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Abstract In this paper, we prove the almost global existence of classical solutions to the
3D Prandtl system with the initial data which lie within ¢ of a stable shear flow. Using
anisotropic Littlewood-Paley energy estimates in tangentially analytic norms and introduc-
ing new linearly-good unknowns, we prove that the 3D Prandtl system has a unique solution
with the lifespan of which is greater than exp(e~!/log(e™")). This result extends the work
obtained by Ignatova and Vicol (Arch. Ration. Mech. Anal. 2:809-848, 2016) on the 2D
Prandtl equations to the three-dimensional setting.
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1 Introduction

We consider the following Prandtl boundary layer equations in R x Ri:
duP + (uPdy + 0By + w3 )ul + 8, p* = 2u,
3" + (u”dy + 073, + o v’ + 9, p” = 8207,
du” +0,v” + 3. w” =0,
(up,vp,wp)‘1:0=(0,0a0)y -

lim (u”,v”) = (U@, x, ), VE@ x, ),

z—>+00

(upv Up) |t:0 = (M()(X, Yy, Z)v vO(x’ Yy, Z))7
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384 X. Lin, T. Zhang

here and in what follows, (f,x,y,z) € Ry x R x R x R,, (u”,v”) and w” denote the
tangential and normal velocity of the boundary layer flow, the initial data (u, vy) :=
(uo(x,y, z), vo(x, y,2)) and the far-field (UE (¢, x, y), VE(t, x, y)) are given. Furthermore,
(UE(t,x,y), VE(t, x,y)) and the given scalar pressure pZ (¢, x, y) are the tangential veloc-
ity field and pressure on the boundary {z = 0} of the Euler flow, satisfying

{ JUE +UR,UF +VEI,UF 49, p* =0,
(1.2)

dVE+URVE+VEQVE43,pE =0, t>0,(x,y) eR%

This system (1.1) introduced by Prandtl [33] is a model for the first approximation of the
velocity field near the boundary in the zero viscosity limit of the initial boundary value prob-
lem of the incompressible Navier-Stokes equations, with the non-slip boundary condition.
It is then natural to ask whether solutions to the Navier-Stokes system with zero Dirichlet
boundary condition do converge to a solution to the Euler system when the viscosity goes
to zero. We refer to [13, 17, 35, 36] and references therein for this justification. One of the
key steps to justify the zero viscosity limit is to deal with the well-posedness of the Prandtl
system. Up to now, whether the Prandtl equation with general data is well-posed in Sobolev
spaces or not is still open except for some special cases, for example, the initial data that
are monotonic with respect to the normal variable [1, 32, 34, 43] and in the analytic frame-
work [16, 18, 30, 35, 36, 44], see the references therein for the recent progress. Still, there
are some results that do not require the monotonicity and analyticity conditions, see [4, 10,
21-23].

Most of the results of the boundary layer equations are developed for the 2D Prandtl
system. Under Oleinik’s monotonicity assumption u} > 0, Oleinik [34] proved the local
existence and uniqueness of classical solutions. With the additional favorable condition on
the pressure, Xin and Zhang [43] got the global existence of weak solutions. For the real-
analytic initial data, Sammartino and Caflisch [35, 36] established the local well-posedness.
Later, the analyticity in y variable was removed by Lombardo et al. [30]. Motivated by the
fact that the energy method can be well applied to the Navier-Stokes equations, Alexandre
et al. [32], Masmoudi and Wong [1] use the energy method independently, where the key
observation is some kind of cancellation property in the convection term due to the mono-
tonicity condition. The first result which does not require monotonicity and analyticity was
established by Gérard-Varet and Masmoudi [10], and they proved the local well-posedness
in the Gevrey space % of the two-dimensional Prandtl equations with non-degenerate crit-
ical points. Gérard-Varet and Dormy [9] showed that the linearized Prandtl equations are
ill-posed without the structural condition and supposed that the optimal Gevrey index is
o = 2. Motivated by this conjecture, Li and Yang [21] got the well-posedness in all Gevrey
space G° witho € [%, 2]. Chen et al. [4] proved the well-posedness for the linearized Prandtl
equation in Gevrey function space G° for any index 1 <o < 2. We refer to [3, 7, 12, 19,
38, 40] and references therein for more new results. Finally, let us mention that for the con-
vex initial data, the local well-posedness holds under simple Gevrey regularity in [12]. And
Chen et al. [3] proved the well-posedness of the Prandtl equation for the monotonic data in
Sobolev spaces with exponential weight and low regularity by using the paralinearization
method.

There are some works about the formation of singularity in the Prandtl system, see [5, 6,
8, 20] in particular. The precise description of the formation of singularity is still an open
problem. However, in the case of a trivial Euler flow UZ and a trivial Euler pressure p~,
E and Engquist [8] established a finite time singularity for the Prandtl equations. For a
more general class of non-trivial inviscid flow, Kukavica, Vicol and Wang [20] established
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the finite time blowup of the boundary layer thickness. A similar one dimensional reduced
problem was considered by their approach using contradiction, and the method did not give
details about the singularity. Very recently, Collot et al. [5] provide a precise description of
the mechanism that leads to the singularity solutions for the same reduced problem. Dalibard
and Masmoudi [6] justify rigorously the “Goldstein singularity” for the stationary Prandtl
model.

Compared with the 2D case, the three-dimensional system share similar difficulties, both
are troublesome to deal with instability, separation of the boundary layer and so on. How-
ever, much less is known about the three-dimensional Prandtl equations, due to the extra
difficulties coming from the secondary flow appearing in the three-dimensional boundary
layer system and the complicated structure of the boundary layer arising from the multi-
dimensional velocity field. As for the well-posedness theories, only partial results have been
got in some specific settings, such as in the analytic functional [18, 35, 36] and under some
constraint on its flow structure [26]. Without monotonic condition, Liu et al. [25] gave an
instability criterion. However, Li and Yang [22] proved the system is locally well-posed in
the Gevrey function space with Gevrey index in (1, 2] without asking analyticity or struc-
tural constraint which complements the ill-posedness result in [25]. To have an over-around
study on the Prandtl boundary layer equation, the interested readers can refer to [14, 33] and
the references therein.

