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Abstract We consider non-uniform random sampling in a signal space with finite rate of
innovation V 2(Λ,Φ) ⊂ L2(Rd) generated by a series of functions Φ = (φλ)λ∈Λ. A sub-
set V 2

R,δ(Λ,Φ) of V 2(Λ,Φ) is consisting of functions concentrates at least 1 − δ of the
whole energy in a cube with side lengths R. Under mild assumptions on the generators and
the probability distribution, we show that for R sufficiently large, taking O(Rd log(Rd))

many samples with such the non-uniform distribution yields a sampling set for V 2
R,δ(Λ,Φ)

with high probability. We impose compact support on the generators as an additional con-
straint for obtaining a reconstruction algorithm from non-uniform random sampling with
high probability.

Keywords Random sampling · Non-uniform sampling · Spaces with finite rate of
innovation · Non-uniform distribution · Reconstruction algorithm

Mathematics Subject Classification (2000) 94A20 · 42C15 · 60E15 · 62M30

1 Introduction

The space of signals with finite degree of freedom per unit of time is called the space with
finite rate of innovation (FRI) [2, 5, 12, 15, 17, 19, 23]. The concept is introduced by Vetterli
et al. [23] at first. The FRI model is ubiquitous and has wide scientific applications such as
radar imaging [15], compression of electrocardiogram signals [2], curve fitting [12]. The
model of signals with finite rate of innovation can cover following cases: (i) band-limited
signals [3], (ii) signals in some shift-invariant spaces [1, 7–9, 24, 25], (iii) non-uniform
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splines [16, 20, 21], (iv) stream of pulses
∑

k akp(t − tk) where p is some pulse signal
shape, applied in GPS applications and cellular radio, (v) sum of some of the signals above
[19], and so on.

In this paper, we consider the signal spaces of finite rate of innovation V 2(Λ,Φ) ⊂
L2(Rd), defined as the closed linear span of a tuple of generators {φλ}λ∈Λ ⊂ L2(Rd), which
is introduced in [17, 19]:

V 2(Λ,Φ) =
{∑

λ∈Λ

c(λ)φλ : (cλ)λ∈Λ ∈ �2(Λ)

}

,

where Λ is a relatively-seperated subset of Rd .
Realistically we can learn about f ∈ V 2(Λ,Φ) only if the samples are taken in the set

where most of the L2-norm is localized. So motivated by [3, 8], we focus on the sampling
problem on the following subset of V 2(Λ,Φ):

V 2
R,δ(Λ,Φ) :=

{

f ∈ V 2(Λ,Φ) :
∫

CR

∣
∣f (x)

∣
∣2

dx ≥ (1 − δ)

∫

Rn

∣
∣f (x)

∣
∣2

dx

}

,

where CR = [−R/2,R/2]n and 0 < δ < 1. Thus V 2
R,δ(Λ,Φ) represents the subset consisting

of those functions whose energy is largely concentrated on CR .
Usually, in order to guarantee the success of reconstruction, we demand the sampling

inequality as below fulfilled:

A‖f ‖2
2 ≤

s∑

j=1

∣
∣f (xj )

∣
∣2 ≤ B‖f ‖2

2,

where A and B are some positive constants. However, owing to the randomness in choosing
the sampling points, we can not guarantee the sampling inequality fulfilled surely. Instead,
our goal is to chase the following probability estimate:

P

(

A‖f ‖2
2 ≤

s∑

j=1

∣
∣f (xj )

∣
∣2 ≤ B‖f ‖2

2

)

≥ 1 − ε, (1)

where ε > 0 can be taken as arbitrarily small. This problem is studied for the cases of band-
limited signal spaces, shift-invariant signal spaces and finitedly generated shift-invariant
signal spaces, respectively [3, 8, 10, 25].

In former research [3, 4, 6, 8, 13], the probability distribution of random sampling points
is taken as the uniform distribution in CR . It is often beneficial in statistical sampling and
function integration to sample uniformly over the applicable parameter space. However, non-
uniform distributions also has application in real world [11, 13, 14]. A sequence of points
which is uniformly distributed can be mapped into another sequence that reflects a desired
non-uniform join probability distribution function [13] using different techniques like the
rejection method or weighted sampling [11, 14]. In this paper, we will consider a more
generalized probability distribution: we only demand that the probability density function
exists, and has positive lower bound in CR . We will show that the uniform random sampling
in CR is a special case in our results about non-uniform random sampling.

In this paper, we will show the probability estimate (1) for non-uniform random sampling
in signal spaces of finite rate of innovation. This is one of the main results in this paper.
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In [9], a reconstruction method from nonuniform sampling is presented in shift-invariant
spaces. But the sampling is NOT random sampling in [9]. In [4], a linear algorithm is ob-
tained for the random sampling from regular languages. But how to give a reconstruction
algorithm from uniform random sampling is still an open question in bandlimited functions
spaces [3]. In this paper, we try to show a reconstruction algorithm from non-uniform ran-
dom sampling in spaces with finite rate of innovation. This is one direct application of our
main results.

Many problems arising in industry, statistics, physics, and finance require to compute
multivariate integration

∫
CR

f (x)dx. The sample mean method has been recommended
to give an approximation to

∫
CR

f (x)dx. The Koksma–Hlawka inequality gives an upper
bound for the approximation error

∣
∣
∣
∣
∣

∫

CR

f (x)dx − 1

s

s∑

i=1

f (xi)

∣
∣
∣
∣
∣
≤ C(Γ )P (f ),

where Γ = (xi)
s
i=1 ⊂ CR is the set of sampling points with uniform distribution, C(Γ ) is

the discrepancy of Γ and P (f ) is a measure of the variation of f [6, 13]. A spontaneous
question is that, can we use the mean of the squares of those to estimate

∫
Rd |f (x)|2dx?

Or what is the maximum error between
∫
Rd |f (x)|2dx and 1

s

∑s

i=1 |f (xi)|2? In this paper,
we provide that the estimate error is direct proportional to the L2 norm of the function. If
Γ = {xi}s

i=1 ⊂ R
d with non-uniform distribution fulfills some conditions with probability at

least 1− ε for sufficiently small ε > 0 , then we can get that the estimate error is a functional
only dependent on f , as shown below:

P

(∣
∣
∣
∣
∣

∫

Rd

∣
∣f (x)

∣
∣2

dx − 1

s

s∑

i=1

∣
∣f (xi)

∣
∣2

∣
∣
∣
∣
∣
≤ D(f )

)

≥ 1 − ε.

This is one direct application of our main results too.
The paper is organized as follows. In Sect. 2, we state the theorem of random sam-

pling in a space of finite rate of innovation, and give notations and preliminaries. In Sect. 3,
some examples are shown about the generators and probability density function. In Sect. 4,
spectrum estimation based on Hilbert–Schmidt operator is described. In Sect. 5, we discuss
non-uniform random sampling in finite sums of eigenspaces. The proof of main results are
provided in Sect. 6. And in the last section, we give a reconstruction algorithm for a spe-
cial case, and give some numerical testes to verify them. Some properties of signal spaces
V 2(Λ,Φ) are presented in appendix.

2 Statement of the Main Result

2.1 Notations and Preliminaries

We first define relatively-seperated point sets, the relative covering index and the absolute
covering index.

We say a point set X = xj ⊂ R
d is relatively-seperated [17], if the relative covering index

D(X) := sup
x∈Rd

∑

xj ∈X

χxj +[0,1]d (x) (2)
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is finite. And we can define the absolute covering index as below:

N0(X) := sup
k∈Zd

#
(
X ∩ (

k + [0,1]d)) (3)

We can easily see that N0(X) ≤ D(X) and supx0∈[0,1)d N0(X + x0) = D(X) for any
relatively-seperated set X. The two definitions are used in different usages.

Throughout the paper, we consider a space of finite rate of innovation V 2(Λ,Φ) ⊂
L2(Rd), defined as the closed linear span of a tuple of generators {φλ}λ∈Λ ⊂ L2(Rd):

V 2(Λ,Φ) =
{∑

λ∈Λ

c(λ)φλ : (cλ)λ∈Λ ∈ �2(Λ)

}

,

where Λ is a relatively-seperated subset of Rd with relative covering number D(Λ).
In this paper, we use the polynomial weight function u below [17]:

u(x) = uα(x) = (
1 + |x|)α

, (4)

where α ≥ 0. Usually we demand that the below norm of Φ is finite for some q,p ∈ [1,∞]:
‖Φ‖q,p,u

:= max

{

sup
k∈Zd

(∑

λ∈Λ

∥
∥φλ(·)u(· − λ)

∥
∥p

Lq (k+[0,1]d )

) 1
p

, sup
λ∈Λ

(∑

k∈Zd

∥
∥φλ(·)u(· − λ)

∥
∥p

Lq (k+[0,1]d )

) 1
p
}

.

