfo £) =M = PYFI2+ 11D

Combining the above estimates, we obtain the desired estimated (3.1). This completes

the proof of Lemma 3.2.

Lemma 3.3 For smooth solutions of the system (1.3), we have

1d
37 DU FIP IV DI+ Y N9 = PYFIE+ D 110°B°

I<la|<N I=|a|=N I<la|=N

<CIVipllyw( Y 18U = PYfIZ+ Y 19°Vu{l — PYSI?

I=|a|=N I<la|=N-1

+ IV (@, b)[17n-1)-
Proof Applying 0*(1 < |a| < N) to Eq. (1.3),, we get
1
0,0 f+v -V, 0 f+ V-V, 0 f — 8“(51) -V of)

— Va0t + Y CL VL Vo f = Lepd® .

o <o

Taking the inner product of (3.5) with 3% f over R* x R, similarly, one has
o L e o o 1d o 2
(=Vi0%¢ - vuz,9 f) = (=V,0%¢,0°D) = EE”V"E) ol
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For the fourth term of the left side of (3.5), using the decomposition of f, we have
o 1 o
( (Ev “Vidf), 0% 1)
1
=(3“(§v~Vx¢Pf),3“f) (3.6)

1 1
+(8“(§v-Vx¢{1 —P}f),0“Pf) + (3“(511 Ve{I — P}f), 0%{1 — P} [).

The terms of (3.6) can be estimated as follows

1 S A
D CE G-V g PO ) <C Y [ V0" 9107 (a. b)[10° fludx == Lu.

lo/|<e| o' <lalps
When |o’| < ¥, one has

Iy < sup |9% (a, b)|| V.3 @ l118% I,

xeR3

<CIVedpllgy Y 0L = PYFIL + 10%(a, D)),

I<la|=N
where the Sobolev imbedding is used. When |a’| > % we similarly obtain

Iy < sup [V, 0%~ @118 (a, D)II13* £,

xeR3

<CUVedplligy Y (0T = PYFIL +110%(a, D)IP).

I<]a|<N

For the second term on the right side of (3.6), using the same procedure as above, we get
1
(8“(51) Ve{l — P}f),0°Pf)

<C Y [V @l0% (I — P} f1,10 (a. b)|dx

1<
lo’ | <ltl

<CIVedpllign D 0T = PYFIE + 110 a, )P,

1<la|=N

and
1
(3“(511 “Vep{l = P} f),0%{1 — P}f)

<C Y [ IV BlI0 (T = PYfILIOU — P} fldx

1<
le| <larls

<CIVillun Y. 101 = PYSI2.

I=]a|<N
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Thus, we obtain from the above estimates that

1
(0" (50 Va9 ). 0 ) SCIVillgn Y. (10U = PYFIL + 10%(a, b)),

I<|a|=N
For the last term on the left side of (3.5), one has

D CY @V VO F. 0 f)

o' <a

=) CL@ V. p-V,0 Pf,0°f)

o <a

+ Y CE@ VG V0T — PV f) = s + I

o <a

For I5 and I, similarly, we have

15s/|a“*“’vx¢||a“’<a,b>||a“f|zdx
]R3

< CIVedpllgn € Y 10T = PYFIL + [Vela, D) 3n-1),

I<|a|<N
and

165/|a“—“’vx¢||vua“’{1—P}f|z|a°‘f|2dx

R3

<CIVedpllgn (Y 10Vll = PYFIP+ D 119 — PYfI}

1=<|o’|<N-1 I<la|=N
+Vea, D))
By Lemma 3.1, one has
—(Lppd® f£,0% f) = AT — PYO* FII + [10°DIl.

Collecting the above estimates, and then taking summation over 1 < |o| < N
yields the desired estimate (3.4). We have thus completed the proof of Lemma 3.3.