In the aforementioned works only local-posedness are achieved. The global weak solu-
tions are established by Xin and Zhang [43], and the global strong solutions are still unclear
so far. To get a finer understanding of the Prandtl equations, one must understand its be-
havior on a longer lifespan. To the best of our knowledge, the long-time existence of the
Prandtl equations has few results. Zhang and Zhang [44] proved that when d =2 or d = 3,
the Prandtl system has a unique solution with the lifespan

(TN

T.>¢

Ignatova and Vicol [16] got an almost global existence solution for the 2D Prandtl system
of which the lifespan can be extended at least up to time

T, > exp(e™" /log(s7")).

Therefore, it is interesting to study whether the 3D Prandtl system exists almost globally
with the small analytic initial data or not. In this paper, using the Littlewood-Paley theory, we
will prove an almost global existence for the 3D Prandtl boundary layer system of the small
analytic data with the far-field states that are uniform constant states (k, k), consequently,
there is no pressure term (9, p©, 0y pE) in (1.1), which extend the result of [16] to 3D. In the
whole paper, we will consider the following system

dul + WP 3y + v’y + wPd)u’ = u’,

3P + WP 3, +vPd, + wPd v’ =d2v”, inRy xR

ou” +0,v” + 0, w” =0,

W”, v, wP)|,—o = (0,0,0), (-

lim (u”,v?) = (k1, k2),
z—>+00

(M,D’ vp)|t:0 = (M()(X, Yy, Z)a vO(xv Yy, Z))
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Nowadays, many researchers consider some relevant problems motivated by the re-
search of the Prandtl boundary layer system, for example, the justification and the well-
posedness/ill-posedness problem for the magnetohydrodynamics boundary layer system, cf.
[11,15,24,27-29, 37, 39, 41, 42] and so on.

The rest of this paper is organized as follows. In Sect. 2, we first introduce new linearly-
good unknowns to cancel out the bad terms. Then we state our main result at the last sub-
section and explain the main difficulties and the methods to overcome them. For simplicity,
in Sect. 3, we only present some a priori estimates to prove the existence part of the main
theorem. In Sect. 4, we prove the uniqueness of the solution. At the final part of the paper,
for the sake of self-containedness, we will list some important functional tool box used in
Sect. 5.1. Next we derive the 3D Prandtl boundary layer system (2.1) in Sect. 5.2. Finally
we present some important lemmas in Sect. 5.3 and Sect. 5.4.

2 Statements of the Result

Here we introduce the linear good unknowns and the functional spaces which be used
throughout this paper, then state our main result.

2.1 The Linear Good Unknowns
Motivated by [16], to deal with (1.1) better, we write u” (¢, x,y,z) and v”(t,x,y,z) as
perturbations u(z, x, v, z) and v(¢, x, y, z) of the lifts k¢ (¢, z) and kr¢(¢, z) respectively

via

u’(t,x,y,2) =k19(t,2) +u(t,x,y,2), vP(t,x,y,2) =k0(t, 2) +0(t, X, y,2),

1 2/ 72 e
o) =—= ~= )z,
o(t,z) ﬁ/() exp( 4) Z

and denote by (f) =1 4 ¢. Then we introduce new linearly-good unknowns

where

Z
git,x,y,2)=0u(t,x,y,2) + Mu(t,x, y,2),

Z
&, x,y,z)=0v(t,x,y,2)+ Mv(t,x, v, 2).

Through some simple calculations, we have that the equations for the good unknowns g =
(81,827 in {t >0, (x,y) eR? zeR"} are

g — 928 + 758 + K100V v +K190:8 + 81 ViV — 5 uVirv + udg
— k20, 9V u + k29,8 — g2 Vitu + ﬁvvhlu +vdyg + wd. g — ﬁwu =0,
u="U(g1), v=U(g), and w=W(g,g), 2.1

9:8l:=0 = lim g =0,

8li=0 = (g10, &20)>
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. (b 3,
et e () e (7)

. =22\ [? 2
U(gi)=exp<m>f0 gi(t,x,y,E')exp< 20 > =1,2,

Wigr. g2) = / U Gg) + U 3,87 23)
0

where

2.2)

For the sake of self-containedness, we will provide several specific calculations in Sect. 5.2.
Note that we may recover u = U (g;), v=U(g,) and w = W(g, g») via linear operators U
and W that are nonlocal in z, cf. (2.2) and (2.3). So g; and g, are only prognostic variables
in this problem, and the system (2.1) is equivalent to (1.3). Thus, solving the 3D Prandtl
boundary layer system (1.3) is equivalent to solving (2.1).

2.2 The Functional Spaces

Next, let us introduce some functional spaces we are going to use. In view of the definition
of the operator U in (2.2) and the choice of ¢, it is natural to use the function ¥ (¢, )
determined by

O[Z2

Y(t,z) = 0 2.4)

for this o € [1 T 2] to be chosen later, see Theorem 2.1. To overcome a technical obstacle,
the Poincaré inequality doesn’t hold in the unbounded domain. It is natural to define the

Gaussian weight as following
2
eV —exp L&
At

As in [2], for any local bounded function @ on Rt x R2, we define
up(t,x,y,2) = F L, (€700, €, 2)), 2.5)
itg (1,%,y,2) = %_w,y)(led’(’ D1, €,2)|), (2.6)

where and in all that follows, #u and & always denote the partial Fourier transform of the
distribution u with respect to (x, y) variables, u(£, z) = F(x.y)—t W) (£, 2), and & = (&1, &).
Define the phase function @ as following

@(1,8) = (1o — 26(0)) €], 2.7)

where A is a large enough positive constant which will be chosen precise later, see (3.25),
and 0(¢) is a key quantity to describe the analytic band of (g1, g2):

1
F00) =810, 820) I3, + (1] + |2 (1) 7 [le¥ D01l .2,
'9|t:0 =0

(2.8)

where B , is defined in Definition 2.1.

@ Springer



388 X. Lin, T. Zhang

In order to define the functional spaces of the solution, motivated by [16, 32], it is con-
venient to define the following spaces. Firstly, let us recall from [44] that

Atu= 7" (p(27"EN)0), Stu=7"(x(27"&l)u), (2.9)
where x (1), ¢(t) are smooth functions such that

3 8 .
Suppwc{teR/Zflrlgg} and Vt >0, qu(z Jr)zl,

JEZL

4 .
Supp x C {r E]R/|r| < §} and X(r)+2<p(2’/r)= 1.