(5)
The definition is a bit different with that in [17] and [19]. However, the definition in [17]

and that in this paper are equivalent. Some properties of the signal space V 2(Λ,Φ) will be
shown in Appendix.

We pay attention to the subset V 2
R,δ(Φ,Λ) of V 2(Λ,Φ):

V 2
R,δ(Φ,Λ) :=

{

f ∈ V 2(Φ,Λ) :
∫

CR

∣
∣f (x)

∣
∣2

dx ≥ (1 − δ)

∫

Rn

∣
∣f (x)

∣
∣2

dx

}

.

What’s more, we will adopt a measurable typical or classical probability density function
(P.D.F.) w1 : Rd → R which satisfies ‖w1‖L1(Rd ) = 1 and w1(x) ≥ 0, ∀x ∈ R

d . And the
density function of the probability distribution we use to sample is defined as:

wR(x) = 1

Rd
w1

(
x

R

)

. (6)

We denote vR = √
wR , ‖x‖∞ = max(|x1|, . . . , |xd |), and CR = [−R

2 , R
2 ]d . Throughout this

paper, we will frequently refer to the constants as in Table 1.

2.2 Assumptions and Main Results

We collect our assumptions on the generators in the following list:

(A.0) Φ is a Riesz basis of V 2(Λ,Φ).
(A.1) ‖Φ‖∞,1,u0 < ∞.
(A.2) ‖Φ‖2,2,uα < ∞ for some α > 0.
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Table 1 Some constants

Symbols and definitions Remarks

D1 = ‖Φ̃‖4
2,1,u0

‖Φ‖2
2,1,u0

‖Φ‖2
2,2,uα

Φ̃ is dual of Φ

D2 = ‖Φ‖∞,2,u0‖Φ̃‖∞,2,u0 Φ̃ is dual of Φ

D3 = ‖Φ‖2∞,1,u0
‖Φ̃‖2

2,1,u0
Φ̃ is dual of Φ

λ∗ = arg minλ∈Λ{‖λ‖∞} the point closest to the origin in Λ with
Chebyshev distance

α′ = min(d,2α)

β = 5
2 + 2 2α

√
2d+2D1

R0 = 2((

√
2‖Φ‖2,2,uα‖φλ∗ ‖2

)1/α + ‖λ∗‖∞) R0 ≥ 2

M = max{βd, 1
Kw

} Kw = ‖w1‖L∞(Rd )

By (A.1), we have ∀1 ≤ p,q ≤ ∞, ‖Φ‖q,p,u0 ≤ ‖Φ‖∞,1,u0 < ∞.
By (A.0) and [19, Theorem 4.1], we have that ∀1 ≤ p,q ≤ ∞, ‖Φ̃‖q,p,u0 < ∞.

The assumptions on the probability density function are shown in the following:

(B.0) w1 is essentially bounded, or Kw := ‖w1‖L∞(Rd ) < ∞.
(B.1) The essential infimum of w1 in C1 is positive, that is, there exists ρ > 0 such that

ess infx∈C1w1(x) ≥ ρKw , where Kw is defined in (B.0).

According to (6) and the assumptions of w1, we get that ‖wR‖L∞(Rd ) = R−dKw by (B.0),
and ess supx∈CR

wR(x) > ρR−dKw by (B.1).

Theorem 1 Assume that Φ satisfies assumptions (A.0)–(A.2), and w1 satisfies assumptions
(B.0)–(B.1). Let (xj )j∈N ⊂ R

d be a sequence of i.i.d random variables with the probability
density function wR . Assume that R ≥ R0 and δ, ν ∈ (0,1) are sufficiently small to guarantee
that

ν2

Kw + ν
3

≤ 6KwD2
2 log

(
3

e

)

and A = Kwρ

(
1

2
− δ

)

− ν − 12KwD3δ > 0. (7)

Let 0 < ε < 1. If the number s of samples satisfies

s ≥ max

{

Rd
2D2(Kw + ν

3 )

ν2
log

(
2D(Λ)M

ε
Rd2/α′

)

,
Rd

3Kw

}

, (8)

then the sampling inequality

∀f ∈ V 2
R,δ(Λ,Φ) : sAR−d‖f ‖2

2 ≤
s∑

j=1

∣
∣f (xj )

∣
∣2 ≤ sD2‖f ‖2

2 (9)

holds with probability at least 1 − ε.

Remark 2 The result above shows the sampling rate of O(Rd logR) holds in the space
of finite rate of innovation when fulfills the assumptions above and d is fixed, even if the
distribution of random sampling is not uniform. If we have one more condition that uα is
2-admissible, or α > d/2 (see [17]), then α′ = d and the sampling rate could be actually
O(Rd logRd) when d is not fixed.
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Fig. 1 A schematic showing random sampling and reconstruction

Remark 3 Theorem 1 is the main result in [3, 8, 25] in bandlimited signal spaces and shift-
invariant spaces for uniform random sampling, respectively.

Corollary 4 Suppose that supp φλ ⊂ CR for any λ ∈ Λ, thus V 2
R,δ(Λ,Φ) = V 2(Λ,Φ) for

any small δ > 0. For a sampling set Γ = (xj )
s
j=1 ⊂ R

d , define the sampling operator S :
V 2(Λ,Φ) → C

s by f �→ (f (xj ))
s
j=1. Denoting � as the sampling result (f (xj ))

s
j=1, we

have that S∗S is invertible under the conditions in Theorem 1 with probability at least 1 − ε,
and thus f = (S∗S)−1S∗� in this case. A schematic of random sampling and reconstruction
is shown in Fig. 1.

Corollary 5 Denote the conditional number of the operator S∗S in Corollary 4 by κ(S∗S).
Then the conditional number satisfies

P

(

κ
(
S∗S

) ≤ 2D2R
d

Kwρ − 2ν

)

≥ 1 − ε

under the conditions in Theorem 1. The upper bound above conditional number is the quo-
tient of the upper bound and lower bound of the sampling inequality.

Corollary 6 For any f ∈ V 2
R,δ(Λ,Φ), we have that

P

(∣
∣
∣
∣
∣

∫
∣
∣f (x)

∣
∣2

dx − 1

s

s∑

i=1

∣
∣f (xi)

∣
∣2

∣
∣
∣
∣
∣
≤ max

{∣
∣1 − AR−d

∣
∣, |D2 − 1|}‖f ‖2

2

)

≥ 1 − ε

when the conditions in Theorem 1 are fulfilled.

Remark 7 We expect that D(s) in the below inequality tends to zero when s → ∞:

P

{∣
∣
∣
∣
∣

∫

Rd

∣
∣f (x)

∣
∣2

dx − 1

s

s∑

i=1

∣
∣f (xi)

∣
∣2

∣
∣
∣
∣
∣
≤ D(s)‖f ‖2

2

}

> 1 − ε.

However, this can not reach in the FRI space. Thus the estimation in Corollary 6 is very
coarse.

3 Some Examples of Generators and Probability Density Function

Two examples of generators of a space of finite rate of innovation fulfilling the assumptions
of (A.0)–(A.2).
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Example 8 The space Sm of all L2 polynomial splines of order m fulfilling Cm−2 continu-
ity conditions at each knot ti , where m ∈ N

+ and T = (ti)
+∞
i=−∞ is a bi-infinite increasing

sequence satisfying

0 < T0 ≤ ti+m − ti ≤ T1 < ∞. (10)

The space can be written as

Sm =
{ +∞∑

i=−∞
c(i)Bi(x) : (c(i))+∞

i=−∞ ∈ �2(Z)

}

(11)

where Bi is the normalized B-spline associated with the knots ti , . . . , ti+m [16]. We have
Bi(x) = 0 when x ≤ ti or x ≥ ti+m. Let Λ = T and φti = Bi , then the support of Bi is a
subset of [ti , ti+m]. Obviously, D(T ) ≤ m

T0
+ m, so T is relatively seperated.