Remark 3.2 From Lemmas 3.2 and 3.3, we can obtain the dissipation of ||b||§{ N-

Lemma 3.4 Let 1 <k < N, for smooth solutions of the system (1.3), we have

1d
Sa 2 MU= PIP R 3 g = PG

lae|+IBI=N,|Bl=k la|+IBI=N,|Bl=k
<CIVagllgy (Y 195 = PYAI + Vi@, D))
lee|+|BI=N
+C Y I =PYIE+C Y 119“Vela, b
le|<N—k+1 || <N—k
+ Cxpsksn > 3G {1 — PYfIZ,

la|+IBI=N,1<|B|<k—1

where x4 denotes the characteristic function of a set A.
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Proof Applying the microscopic projection {/ — P} to Eq. (1.3), one has
1
I =PI+ = Pho-Vof +{I = P}V - Vo f = S0 Vedf) = Lrp{l = P} f,

where {I — P}P =0and {I — P}v,u% =0 are used.
We can further obtain from the above equation that

I —PYf+v-V{I —P}f+V,¢-V,{I —P}f

1

! (3.8)
+ P -V {I—-P}f— Ev-qub{I =P} + V.-V {I = P}f)

U= P VP~ 30 VP Vi) VP,

where we used {I — P}Lpp = Lpp{l — P}.
For 1 <k < N, we apply 8g(|o¢| + |8l < N, |B| = k) to Eq. (3.8), and take the inner
product of the resulting equation with 95 {I — P} f over R’ x R?, we have

1d
2dt

- —/(agw VAl = PYf + V.- VoI — PY). 951 — P} f)dx

R3

g {1 — PYfI

1
+ /<ag<LFP{1 — PYf). 0%{1 — P} f)dx + / SOVl = P,
R3 R3

1 (3.9)
dg{l — P} f)dx +/(8§(P(v -Vl =P} f — EU -Vip{l — P}f

R3

+ Vi - Vo{l = P} ), 05{1 — P} f)dx —/(82‘({1 — P}(v- Vi Pf
R3
1 11
=50 Ve Pf + Vi VoPL)), 951 — PYf)dx = > oI

j=7
Next, we estimate terms in (3.9) one by one. For I, using integration by parts, we get

L=— Y CS/ (0pv- V5 _g{I — PYf, 05{I — P} f)dx
1<IF<IBl s

— Y [ (V0" p V05T — PYAOR(T — PYf)dx
Islo’|<lel g3

=0L+1.
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We deal with the term I; and /' as follows

L <l = PYFIP+Cy( Y 10Vl = PY I

|la|<N—k

+ Xpsk=N) > 19541 — PY£11%).

la|+IBI=N,1<|B|<k—1

and

B=C Y [ V¥ GlIVid I — PYfLI0GHT — P) fladx

1=la’|<lalps

<C Y 10°Vigl Y. sup [V,0°(1 — PYFIIOSHT — PYSI

lal<N—1 |BI=1+€R
+C Y 10 Vedllo Y VBT = PYFINGT =PI
I<|e/|<N-2 1=<|e/| e
<C Y l0Vepll Y IV VP — PG — P
le|=N—1 le|=1,]1B]=1
+C D 0°Vepll > 05T = PYFUNOGHT — PYfIl
2<|a|<N la|+]BI=N
<ClVidllgy Y N0g{I = PYfIP.
la|+]BI=N

For I3, using the commutator operator, i.e. [A, B]= AB — BA, one has

/(agLFP{I — PYf,03(1 — PYf)dx

R3

=/<3”[35, —[vP i1 = P} f, 9511 — P} f)dx

R3

b [(Lendgts = PRI — P frdx = 1+ 8,

R3

where we used [8g, Lrp] =[5, —|v|*].
For I and I, we obtain

Iy < nlldg{l — PYfI? + Cyll[9p, —[v*19°{1 — P} fII?

<l — PYFIP+Cy( D I10°{T = PYFI}

|| <N—k

+ Xp<k=n) > 1957 = PY£I).
le|+|BI=N,1=|B|<k—1
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and
" a 2 )“O o 2 a 2
— 1 = 2oll{I — PoYOS{L — PYFI2 = 2108(1 — PYFI2 — Aoll PodS{T — P} £

A
= 95U = YL = Clo" (T = PYFI,

where we have used Lemma 3.1.
For Iy, similar to Lemma 3.3, we have

1
3 [ @50Vt = P15~ P

2
R3
_1 ¥t [ (3gv- V0% 3%~ (I — P)f.0%{I — P} f)d
Sl [ (g0 V.0 99T — P) £, 051 — P)f)dx
o’ |<le|,|B'|<IBI R3
<CIVehlay Y. 1050 — PYAIP.

la|+[BI=N
For I,y and I, one has
Ly < nll95{T — PYfIP 4 Cyll Vi@, ) vk + ClIVedll gn Vi@, b) 13-
and