Jj=0
Definition 2.1 Let s be in R. For g in y’(R ), which means that g is in ./ (]R ) and

satisfies lim ||S£g||L:>o =0, we set
k——o00

lgollx.. = 12" ]e¥ Aigo ] 2)il o

For compactness of notation, for a function g4 such that go, {gs, 0;8¢ € X; 4, We use the
time weighted norm

1 1 3
8o llBoe = () #1801 xs0 + () *1E 80 My + (1) *110:80 Il s » (2.10)

where ¢ =¢(t,z2) = 1 —47 the heat self-similar variable.

In order to obtain a better description of the regularizing effect of the transport diffusion
equation, we need to use Chemin-Lerner type spaces L” (X, a(R ).

Definition 2.2

i = X2 ([ 1 atsacolyar)

keZ

with the usual change if p = oco.
Moreover, in order to overcome the difficulty that one can not use Gronwall’s type argu-
ment in the framework of Chemin-Lerner space LZT (Xs.4)» so we need to use the weighted

Chemin-Lerner norm, which was introduced by Marius and Zhang in [31].

Definition 2.3 Let f(r) e L }OC (R,) be a nonnegative function. We define

1
stz = 2 ([ 10) O)lar).
’ keZ
t
ey 0,0 = 20| [ 20 (e bleol s + e o)

kel

1

/3_p Y Ah p |7
) e abaga 7 )ar |
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where p < co. When p = oo, we define

Igllzee  xewy =2 2% sup f(D)]e?Alga(®)],- -
LY ry Xsa) ;z: 1e0.7] “ k ”L%r

In this paper, (a|b)L§r = fRi a(x,y,z)b(x, v, z)dxdydz stands for the L? inner product
ofa, b on Ri. We denote {dj }xcz to be generic elements in the sphere of £1(Z), || (g1, g2) || =
lgil + lgall, &) = $£8(1), m = (my, ma), Vi = 07" )", Vi, = (dy, 9,) . Throughout this
paper, we use A < B to denote A < CB for some absolute positive constant C, whose
meaning may change from line to line. For convenience, we provide some tool box about
the Littlewood-Paley theory, see Sect. 5.1.

2.3 Main Result

Denote |Dj,| the Fourier multiplier with the symbol |£|. Then our main result is stated as
follows.

Theorem 2.1 There exist C,, > 0 and s, > 0 such that for any € € (0, &,], when e©'Phlg;s €
Xls%,i=1,2,and

||€r°'D”'g10||X1 1 + ||€f()|Dlz|g20||X1 1 <e, (2.11)
'3 °2
with
70> &+C*(|K1|+|K2|)CXP<L>7 (2.12)
= lnsl eln%

the system (2.1) has a unique solution (g1, g2) on [0, T.], where

o
= e"p<ln<e-1))'

Furthermore, the phase function ®(t, £) in (2.7) of the solution (g1, g») satisfies

3
D(1.5) > %m, 2.13)

forallt €10, T,], and the solution (g, g2) obeys the bounds

I (g5, g2¢)‘|2?§,f3(,)(xl.a) <Ce, (2.14)
SC«/ Co
7 < — 2.15
| (g1 g2¢)||L§~8,f2(,)<Bl,a) <=5 (2.15)
where § = ¢1n ﬁ, o= %, HO =", 0= (t)%f‘s, and Cy is a positive constant.
Remark 2.1 Here, we could choose that &, = 55 and C, = max{16eC+/CoA + 81C|,

4eC*/CyC,}, see (3.27) and (4.14). If k| and « are small enough such that

1 1
k1] =+ lie2| < —lexp<——1>, (2.16)
In 2 eln
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390 X. Lin, T. Zhang

the condition on 7 (2.12) reduces to

2C,
To > Q
Specially, we can choose that
Ky =Ky = 0.

Remark 2.2 We note that a similar path is followed by [16], and that energy estimates for the
ensuring linear problem lead to the maximal time of existence O(exp(¢~'/Ine~")). How-
ever, our method is different from [16], we use anisotropic Littlewood-Paley energy esti-
mates in tangentially analytic norms, inspired by the ones previously used by Zhang and
Zhang [44]. Besides, we should impose a smallness assumption on the far-field states but
[16] just need it to be a uniform constant. And the assumption about the initial value of ra-
dius is different. In [16] it is independent of the far-field state, while in our paper, the initial
value of the analytic radius is related with the far-field states. The lifespan of (1.1) is at least
(’)(e‘%) in the result of Zhang and Zhang for the 3D Prandtl system. In [44], the authors
raise the question of “whether the lifespan obtained in Theorem 1.1 is sharp”. In [16], the
authors give a positive answer to this question in the two dimensional space, and prove that
the Prandtl system has an almost global existence. In this paper we give a positive answer to
this question in the three dimensional space.

In the final part of this subsection, we will explain the main difficulties and the ideas
introduced in this paper. The degeneracy in the viscosity dissipation coupled with the loss
of derivative in the non local term is the main difficulty in the well-posedness theories.
Thus, the main enemies to getting a longer lifespan are the terms wd,¢ and wdZg in
the perturbation equation (5.4) and the perturbed quantity equation (5.5) respectively. As
w=— f(; (Oyu + 8},v)d’zv, this term loses one tangential derivative. In the case of 2D, these
bad terms can be handled under the Oleinik’s monotonicity assumption using some kind of
cancellation properties, cf. [1, 16, 32]. A good unknown inspired by [1, 32] plays a funda-
mental role in our proof The main idea of our paper is to introduce the new linearly good

unknowns g; = a =0,V — v— to produce damping terms t) & and o5
respectively in the linear equation (2.1). ThlS change of variable is directly motlvated by
[16, 32] when d.¢ > 0. When the far-field states («1, x;) obey the fine condition in (2.12),
especially, they satisfy (2.16). We can show there exists a unique almost global existence
solution for this new system.

To capture the sharp time decay from the heat equation, and to explore certain cancella-
tions in the nonlinear terms of the Prandtl equations, we choose the boundary lift ¢(z, z) to
be the Gauss error function erf(ﬁ), see (5.3). The equations of u and v contain terms that
are linear and quadratic in ¢. We choose the lift ¢ so that the quadratic terms in ¢ vanish,
and we only need to deal with the linear ones in ¢.