Let q = ∞,p = 1, and take any weight function u(x) that monotonicly increases
with |x|. Then we have that

‖Φ‖∞,1,u = max

{

sup
i∈Z

∑

k∈Z

∥
∥Bi(·)u(· − ti )

∥
∥

L∞(k+[0,1]), sup
k∈Z

∑

i∈Z

∥
∥Bi(·)u(· − ti )

∥
∥

L∞(k+[0,1])

}

≤ sup
i∈Z

�ti+m�−1∑

k=�ti�

∥
∥Bi(·)u(· − ti )

∥
∥

L∞([ti ,ti+m)

+ sup
k∈Z

∑

i:ti+m≥k and ti≤k+1

∥
∥Bi(·)u(· − ti )

∥
∥

L∞([ti ,ti+m])

≤ sup
i∈Z

�ti+m�−1∑

k=�ti�
‖Bi‖L∞([ti ,ti+m)u(ti+m − ti )

+ sup
k∈Z

∑

i:ti+m≥k and ti≤k+1

‖Bi‖L∞([ti ,ti+m])u(ti+m − ti )

≤ sup
i∈Z

(�ti+m� − �ti�
)
u(ti+m − ti )

+ sup
k∈Z

#{i : ti+m ≥ k and ti ≤ k + 1}u(ti+m − ti )

≤ sup
i∈Z

(T1 + 2)u(T1) + sup
k∈Z

(
1

T0
+ 2

)

mu(T1)

=
(

T1 + 2 +
(

1

T0
+ 2

)

m

)

u(T1) < ∞

by using that ‖Bi‖∞ ≤ 1 according to [16]. So the assumption (A.1) holds.
At the same time, this implies that ‖Φ‖q,p,u ≤‖Φ‖∞,1,u ≤ (T1 +2+( 1

T0
+2)m)u(T1)<∞

for any 1 ≤ q,p ≤ ∞. So the assumption (A.2) holds.
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Moreover, by [16, Theorem 4.41], we have that for any f = ∑+∞
i=−∞ c(i)Bi ,

+∞∑

i=−∞

∣
∣c(i)

∣
∣2 ≤

+∞∑

i=−∞
(2m + 1)292(m−1)(ti+m − ti )

−1‖f ‖2
L2[ti ,ti+m]

≤ (2m + 1)281m−1T −1
0

∑

i=−∞
+∞‖f ‖2

L2[ti ,ti+m]

= m(2m + 1)281m−1T −1
0 ‖f ‖2

L2(R)
.

In the other hand, we have

∫

R

∣
∣f (x)

∣
∣2 =

∫

R

∣
∣
∣
∣
∣

+∞∑

i=−∞
c(i)Bi(x)

∣
∣
∣
∣
∣

2

dx

=
+∞∑

j=−∞

∫

[tj ,tj+1]

∣
∣
∣
∣
∣

j∑

i=j−m+1

c(i)Bi(x)

∣
∣
∣
∣
∣

2

dx

≤
+∞∑

j=−∞

∫

[tj ,tj+1]

j∑

i=j−m+1

∣
∣c(i)

∣
∣2

j∑

i=j−m+1

∣
∣Bi(x)

∣
∣2

dx

≤
+∞∑

j=−∞
m(tj+1 − tj )

j∑

i=j−m+1

∣
∣c(i)

∣
∣2

≤ m2T1

+∞∑

i=−∞

∣
∣c(i)

∣
∣2

.

Thus Φ = {Bi}+∞
i=−∞ is a Riesz basis of Sm. Therefore the assumption (A.0) is fulfilled.

Example 9 The space of trigonometric polynomials segmented in CR . This is a very trivial
example. We will consider the following signal spaces:

T (k0, t) =
{

f : f (x) =
∑

k∈[−k0,k0]d∩Zd

ck exp

(
2πi

t
x · k

)

, (ck) ∈ �2, x ∈R
d

}

.

We can take Λ arbitrarily and give the correspondence between Λ and the basis arbitrarily,
and denote the basis still by Φ . Note that Λ is finite, hence is relatively-seperated.

If we take R = mt where m ∈ Z
+, it is a Riesz basis obviously since the basis is or-

thogonal. Moreover, for any weight function u(x) that monotonicly increases with |x|,
we can easily get that ‖φλ(·)u(· − λ)‖L∞(k+[0,1]d ) ≤ u(R/2 + 1 + maxλ∈Λ{‖λ‖∞}) is finite
for |k| ≤ �R/2� while ‖φλ(·)u(· − λ)‖L∞(k+[0,1]d ) = 0 for |k| > �R/2�. Then ‖Φ‖∞,1,u ≤
max{(2k0 + 1)d , (R + 2)d} · u(R/2 + 1 + maxλ∈Λ{‖λ‖∞}) holds.

Two examples of probability density function fulfilling the assumptions (B.0)–(B.1).

Example 10 Beta distribution of one dimension

w1(x) = Ba,b,α,β(x) =
{ 1

B(α,β)(b−a)α+β−1 (x − a)α(b − x)β, x ∈ [a, b]
0, otherwise
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Fig. 2 Beta distribution

where α,β ≥ 1, a < − 1
2 , b > 1

2 and B(α,β) = Γ (α)Γ (β)

Γ (α+β)
is the Beta function. We can check

that Kw = Ba,b,α,β( α−1
α+β−2 ) < ∞ and ρ = min{Ba,b,α,β (− 1

2 ),Ba,b,α,β ( 1
2 )}

Kw
> 0. Specially, we take

α = β = 1, a → − 1
2− and b → 1

2 +, then wR degenerates into the uniform distribution on
CR , just like the distribution used in [3] and [8]. Figure 2 is the plot of the P.D.F. of a typical
Beta distribution with a = −1, b = 1, α = 1, β = 2.

Example 11 Normal distribution centered at 0:

w1(x) = Nσ (x) = 1√
2πσ 2

exp

(

− x2

2σ 2

)

where σ > 0. We have that Kw = Nσ (0) = 1√
2πσ 2 < ∞ and ρ = Nσ ( 1

2 )

Nσ (0)
= exp (− 1

8σ 2 ) > 0.

For fixed δ ∈ (0, 1
2+24D3

), in order to optimize the lower bound A of the sampling inequality,
the optimal choice σ satisfies

(
1

2
− δ

)
(
1 − 4σ 2

) + 48D3δ exp

(
1

8σ 2

)

σ 2 = 0 (12)

It is easy to check that there exists a unique σ satisfying Eq. (12). We can guarantee that
A is positive when σ take the optimal choice and ν is small enough by the assumption
0 < δ < 1

2+24D3
. Figure 3 is the plot of the P.D.F. of standard normal distribution.

4 Spectrum Estimation Based on Hilbert–Schmidt Operator

In the following, we will mostly work with the notation

PΦ =
∑

λ∈Λ

φλ ⊗ φ̃λ, (13)

where unconditional convergence in the strong operator topology is provided by the frame
properties for all f ∈ L2(Rn). The tensor product notation v ⊗ w refers to the rank-one
operator (v ⊗ w)f �→ 〈f,w〉v. By our assumptions (A.0)–(A.2), it is obvious that PΦ is the
orthogonal projection onto V 2(Λ,Φ).
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Fig. 3 Standard normal distribution

Given R > 0, we write QR : L2(Rd) → L2(Rd) for the orthogonal projection operator
f �→ f · χCR

. We introduce the localization operator

AR = PΦ ◦ QR ◦ PΦ.

We will show that AR is self-adjoint and Hilbert–Schmidt, and thus has a basis of eigenvec-
tors with associated �2 spectrum. We denote the span of the eigenvectors associated to the
largest N eigenvalues by PN , and then establish a random sampling theorem for that space.
Next we will built the connection between the sampling of the elements in V 2

R,δ(Λ,Φ) and
that in PN . How to choose the proper value of N depends on the decay of the spectrum
of AR . The localization of the above operator is the closest connection with the energy con-
dition of V 2

R,δ(Λ,Φ).

Lemma 12 AR is a positive-semidefinite Hilbert–Schmidt operator.

Proof First of all, AR is positive-semidefinite since

〈ARf,f 〉 = 〈QRPΦf,PΦf 〉 = ‖QRPΦf ‖2
2,

by using the self-adjointness of QR .
We next prove that QRPΦ is Hilbert–Schmidt operator, which will imply that AR is

Hilbert–Schmidt operator.
Let ∀λ ∈ Λ, we have

QR ◦ (φλ ⊗ φ̃λ) = (QRφλ) ⊗ φ̃λ.

By (13) and continuity of QR , we have

QRPΦ =
∑

λ∈Λ

(QRφλ) ⊗ φ̃λ

with unconditional convergence in the strong operator topology.
Next we will prove that

∑

λ∈Λ

‖QRφλ‖2
2 < ∞. (14)
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In fact, we have
∑

λ∈Λ

‖QRφλ‖2
2 =

∑

λ∈Λ

‖φλ‖2
L2(CR)

≤
∑

k∈(Z∩[�− R
2 �,� R

2 �))d

∑

λ∈Λ

‖φλ‖2
L2(k+[0,1]d )

≤
∑

k∈(Z∩[�− R
2 �,� R

2 �))d
‖Φ‖2

2,2,u0
≤ (R + 2)d‖Φ‖2

2,2,u0
< ∞.

Thus, we have

(QRPΦ)(QRPΦ)∗ = (QRPΦ)
∑

λ∈Λ

φ̃λ ⊗ (QRφλ)

=
∑

λ∈Λ

(QRPΦφ̃λ) ⊗ (QRφλ)

=
∑

λ∈Λ

(QRφ̃λ) ⊗ (QRφλ)

with convergence in the strong operator topology. Similarly to the proof of Eq. (14), we see
that

∑

λ∈Λ

‖QRφ̃λ‖2
2 < ∞.