Lo <nlldgtl = PYFIP+Cy D IV {1 = PYfI?
lo/|<N—k

+CIVapllyn Y 1951 = PYfIP

lo/|+]8'|<N

Combining the above estimates, and taking summation over |¢|+ |8| < N, |8| = k, and then
choosing n > 0 small enough, we obtain the desired estimate (3.7). We have thus proved
Lemma 3.4. g

4 Global Existence

In this section, in order to obtain the global existence and uniqueness of solutions to the
system (1.3)—(1.4), we first study the local existence and uniqueness of it. The iterative

sequence { f" (¢, x, v)}22, of solutions to the following system

1

3tfn+l +v- fonﬂ + V" vanJrl — LFan+1 + %v . Vx¢nfn+1 + Vx¢n+l Sz,
A" = [osp? frdv, Jim g1, x) =0,
x|—>00

N0, x,v) = folx, v).
4.1
Here n > 0, and f° = 0 is the starting value of iteration. The solution space X (0, T; M)
defined by

X(0,T; M) ={f € C([0,00); HY(R* x R?)) : sup En(f(1)) <M, pu+ /uf =0}

0<t<T
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The main result of this section is as follows.

Theorem 4.1 Let N > 4, there exist €y > 0, T* > 0 and My > 0 such that if fo € HY (R? x
R3) with Fy = u + I fo = 0and En(fo) < €, then for each n > 1, f" is well-defined with
f" e X(0,T*; My). Moreover, one has the following conclusions

(1) {f"}uso is a Cauchy sequence in the Banach space C ([0, T*]; HY~!(R? x R?)).

(2) The corresponding limit function denoted by f belongs to X (0, T*; My), and f is a
solution to the Cauchy problem (1.3)—(1.4).

(3) f is unique in X (0, T*; My) for the Cauchy problem (1.3)—(1.4).

Proof Using induction, we assume that f" € X (0, T*; M) holds true for n > 0. In order to
take the forthcoming calculations, one can suppose that f” is smooth enough. Otherwise,
one can study the following regularized iterative system

atfn+l,e +uv- fon-H,e + Vx(pn,e . van+l,e
— LFanJrl,e + %U . Vx¢’1’€fn+1’€ + V}(¢n+l,e . U,LL%,
A" = [rap? fdv,  lim ¢"<(1,x) =0,
|x|—o00
0, x,0) = fi (x, ),

for any € > 0, where f;; is a smooth approximation of f,. One can carry out the following
same procedures for f”¢ and pass to the limit by letting € — 0.

Applying 3%(Ja| < N) to (4.1),, multiplying the result equation by 8% f"*!, and then
taking integration over R® x R? with respect to x, v, one has

1d
EE(IIB“.)‘"+l 12+ 19 Vg™ 1) + Roll{T — Po}a® /"I

’ ’ ’ 1
— Z Cg /(81170( Vx¢n . Vvacl fn+l, antfn+l>dx + E /(aa(v . Vx¢nfn+1)’ aotfn+l>dx

o <o

R3 R3

<CUVeg "y D Nog I

e +IBI<N
By a sample calculation, and taking summation over |a| < N, one has
d
i DN Car A o N ORI B i
la|<N la|<N

12 12
SCIVd gy Do N F I+ CIE™ 2,
le|+IBI=N

4.2)

Applying {I — P} and 95 (la| + |B] < N) to (4.1),, successively, and then multiplying
the result by Bg{l — P} f"*! similarly as before, we obtain that

d
> Mg =PUIP a0 3o NORU = PG

o <N o <N

le|+1Bl= le|+1Bl= (4.3)
<CUVe gy Y N3 IE+C >0 9T — Py

la|+IBI<N la|+IBI<N
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Combining (4.2) and (4.3), one has

4

OB s N LA AR SN VR VA B

le|<N lee|+IBI=N

Fa0Y N D 195 — PY AR

le|<N la|+|BI=N

<CIVeg gy D N5/ TIE+C D0 15U = P I+ CU I g,
la|+IBI=N la|+]BI=N
“4.4)