A main part of the proof is the a priori estimate (3.22) below. Our idea is to solve the
partial differential equation (2.1) for the prognostic variable (g;, g») with a nonlinear ODE
(2.8) for the analytic band 6 (#) simultaneously. The phase function @ (¢, £) does not decrease
to less than 2 =2 |&| within the lifespan follows from the time integrability of the dissipative
terms presented on the left side of (3.22).

@ Springer



Almost Global Existence for the 3D Prandtl Boundary Layer Equations 391

3 The Proof of the Existence Part of Theorem 2.1

This section is to derive some a priori estimates of the solution for the 3D Prandtl bound-
ary layer system on the time interval [0, exp(ln = 1) )], which are crucial for proving Theo-
rem 2.1.

The general method to prove the existence result for the nonlinear partial equations is
first to construct a sequence of approximate solutions, then perform uniform estimates for
such approximate sequence, and pass to the limit of the approximate problem, see [16]. For
simplicity, here we only present the a priori estimates for smooth enough solutions of (2.1)
in the analytical framework.

The main result of this part can be stated as follows.

Proposition 3.1 (A priori estilnates) Let § = elnﬁ and o = % Suppose g; with gip €
L>([0,T1]; X1.,) and gi¢ € L2 (Bi.w), i = 1,2 is the solution to the Prandtl boundary
G 71)) Then there exist C,, > 0 and &, > 0 such that for
any ¢ € (0, &,], when the initial data e™'Phl g;o € qu%, i = 1,2, satisfying (2.11), coupling
with 1y satisfying (2.12), the estimates

layer system (2.1), where T\ = exp(

~ <
[0 82050 v, = Co 3.1)
SC«/ Co
|10, 820)| 72 o S5 (3.2)
and
31’()
(.8 = &l (3.3)

hold for any € € (0,€,] and any t € [0, T\, where f>r(t) = (t)'2, f3(t) = (t)%_‘S and Cy is
a positive constant.

3.1 A Priori Estimates

In what follows, we shall always assume that r < 7* with 7* being determined as following:
T* _sup{t € (0, T1]; 6(s) < 7 Vs € [0, t]} (3.4

In view of (2.1), (2.5) and (2.7), it is easy to observe that g = (g1, g2)' and F= (F|, )"
satisfy

. 1
380 +A0|Dylge — 0280 + e + k10,9 Vi Vo + K199, 8o

- K28Z¢Vj‘u¢ + k209,80 =F, 3.5)
where
Z Z
= (V) + 5 (690, — W) + (29} 40), — 5 (09E0), — (000
1
— (wd; 8o + m(wu)qb, i=1,2. (3.6)
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Applying the dyadic operator A} to (3.5), and then taking the L% inner product of the
simplified equation (3.5) with ¢ Ah + 8o, and using integration by parts for the linear terms,
the boundary condition of g; in (2.1) and the cancellation

K; /2 e‘/’(pAZth,-q;e‘/’AZgi@dxdydz =0, i=1,2,
R

T

we obtain
2
de(t)
g(z dt ||e‘”A’,Zg,¢||L2 +ch—— o 2k” wAkguD”Lz + “emijha g@“L2
a(l —2a) 2«
+ 2O oot e}y + 5 | Bl )

< |(eV AlFy | ¥ Alga) 2 | + | (180 va | ¢ Alga) |
+|(k20:0Viua | € Afga) 2 |- 3.7)

To bound the linear terms, we need the following lemma.

Lemma 3.1 Under the conditions in Proposition 3.1, for any fixed o € % %] for arbitrary

B €10, 1], we have

2
2 2—
5 (le¥ s I3y + G e ol + 5o le¥ ol )

2

(1—2a)
=3 ((Sler atouslly + “G Iret a1
2+ (1 =B oV
+T“ Agld’”LZ) 69

and
licil] (e¥ 0.0 AU (Vig)o | e“’Aqu@)LZJ < 2"9’||.eng,-qb||L2+ le” Argqo ||L2+, (3.9)
wheret € [0, T*], forany k € Z,1i, j,q =1,2.
It is trivial to prove (3.8) by using the Treves inequality, so we omit the detail, see

Lemma 3.3 in [16]. The proof of (3.9), see Lemma 5.2. Hence, using (3.7) and Lemma 3.1,
we obtain

/1d do ()
> (sl sty +x G2 e sl + 1 Mg

a(l —2a)

\ 24+ (1 —-pB)a
e

2(1)

2
< ;}(em’;Fi@ | ¢ Algio) 2 [+ 290 (e Algia] 2 + ¥ Algro]2)". 3.10)
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To bound the nonlinear terms, we need the following key estimates. The proof is pre-
sented in Sect. 5.3 for simplicity, as it follows the same line as Lemma 3.1 in [16].

Lemma 3.2 (Bounds for the diagnostic variables) Let v (t,z) be given by (2.4), with
o e [}1, %]. Define U and W by (2.2) and (2.3) respectively. Under the conditions in Propo-
sition 3.1, fork € Z,i = 1,2, we have

|10 @) 1p2, <CO ¥ Bigio 2 - (3.11)
| AW (810 820) | 12012
<C(r)izk ||el”Akglqb||L2 L +Cu )32kl Al gro ||L2 , (3.12)
[’ AU Gio)] 2 .
<Cle’Agio ”L%%.N (1) ]| e” AL gio ”L%?»z + ()2 ce? Algio]| fz) (3.13)
le? 8iUGio)] 12 1 = COF ¥ Algio]) 7, - (3.14)
Basing on these key estimates, we have the following important lemma to bound the
nonlinear terms for every k € Z. By the definition of @ (7, £), for any t < T*, there holds the
following convex inequality
O, E<P(1.E—n)+D(t,n), VEneR. (3.15)

The key lemma is stated as following.