Combing with (14) and the Cauchy–Schwarz inequality, we can get that

trace(QRPΦ)(QRPΦ)∗ ≤
∑

λ∈Λ

trace
(∣
∣(QRφ̃λ) ⊗ (QRφλ)

∣
∣
)

=
∑

λ∈Λ

‖QRφ̃λ‖ ‖QRφλ‖ < ∞.

Hence QRPΦ is Hilbert–Schmidt operator. �

It follows that AR has an orthogonal normalized basis of eigenvectors, whose associated
eigenvalues are non-negative and square-summable. So the cluster points of the spectrum of
AR are either {0} or ∅, and thus they can be sorted in decreasing order. Denoting the non-
zero eigenvalues by (μn)n∈I sorted in decreasing order and the associated eigenfunctions
by (ψn)n∈I , with I being either N+ or {1, . . . ,M} for some integer M . Then AR is given as
the sum

∑

n∈I

μnψn ⊗ ψn.

We can easily check that ψn ∈ V 2(Φ,Λ), as well as PΦ(ψn) = ψn. Since AR is a composi-
tion of orthogonal projections, we have μ1 ≤ ‖AR‖op ≤ 1. Let

PN = spann∈N+,n≤N {ψn}.
For the sampling problem we will need some information on the spectrum of AR . Let

N(R) = max{n ∈ N : μn ≥ 1/2},
and N(R) = 0 when μ1 < 1/2. Then whenever N(R) > 0, we have μN(R) ≥ 1/2 > μN(R)+1.
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An upper bound for N(R) is provided in the following lemma.

Lemma 13 Let β and R0 be that defined in Table 1. Then for all R > R0, the inequalities
0 < N(R) ≤ D(Λ)βdRd2/α′

hold, where D(Λ) stands for the relative covering index of Λ,
defined in (2).

Proof We use the minimax formula for a given order of eigenvalue

μm = inf
{
sup

{〈ARf,f 〉 : f ⊥H,‖f ‖2 = 1
} : H ⊂ L2

(
R

n
)
,dim(H) < m

}
.

Now fix S ≥ R + 2, and denote HS := span{φ̃λ : ‖λ‖∞ ≤ S/2}. It follows that

dim(HS) ≤ (�S� + 1
)d

D(Λ).

For any unit vector f in H⊥
S , we obtain

〈ARf,f 〉 =
∑

λ,λ′∈Λ

〈f, φ̃λ〉〈QRφλ,φλ′ 〉〈f, φ̃λ′ 〉.

We denote cλ = 〈f, φ̃λ〉, c = (cλ)λ∈Λ,

aλ,λ′ =
{ 〈QRφλ,φλ′ 〉, min{‖λ‖∞,‖λ′‖∞} > S

2
0, otherwise

and an infinite, positive semidefinite matrix

A = (aλ,λ′)λ,λ′∈Λ,

by recalling the assumption that f ⊥φ̃λ for ‖λ‖∞ ≤ S/2. In particular, we get

〈ARf,f 〉 = cAc∗ ≤ ‖c‖2
2‖A‖op ≤ ‖Φ̃‖2

2,1,u0
‖A‖HS

by using Proposition 22 in Appendix. To estimate the Hilbert–Schmidt norm of the matrix,
we have

‖A‖2
HS =

∑

λ,λ′∈Λ
‖λ‖∞>S/2
‖λ′‖∞≥S/2

|aλ,λ′ |2

≤
∑

λ∈Λ‖λ‖∞>S/2

∑

λ′∈Λ

∣
∣〈QRφλ,φλ′ 〉∣∣2

≤
∑

λ∈Λ‖λ‖∞>S/2

∑

λ′∈Λ

‖QRφλ‖2
2‖φλ′ ‖2

2

=
∑

λ∈Λ‖λ‖∞>S/2

‖QRφλ‖2
2

∑

λ′∈Λ

‖φλ′ ‖2
2

≤
∑

λ∈Λ‖λ‖∞>S/2

‖Φ‖2
2,1,u0

‖QRφλ‖2
2

where Proposition 22 in Appendix is used in the above argument again.
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Now we will estimate
∑

λ,‖λ‖∞>S/2 ‖QRφλ‖2
2 by the following:

∑

λ∈Λ

‖λ‖∞> S
2

‖QRφλ‖2
2

=
∑

λ∈Λ

‖λ‖∞> S
2

‖φλ‖L2(CR)

≤
∑

k∈(Z∩[�− R
2 ]�,� R

2 �))d

∑

λ∈Λ

‖λ‖∞> S
2

‖φλ‖L2(k+[0,1]d )

≤
∑

k∈(Z∩[�− R
2 ]�,� R

2 �))d

∑

λ∈Λ

‖λ‖∞> S
2

∥
∥φλuα(· − λ)

∥
∥

L2(k+[0,1]d )
sup

x∈k+[0,1]d

(
uα(x − λ)

)−2

≤
(

inf
‖x‖∞≥ S

2 − R
2 −1

uα(x)
)−2

(R + 2)d‖Φ‖2
2,2,uα

.

Therefore we have

〈ARf,f 〉2 ≤ ‖Φ̃‖4
2,1,u0

‖A‖2
HS

≤ ‖Φ̃‖4
2,1,u0

‖Φ‖2
2,1,u0

‖Φ‖2
2,2,uα

(R + 2)d

(

uα

(
S

2
− R

2
− 1

))−2

= D1(R + 2)d

(
S

2
− R

2

)−2α

.

For S = (β − 3
2 )Rd/α′ + 2 with β in Table 1, one finds that R > R0 ≥ 2 and the definition of

α′ yield that R ≤ Rd/α′
, and hence

D1(R + 2)d

(
S

2
− R

2

)−2α

≤ D1(R + 2)d

(
β − 1

2

2
Rd/α′ + 1 − R

2

)−2α

< D1(R + 2)d

(
β − 3

2

2
Rd/α′ − 1

2
Rd/α′

)−2α

≤ D1(R + 2)d

(
β − 5

2

2

)−2α

R
− 2αd

α′

≤ 1

4
.

Hence we have shown

〈ARf,f 〉 < 1/2

for all unit vectors f ∈ H⊥
S .
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If R > 2, then

N =
(⌊(

β − 3

2

)

Rd/α′ + 2

⌋

+ 1

)d

D(Λ)

≤
((

β − 3

2

)

Rd/α′ + 3

)d

D(Λ)

≤ βdRd2/α′
D(Λ),

and the minimax estimate yields μN < 1/2.
On the other hand, if R > R0 ≥ 2‖λ∗‖∞ + 2, then

μ1 ≥ 〈ARφλ∗ , φλ〉
‖φλ∗‖2

L2(Rd )

= 〈QRφλ∗ , φλ〉
‖φλ∗‖2

L2(Rd )

= 1 − ‖φλ∗‖L2(Rd\CR)

‖φλ∗‖2
L2(Rd )

≥ 1 −
∑

k∈(Z∩[�− R
2 �,� R

2 �))d ‖φλ∗‖L2(k+[0,1]d )

‖φλ∗‖2
L2(Rd )

≥ 1 −
∑

k∈(Z∩[�− R
2 �,� R

2 �))d ‖φλ∗uα(· − λ∗)‖L2(k+[0,1]d )(infx∈k+[0,1]d uα(x − λ∗))−2

‖φλ∗‖2
L2(Rd )

≥ 1 − ‖Φ‖2
2,2,uα

(uα(�R
2 � − ‖λ∗‖∞))−2

‖φλ∗‖2
L2(Rd )

>
1

2
.

So for all R > R0 the following inequality holds

0 < N(R) ≤ βdRd2/α′
D(Λ). �

5 Non-uniform Random Sampling in Finite Sums of Eigenspaces PN

Recall from the previous section that λ1 ≥ λ2 ≥... are the eigenvalues of AR , with cor-
responding eigenfunctions ψ1,ψ2, . . .. The span of the first N eigenfunctions is denoted
by PN . We let �N = diag(λ1, . . . , λN).

The goal of this section is to show a non-uniform random sampling statement for PN . We
will show it by applying a matrix Bernstein inequality which will be stated in Theorem 14,
using the following notation: For A ∈ C

N×N , we let ‖A‖ denote the operator norm with
respect to the Euclidean norm. Further, the inequality A ≤ B for two matrices A,B of equal
size means that B − A is positive semidefinite.

Theorem 14 (Matrix Bernstein inequality [22, Theorem 1.4]) Let Xj be a sequence of in-
dependent, random self-adjoint N ×N -matrices. Suppose that EXj = 0, and ‖Xj‖ ≤ B a.s.
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Then for all t > 0,

P

(

λmax

(
s∑

i=1

Xj

)

≥ t

)

≤ N exp

(

− t2/2

σ 2 + Bt/3

)

holds where λmax(U) is the largest singular value of a matrix U so that ‖U‖ = λmax(U
∗U)1/2

is the operator norm, and σ 2 = ‖∑s

j=1 E(X2
j )‖.