Defining M, (T') = supy,<7 En (f" (1)), by (4.4), then forany 0 <t < T < T*, we have

d n o n
ZENT O 0 D0 I

le|+IBI=N

<CM(T) Y 195 £ + CaMy i (T),

le|+|BI=N

4.5)

where we used the fact that

ENCLTI ) ~ D ISR A IV R+ D R = PLR

la|=N le|+BI<N

and

DR N FE S A ket R S [TV Vi

la|+BI=N la]=N la|+IBI=N

Letting Ci/M,(T) < Ci My < '\70, and taking time integration to (4.5), one has

T
A
Myn(T)+ 5 / 3 Nog S Rds < En(fo) + T My (T). (46)
o lal+lBl=N

Choosing T* = ﬁ and €y = 1 M, then

1 1
M, (T < 263 +2C,T" M, (TF) < EM(% + EM(% = Mé,

therefore, we obtain that sup,_, 7« Ex (f"()) < M.
Next, similarly to (4.5), forany 0 <s <t < T*, one has

[ d
Ev(F" ) = En(F 6 = | / —SEN (" 0)do|
’ 4.7)

t
<CMy ) /||agf"+1||3d9+CM§|z—s|,

lorl-HBI<N %
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by (4.6), ||8;;f”+1 2 is integrable over [0, T*], thus f" € X (0, T*; Mo) holds true for n + 1.
Therefore, by the inductive hypothesis, the conclusion holds true.
Now, we study the following system

J(f = v Ve (f = [+ Ve V(T = ) V(9" — ") -V, f"
= Lep(f"! = ")+ 30 Vg (" = 1)
+ 30 V(@ = ") 1 Vel = ¢) - upd,
A" =" = fapd (f7 = 7 Ddv, lim (@ = ¢ =0,
(f™ = "0, x,v) =0.
Similarly to (4.5), one has

d
Tt ()R A () R YR SN |10 om0 [

di le|+Bl=N—1

<CUVe I Y N5 = I8

lee|+[BI<N—1
+CIVA@" =" Dy D 195" Y 195" = £
loe|+[BI=N loe|+|BI=N—1
+C Y N = P S CEN () — £ @),

le|+IBI=N—-1

where we used the Sobolev embedding H?(R?) < L®(R?). Since Ey(fy), T*, My are suf-
ficiently small, it follows from (4.6) that

T*

sup [ D 1195 " s

"y lel+IBIN

is also sufficiently small. Thus, there exists a constant p < 1, such that

sup En1 (S @) = f1@0) < sup Env(f1@) = 17N, (4.8)

0<t<T* 0<t<T*
which implies that { f'},.>¢ is a Cauchy sequence in the Banach space C([0, T*]; HY “1(R3 x
R3)). Therefore, there exists a limit function f € C ([0, T*]; HY~!(R? x R?)), such that f is
a solution to the Cauchy problem (1.3)—(1.4) by letting n — oo. From the fact that the point-
wise convergence of f” to f by the Sobolev embedding theorem, the lower semi-continuity
of the norms, and f" € X (0, T*; My), it follows that
Ft.x,v)=p+u? f(t,x,0)=0,  sup Ex(f(1)) < Mo.
0<t<T*

Similarly to the proof of (4.7), one has f € C([0, T*]; HY(R? x R?)), thus, one can con-
clude that f € X (0, T*; My).

Finally, let g € X (0, T*; My) be another solution to the Cauchy problem (1.3)—(1.4).
Taking the similar process of the proof of (4.8), one has

sup En(f (1) —g®) <p sup En(f (1) —g())

0<t<T* 0<t<T*

for u < 1. Then, one can deduce that f = g. This completes the proof of Theorem 4.1. [

@ Springer



The Vlasov—Poisson—Fokker—Planck System 873

In this moment, in order to obtain the uniform-in-time estimate, we assume that the
Cauchy problem of the system (1.3)—(1.4) has a smooth solution f(¢,x,v) over0 <t <T
for 0 < T < oo, which satisfies

sup Ex(f (1)) < <o, 4.9)

0<t<T

where ¢ is a sufficiently small constant. Now, we can apply Lemmas 3.2-3.4 to f (¢, x, v)
and give proof of the first part in Theorem 1.1.

Proof of global existence and uniqueness in Theorem 1.1 First, from (3.1) and (3.4), we ob-
tain

1d
2d: Z(||8”‘f||2—|—||vxaa¢”2)+k Z ||3a{I—P}f||€+)L Z 1652

le|=N le|=N le|<N

< cnwnHN( DI =PYIR+ Y. 19V (I = PYfIP (4.10)

la|=N I<|a|=N-1
+ IV @, D) + 1B1F).