Lemma 3.3 Under the conditions in Proposition 3.1, for i, j,q = 1,2,t € [0, T*], we have,

/ 102" AL (U (T ), | Aliggo) 3 ' S a2 A (3.16)
/Ot(ﬂﬁ‘” (:/)( VAL (U@IU(Vig)) g | € Alggo) 2 |di S 227 Ayyg. (3.17)
/Ot(t’ﬁ*”|(eMQ(U(g,-)th,-)¢ | ¥ Algyo) 2 |t S 2 Ay, (3.18)
/Ot(f'>%725|(6‘”Af(W(gugz)azgj)q, | ¥ Alggo) 2 |dt' S di2 7 Ay, (3.19)

s
/(r’>2 25|(e‘/’A2'(W(g1,g2)U(gj))¢|e"’Azgqq,)LZJdt/Sd,fZ’ZkAlzq. (3.20)
0

5 o
where Aijy = gio i)z, o, N8aolzz ox, vand fil)) = (037200,

3 &
2 2«

Proof Applying Bony’s decomposition (5.1) for g;U(V,g;) for the (x,y) variables, the
property of @ (¢, &) in (3.15), the support properties of the Fourier transform, Holder’s in-
equality, (3.11) in Lemma 3.2 and the anisotropic Bernstein type inequality in Lemma 5.1,
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we get

sl
/ (1)) (" AL (U (Vig)g | €¥ Bigyo) 2 |t
0

%

)
5/ (1) (e AL (T2 U (VigD) g 2 + ¥ AL (Tii5,68) 0 [ 12) €Y Do | 2 1’

= % [ st gl

|k—k'|<4

e [ ®E

k'>k—3

zgqq) ”L%_dt,

K&t

Algya | 2 ar

s 3 2 [T e s 1 Mol Ml
|k— k|<4
I1<k'—

e 3 2 [ A 1 Ml s Ao
k'>k—3
I<k'+1

1
<c Y ¥ / 2 gy, Je? Algo 2 ¥ Mgyo 2 dr
|k—k'|<4

5

P SN N |
oY 2 /0 ) lgsolix,, e Algio] 2 ¥ Algga | 2 dr
K'=k—3

T*
< Y 2 [0 el 2 e Blgo
lk—k'|<4

+C Zz"’/

k'>k—3

18id ”Lz Hevj A'k’gq¢ H 2 dr'
<di* || (8io, 8jo) ”er*,flm(xg,a) [F#23 ||ZZT*.f1(,)(X%a)'

Thus, we obtain (3.16). Next, we follow the same line to prove (3.17)—(3.20), for simplicity,
we provide the detail proof in Sect. 5.4. ]

At this step, we will prove the following key lemma to bound the nonlinear terms.
Lemma 3.4 Under the conditions in Proposition 3.1, we get
/O’M%% (e ALFs | ¥ Algo) 2 |t S 4227 (16, 820) IIZZIZflm(XS . 62D
: e
where F is defined by (3.6), t € [0, T*].
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Almost Global Existence for the 3D Prandtl Boundary Layer Equations 395

Proof For u, v and w can be computed directly from the linear operators U and W respec-
tively. Thus, applying Lemma 3.3 to the nonlinear terms, using Cauchy-Schwarz’s inequal-
ity, we immediately obtain Lemma 3.4. 0

3.2 Proof of Proposition 3.1

Proof of Proposition 3.1 Without loss of generality, we assume that ¢ < ¢, = ﬁ. Let

8= l—, =, = —_
en(’3 o 5 B

At this step, upon multiplying by the term (¢) 32 i (3.10), we arrive at, forall 0 <t < T*,

2

d (1
Z[EGU)%‘” HewAng”igr) + cA(r)2

i=

do
525 (t)zk” wAk l‘PHLZ

P2 (o At + 1 Ao s + 515 Mol
<<t> «8io L%r k9:8i® L<2F <Z> ;e kgld)"L%r)]
2
<) Y |(e Al Fo | e Agio) 2 | + (1)372246(1) e Al (810, gm)y!g . (322)
i=1

for a universal constant Cy which is independent of « and §. Integrating the above bound on
[0, t], using Lemma 3.4, we get,

T*

2
$-25d0
Z{ sup ([)%-26”531/’A2g5¢|’i$+/ [cxzk< Y2 25 (t)H I\ gﬂP”Lz
0

EwAZgiq; ”ii>i|d[,}

+ (| e gy + [ o).

§ (t/> %728
Co

1
(5ler stolls +1ev o

<Cdi2” 2k||(gl<1>782¢')||L2

FENAOL %

Taking square root of the above inequality and multiplying the resulting inequality by 2F
and summing over K € Z, we find,

2

H(glzzn82¢)||on<;ka3([)()(1_&)+«/—||(81¢,82¢)||L2 X3 \/—”(81@782@)”L2* PRC

1 + C”emIDh\gZOHX1 s (3.24)

<VC|(g10. 820) IIZ%#M(X%&) +C|lemPilgy, Hxl

[N
[N

where f3(t) = (t)¥4~%. Taking X to be a large enough positive constant so that

cA>C, (3.25)
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thus (3.24) reduces to

Vs
I (81@782@)"@& o X1a) + J—C_" (glq),g2<1>)”L%_* 0 Bra)

< CllePgio +CHe’0‘Dh‘g20\|  =Ce. (3.26)
1

ol
o—

Hence in view of (2.8) and (2.10), using Holder’s inequality, by some simple calculations,
for all ¢ € [0, T*], we arrive

t t
/(|K1|+|xz|)(t/>%He“’azwllL;dWr/(f/>%||(gwagz¢)||xmdf
0 © 0 ’

+ [ 10s0. 000y, @ + [ 1) o caolly, ar
0 0

L —1428
<C T1(|K1| + |I<2|) + || (g1, g2¢)||zg*,f2(,)(31,a)(/ < ) dt >

5
_ C/Coe{Ty)
- )
5

=

where 1 satisfies (2.12) with

+ C1Ti(Ik1] + |x2l)

1
C, >16eC\/CoA+8AC; and O<e< 200" (3.27)

Then we immediately get

D(1,6) > %m, on [0, T*].

Using the classical bootstrap argument, we can prove that 7 = T* and (3.1)—(3.3) hold for
any ¢ € [0, T1]. Thus, we conclude the proof of Proposition 3.1. ]

From Proposition 3.1, one can easily get the existence of the solution for the system (2.1)
on [0, T1]. The procedure of the proof of the existence part of Theorem 2.1 is classical, we
refer the reader to [16] for more details. The core of the argument is the energy estimates
stated in Proposition 3.1. In fact, such estimates are derived on a sequence of approximation
solutions of the 3D Prandtl boundary layer system, so we omit the details for simplicity.