The random matrices under consideration are constructed as follows: For each j ∈N and
k, l ∈ {1, . . . ,N}, we introduce the N × N rank-one random matrix Mj defined by

(Mj )k,l = ψk(xj )ψl(xj ). (15)

Here the xj ’s denote i.i.d. random variables, and are distributed in R
d with probability den-

sity function wR . Let

Xj = Mj −E(Mj ). (16)

We can now formulate and prove the non-uniform random sampling statement for PN by
using Theorem 14.

Theorem 15 Let (xj )j∈N ⊂ R
d be a sequence of independent and identically distributed

random variables with probability density function wR . Then, for all ν ≥ 0 and s ∈N:

P

(

inf
f ∈PN ,‖f ‖2=1

1

s

s∑

j=1

(∣
∣f (xj )

∣
∣2 − ‖vRf ‖2

2

) ≤ −R−dν

)

≤ N exp

(

− ν2s

2D2Rd(Kw + ν
3 )

)

(17)
holds where vR denotes the square root of wR and ‖vRf ‖2

2 is the expectation of |f (xj )|2.

Proof By the definition of Mj defined by (15), we have

(
E(Mj )

)
k,�

=
∫

Rd

wR(x)ψ�(x)ψk(x)dx

=
∫

Rd

vR(x)ψ�(x)vR(x) ψk(x)dx

= 〈vRψ�, vRψk〉.

Furthermore, for any unit vector f ∈ PN we can rewrite it by f = ∑N

n=1 cnψn with a unit
vector (cn)n of coefficients, and

〈c,Mjc〉 = ∣
∣f (xj )

∣
∣2

,

and similarly

〈c,EMjc〉 =
∑

k

∑

�

ckc� (EMj)k,�

=
∑

k

∑

�

ckc�〈vRψk, vRψ�〉
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=
〈

vR

∑

k

ckψk, vR

∑

�

c�ψ�

〉

= ‖vRf ‖2
2,

which implies that both Mj and EMj are positive semi-definite.
Thus we have

inf
f ∈PN ,‖f ‖2=1

1

s

s∑

j=1

(∣
∣f (xj )

∣
∣2 − ‖vRf ‖2

2

)

= inf
‖c‖2=1

1

s

s∑

j=1

(〈c,Mjc〉 − 〈c,EMjc〉
)

= λmin

(
1

s

s∑

j=1

Xj

)

,

where λmin represents the smallest eigenvalue of a self-adjoint matrix.
Next we estimate ‖Xj‖. For all ‖c‖2 = 1 and f = ∑s

k=1 ckψk , we have

〈c,Mjc〉 = ∣
∣f (xj )

∣
∣2 ≤ ‖f ‖2

∞.

Since we can ignore a zero-measure subset from the existence of probability density function
of xj , as well as

〈c,EMjc〉 = ‖vRf ‖2
2

≤ ‖vR‖2
2 ‖f ‖2

∞ = ‖f ‖2
∞.

Thus we have

∣
∣〈c,Xjc〉

∣
∣ = ∣

∣〈c,Mjc〉 − 〈c,EMjc〉
∣
∣

≤ ‖f ‖2
∞ ≤ D2

by Proposition 24 in Appendix. Therefore ‖Xj‖ ≤ D2 holds.
Finally we will estimate σ 2. In fact, we have that

E
(
X2

j

) = E
(
M2

j

) − [
E(Mj )

]2 ≤ E
(
M2

j

)
,

and

(
M2

j

)
km

=
N∑

�=1

(Mj )kl(Mj )lm

=
N∑

�=1

ψk(xj )ψ�(xj )ψ�(xj )ψm(xj )

=
N∑

�=1

∣
∣ψ�(xj )

∣
∣2

(Mj )km.
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Thus M2
j = ∑N

�=1 |ψ�(xj )|2(Mj )km. Moreover, we have the following estimation that

N∑

�=1

∣
∣ψ�(xj )

∣
∣2 =

N∑

�=1

∣
∣〈ψ�, vxj

〉∣∣2

≤
∞∑

�=1

∣
∣〈ψ�, vxj

〉∣∣2

= ‖vxj
‖2

2 ≤ D2

almost everywhere by Proposition 24 in Appendix.
Therefore

M2
j ≤ D2Mj,

as well as

E
(
M2

j

) ≤ D2E(Mj ).

By the arguments above, we can get that

σ 2 =
∥
∥
∥
∥
∥

s∑

j=1

E
(
X2

j

)
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

s∑

j=1

E
(
M2

j

)
∥
∥
∥
∥
∥

≤ D2

∥
∥
∥
∥
∥

s∑

j=1

E(Mj )

∥
∥
∥
∥
∥

≤ sD2 sup
‖f ‖2=1

‖vRf ‖2
2

≤ sD2‖vR‖2
∞ = sD2R

−dKw.

Now the statement of the theorem follows from the matrix Bernstein inequality formulated
in Theorem 14, with proper estimation constants provided above. �

6 Proofs of the Main Results

It remains to transfer the random sampling statements from the spaces PN to the set VR,δ(Φ).
The following lemma is a first step in this direction, by providing a norm estimate for the
projection onto PN .

Lemma 16 Let N ∈ N and γ ∈ R with λN ≥ γ ≥ λN+1. Denote the orthogonal projection
onto PN by EN , and the orthogonal projection onto the orthogonal complement by FN . Then
for all f ∈ VR,δ(Φ), we have

‖ENf ‖2
2 ≥

(

1 − δ

1 − γ

)

‖f ‖2
2,
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‖QRENf ‖2
2 ≥ γ

(

1 − δ

1 − γ

)

‖f ‖2
2,

‖FNf ‖2
2 ≤ δ

1 − γ
‖f ‖2

2.

If N = N(R) �= 0, then these estimation can be simplified into

‖ENf ‖2
2 ≥ (1 − 2δ)‖f ‖2

2,

‖QRENf ‖2
2 ≥

(
1

2
− δ

)

‖f ‖2
2,

‖FNf ‖2
2 ≤ 2δ‖f ‖2

2.

Proof Let f ∈ VR,δ(Φ), w.l.o.g. ‖f ‖2 = 1. Since f = PΦf , we obtain

1 − δ ≤ ‖QRf ‖2
2 = ‖QRPΦf ‖2

2 = 〈QRPΦf,QRPΦf 〉 = 〈ARf,f 〉 =
∑

j

∣
∣〈f,ψj 〉

∣
∣2

λj .

Let cj = 〈f,ψj 〉, and define

A = ‖ENf ‖2
2 =

N∑

j=1

|cj |2,

and B = 1 − A = ‖FNf ‖2
2. Then

∑∞
j=N+1 |cj |2 ≤ ‖FNf ‖2

2 = 1 − A. Using γ ≥ λN+1 ≥
λN+2 > · · · and λj ≤ 1, we find

A =
N∑

j=1

∣
∣〈f,ψj 〉

∣
∣2 ≥

N∑

j=1

∣
∣〈f,ψj 〉

∣
∣2

λj

=
∞∑

j=1

|cj |2λj −
∞∑

j=N+1

|cj |2λj

≥ 1 − δ − γ

( ∞∑

j=n+1

|cj |2
)

≥ 1 − δ − γ (1 − A).

Solving this inequality for A yields A ≥ 1 − δ
1−γ

, which implies B ≤ δ
1−γ

. Finally, γ ≤ λN

holds, which implies

‖QRENf ‖2
2 =

N∑

j=1

λj |cj |2 ≥ γA ≥ γ

(

1 − δ

1 − γ

)

.

For N = N(R) �= 0, we may pick γ = 1/2, which results in the estimates given for this
case. �

To connect the sampling theorem between V 2
R,δ(Λ,Φ) and the eigenspace PN , we need

a statement below.



Non-uniform Random Sampling and Reconstruction in FRI 265

Lemma 17 Let X = {xj }s
j=1 be a finite subset of Rd and α ∈ [μN+1,μN ]. Assume that the

inequality

1

s

s∑

j=1

(∣
∣g(xj )

∣
∣2 − ‖vRg‖2

2

) ≥ −R−dν‖g‖2
2

holds for all g ∈ PN . Then the inequality

s∑

j=1

∣
∣f (xj )

∣
∣2 ≥ Â‖f ‖2

2

holds for all f ∈ V 2
R,δ(Λ,Φ), where

Â = sR−d

(

K2
wρα

(

1 − δ

1 − α

)

− ν

)

− 2D3N0(X)
δ

1 − α
.

