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Abstract In this paper, we study the Riemann problem for a 2 x 2 nonstrictly hyperbolic
system with linear damping. We introduce the special time-dependent viscosity to obtain
approximate solutions. Therefore, we solve the Riemann problem (1.1)—(1.2) by limiting
viscosity approach.

Mathematics Subject Classification (2010) Primary 35L.40 - Secondary 35F50

Keywords Nonstrictly hyperbolic system - Linear damping - Riemann problem - Viscosity
limit - Delta shock wave solution

1 Introduction

In this paper, for a constant « > 0, we study the Riemann problem to the following hyper-
bolic system of conservation laws with linear damping

{v,—i—(uv)x:O, (1.1

U + (%)x = —Qu,
with initial data given by

(w(x,0), u(x,0)) = {(”" u-), ifx <0, (1.2)

(U+,M+), lf-x >07

for arbitrary constant states (v, u+). It is well known that the system (1.1) is not strictly
hyperbolic with eigenvalue A = u and right eigenvector r = (1, 0). Moreover, VA -r = 0 and
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therefore the system is linearly degenerate. The homogeneous case of the system (1.1) is a
particular case of the following triangular system of conservation laws

v, + (vg(u), =0,

(1.3)
ur+ (fw)=0

when f(u) = %uz and g(u) = f’(u). The triangular system of conservation laws (1.3) arises
in a wide variety of models in physics and engineering, see for example [12] and the ref-
erences therein. For this reason, the system (1.1) has been studied by many authors and
several rigorous results have been obtained for this. When o = 0 the second equation of the
system (1.1) is called the Burgers equation and it is used to model various phenomenon such
as shock waves in gas dynamics and hydrodynamics turbulence [1, 2, 10, 17]. Finally, the
homogeneous case of the system (1.1) is used to model the evolution of density inhomo-
geneities in matter in the universe [18, B. Late nonlinear stage, 3. Sticky dust].

In 1977, Korchinski [15] in his PhD thesis considered the Riemann problem for system
(1.3) with f(u) = ju* and g(u) = 3 f'(u). He motivated by some numerical results has
constructed the unique Riemann solution using generalized delta functions to obtain singu-
lar shocks in the sense of distributions. This is the delta shock wave concept, which is a
generalization of a classic shock wave. In 1990, LeFloch [16] established existence of weak
solutions to the Cauchy problem of system (1.3) with g(u) = f’(u) and f”(u) > 0. In 1993,
Joseph [13] considered the Riemann problem for the homogeneous case of the system (1.1).
His work include delta shock wave solutions. He uses a parabolic regularization system to
obtained an explicit formulae of the Riemann solutions. So, he constructed the weak limit
of the approximation solution and this is defined as a delta shock wave type solution. In
1994, Tan, Zhang and Zheng established in [20] the existence, uniqueness and stability of
delta shock waves for a viscous perturbation of the system studied by Korchinski. In 2000,
Ercole [9] obtained a delta shock solution as a limit of smooth solutions by the vanishing
viscosity method for the Riemann problem to the system (1.3) with g’(u) > 0, f"(u) >0
and f'(u) < g(u). More explicitly, Ercole considered the following viscous system

v + (Vg (u))x = €1y,
Uy + (f(u))x = ElUyy.

This approach was developed by Tupciev in [21] and Dafermos in [5]. Many works related
to the triangular system (1.3) can be found in the literature [6, 9, 11, 13, 16, 20, 25] and
references cited therein. In 2019, Keita and Bourgault [14, Sect. 4] solved the Riemann
problem to the problem (1.1)—(1.2).