By adding M, x (2.8) to (2.5), and then adding M, x (4.10) to the resulting equation, we
get

drM
E[Tl(naafn% V0“1 + Eo(f) (1) — My Y a“ba“vmdx]
| <Nps
0 HBIP A Y 10T — P}
la|<N le|<N “4.11)

+ M@, D) [5x-1 + AVl 3w

<Cleo+Vea)Dn(NO+Ceg Y 10°V{I = PYfIP,

I<|la|<N-1

where M, and M, large enough.
On the other hand, it follows from (4.9) and the linear combination of (3.7) over 1 <k <
N that

d
2 G Do N =PYIPHA Y 0 =PI
1<k=<N le|+IBI=N,|B|=k lae|+IBI=N,|B1=1 (4.12)

< C\@Dn (N +C Y 0% — PYfI+ ClIVela. D)1

le|=N
for some properly positive constants Cy.
By letting €, small enough, the further linear combination of (4.12) and (4.11) yields the
following Lyapunov-type inequality
d
ESN(f(I)) +ADy(f (1)) =0, (4.13)

forany 0 <t <T.
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Now, by taking time integration to (4.13), we obtain

0<t<T

sup (En(FO) 4 [ Dy(F5)ds) = En( o).
0

By the standard continuity argument, the global existence and uniqueness of solutions to
the system (1.3)—(1.4) follows from the above uniform-in-time estimate together with the
local existence obtained in Theorem 4.1, and for any ¢ > 0, (1.9)—(1.10) hold. The concrete
details can refer to [14], here we omit it for simplicity. This completes the proof of global
existence and uniqueness in Theorem 1.1. |

5 Time Decay

In this section, we devote ourselves to establishing the time decay of solutions f (¢, x, v) to
the VPFP system (1.1)—(1.2). Now, we consider the following Cauchy problem

3f=Bf+h, t>0,xecR3
{tf f )

f(()’xv U) = fO(xs l)),

where h = h(t, x, v) is given, and the linear operator B is defined by
1
Bf =Lrpf —v-Vof +b-vM2 Lepf=Auf + 76— P,

If # =0, we denote P’ as the solution operator to the Cauchy problem (5.1);, then the

solution to the Cauchy problem (5.1) can be written as follows

t

f)=e® fo+ / B n(s)ds.

0

With the above preparation, we have the following decay results.

Theorem 5.1 (1) Let o > o' > 0, and the initial data f; satisfies 3% fy € L>(R® x R?) and
Ba/fo € Z,, we have

2k+3 ’
18%€™ foll < C(L+ 1)~ (19 foll + 107 foll 2,).  foranyt >0, (5.2)

where k = |a — o'| and the constant C > 0 only depends on m.
(2) Let o = o >0, and the non-homogeneous term h satisfies V2% e L*(R? x R?) and
V29¢h e Z,, and if further assume that

/M%hdvz/vu%hdvzo, (t,x) e R, x R (5.3)

R3 R3

Then, we have

forany t > 0, where k = |a — o'| and the constant C > 0 only depends on k.

t t
2 /
8”‘/63(’_5)h(s)ds 5c/(1+t—s)—¥(||u—%a“h(s)||2+ 1207 h)I, )ds,
0 0

54
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Remark 5.1 Notice that, it from the assumption (5.3) in (ii) follows that Ph = 0, which will
be used later.

In what follows, we can further rewrite (5.1) as
8 Pf +v-ViPf=8{I—P)f —v-Vi(l = P)f +Lgpf+h.

Similarly as before, we obtain the following macroscopic balance laws:

da+V,-b=0,
abj+oja+ Y Al —P}f)=0, (5.5)
1<m<3

b + 0mbj = =0, Ajm ({1 — P} f) + Ajm(L+ h),

where £ = —v -V, {I — P}f+Lppf.

Before providing proof of Theorem 5.1, by using the above balance laws, we have an im-
portant fact that the macroscopic coefficient b = (by, by, b3) satisfies an elliptic-type equa-
tion, which is initially observed in Guo [15]. Next, we describe it in the following lemma
and omit its proof for brevity.