Proof Denoting the orthogonal projection of a square-integrable function f to PN by Ef .
By Lemma 16 above and Proposition 23 in Appendix, we have

s∑

j=1

∣
∣f (xj )

∣
∣2 ≥

s∑

j=1

∣
∣Ef (xj )

∣
∣2 − D3N0(X)‖f − Ef ‖2

2

≥
s∑

j=1

∣
∣Ef (xj )

∣
∣2 − 2D3N0(X)

δ

1 − α
‖f ‖2

2

≥ s‖vREf ‖2
L2(CR)

− νs

Rd
‖Ef ‖2

2 − 2D3N0(X)
δ

1 − α
‖f ‖2

2

≥ sKwR−dρ‖Ef ‖2
L2(CR)

− νs

Rd
‖Ef ‖2

2 − 2D3N0(X)
δ

1 − α
‖f ‖2

2

≥ KwR−dρsα

(

1 − δ

1 − α

)

‖f ‖2
2 − νs

Rd
‖f ‖2

2 − 2D3N0(X)
δ

1 − α
‖f ‖2

2.

Then we get the conclusion. �

Before proving the main result, we have a following statement about absolute covering
index.

Lemma 18 Suppose X = {xj }s
j=1 are independent and identically distributed random vari-

ables in R
d . Let P ≥ supk∈Zd P(xj ∈ k + [0,1]d) and a > eP with as ≥ 1. Then we have

P
(
N0(X) > as

) ≤ 1

P

(
eP

a

)as

where N0(X) represents the absolute covering index of X stated in (3).
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Proof Let Pk = P(xj ∈ k + [0,1]d) for k ∈ Z
d . Combing with Chebyshev’s inequality, then

we have that

P
(
N0(X) > as

) ≤
∑

k∈Zd

P
(
#{xj } ∩ k + [0,1]d > as

)

=
∑

k∈Zd

P

(
s∑

j=1

χk+[0,1]d (xj ) > as

)

=
∑

k∈Zd

P

(

exp

(

bk

s∑

j=1

χk+[0,1]d (xj )

)

> ebkas

)

≤
∑

k∈Zd

ebkas
E exp

(

bk

s∑

j=1

χk+[0,1]d (xj )

)

=
∑

k∈Zd

ebkas

s∏

j=1

E exp
(
bkχk+[0,1]d (xj )

)

=
∑

k∈Zd

ebkas
(
1 + (

ebk − 1
)
Pk

)s

≤
∑

k∈Zd

ebkas
(
exp

((
ebk − 1

)
Pk

))s
.

Taking the optimal choice bk = log( a
Pk

), we obtain that

P
(
N0(X) > as

) ≤
∑

k∈Zd

exp

(

−s

(

a log

(
a

Pk

)

− (a − Pk)

))

=
∑

k∈Zd

exp

(

−sa log

(
a

Pk

)

+ sa − sPk

)

≤
∑

k∈Zd

exp

(

as

(

1 − log

(
a

Pk

)))

=
∑

k∈Zd

exp

(

as

(

log

(
ePk

a

)))

=
∑

k∈Zd

(
ePk

a

)as

=
∑

k∈Zd

(
ePk

a

)(
ePk

a

)as−1

≤
∑

k∈Zd

(
ePk

a

)(
eP

a

)as−1

= 1

P

(
eP

a

)as

. �

Remark 19 For a distribution with probability density function w(x), we can take P =
‖w‖∞ so that for a and s satisfying the conditions of Lemma 18. So we have

P
(
N0(X) > as

) ≤ 1

‖w‖∞

(
e‖w‖∞

a

)as

.
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Remark 20 If we take a special example that the distribution is uniform distribution on CR ,
then P can be taken as �R�−d . So we have

P
(
N0(X) > as

) ≤ �R�d

(
e�R�−d

a

)as

≤ Rd exp
(−s

(
a log

(
a�R�d

) − a
))

.

It provide a different estimate from [3, Lemma 8]. Note that we demand a more strictly
conditions than that in [3], but our estimate might be better than that in [3]. And our result
is suitable for a large kinds of non-uniform probability distribution.

Then we can see the following statement.

Theorem 21 Let (xj )j∈N ⊂ R
d be a sequence of independent random variables with prob-

ability density function wR . Assume that R > R0, and furthermore

δ <
ρ

2(ρ + 12D3)
, ν < Kw

(

ρ

(
1

2
− δ

)

− 12D3δ

)

.

Then, for any s ∈N and s ≥ Rd

3Kw
,

A = Kwρ

(
1

2
− δ

)

− ν − 12KwD3δ

is strictly positive, and the sampling estimate

sAR−d‖f ‖2
2 ≤

s∑

j=1

∣
∣f (xj )

∣
∣2 ≤ sD2‖f ‖2

2, ∀f ∈ V 2
R,δ(Λ,Φ) (18)

holds with probability at least

1 − D(Λ)Rd2/α′
βd exp

(

− ν2s

2D2Rd(Kw + v
3 )

)

− Rd

Kw

(
e

3

)3sR−dKw

. (19)

Proof Define the random variable N0 as the absolute covering index of x1, . . . , xs . Fix
N = N(R), and consider the events

V1 =
{

inf
f ∈PN ,‖f ‖2=1

1

s

s∑

j=1

(∣
∣f (xj )

∣
∣2 − ‖vRf ‖2

2

) ≤ −νR−d

}

and

V2 = {
N0 ≥ 3R−dKw

}
.

Following Lemma 17 and taking α = 1
2 , we see that for all (x1, . . . , xs) in the complement

of V1 ∪ V2 and all f ∈ VR,δ(Φ),

1

s

s∑

j=1

∣
∣f (xj )

∣
∣2 ≥ AR−d‖f ‖2

2.
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Theorem 15 combined with Lemma 13 imply that V1 occurs with probability at most

D(Λ)Rd2/α′
βd exp

(

− ν2s

2D2Rd(Kw + v
3 )

)

.

Furthermore, Lemma 18 yields that V2 occurs with probability at most

Rd

Kw

(
e

3

)3sR−dKw

.

Thus the lower estimate in (18) occurs at least with the probability given in (19), whereas
the upper estimate follows Proposition 24 in Appendix. �

Proof of Theorem 1 By the definitions of M and β in Table 1, we have D(Λ)Rd2/α′
βd ≤

D(Λ)Rd2/α′
M as well as Rd

Kw
≤ D(Λ)Rd2/α′

M . And by the assumptions in (7), we have

( e
3 )3sR−dKw ≤ exp(− ν2s

2D2Rd (Kw+ v
3 )

). Hence, as soon as

s ≥ Rd
2D2(Kw + ν

3 )

ν2
log

(
2D(Λ)MRd2/α′

ε

)

holds we have that D(Λ)Rd2/α′
M exp(− ν2s

2D2Rd (Kw+ v
3 )

) ≤ ε/2. The theorem is proved. �

Proof of Corollary 4 and 5 Obviously � = Sf , therefore S∗� = S∗Sf . Now we estimate the
spectrum of S∗S. For all f ∈ V 2(Λ,Φ), we can see that

〈
f,S∗Sf

〉 = 〈Sf,Sf 〉 = ‖�‖2
2 =

s∑

j=1

∣
∣f (xj )

∣
∣2

.

By Theorem 1, we have that

sAR−d〈f,f 〉 ≤ 〈
f,S∗Sf

〉 =
s∑

j=1

∣
∣f (xj )

∣
∣2 ≤ sD2〈f,f 〉

hold under the conditions in Theorem 1 with probability at least 1 − ε. This implies that
‖S∗S‖ ≤ sD2, as well as S∗S is invertible and ‖(S∗S)−1‖ ≤ (sAR−d)−1 in this case. Then
Corollary 4 is proved.

In this case, the conditional number

κ
(
S∗S

) = ∥
∥S∗S

∥
∥
∥
∥
(
S∗S

)−1∥∥

≤ sD2

(
AsR−d

)−1

= D2R
d

A

= D2R
d

Kwρ( 1
2 − δ) − ν − 12KwD3δ

.

Let δ → 0, then Corollary 5 is proved. �
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Proof of Corollary 6 By the conclusions of Theorem 1, we have that AR−d‖f ‖2
2 ≤

1
s

∑s

i=1 |f (xi)|2 ≤ D2‖f ‖2
2 for all f ∈ V 2

R,δ(Λ,Φ) hold with probability 1 − ε under the
conditions in Theorem 1. Therefore we have that

(1 − D2)‖f ‖2
2 ≤ ‖f ‖2

2 − 1

s

s∑

i=1

∣
∣f (xi)

∣
∣2 ≤ (

1 − AR−d
)|f ‖2

2

in this case. The corollary is proved. �

7 Reconstruction Algorithm from Non-uniformly Random Sampling

Realistically one can sample f only on a bounded set; furthermore, every function vanishes
at infinity, thus samples far out do not contribute anything significant to sampling and re-
construction. We can learn about f only if the samples are taken in the “essential support”
of f . Let Λ is a finite set so we can write Φ as {φ1, φ2, . . . , φi, . . . , φn} where n = |Λ|.
Suppose the generators are bounded and the support of every φi is in CR . So that for any
small δ > 0, we have V 2

R,δ(Λ,Φ) = V 2(Λ,Φ) since all the energy of these functions is all
in CR . In addition, we assume that Φ is a Riesz basis of V 2(Λ,Φ).