Many authors have obtained explicit formulae of the delta shock wave solution by reduc-
ing the original system to a system of ordinary differential equations known as the general-
ized Rankine-Hugoniot conditions. In particular, in [14] the explicit solution to the problem
(1.1)—(1.2) is obtained from the generalized Rankine-Hugoniot conditions (see [14, Theo-
rem 4.2]). In this paper, we present another method to solve the Riemann problem to the
problem (1.1)—(1.2) which does not require of the generalized Rankine-Hugoniot conditions
to obtain the explicit delta shock wave solution. However, the explicit solution here obtained
satisfies the generalized Rankine-Hugoniot conditions. As the original physical application
of the homogeneous system (1.1) was deduced by the viscosity Burgers equation, this moti-
vate us to introduce the following parabolic regularization

1.4)

32
ut + (—(”2) )y =ee YUt —oauf,

& £€9,E — —at &
Vi + (ufv®), = e vy,
XX
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where o > 0 is a constant. In general, regularization methods are importants because one
can construct an approximate solution near the Riemann solution, opening the way to further
works in areas such as numerical analysis, stability of solutions and many others. Observe
that when o = 0, the second equation of system (1.4) is the viscosity Burgers equation. The
parabolic regularization (1.4) is well motivated by the Burgers equation with time-dependent

viscosity
1,
u; + Eu =F(t)uyy.

where F(t) > 0 for ¢t > 0. The Burgers equation with time-dependent viscosity was studied
as a mathematical model of the propagation of the finite-amplitude sound waves in variable-
area ducts, where u is an acoustic variable, with the linear effects of changes in the duct
area taken out, and the time-dependent viscosity F(¢) is the duct area [3, 8, 24]. The reader
can find results concerning the existence, uniqueness and explicit solutions to the Burgers
equation with time-dependent viscosity with suitable conditions for F(¢) in [3, 4, 8, 19,
23, 24, 26, 27] and references cited therein. The Burgers equation with time-dependent
viscosity with linear damping was studied in [22] and their results include explicit solutions
for different F(r). Particularly, they have studied the case when F () = e~*" with o > 0.

The homogeneous system corresponding to the system (1.1) is invariant under uniform
stretching of coordinates: (x,t) — (Bx, Bt) with B a constant, hence it admits self-similar
solutions defined on the space-time plane and constant along straight-line rays emanat-
ing from the origen, which is important to study viscous profiles. Now, compared with
the homogeneous system, the structure of solutions for the Riemann problem of (1.1) is
more complicated since there is no self-similar solution in the form of (v(x, ), u(x,t)) =
(v(x/t),u(x/t)) due to the inhomogeneity. However, we are interested in obtain viscous
solutions because, in future works, this could help explore viscous profiles in some sense to
the system (1.1). Thus, we motivated by the methods and ideas due to Joseph [13], in this
work we employ asymptotic expansion [7] of the complementary error function to construct
approximate solutions and by limiting viscosity approach to solve the Riemann problem for
the system (1.1). Therefore, we show existence of weak solutions for the Riemann problem
for the system (1.1). These solutions include delta shock wave solutions.

The outline of the remaining of the paper is as follows. In Sect. 2, we show an auxiliary
result to be used in the construct of classical Riemann solutions and in the delta shock wave
solution. In Sect. 3, we present the solution of classical Riemann problem. Finally, we study
the delta shock waves in the Sect. 4.

2 Preliminaries

In this section we give an auxiliary result to be used later. Let (v®(x, t), u®(x, t)) be an ap-
proximate solution of problem (1.1)—(1.2) which is defined by the parabolic approximation
(1.4) with initial data given by

(v (x, 0), u* (x, 0)) = {(”" u-), ifx<0 .1)

(U+,u+), ifx >0
for arbitrary constant states (v, u4).
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Proposition 2.1 Let (u®(x,t), v°(x,t)) be the solution of the problem (1.4)—(2.1). Then,

ugal (x, ) fu_al(x, 1),

uf(x,t) =
ai (x,t)+af(x,1)
and
vi(x, 1) =0, We(x,1), 2.2)
where
vy (x - %—7%u+> af(x, 1) +v_ (x — (l%fm)u,) at (x,t)
We(x,t)= . -
ai(x,t)+af(x,t)
_e—at 1/2 ax?
(U+ - v,) (6(1 m% )) exXp (_ 48(1,e—at))
+ as.(x,t)+a’(x,t) ’
1 0 (x—y)* u_y
fx,t)= -_—— — —=)d
a_(x.1) (4§n(1—e*"“))1/2 /_OOGXp< 45(1 —e) 2¢ > Y
and

ag(x t): ! /Ooexp _Ly)z_m dy
A AL (l—e )2 J, 451 —eer) 2

Proof Observe that if (v, %) solves

v+ eimﬁxﬁx = Eeimi)\xx
: ’ 2.3)

ut+§e w(ux) =¢&e wuxxv
with initial condition

(©(x,0),u(x,0) = :(”—X’M—X), ifx <0

(vyx,usx), ifx>0

then (v, u®) defined by (v?, u®) = (vy, uye™*") solves the problem (1.4)—(2.1).
Consider the Hopf-Cole transformation [2, 10] and a modified version of it,

2.4)

T=Cte.