Lemma 5.1 For 1 <m <3, we have

1
—Aby, +3;|:§ Z@,nAjj({I —P}f) —ZajAjm({[ — P}f)]
1 j : (5.6
:EzamAjj(€+h)_ZajAjm(g‘l'h), t>0, xeR’.
J J

Proof of Theorem 5.1 This proof is similar to Theorem 3.1 of [12], but we prove it for the
convenience of the readers. By applying the Fourier transform to (5.6) with respect to x, one
has

16bu + a[% D ignd (L = PL) = Y i Am (= PLf) ]

J J
5.7

J

1 A A A
J

and then by taking the inner product of the resulting equation with l§m yields

N 1 A A A
6160 " +0,(3 D i A ;i (1 = PY) = Y i&;A1n (1 = PV | b

J J
= (5 Ay~ ity A @) 1)
i i (5.8)

(3 il = PLH = Yt A1~ P1f 1860

J J

= 11 +12
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The estimates of I; and I, are as follows.
1 ~ N n
I < 5|s|2|bm|2+cZ<|A,m<z)|2 + A (D)%)
Jm
1 A . 1
< 5|s|2|bm|2 +C(L+IEPI — Py fI3+Clv 2h[3,

where we have used the following estimates

(@1 =] [ yn = Db i 01 = P+ Leald = P)fra

S
=| [t=iv- € = it + Len(wyon — Db - PIfav)
ES
<|=iv-E@vn — Du? + Lep(jvn — D) LI = PYfl2
<CU+IEDII = P} ..
and
A ()] = ‘ /(vjvm - 1)M%ﬁdv’ <Clv 3.
Fs

For I, using the Fourier transform of (5.5),, one has

ab; +igja+ Y ikwAjn(l — PYf) =0,

1<m<3

thus, we have

(5.9)

L= (% D ik A (L= PY) =Y it A (L = PYf | —igni— Y i6cAm(I = P}f))

J J 1<k<3
<nlgllal’* + ¢, +EANI — PYfI.
Therefore, we obtain
%|s|2|15m|2 + a(% D ibn Ay = PV = Y i Am (UL = P)S | b

J J

~ N 1A
<nl&lPlal* + CA + [EHI — PYfI3 + Clv™2hl3.

(5.10)

For the dissipation of |£]|a|?, by taking the inner product of (5.9) with —iéjé, we get

(i -b1a) gL+ Y (i€ Al — P1f) 1) =0

1<jm=3

(5.11)

For the first and third terms on the left side of (5.11), using the Fourier transform of (5.5);,

one has

(—8,i€ -bj | &) = 0,(—i& -b; | &) + (& -b; | ,a) = d,(—i& - b; | &) — |& - b|?
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and

\ 2 (iéfémAjmal—P}f)m)

1<j,m=<3

<nlEPlal + CylelP D 14T — PYHP < nlglPlal® + Cyl& 1T — PYfIP.

1<jm=3

Thus, taking the real part of (5.11), we obtain

~ R 1 R n R
& Re(—i&-b;|a)+ 5|&|2|a|2 <CIEPIbI* + CIEP|{I — P} fI*. (5.12)
Define
A3 B PyELE
E(f)=3 ls%jg e A = PL 1)
i§j 27 i§ A
- Ajm({T = PYf | by) — —— - ,
31§/§531+|§|2( 0= Py Vo) = e 019
then, it follows from (5.11) and (5.12) that
L ReE(f) + ﬂw + 16 < CI{T — PYfIP + Clv 2 A2 (5.13)
dt 41+ €12 - z ‘

On the other hand, by using Lgp f = Lpp{l — P}f — b - v/ﬁ, and taking the Fourier
transform (5.1),, which yield

0 f +iv-&f =Lep{I = PYf +h,

and further taking the product of the above equation with f , we obtain
L L PR Al — PYFE <106,
2dt v

where we used (iii) of Lemma 3.1 and {/ — Py}{I — P} ={I — P}.
For the right side term, since the condition Ph = 0, we have

A A A T T——=% N 1 A
W(h, )] = [(h, AT — PY)l <nl{I — PYf12+ C,lv"2hI3,
thus, we get
d 25 212 )
TP AU = PYTL < Clv=2hl;. (5.14)

By taking K large enough, we set E(f) = K|f|2 + ReE(f), and combine (5.13) and
(5.14), then