For a signal f = ∑n

i=1 ciφi ∈ V 2(Λ,Φ), denote

F = (
f (x1) · · · f (xj ) · · · f (xs)

)

to be our sample value,

C = (
c1 · · · ci · · · cn

)

to be the coefficients, and the matrix

U = (
φi(xj )

)
i=1,...,n
j=1,...,s

. (20)

Then we can easily see that F = CU .
Note that Φ is a Riesz basis, we have that ci = 〈f, φ̃i〉. So that by Proposition 22 in

Appendix, we have

‖C‖2
�2(Λ)

≤ ‖Φ̃‖2
2,1,u0

‖f ‖2
2.

On the other hand, use the same method as Proposition 22 in Appendix, we have

‖f ‖2
2 =

∥
∥
∥
∥
∥

n∑

i=1

ciφi

∥
∥
∥
∥
∥

2

2

=
∑

k∈Zd

∥
∥
∥
∥
∥

n∑

i=1

ciφi

∥
∥
∥
∥
∥

2

L2(k+[0,1]d )

≤
∑

k∈Zd

(
n∑

i=1

|ci |‖φi‖L2(k+[0,1]d )

)2

≤ ‖Φ‖2
2,1,u0

‖C‖2
�2(Λ)

.
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Table 2 Reconstruction
algorithm Algorithm: Reconstruction from non-uniform random sampling

Given R, Φ = (φi )
n
i=1, w1

Input 1. ε, ν

Init 2. Choose s by (8)

3. Generate random sampling point {x1, . . . , xs } by wR

4. Calculate U by (20)

5. Calculate (UU∗)−1

Input 6. F = (f (x1), . . . , f (xn))

7. Calculate C = (FU∗)(UU∗)−1

Output 8. f = ∑n
i=1 ciφi

By Corollary 4, for ν small enough and s large enough, we have that

A1‖f ‖2
2 ≤

n∑

j=1

∣
∣f (xj )

∣
∣2 ≤ B1‖f ‖2

2

hold with probability at least 1 − ε where A1 = s

Rd (
Kwρ

2 − ν) and B1 = sD2. Combining
with the arguments above, we have that

A2‖C‖�2(Λ) ≤ ‖f ‖2
2 ≤ B2‖C‖�2(Λ) ,

where A2 = ‖Φ̃‖−2
2,1,u0

and B2 = ‖Φ‖2
2,1,u0

. Therefore

A1A2‖C‖�2(Λ) ≤
n∑

j=1

∣
∣f (xj )

∣
∣2 ≤ B1B2‖C‖�2(Λ)

hold with probability at least 1 − ε. Similar to the arguments which prove Corollary 4 and
Corollary 5, we get that UU ∗ is invertible and the conditional number of UU ∗ which is

denoted by κ(UU ∗) would not larger than B1B2
A1A2

= 2RdD2‖Φ‖2
2,1,u0

‖Φ̃‖2
2,1,u0

Kwρ−2ν
with probability at

least 1 − ε. That is,

P

(

κ
(
UU ∗) >

2RdD2‖Φ‖2
2,1,u0

‖Φ̃‖2
2,1,u0

Kwρ − 2ν

)

≤ ε.

Then one can reconstruct the original function from the sample by

C = (
FU ∗)(UU ∗)−1

with probability with at least 1 − ε.
The reconstruction algorithm from non-uniform random sampling is shown in Table 2.

7.1 Numerical Test

Recall the spline functions mentioned in Example 8. Let us consider it as a numerical model
for the generators in V 2

R,δ(Λ,Φ). Let the spline knots be integer points and m = 3. We
restrict the splines in CR , where R is an even positive integer. We will review that space
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Fig. 4 Different distributions of sampling points

by the following definition. Let d = 1 and R be an even positive integer. We use the spline
function

φ0 = χ[− 1
2 , 1

2 ] ∗ χ[− 1
2 , 1

2 ] ∗ χ[− 1
2 , 1

2 ],

where “∗” represents the convolution product. The generators are presented by

φλ(x) = φ0(x − λ)χCR
(x), λ ∈ 1

2
+Z.

Let Λ = {λ : φλ �≡ 0}. We can easily check that Λ = ( 1
2 + Z) ∩ [−R

2 − 1, R
2 + 1] and

λ∗ = 1/2.
We will test two kinds of probability distributions in sampling. One is the normal distri-

bution with mean 0 and variance σ like Example 10. In this case, we can get that the optimal
choice of σ to optimize the lower bound of sampling inequality is 1/2 taking δ → 0, so that

Kw =
√

2
π

and ρ = exp(− 1
2 ). Note that we actually abandon those sampling points out of

CR in practice. Another distribution is the uniform distribution in CR , just like that used in
[3] and [8]. In this case, we have Kw = 1 and ρ = 1. Figure 4 plots the examples of different
distributions of sampling points with R = 8.

Then we can give a totally practical trial to get the actual success rate. We use the algo-
rithm in Table 2, using the numerical pseudo-inverse in Step 5, just like the “PseudoInverse”
function in Wolfram Mathematica or “pinv” function in MATLAB. We take the space Φ as
above while the distribution of sampling is normal distribution with a specific σ defined in
Example 10. More specific, we take c(λ) periodically of period 8. The signal is shown in
Fig. 4 too.
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Fig. 5 The relation between success rate and sampling rate

For a test, we will run the algorithm and calculate the Euclidean distance between the
C we calculated numerically in Step 7 and the real C of the original function f which is
regarded as the reconstruction error. One test is regard as successful test when the recon-
struction error is less than 10−9.

Firstly, we take into two parts: one is using the normal distribution mentioned above with
σ = 1/2, taking R = 8,16,24 and s = 20,30, . . . ,100 respectively; another is using the
uniform distribution in CR taking the same parameters. We take 10000 trials for each case,
then test the actual success rate in those cases. Figure 5 plots the success rate respectively to
every value of s in each case.

From Fig. 5, we can see that: (i) the success rate increases with s increases; (ii) the
success rate decreases with R increases and other conditions unchanged; (iii) due to the
nonuniformness of the distribution, we need more sampling points or less R to reach the
same success rate comparing with the uniform distribution. The results of the numerical
tests match with Theorem 1 and Corollary 5.

Secondly, we fix R = 8, take s = 40,60 as well as σ = 1/80,2/80, . . . ,120/80 respec-
tively and take 10000 trials for each case with the same normal distribution, then test the
actual success rate in those cases. Figure 6 shows the success rate with the σ ’s.

From Fig. 6, we can see that for a certain s, the success rate first increases then decreases
with σ increasing. We get the best choice that optimize the actual success rate is that σ =
40/80 = 1/2 by the data of s = 60. At the same time, we can improve the success rate by
increasing sampling points under the same σ . The results of the numerical tests match with
Theorem 1 and Corollary 5.

Next, we explore the “threshold” of s, or the smallest s to have the actual sampling suc-
cess rate reached 95% for different R’s. We fix σ = 1/2 and R = 8,16,32,64 respectively,
take different values of sampling rates around the threshold we pre-estimated while taking
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Fig. 6 The relation between the
practical success rate and σ

Table 3 Thresholds of s with
different R’s R 8 16 32 64

Thresholds of s 55 121 258 527

10000 trials for each case of sampling rate, and look for the “threshold” of s. Table 3 is the
thresholds with those R’s.

We can see that every value of the threshold is a large twice times than the front value
from Table 3. So the O(Rd logRd) sampling rate in Theorem 1 is match with numerical
test.

8 Conclusions

In this paper, we considered the non-uniform random sampling and reconstruction prob-
lem on signal spaces with finite rate of innovation. Under very mild assumptions on the
generators and the probability distribution function, we show that for R sufficiently large,
taking O(Rd log(Rd)) many random samples yields a sampling set for V 2

R,δ(Φ) with high
probability. As one of applications of our main results, we provided a reconstruction algo-
rithm from non-uniform random sampling with high probability and implemented it when
the generators are compact-supported.
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Appendix. Some Properties of the Signal Spaces V 2(Λ,Φ)

We assume that Φ := {φλ}λ∈Λ is a Riesz basis of V 2(Λ,Φ), therefore there exists a dual
Riesz basis Φ̃ = {φ̃λ}λ∈Λ. Thus we have that for all f ∈ V 2(Λ,Φ), such that

f =
∑

λ∈Λ

〈f, φ̃λ〉φλ =
∑

λ∈Λ

〈f,φλ〉φ̃λ. (21)

We can easily see that for all 1 ≤ q ′ ≤ q ≤ ∞, ∞ ≥ p′ ≥ p ≥ 1 and u′(x) ≤ u(x),∀x ∈
R

d , we have ‖Φ‖q ′,p′,u′ ≤ ‖Φ‖q,p,u. Moreover, by [19, Theorem 4.1], we have that if
‖Φ‖q,p,u < ∞, then so is the same norm of the dual Riesz basis, or to say ‖Φ̃‖q,p,u < ∞.