{ﬁ: —2¢1n(S%),

Then, from system (2.3) and the Hopf-Cole transformation, we have

7 (2.5)

& —at Q¢
S; =¢ee™™S; .,

{Cf —geICt

with initial condition given by

(v_xe~ T e~ %), ifx <0, 26

_upx_ugx .
(vyxe 20 ;e 2e ), ifx>0.

(C*(x,0),8°(x,0)) = {
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We rewrite the solution to the problem (2.5)-(2.6) in terms of the heat kernel as
1 >~ - uyy
Co(x,1)= - — —)d
0= Gir = ey [”*/o Y exp( dl—en 20 )7
s 2.7)
=y uy
d
- yexP( 4E(l—evr) 20 )7
L= ugy
Sf(x, 1) = d
x.1) @ir(l— eat))l/z[ exp( dE(l—ey 20 )7
o (2.8)
+/ exp (— LTI wy,
WP\ T A ey T 2 )Y
Observe that
*© (x—y)? uyy
/0 % (‘”‘P (‘m o (=5;) dy
(x—y)? uyy *
TP\ T ey T 26
o (I—e™) € /1y
> =y,
F. Yy
0 S 4i(l—e o) L1 —e) 2
%2
=—exp|l ————
PUaza—e=
“+ * (x —y)? uyy
— dy. 2.9
2soeXp<4(1ew) 2 )Y 29)
In a similar way we get
0 2
(x—y) uyy
f,m g <exp (‘45(1 e ) ) (-50)
%2
=exp| ————
PU 0=
(x—y)? uyy
— — — |dy. 2.10
+/ (4(1 e 26 ) @10

On the other hand, we also have that

00 (x—y)2 uyy
[ (o)) w50
_/w&ex <—(x_7y)2_w>d
Tl 2= TP\ A e T 2e )
/ < GRS M)d
pETTE e =26 )Y

@ Springer



R. De la cruz

636
[l 2
ew) Y\ TaEq S ey T 20 )

and from (2.9) we have that
00 2
/ (x—y) uyy
yexp| ————~— — | dy
0 42(1 —e™) 2¢
2¢e (1 —aty x2
=—({—-e"exp| ————
o PU 0=
(I—e™) /°° (x —y)? uyy
-— - — —— ) dy. 2.11
+ (x « )y TP\ Tasa e T 26 )P @11
Using (2.10), it is easy to see that

/0 ex _—(x—y)2 )
P s — ey T 2 )

(o8]

2¢ 701 x?
=l ’P(‘m>

(= N\ [0 (=32 wy
+(x— Tu,> /;ooexp (-m— §> dy. @1

Also, notice that

5 /ooexp _ﬂ_ﬂ dy
“\J, 45(1—e) 2

I (x — y)? Uy

— /0 dy (GXP< 45(1— e ) eXp< 2¢ )dy

and
0 2
(x—y) Uvy
A, Trd—e 2 )¢
(/_ exp( 45(1 _e—c{t) 2¢ Y

- 0 (x —y)? uyy
ol e e

oo

thus from (2.9) we get
o] 2
(x—y) Uty
0y —_——— —|d
(/0 eXp( 4E(l—ew 20 )%

x? uy [ (x —y)? ugy
= TAE — ey | T An - ]d 2.13
eXP< 45(1_e“’)) 2gf0 eXp( 42(1 —e) 28) Y @13)

and from (2.10),
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0 2
x—=y usy
d €X - —)d
" (/oo P ( dl—en 20 )

22 u_ [0 =3Py
——expf )%= BT B 214
exP( 45(1 —e—w)> 2¢ /,ooeXp( A5(l—e) 26 )dy (219