4 Uniqueness

This section is devoted to the proof of the uniqueness part of Theorem 2.1. Let (gfl), gzl))

and (giz), & )) be two solutions of (2.1) on [0, 7] with the same initial data (g;9, g20),
satisfying the conditions in Theorem 2.1. Without loss of generality, we assume that 7, < T7.
Specially, considering the following ODE

i i i 1
i — 407 (1) + 11(g 1> 8yp) 1810 + (1] + [i2])(2) 3 €V Dol 12 = O, @

6'(0) =0,
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where

D (1, &)= (10— M'D))IEl, i=1,2, 4.2)

we assume that the solutions (gi’), I )), i =1, 2, satisty

@) @)
[ (100 8200 Iz, i = € 4.3)
(s 8512 < (44)
81oi> Sooi L3, 1 (B, o= Js .
and
; 370 0
(1, 8) > — &1, 0'(1) < — 4.5)
4 4
for all ¢ € [0, T3].
Denote gy = gf — gfz), 2= g géz). From (2.1), we have
i g — 02T+ 58 + K19V T+ k190 — k20.9V, U + k9B g = F, @)
g|z=0=g|z=oo=(07 0)7 g|t=0=(07 0)’
where
F, = —gOvly —gviy® Z Oyly i—viv(z) —uMy.7 — 10,8
81 Vav =81V, +2(t>“ h”‘f'z(t)“ i u 0 g —uog

gl 1,2 _ 2 Hyl— ) Ma = —a (2
+ Viu+2gV, —vViu— —vV - 9,2 — V0,
82 u-T§g 2(t>U n U 2(t)v n U V' 70y8 —V0y8

1 1
—wa.eD) — @y g wa® @, i=1,2,
wo, g w08 + 2<t)w + 2<t)w 1

=), ul =D vM7, g0 = (g ¢, j=1.2.g= (.8 u=u® —u® =

U@ED,v=vP —v® =U(gz),andw = w" —w® = W(gy, 22). Denote the phase function
@ as following

D(1,8) = (? - k@(t))|.§|, o) =(0'+6%) ). 4.7

From (4.5), we have
O <2, Vielo, T
=50 » 121,
so that there holds
(&) <P(t.E—n)+D(t.n). VEneR

By the definition of X 4,

lejsll, =221 slefyl i e 012,
kel
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using (2.5) and (2.9), one has

22k” deh (z) ”L _22k/ / 2w 2 k|§|)€25("€)|<‘5\-l—)(t,§,z)|2dédz
[ Le

_ i “W e ) 2
<C P*(27H e P EPe T g (e, £, 2)| dEdz

/ / Yo (M50 g 1,8, ) sz

e st ol

and

(@)

Is! i) sy, = r—0||gqu,[ I, .- (4.8)

For & (t, &) defined in (4.7) and the equations of gy and g; in (4.6), we get

de @) ” 1_ = _
T |Dnlgg — 0,85 + aga + 110,90V Vg + K190, 85

— K20,V UG + k200,85 = F 3.

085 +A———

Applying AZ to the above equation and taking Li inner product of the resulting equation
with e”’AZ?g,. and using integration by parts for the linear terms, the boundary condition
of g in (4.6) and the cancellation

Ki /3 e‘/’(pAﬁth(;e‘/’AQqudxdydz =0, i=1,2,
R

T

we obtain
2
de
S (galer smaliy + o G0 e alally + |t atnzally

a(l —2a)
A(t)

<|(e"A{Fo | ' A{Zs) Lz“"’ —K10:9V;, U5 | " AZ5) 2 ’

2 -«
lee*atgialyy + 5o lev alally

+|(k20:0Vi 5 | € MiT5) 2 |- (4.9)

Bounding the linear terms with the same trick as Lemma 3.1, we omit the detail for
simplicity. Hence, using (4.9), we obtain

2dt

> /1d _ do(t _
Z<__”ewA2gi5“i§r +ch d( )Zk” wAZ&@HLz +5 “ewAzazgiq;”ii
i=1

a(l —2a)

24 (1 =B
et alms i + P el )

2(t)

2
= DI AT e ala) | + 2001 Mialy + e sl ) 410
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At this step, we will show a key lemma to bound the nonlinear term w®9.g which is
dealt with the different trick from the nonlinear terms of the existence part, the proof is
presented in final part of Sect. 5.4. Other nonlinear terms in F have the same bound by the
same method which Lemma 3.4 used, so we omit the proof.

Lemma 4.1 Denote g; = g,m (2) , and @(t &) as (4.7), fori =1,2, we have

T
/0 2<t’)%_2‘3|(e”’AZ(w(2)3zE)5 |€¢AZEa)Lz+|dt/

4
< 2% 8 Igisl2 C"CoCr dzz—zk(” @ o® )H~ )2
="k 4C2c, ié L3, o Bra) 8¢ k 81022 8202 LY, f 0K 1a)

— (1)’ —1Y? 4.11
X ||8i¢||L;;vf3(1)(X,ﬂ)T ) (4.11)

where C, is a large universal constant.

Upon multiplying by the term (t) 32 i (4.10), integrating the resulting equations on
[0, ¢], bounding most of the nonlinear terms as Lemma 3.4 and using Lemma 4.1, finally,
we arrive at,

2
3| s 01l ool a2 [ 00 e by
0

= te[OTz]
s " n3-28 v 14 LN !
A H NGl + e szl + Hé‘e Az, )dr
Dokl —  — 12 _ _
<cdi2* ||(815782$)||zzrzﬂt)(x%d)+dk22 2k4C2C0 ||g’45||252f2,f2(,)<31,a>

C*CoCy . of (T,)8 — 1
= 27 (8752 820 175 ) <||g,-a||z;;.f3m<xl,,,>—ﬁ ) :

for some universal constants Cy which are independent of « and §. Where we denote f ®=
1320 ).