[1§
1+ &7

%E(f)+x[|{1—f>}f|§+ (|&|2+|£|2)]5C|u—%ﬁ|§, 1>0, £EcR’. (5.15)
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Notice that E(f) ~ | f2 < {I — P}fI2 + |a|* + ||, hence, we have

&1

~ A 1 A
1+|$|ZE(f)§C|v‘7hI%,

d ~ 4

—E A

7 f)+
which implies that

t
— n R _ . .
E(f)<e M E(f)+C/ 1+\s|2(’ )|v’%h|§ds,
0

where we used the Gronwall inequality. Finally, we get

112
A —A Lt A — (r— 71;\
|/ < Ce TP |fo|§+c/ e hidds, 1>0, £ R

0

Next, let & =0, from (5.16), then

n e,
IIB“eB’foIIZZ/|E“|2|f|§d$§C/|§“| e ‘*‘f‘ztlfolﬁdé
3 3

(5.16)

R LU e
<c / g |2 TR £ 2 fo g + C / £ 2 TR | £y 2de

[€l=1 [§1=1
=CL+ClL.

For I3, we have

L _ ﬁ A
L] < / 0 P F 16 o B

|§1=<1
o £ 2 a—a' |2 7M
<supl§ folz/l%‘ I“e dE<C(1+t
|§1=<1
[E1<1
since
/IS“ T S T o
[§1=<1
and

sup [€%' fol3 < sup €% fol3 < | sup & fol3 < 110° foll .1 17 2= =110 foll3,.

[§1=1 £eR3 £eR3
where we used the property of the Fourier transform.
By a simple calculation, I, < e’“/2||8°‘f0||2.
Thus, it holds that
o _ o _2md3
18%€™ foll> < Ce™210% fol* + C(1 + 1)~ 77 8% foll3,

2m+3 /
<CU+D7T (0% foll> + 187 foll3)-
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On the other hand, let the initial data f; = 0, then

t

f) = / B n(s)ds.

0

From (5.16), we obtain

1

jo [ M hsi < / [rere RO digdeds. 547)

0 0 R3

By the same argument as above, it follows from (5.17) that the estimate (5.4) holds. The
proof of Theorem 5.1 is now complete. a

Proof of time decay in Theorem 1.1 Let h = hy 4 h,, where
1
hy = §v~Vx¢{1 —P}f =V -V, {I - P},
and
1
ho=v-Vi@Pf = V.-V, Pf + (Vi = b) - vM2,

where from integration by parts, it holds that

//L%hldv=/vu%h1dv=0.

R3 R3
Next, we set

Eaot) = sup (1 +$)2Ex (£ (5)).

0<s<t

By Theorem 5.1 and the Lyapunov-type inequality (1.10), one has

1£12 < EnCfo) + Ifol3 )L+ 173 + /(1 1= (2P
1 ) / 3 2
+ v 2ha ()13, )ds + (/(1 + 1= TS+ 1h2)l17,)ds)
< Ex(fo) + 1 follZ)(A +1)73 +/(1 1 —5) 2 EN(f(5))ds
0
+(Jasi-9 tevonas)
0

< ENU) + ILAlZ A+ 072 + 1 follZu /(1 - EN(f()ds  (5.18)
0
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1 / 2
+ ||fo||;N(/(1 +t—s)_‘3_‘5N(f(s))%ds)
0
< @)+ ol +073 + IIfolli,NSoo/(l -8 3 (149 Nds
0

t
1 5 5
4 ||fo||,3Nsso(/<1+z_s)—%(1+s)-;ds>
0

s 5
< (EwCo) + 1o, + 1 foly Ens + 1 fol €L ) (14073,

where we have used the following estimates

2R )12 + v ha()I, < En(F ()% and [lhy ()] + [h2(5) 1z, < En(F (),
/(1 Tt—5)3(1+s5)2ds<(1+1)"2, and /(1 Tr—s) il 4s) Tds<(1+0)1.
0 0

From (1.10), one has

d
2N O) +AEN(F) = Clal?,

by the Gronwall inequality, then it follows from (5.18) that

1 5
Eno < ENCD) + Ifoll%, + L foll v o + 1 foll 1S, forany £ > 0.

Since the smallness of || fo| 5~ , we get

sup £ao < En(fo) + 1 foll7, -

>0
Thus, we have completed the proof of time decay in Theorem 1.1. ]
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