Define

& ( [) 1 /0 (.X - y)2 u_-y d
at(x,t)= exp| ———————— - — ,
- @ix(—ein | P\ Tazq Ty T 2 )Y

aa(x t): ! /Ooexp _ﬂ_ﬂ dy
A 4Em(1 —ee)i2 J 45(1—e) 2 ’

thus, from (2.7), (2.11) and (2.12) we get

Cé(x,t)

1—e)\"? 2 ] — e
=vy [(%) exp (—ﬁ)+(x—%u+)ai(x,t):|
L—e )\ 2 1 —e
o [ (225) e (g ) + (5 %u)mo} |

(2.15)
and from (2.8) we have
St (x, 1) =a’(x,t) +al(x,0). (2.16)
From (2.16), (2.13) and (2.14) we have
Uy u_
Y1) =———a’(x,1) — —a’(x,1). 2.1
S.(x, 1) %% ai(x,t) e a® (x,t) 2.17)

From the Hopf-Cole transformation (2.4), we get that v (x, 1) = U, (x, 1) = (C?/S?), and
ut(x,1) =u,(x, e = —2ee~*' S /8¢, and using the equalities (2.15), (2.16) and (2.17),
the proof is complete. ]

Now, observe that

as (x, 1)

_ (#)”2/““ Gﬂ _ m)d
“\dexi—en) Jo TP\TaEq ey T 26 )Y
o 12 —x2 4 (x —x () [ —(y +x.(t) —x)?
“\Zer ey ) P A / exp A d
& 0 &

) _ 2 e}
:#exp( Ctox 0) )/(‘ exp (—?) dy

Ae (1) Ac@) ™20y ()—2)
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411

where A, (¢) = M

L,—m)

and x, () =

1
i exp

*(XI)

with x_ (1) = 4=y
Let us introduce the following temporary notation

—x% 4+ (x —x_(1)°

a®(x, 1) = A.(0)

u . In a similar way we have

o0
) / exp (—y*)dy
(Ae) V2 (x=x_(1)

o0
1= / exp (—yz) dy
(Ae () ™V2(xp (0—x)

and

15 = / exp (—y2) dy.
(Ae@) V2 (x—x_(1)

As ¢ — 0+, using the asymptotic expansion of complementary error function (or error func-

tion, see [7]) we have

if xy (1) —x > (A (1)),
7ot — 1 212

© . ifx () =ux,

ifxp () —x < —(A. ()2

and

if x —x_(1) > (A (1)),

12 .
¢ = e, ifx_ () =nx,

if x —x_(1) < —(A:())'?

So, we have that

g
& _ 1 —x2
a+(x,t)— 5 €Xp Ae(l) ’
=24y ()—x)2 x
exp( S WIR >+ l/2exp( )
and
o 2
Y eXP(A (,))
2
at(x,t) = exp(A (;))

—x2 (- () —x)? 0-
eXp(*X 1:8([) = )_ 1/2€XP(

o),

@ Springer

Yoo et (! e (=
n=0 n! 2(x4(1)—x) p

2n+1
00 (=1)"@n)! { (A2
D0 (2<x7x7(t)) exp~

2n+1
12 _ g =hremt ((asant/2 -
T Zn:O n! (Z(Xi(f)—x) eXp

(e ()—x)?

As () ) ’

2n+1 2
1/2 _ o0 (=b"em! ( (A" _ ="
T >0 nl (2(x7x+(t)) eXp Ag (D) ’

(—(—x)?
Ae () ’

G0
0 )

if x4 (1) — x > (A (1)),
if x, (1) =x,

ifxy(t) —x < _(As(t))l/z
(2.18)

if x —x_(1) > (Ag (1)),
if x_(t) = x,

if x —x_(t) < —(A.(1)"?
(2.19)
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where

— e (=D 2n)! (A ()2 2n+1
Qi_z n! (2(xi(t)—x)) .

3 Classical Riemann Problem

In this section, we study the Riemann problem to the system (1.1) with initial data (1.2) when
u_ <u,. Therefore, we are interested in analyzing the behavior of the solutions (v®, u®) of
the problem (1.4)—(2.1) as ¢ — 0+.