Taking square root of the resulting inequality and multiplying it by 2, and by summing
over the final inequality for k € Z, thus, the estimate becomes

_ _ S, _
lzrs. 825)||Z‘%§,f3(,>(x1,a) + \/C_AH (315.825)| erz,fm(xg,a) + e @15, 225) ||Z%2_f2<,)(81,a)

7
tive [ (g1¢»82¢)||LT Bl

2

= “/—” (815 g2¢)“L2 7 (X

C/CC () — 1) ”( o

870 1020 8 2¢2)”L

2 X |Gra. gw)”L? K1)

(4.12)
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in Proposition 3.1 and § = ¢1n i, taking X large
enough as (3.25) and (T»)? < (T})? < 2e, we have

5

H (815, gZ:D)HLoo f()(xla) 2\/— H (815, ng))”Lz o Bra)

% f 8 4eCému(gw,gmn%m(w_ @ Bl @19
when
0O<e< ;ﬁ and C, >4eC*/CyCs, (4.14)
and

8 v —
| (gra. gzw)HLoc X1 + N | &1, 825)|’zz}2“f2m(31.u) <0,

(1) 2

for all ¢ € [0, T5]. By Gronwall’s inequality, we get that (g, ,gé”) (g ,g§2)) for all
t € [0, T]. The uniqueness for whole time of existence can be deduced by a continuous
argument. Thus, we finish the proof of the uniqueness part of Theorem 2.1. ]
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Appendix
5.1 The Tool Box

The result presented in the paper rely on a Littlewood-Paley decomposition in the horizon-
tal variable (x, y). For the convenience of the readers, we recall the following anisotropic
Bernstein type inequalities in the 3D case from [44].

Lemma 5.1 Let By be a ball of RZ, and &y be a ring of]Rfl, 1 < pr < p1 < o0. Then there
hold:

1. If the support of @ is included in 2*By, then

k(Im|+2(55 =500
[Vialpug <2 o lallre gy

2. Ifthe support of @ is included in 2%y, then

lall 1y S2° k""‘sup”V Cl||L171(Lq)
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We shall try often use the Bony’s decomposition for the horizontal variables:
fe=Tig+T;f+R"(f 2, (5.1)
where
Tig=1 S_ifAlg, R'(f.9)=) AlfAls,
k k
with Al f =3 _,._, Al f. and denote Tjg = T/'g + R"(f. g).
5.2 Perturbed Equations Around the Shear Flow

We choose the boundary condition lift ¢(z, z) satisfying ¢ (¢, 0) = 0 and

0.0(1,2) = — ( f) (5.2)
p(t,2) = expl —— ), .
WO TEm TP\
where the normalization ensures that ¢ — 1 as z — oo. It means that
1 4 52 z
t,2) = — exp| —— )ds =erf - , 53

v ﬁ/o p( 4) < 4<r>> C

such that
dhp — 879 =0,

where erf is the Gauss function, erf(x) = % fox exp(—n)dn.
Then the perturbations satisfy

au— 8zzu + K190 U+ ud u + K90, u 4 voyu + kwd¢ + wo,u=0,
w=— [ [0:u(t, x, y,2) + oy, x,y,2)]dZ,

5.4
ul,—o =0, lim u=0,
z—+00
(u, V)|1=0 = (uo — k19(0, 2), vo — k29(0, 2)),
where u = (u,v)", k = (k1,k2) ", 0= (0,0)T.
And the equations for the vorticity &, = d,u and h, = 9, v are:
ah — 02h + k1 0.9V v + k190 h + hy Virv 4+ udh — k20,9 Vi u + ko9dyh
— hzthu +vdyh + KwBZqJ 4+ wad,h =0,
(5.5)
0,h],—0 =0, Wlirll h=0,
(h1, ha)li=0 = (810 — k10:9(0, 2), 3;v9 — k209 (0, 2)),
where h = (hy, hy) 7.
Inspired by [16], we take this issue by considering the linearly-good unknown
g(t,x,y,2) =h(t,x,y,2) —ua(t, x,y,2)a(t,z), (5.6)
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where

_ etz
D=5

We solve the first order linear equations (5.6) to compute explicit # and v from g, and g,
respectively, w can be computed from the divergence free condition,

) -2\ [* b
u(t,x,y,z2)=U(g) = exp(m>/0 gt x, y,aexp<m>d3, (5.7)
w(tvx!y’z) = W(glagz)

z 52 K ’Z’Z
i—/o exp(—m>/.§ divhg(t,x,y,'i)exp(m)dfds, (5.8)

where divj, g(t, x, y, 2) = 0:g1 + 0,82, and we have used the boundary conditions, u|,—o =
v|,—0 = 0. The formulas (5.7)-(5.8) are useful when performing weighted estimates for u
and v in terms of weighted norms of g; and g, respectively.

Subtracting a x (5.4) from (5.5), we get the system for (g1, g2),

dg—02g+ %g +x10.9Vitv + k1900, 8 + g1 Vitv — LMVLU + uaxg
—/czaz(pvhiu—i—/cz(payg—gzvh + ﬁvvh u+vdyg+wai,g— wu_O
u=0U(g), and w=W(gg), (5.9

9:8l:=0 = 7Ligloog =0,

g1lr=0 = &0, 82lr=0 = &20-
5.3 The Key Estimates

We need to deal with other type linear terms.

Lemma 5.2 Define the lift(p(t 2) = fW_ exp(—2)dZ, fi(1) = (1)3726(1), and the

weight function ¥ (t, 7) = 7= . Under the conditions in Proposition 3.1, we have
|x,-||(e‘/fazgoAzU(vhg,»)¢ | emggq(p)LZJ < 2"9’|{e"fAQg,-¢,||L2+ le” At gga |{L2+, (5.10)
where t € [0, T*], forany k € Z, i, j,q = 1,2. Moreover,
/0 1P| (e 0.0 AU 10 | Aligye) |
= a2 M lgollzy, xy Igaelz, iy (5.11)

where i, j,q =1, 2.

Proof Using (2.4), (5.2), the anisotropic Bernstein type inequality in Lemma 5.1 and (3.11)
in Lemma 3.2, we get

lil|((e¥ 00U (Vag )y | € Aigga) 2 |

< talle¥ o] 2| AU Tagio] iz ¥ Mgyl

@ Springer



Almost Global Existence for the 3D Prandtl Boundary Layer Equations 403

=2l ]| 2 | 21U 810) | 112 Nl

k8q® ||L2
< C2 0 l[eV 0.0z |e” Algjo |2 ¥ Alggo 2

= C20]e" Aggjo 2 € Aigao 12

which immediately implies (5.10). Multiplying upon (t) 325 on both hand sides of (5.10),
and integrating over [0, ¢], we obtain

foaso
/0 ) bl (€ 00U (Vag)), | ¥ Algyo) 2 |t

! ’ 3-26 ’ ’
<2 [ W00 e slgjol s e zaol;ar
252k . ~
5 dkz ||gj¢ ”Ltz.fl(t)(X%.a)”qu) ”Ltz,fl(t)(X%.a)’
which implies (5.11). O
We should list an easy result before proving Lemma 3.2.