For convenience of the main proof, we will show some properties of the space V 2(Λ,Φ)

under the assumptions of the generators in Sect. 2.2.

Proposition 22 If f ∈ L2(Rd), Φ = {φλ} satisfying (A.0) and ‖Φ‖2,1,u0 < ∞, then we have:

∑

λ∈Λ

∣
∣〈f,φλ〉

∣
∣2 ≤ ‖Φ‖2

2,1,u0
‖f ‖2

L2(Rd )
(22)

and
∑

λ∈Λ

∣
∣〈f, φ̃λ〉

∣
∣2 ≤ ‖Φ̃‖2

2,1,u0
‖f ‖2

L2(Rd )
. (23)

Proof We firstly prove (22). In fact, we have

∑

λ∈Λ

∣
∣〈f,φλ〉

∣
∣2 =

∑

λ∈Λ

∣
∣
∣
∣

∑

k∈Zd

∫

k+[0,1]d
f (x)φλ(x)dx

∣
∣
∣
∣

2

≤
∑

λ∈Λ

(∑

k∈Zd

∫

k+[0,1]d
∣
∣f (x)

∣
∣
∣
∣φλ(x)

∣
∣dx

)2

≤
∑

λ∈Λ

(∑

k∈Zd

∥
∥f (x)

∥
∥

L2(k+[0,1]d )

∥
∥φλ(x)

∥
∥

L2(k+[0,1]d )
dx

)2

=
∑

λ∈Λ

(∑

k∈Zd

∥
∥φλ(x)

∥
∥1/2

L2(k+[0,1]d )
× ∥

∥φλ(x)
∥
∥1/2

L2(k+[0,1]d )

∥
∥f (x)

∥
∥

L2(k+[0,1]d )

)2

≤
∑

λ∈Λ

(∑

k∈Zd

∥
∥φλ(x)

∥
∥

L2(k+[0,1]d )

)(∑

k∈Zd

∥
∥φλ(x)

∥
∥

L2(k+[0,1]d )

∥
∥f (x)

∥
∥2

L2(k+[0,1]d )

)

≤ ‖Φ‖2,1,u0

∑

λ∈Λ

∑

k∈Zd

∥
∥φλ(x)

∥
∥

L2(k+[0,1]d )

∥
∥f (x)

∥
∥2

L2(k+[0,1]d )

= ‖Φ‖2,1,u0

∑

k∈Zd

∥
∥f (x)

∥
∥2

L2(k+[0,1]d )

∑

λ∈Λ

∥
∥φλ(x)

∥
∥

L2(k+[0,1]d )

≤ ‖Φ‖2
2,1,u0

∑

k∈Zd

∥
∥f (x)

∥
∥2

L2(k+[0,1]d )
= ‖Φ‖2

2,1,u0
‖f ‖2

L2(Rd )
.

A similar method is used in the proof of [18, Theorem 2.4(iii)]. Similar to the proof above,
we can prove (23) as well. �
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Proposition 23 For every f ∈ V 2(Λ,Φ) and every subset Γ ⊂ R
d where the absolute cov-

ering index N0(Γ ) defined in (3) is finite, we have
∑

γ∈Γ

∣
∣f (γ )

∣
∣2 ≤ D3N0(Γ )‖f ‖2

2. (24)

Proof First we consider Γ with N0(Γ ) = 1, that is, for any k ∈ Z
d , there is at most one

point in Γ ∩ (k + [0,1]d). Let c(λ) = 〈f, φ̃λ〉, then f = ∑
λ∈Λ c(λ)φλ. Similar to the proof

of Proposition 22, we have

∑

γ∈Γ

∣
∣f (γ )

∣
∣2 =

∑

γ∈Γ

∣
∣
∣
∣

∑

λ∈Λ

c(λ)φλ(γ )

∣
∣
∣
∣

2

≤
∑

γ∈Γ

(∑

λ∈Λ

∣
∣c(λ)

∣
∣
∣
∣φλ(γ )

∣
∣
)2

≤
∑

k∈Zd

(∑

λ∈Λ

∣
∣c(λ)

∣
∣‖φλ‖L∞(k+[0,1]d )

)2

=
∑

k∈Zd

(∑

λ∈Λ

‖φλ‖1/2
L∞(k+[0,1]d )

× ‖φλ‖1/2
L∞(k+[0,1]d )

∣
∣c(λ)

∣
∣
)2

≤
∑

k∈Zd

(∑

λ∈Λ

‖φλ‖L∞(k+[0,1]d )

)(∑

λ∈Λ

‖φλ‖L∞(k+[0,1]d )

∣
∣c(λ)

∣
∣2

)

≤ ‖Φ‖∞,1,u0

∑

k∈Zd

∑

λ∈Λ

‖φλ‖L∞(k+[0,1]d )

∣
∣c(λ)

∣
∣2

≤ ‖Φ‖2
∞,1,u0

∑

λ∈Λ

∣
∣c(λ)

∣
∣2

≤ ‖Φ‖2
∞,1,u0

‖Φ̃‖2
2,1,u0

‖f ‖2
2 = D3‖f ‖2

2,

where the last inequality is derived from the conclusion of Proposition 22.
For a general subset Γ , we can split it into at most N0(Γ ) non-intersect parts each of

which has absolute covering index 1. Then sum the function value of each part respectively,
sum all of them all together and we get the final conclusion. �

Proposition 24 V 2(Λ,Φ) is a reproducing kernel space, or to say there exists a family
(vx)x∈Rd ⊂ V 2(Λ,Φ) such that f (x) = 〈f, vx〉,∀f ∈ V 2(Λ,Φ) and ‖vx‖2

2 ≤ D2 almost
everywhere. Moreover, we have ‖f ‖2∞ ≤ D2‖f ‖2

2 for all f ∈ V 2(Λ,Φ).

Proof We define that vx(y) = ∑
λ∈Λ φ̃λ(y)φλ(x), and wx(y) = ∑

λ∈Λ φλ(y)φ̃λ(x). For all
f ∈ V 2(Λ,Φ), we have that

f (x) =
∑

λ∈Λ

〈f, φ̃λ〉φλ(x)

=
∑

λ∈Λ

∫

Rd

f (y)φ̃λ(y)dxφλ(x)

=
∫

Rd

f (y)vx(y)dy = 〈f, vx〉.



276 Y. Lu, J. Xian

Similarly, we have

f (x) =
∑

λ∈Λ

〈f,φλ〉φ̃λ(x)

=
∫

Rd

f (y)wx(y)dy = 〈f,wx〉.

Therefore, 〈f,wx − vx〉 = 0 holds for all f ∈ V 2(Λ,Φ). However, both vx and wx are
in V 2(Λ,Φ) by definition, then wx − vx ∈ V 2(Λ,Φ). So 〈wx − vx,wx − vx〉 = 0, or

wx − vx = 0. Therefore wx = vx , which implies vx(y) = ∑
λ∈Λ φλ(y)φ̃λ(x) as well.

We now show that v(x)x∈Rd is a reproducing kernel. For fixed x ∈R
d , we have

‖vx‖2
2 =

∫

Rd

vx(y)vx(y)dy

=
∫

Rd

∑

λ∈Λ

∑

λ′∈Λ

φ̃λ(y)φλ(x) φλ′(y)φ̃λ′(x)dy.

By ‖Φ‖∞,1,u0 < ∞, we can change the order of the sum and the integration. So we can
obtain that

‖vx‖2
2 =

∫

Rd

∑

λ∈Λ

∑

λ′∈Λ

φ̃λ(y)φλ(x) φλ′(y)φ̃λ′(x)dy

=
∑

λ∈Λ

∑

λ′∈Λ

φ̃λ′(x)φλ(x)

∫

Rd

φ̃λ(y)φλ′(y)dy

=
∑

λ∈Λ

∑

λ′∈Λ

φ̃λ′(x)φλ(x)〈φ̃λ, φλ′ 〉

=
∑

λ∈Λ

φ̃λ(x)φλ(x)

≤
(∑

λ∈Λ

|φ̃λ(x)|2
) 1

2
(∑

λ∈Λ

|φλ(x)|2
) 1

2

≤ ‖Φ‖∞,2,u0‖Φ̃‖∞,2,u0 = D2.

Thus ess supx∈Rd ‖vx‖2
2 ≤ D2 < ∞. Therefore (vx)x∈Rd is a reproducing kernel of V 2(Φ,Λ).

Moreover, we have

‖f ‖2
∞ = ess supx∈Rd

∣
∣f (x)

∣
∣2

= ess supx∈Rd

∣
∣〈f, vx〉

∣
∣2

≤ ess supx∈Rd ‖f ‖2
2‖vx‖2

2

≤ D2‖f ‖2
2. �
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