Theorem 3.1 Supposeu_ <u..Let (V¢(x,1t),u’(x,t)) be the solution of the problem (1.4)—
(2.1). Then the limit

lir(I)lJr(vE(x, H,u’(x, 1)) = (wx, 1), u(x,t))

exists in the sense of distributions and (v(x,t), u(x,t)) solves (1.1)—(1.2). Moreover, ifu_ <
u, then

(v—,u_e ), ifx <x_(1),
—ol

(v(x,t),u(x,t)) = (Os (|lfi7ut)7 l:f'x*(t) <X <x+(t)7

(wy,ure™), ifx>x.(t),

and when u_ = u, then

(v_,u_e ™), ifx <x_(t),

(vy,u_e ™), ifx>x_(t).

(w(x,t),u(x,t)) =

Proof Using approximations of (2.18) and (2.19), we have that

o if x —x_(1) < —(A.(t))"/?, then

A, ()2 ) 12 )
_% exp (A;Et)) +v_(x —x_ (D)) + (vy — v,)% exp(Z-

(A ()2
2w 1/2 (x4 (t)—x)

We(x,t) ~

)

— 2
exp(—A:Et)) +bE

—x2 —x)2 1/2 ) . o .
where b (x, 1) = exp (%) — s exp ( Air))’ and simplifying we

have
_ G- (-x)?
v_(x —x_(t))exp ( WOl )
(- —x)? (A (1)1/2 1
eXp( Ae () ) + 5 (xfx,m vy

o if x_(t) + (A:(1))? <x < x(t) — (A:(1))"/?, then

We(x,t)~

3.1
)

172
WS(x’t) ~ Ci_’_ca 21

vy (6 = x4 (D)C + V- (x —x_())C + (vs —v2) 7 exp(52)
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P — a1 (A2 A —x?
where CL(x, 1) =+ (2(&(:)—):) dec—n7 ) XP 4 )- and so

U4 _ v_
A (1) ( (1 (H-0)?%  (x—()—x)? )
1 1 1 1
2 <x+(t)7x - xf(r)fx) + AS (t) ((x,(t)fx)3 - (x+(t)7x)3>

o if x (1) —x < —(A.(1))"/?, then

We(x,t)~

3.2)

12 _
Ui (e — e ()b + =R —exp (72 )+<v+—v Y exp(5)

& (Ag(t)/? ’
by + 5y P A (t))

We(x, 1) ~
2 2 12
. _ X2+ (g () —x) 1 (A:(®)
where b% (x, 1) = exp (T) ~ 2172 3G XP (A (z)) and

)2
Vg (x — X4 (t)) exXp ((X+/§i>([)X) )

(e () —x)? (Ae(1))1/2 1 1 '
exp( A (D) > +507 oo T mao

So, if u_ < u, then from (3.1), (3.2) and (3.3) we have

We(x, 1)~ (3.3)

v_(x —x_(t)), ifx<x_(),
lir(r)l+ We(x,t)=W(x,t) =10, ifx_(t) <x <xp (1),
e—
vi(x —xp (1)), ifx>x (1),
Since W?®(x,t) is bounded on compact subsets of R x R, = {(x,#) : x e R, > 0} and
Weé(x,t) - W(x,t) pointwise as ¢ — 0+, then W¥®(x,t) — W (x,t) in the sense of dis-

tributions and so W¢(x, t) converges in the distributional sense to W, (x, ¢). From (2.2) we
have that lim,_, o, v®(x, ) = v(x, t) exists in the sense of distribution and

v_, ifx<x_(1),
v(x,t) =W, (x,t) =40, if x_(t) <x <x4(1),

vy, ifx>x (7).

On the other hand, if x_(¢) + (A, (1))"/? < x < x4 (t) — (A:(¢))'/?, then

U u_ oo (=D"2m)!(A )" U4 u_
xy()—x + x—x_(1) + Zn:l nl4n ((er(t)fx)ZrH—l + (X,xf(,))Zn-H) ot
e

w0 = (D" E)(Ae (1)
1 1 00 —1)"(2n)!(As (1)) 1 1
xy()—x + x—x_(t) + +Zn:l nl4n (()ur(t)—x)z”*l + (x,)_(,))ZnJrl)
3.4
If x —x_(1) < —(A.(1))"/?, then
A2 ([ uy (M)
Ve ) A s (o= — o= ) Tu-exp (am o (3.5)
’ exp ((E=0=02) 4 Al L1 '
p Ag (1) 27172 x—x_(t) x—xy (1)
and if x, (1) —x < —(A.(1))'/?, then
(x4 (N—x)° <A 0)!/? g u—
. Uy exp( A, (D) ) + 50 o= T oo o
ut(x,t) =~ (3.6)