Lemma 5.3 When  is defined as (2.4), u = U(g1) and v = U (g,) defined by (2.2), under
the conditions in Proposition 3.1, for i =1, 2 we have

le¥ LU i) | oo < |l¢¥ Ajgio | 1. (5.12)
forallk € Z. For p e [1,2] and @ € [}l, %], we get
[ AlU @) 3.9 = COF [e¥ Mol e, — L e
" +ct )7

Lemma 5.3 is trivial, we omit the proof for simplicity, cf. (3.3) in [16]. Now we can prove
Lemma 3.2 as follows.

Proof of Lemma 3.2 From (5.12), we obtain

1 < (1—-a)
ewm/o " @Al ¢m’eXP< A00) (EQ_ZZ)>JZV

|ARU (gi0)(2)] <

p
eV (@)

2
= e e 2 Eexp( 5 )

< C(l)‘l‘ ||€lpAzgiq)”L§.

IA

¥ Aigio]l 2 75

Taking the L? norm in x and y variables of the above inequality, we obtain (3.11) in
Lemma 3.2. For the w bounds, taking L* norm in z, we obtain

| AW (810, 820) |20 < [ AL[0:U (810) +8,U (820)]] 1

= [le" Mia.Ugio) | o€ |11 + [ 2k8,U (g20) | e €7 1y
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<C 2||€wA O U(gl¢)HLoc +C(t 2||e'/’Ah3 U(gz¢)||Loc

< 12 [e¥ Mlgiol 2 + €12 [e¥ Mg
For the last inequality, we use the Bernstein type lemma and (5.13) when p = 2. Taking the

L? norm in x and y variables of the above inequality, we get (3.12).
For (3.13), using the inequality (5.13) in the case p = I and take L* norm in z, we get

eV 2tU o) 2 < €O [e¥ Afgio e[ (14 £1.2)) ' 2
< 0¥ Mo | L (¥ Mogio ]2 + | 3ce? Al ]
< COt ! Algia| o le” Aldgiol
F OO e Mgiol 2" Alsio s
where we use 1D Agmon’s inequality in the second inequality. Then taking the L2 norm in
x and y variables of the above inequality, we finish the proof of (3.13).

For (3.14), using the inequality (5.13) in the case p =2 and take L? norm in x and y, we
get the bound (3.14). O

5.4 The Detail Proof of (3.17)-(3.20) and Lemma 4.1

At this section, we prove (3.17)—(3.20) in Lemma 3.3. Follow the same line to prove (3.16),
i.e. applying Bony’s decomposition (5.1) for the (x, y) variable, the property of @ (¢, £) in
(3.15), the support properties of the Fourier transform, Holder’s inequality, (3.13), (3.14)
and the anisotropic Bernstein type inequality in Lemma 5.1, we have

1
Ty (AU EIU Mgy | e Biggo) 3 far

T* o
= 2 [ e s 0w e,
k<4 ¥ 0 o

x |le” ALU(Vigjo) ||L§CL§”\_ le” Argqo ||L2+dz/
_1 —_—
+ Z / 28 2“€¢S£/+2U(thj¢)||L%L§%
k'>k-3

x y|ewAk,U<giq>>!!LgoLz e? akggal 2 dr

K+ —26=1 1l Y Ah RN v oAk
<c Yy 2 le¥ algiol s ¥ Algol s e Alssol 2
|k—K'|<4 -
1<k'-2
1
x (1) ¥ Afaugio| s +11)F |e¥ Mgiol
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25— 1 1
e L [0 e ol e M Il

x «fﬁ le¥ afa.gol 1o +(r) ce¥ Al giol )

’ s
<0 3 2 [Tl sbasol It lsse L ol
lk—k'|<4

1 L 1 1
% () 1980 ;l L Negioly, ,)de'

1
0 3 2 [T Mol 1 Ml s o,
k'>k—3

1 1 1 1
X ((f,>2 ||3zgj<z>||;2(la + (') lcgj0 ||;2(m)df/

<c Y ¥ / ()" Aol 2 le¥ Mgy 0
|k—k'|<4

0 3 2 [Tt sbol o e Aoy o
k'>k—3

< —2k X . N ~
S dk2 H (gm» 814)) ”LZT* fl(l)(X§ a)”gqq) “LZT*.f](z)(X% [X)»
. 3. ,

which immediately implies (3.17).

We use the same method in the proof of (3.16)—(3.17) to get (3.18) as follows. Applying
Bony’s decomposition for (U(g;)V,g;)e for the (x, y) variable, using Holder’s inequality,
Lemma 5.1, (3.11) in Lemma 3.2, we obtain

*

S_
/o (1) |(e? AL (U ) Vag)) | ¥ Atggo) 3 |

Z / —2s ||S£’/,1U/(;’z_';) ||L§°L§f’>. ”ewAg/vhgjd,”L%L%J ||e¢A£8q4>||L§rdt/

|k—k'|<4

#3 [Tia TR @
k'>k-3 o )

<c ) 2k/+l/ P v Al 1802 e Apgjo 2 e Aiggal 2 dr

k=K' |<4
1<k'-2

w0 3 2 [T et abaol e Mo a1 Ml

o)

*

T
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which immediately implies (3.18).
Along the same line of the proof of (3.16)—(3.18), we can easily get (3.19) as follows.
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. 3 . :

We use the same method in the proof of (3.16)—(3.19) to get (3.20) as follows. Applying
Bony’s decomposition for % W(g1, g2)U(g;) for the (x, y) variable, using Holder’s inequal-
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ity, Lemma 5.1, (3.12) and (3.13) in Lemma 3.2, we obtain
T* , 2—25 1 Y Ah /
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Proof of Lemma 4.1 Applying Bony’s decomposition for w®d.g; for the (x, y) variable,
using Holder’s inequality, Lemma 5.1, (3.12) in Lemma 3.2, the inequality (4.8) and
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Cauchy-Schwarz’s inequality, we obtain
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In the last two inequalities, we use (4.8) and Cauchy-Schwarz’s inequality respectively. It
immediately implies (4.11). a

<di~*
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