G (D—0)? (A <t>>1/2 1 1
exp( A () )+ ravanll Gy Sl
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Thus, for u_ < u,, from (3.4), (3.5) and (3.6) we have

u_e ™, ifx <x_(@),
81_i>r61+u’3(x,t):u(x,l‘): ‘;‘fi—:‘z, ifx_(t) <x <xy(0),
upe ™, ifx >x (1),

Since u®(x,t) is bounded on compact subsets of R x R, = {(x,7) : x € R, > 0} and
u®(x,t) — u(x,t) pointwise as € — 0+, then u®(x, t) — u(x, t) in the sense of distribution.
Proceeding as before, when u_ = u ., it is easy to see that

. (v_,u_e ™), ifx <x_(1),
1 & & — —
g_l)r(§1+(v (x,0),u’(x,1)) = (v(x, 1), u(x,1)) (oo u_e), ifx > x_(1).

Finally, it is easy to see that (v(x, 1), u(x, t)) solves (1.1) and we thus omit the details. [J
axe”

Remark 3.2 Observe that lim,_, . Tf:, =7, limg 04 X+ (t) = uxt and

(w_,u_), ifx<u_t,
1i1})1+(v(x, t),u(x,t))=10,x/1), ifu_t<x<uyt,

vy, uy), ifx>u,t,
Uy +

i.e., when o — 0+, (v(x, 1), u(x,t)) converges to the solution given by Joseph in [13] for
homogeneous case of the system (1.1).

4 Delta Shock Wave Solutions

In this section, we study the Riemann problem to the system (1.1) with initial data (1.2) when
u_ > u,. In this case the solution is not bounded and the solution containing a weighted
delta measure supported on a smooth curve [14]. Therefore, we introduce the following

definition:

Definition 4.1 A two-dimensional weighted delta function w(s)§, supported on a smooth
curve L = {(x(s),#(s)) 1 a < s < b}, for w € L' ((a, b)), is defined as

b
(w()oL, () =/ w(s)px(s),1(s))ds,
for any test function ¢ € C°(R x [0, 00)).
We also need to define a delta shock wave solution to the Riemann problem (1.1) — (1.2).

Definition 4.2 A distribution pair (v, ) is a delta shock wave solution of the problem (1.1)
and (1.2) in the sense of distributions if there exist a smooth curve L and a function w €
C'(L) such that v and u are represented in the following form

v="ov(x,t)+wd;, and u=1u(x,t1),
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v,u e LR x (0,00); R) and

(v, @) + (uv, @r) =0,
<M7 (/)t> + <%M27 ¢x> = (au, §0>s

for all the test functions ¢ € C5°(R x (0, 00)), where u|; = us(¢) and

(v,fp)=/ fﬁwdxdtHwBL,w)
0 R
and

(vGu), @) :/ / VG (V) pdxdt + (wG (us)dy, ¢).
o Jr

With the previous definitions, we are going to find a solution with discontinuity x = x (¢)
for (1.1) of the form

(v_(x,t),u_(x,1)), ifx <x(),
(U(x,t),u(x,t))z (U)([)SL,M(S(I)), ifx=x(t),
(e(x, D), us(x, 1)), ifx>x(),

where vy (x,t), uy(x,t) are piecewise smooth solutions of system (1.1), §(-) is the Dirac
measure supported on the curve x(¢t) € C', and x(¢), w(t) and us(t) are to be determined.

Theorem 4.3 Suppose u_ > u,. Let (vV°(x,t),u’(x,t)) be the solution of the problem
(1.4)—~(2.1). Then the limit

liI(I)lJr(v‘E(x, H,uf(x, 1) = (v(x, 1), ulx,t))

exists in the sense of distributions and (v(x,t), u(x,t)) solves (1.1)—(1.2). Moreover,

(v, u_e™™), ifx <x(1),
(U(X, t)v u(xs t)) = (w(t)8x=x(t)7 M—42rM+ e—ott)’ ifx = X(t),
(4, upe™™), if x > x(t),

- —e—at _,—at
where w(t) = (”‘+”+)““2a”+)(1 ¢ and x(t) = —”‘;””f e ® < “.

Proof Asu_ > uy then x_(t) > x, (t). Therefore, from (2.18) and (2.19) we have that
o if x —x_(t) > (A.(¢))"/* then

2
vy(x — x4 (2))exp ((x+,§i)(,))() )

(24 (1) —x)2 (Ae(tn)/? 1 1
exp( A0 ) - §n1/2 X—xt () x—x_(1)

We(x, 1)~

and

(X+([)—x)2 _ (AE(t))l/2 Uy _ U_
M+€Xp< Ae(t) ) 27172 x—x4(1) x—x—_(t) —at

&
ut(x, 1)~
e exp (GO0 _ (A2 L1

p A (1) 27172 x—x4(t) x—x_(1)
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o if x (1) —x < —(A.(¢))"/? and x = x_(¢) then

=24 (e () —0)? Ac)/? 2
U+(X —X+(t)) eXP( - ::([) - - U—( 22(,1)/)2 exp _Az(t)

224 O-02) (A2 _x?
exP( Ae) P (=2 @) P —3w) t e (-2

We(x, 1)~

and

—x2 4 (e (D=x)? i (Ae (1)) o) o a2
Uy exp( A ~ i e—nm P\ Taw) T TP Taw)
e

—x2+(x+(t)—x)2 _ (Ag ()2 x?

xp ( Ae0) s o (—im) e (-2

o if X, (1) + (Ac(1))'? < x <x_(1) = (Ac(1)"/? then

u(x,t)~

X —x)? x_(1)—x)?
vi(x —x4.(1)) exp (%) +v_(x —x_(t))exp (7( /i’:([) ) )

G ()—=x)? G—()=x)? (A (1))/? 1 1
exp( Ae (1) )—i—exp( A (1) )+ iz o=~ o=

We(x, 1)~

and

(g (D—x)2 G- (O-1)? (A a»'/? uy u_
U, exp (Tm) +u_ exp( 2.0 ) + 0 o T o=
G+ (0=x)? G—(—=x)? (A (t)>1/2 1 1
exP( A0 ) +eXp( A0 ) T o T Sos

o if x;(f) — x > (A.(t))"/? then

e—ot[

ut(x, 1)~

X— —X 2
v_(x —x_(t))exp (%)

We(x,t)~
&1 exp ((G=0=0) @, '2 '
P\ 2.0 7 \Fo—  o—

and

(G- (—x)* A (_uy u_
- exP( A4:0) ) T oo o= T mow)
G- (—x)? (A @)!'/2 11
eXp( AcD) ) T o= T mo—

o if x —x_(1) < —(A,(1))"/? and x = x, (¢) then

u(x, 1~

Ap ()12 —x 24 (x_ () —x)2
vyt 27(Tt1)/>2_exp( i m)—i—v (x —x_ (t))exp( x x(:)) x)

Wox, )~ 1 x4 ()=x)2 (A1) x2
— — — — J— £ _—
2 CXP ( A, (r)) T exp ( A:0) ) 72 —x) P ( Agm)
and
uy ot = (=02 _ _u_(Ae())'? _ 2t
. 3 eXP( i ) Tu-—exp A:() WP SP\TAD)
u®(x,t)~ e .

1 —x24+ (- ()—x)2 (Ac()1/? _xr
2 exp( Ag (z)) +exp( Ae(n) ) 7 2e--n P\ T A0

Therefore, we have that

v (x —x_(0), i (x —x4.(1))* = (x —x_(1)* <0,

lim Wé(x,t) = .
e—>0+ Vi (x —x: (1), if (x —x (1) — (x —x_(1))* > 0.
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But (x — x;(1))2 — (x —x_(1)? = 2(x_(t) — x1 (1)) (x — =20y and as u_ > u then
we have

lim Wé(x,r) =

vo(x —x_(1), ifx < E=0EEO
e—>0+

vp(x —xp (1), ifx> M

Since W?®(x,t) is bounded on compact subsets of R x R,y = {(x,#) : x e R, > 0} and
We(x,t) — W(x,t) pointwise as € — 0+, then W*(x,t) — W(x,t) in the sense of distri-
bution and so W{(x, t) converges in the distributional sense to W, (x, t). For simplicity of
notation, we write x(¢) instead of M From (2.2) we have that lim,_, oy v*(x,t) =
v(x, t) exists in the sense of distribution and

v_, if x < x(t),
v(x, 1) = We(x, 1) = s, ifx=x(0),
vy, if x > x(¢).
Also, we have that
u_e ¥, if x <x(1),
u(x, 1) =1 =em,if x = x(1),
U, e ™, if x > x(1).

Now, we have to show that (v(x,t),u(x,t)) solves (1.1). Thus, for any test function ¢ €
Ci°(R x R,) we have

(v, @) + (uv, o) —/ /(v¢f+uv<px)dxdt

Cu_+v
+/ i
0

00 x(1)
=/ / (v_g; +u_v_e o )dxdt
0 —00

o0 o0
+/ (Vi@ +uyvie g )dxdt
0 x(1)

(- (1) = x4(1) (Gﬂr AT fmﬁ”x) a“

+/ Sl (r)—x+(r>)( ‘;”%*‘“%)dr
?§ u_v_e *¢)dt + (v_@)dx

+% (urvie @) dt + (vip)dx
/OOO SV (1) — 2 (0) (go, +4 ;“e*‘”wx) dt

< u_v_ —uyvp)e " —(v_ — v+)dx(t)> pdt

d +
/0 - (” % (1) —x+(r)>> pdt =
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and
1, *© 1,
(u, @) + <§u Px) = (ug; + U @ )dxdt
0o Jr
o] x(1) 1
:/ / (u_e @, + —u*e ¢, )dxdt
0 —00 2
o0 o0 1
+/ (uype o + —uiefz‘”(px)dxdt
0 x(1) 2
1 2 —2at —at
=—¢P — Eu_e o |dt + w_e “p)dx
00 x(t)
—f f —au_e " pdxdt
0 —00
1 2 —2at —at
+ ¢ — Eu+e @ |dt + (uie ¥ p)dx
—/ / —qu e " pdxdt
0 x(1)
® 1 B dx(t) _
=/0 <§(u3 — ui)e (U —uy) 7 >g0e “dt
+ (au, ¢) = (au, ¢).
The proof is complete. a

Remark 4.4 1. In [14, Sect. 4], Keita and Bourgault have been solved the Riemann problem

for (1.1) with initial data (1.2). They show that the delta shock wave solution is unique
under the following entropy condition [14, Definition 3.3]

ue ™ <o(t)<u_e ™.

Observe that us delta shock wave solution satisfies the following over-compressive con-
dition

_ U_+uy _ _
uje ™ < Te M <yu_e ™, forallt >0,

i.e., so the delta shock wave here obtained is unique.
. Observe that a pair (v, u) is a delta shock wave solution with discontinuity x = x(¢) for
the problem (1.1)—(1.2) of the form

(v_(t),u_(t)), ifx<x(@),
(W, D), ulx, 1)) = { (WL, us ), ifx=x(),
(W), us (), ifx>x(@),

where vy (f), uy(t) are piecewise smooth solutions of system (1.1), §(-) is the Dirac
measure supported on the curve x(t) € C', and x(¢), w(¢) and us(z) are C', if and only
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3.

if the following generalized Rankine-Hugoniot conditions are satisfied

G =us(@),
WO — [u]us (1) + [uv],

0= —[ulus(r) + 2],

Notice that limg_.o+ w(t) = 3 (v_ +v) (- —uy)t = W(t), limgoos x (1) = 3 (u— +uy)t
and

(v_,u_), if x < %(u, +ut,
im0 0,00 0) = § @08,y 30 1), ifx = b+,

2
(v, u4), if x > %(u_ +uy)t,

i.e., when a — 04, (v(x,1),u(x,t)) converges to the solution given by Joseph in [13]
for homogeneous case of the system (1.1).
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