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Abstract We prove existence and uniqueness of minimizers for a family of energy function-
als that arises in Elasticity and involves polyconvex integrands over a certain subset of dis-
placement maps. This work extends previous results by Awi and Gangbo to a larger class of
integrands. We are interested in Lagrangians of the form L(A,u) = f (A)+H(detA)−F ·u.
Here the strict convexity condition on f and H have been relaxed to a convexity condition.
Meanwhile, we have allowed the map F to be non-degenerate. First, we study these varia-
tional problems over displacements for which the determinant is positive. Second, we con-
sider a limit case in which the functionals are degenerate. In that case, the set of admissible
displacements reduces to that of incompressible displacements which are measure preserv-
ing maps. Finally, we establish that the minimizer over the set of incompressible maps may
be obtained as a limit of minimizers corresponding to a sequence of minimization problems
over general displacements provided we have enough regularity on the dual problems. We
point out that these results do not rely on the direct methods of the calculus of variations.
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1 Introduction

We are interested in Euler-Lagrange equations, existence and uniqueness of minimizers for
some problems in the vectorial calculus of variations emanating from elasticity theory. These
variational problems are related to an open problem in Partial Differential Equations that
we describe as follows: let T > 0 and let Ω and Λ be two open subsets of R

d ; suppose
that u0 is a diffeomorphism between Ω and Λ; we seek u : Ω × (0, T ) −→ R

d such that
u(·, t)(Ω) = Λ for each t and{

ut = divx DξL(∇u) on Ω × (0, T ),

u(0, ·) = u0 on Ω,
(1.1)

in the sense of distributions. In (1.1), we assume that the map R
d×d � ξ �→ L(ξ) is quasi-

convex. We refer the reader to [2], [7], [5], [11], and [12] for further details on these gradient
flows. Understanding variational problems associated to the time-discretization of (1.1) is
arguably an important step toward the construction of a solution. In that regard, several
partial results are available in the literature (see for instance [7] and [5]).

In [2], the authors have focused on a class of Lagrangians that arises in elastic materials.
More precisely, they have considered polyconvex Lagrangians of the form ξ �→ L(ξ) =
f (ξ) + H(det ξ). Here f is a C1(Rd) strictly convex function with p-th order growth, and
the map H is a C1(0,∞) convex function that satisfies

lim
t→0+ H(t) = lim

t→∞
H(t)

t
= +∞. (1.2)

As a result, a variational problem emerges from the time discretization and has a relaxation
that takes the general form:

min

{∫
Ω

(
f (∇u) + H(β) − F · u)dx; (u,β) ∈ U

}
(1.3)

where F ∈ L1(Ω,Rd) and

U =
{
(u,β) : u ∈ W 1,p(Ω, Λ̄), β : Ω → [0,∞);
∫

Ω

l(u)β dx =
∫

Λ

l(y) dy; ∀l ∈ Cc

(
R

d
)}

. (1.4)

Although the existence of minimizers in (1.3) follows from the direct methods in the calculus
of variations, the uniqueness is a rather challenging problem. Indeed, because of (1.2) and
the non-convexity of the integrand, standard techniques in calculus of variations do not
apply.

To bypass these difficulties, the authors of [2] have introduced a pseudo-projected gra-
dient operator US � u �→ ∇Su defined as follows: for a given u ∈ US , the map ∇Su is the
unique minimizer of ∫

Ω

f (G)dx

over

GS(u) :=
{
G ∈ Lp

(
Ω,Rd×d

) :
∫

Ω

udivϕ dx = −
∫

Ω

〈G,ϕ〉dx ∀ϕ ∈ S
}
.
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Here, S is a finite-dimensional subspace of W
1,q

0 (Ω,Rd×d), q is the conjugate of p, US is
the set of all u : Ω → Λ̄ measurable such that there exists a c = c(u,Ω,Λ) > 0 satisfying:∣∣∣∣

∫
Ω

u · div ϕ dx

∣∣∣∣≤ c‖ϕ‖Lq(Ω,Rd×d ), ∀ϕ ∈ S. (1.5)

We point out that the pseudo-projected gradient operator depends also on f , though the
dependence is not exhibited in its notation. As a first step to approaching (1.3), they have
considered the following perturbed problem:

inf

{∫
Ω

(
f (∇Su) + H(β) − F · u)dx; (u,β) ∈ U

}
. (1.6)

The choice of problem (1.6) is justified by the construction of a family of finite dimen-
sional subspaces {Sn}n dense in W

1,q

0 (Ω,Rd×d) such that for u ∈ W 1,p(Ω,Rd), one has

lim
n→∞

∫
Ω

f (∇Snu) dx =
∫

Ω

f (∇u) dx. (1.7)

We note that a Lp(Ω, R
d)-bounded subset of US whose image by the operator ∇S

is bounded in Lp(Ω, R
d×d) is not in general strongly pre-compact with respect to the

Lp(Ω, Rd) topology. As a result, compactness of level subsets of the functional in (1.6) can-
not be guaranteed. Nevertheless, the authors of [2] have successfully shown existence and,
more importantly, uniqueness in (1.6) under the assumption that F is non-degenerate (see
definition below). This condition of non-degeneracy for uniqueness is crucial in a similar
problem, the so-called Brenier polar factorization, and more generally, in optimal transport
problems. Confer [1], [3], [9], [8], [10] and [15].

In this paper, we investigate the respective roles played by the strict convexity of f ,
the convexity and smoothness of H , and the non-degeneracy of F in problem (1.6). More
precisely, we impose less stringent conditions so that either the map F is allowed to be
degenerate or f is allowed to be merely convex or H is neither smooth nor strictly-convex.
These considerations are not just technicalities. Indeed we note that a prominent case of mere
convexity, f (ξ) = |ξ |, is typical for the study of minimal surfaces as well as for the study of
functionals involving the total variation (see for instance [4]). Furthermore, we observe that
cases where H is taken to be the characteristic function of a singleton of R arise in the study
of incompressible deformations in Elasticity theory (see for instance [12] and [15]). Finally,
the non-degeneracy condition tests the extent to which one can hope for uniqueness in the
variational problem we considered. To deal with these weaker assumptions, we introduce a
family of operators {V f

S : S ⊂ W
1,q

0 (Ω,Rd), f convex} defined by

W 1,p
(
Ω,Rd

) � u �→ V
f
S [u] := sup

ϕ∈S

∫
Ω

(−udivϕ − f ∗(ϕ)
)
dx. (1.8)

We note that the operator V
f
S is actually well defined on the set of measurable functions u

defined from Ω to Λ̄ when the set S is a finite dimensional nonempty set and the function
f satisfies appropriate growth conditions. As a family, these operators extend the pseudo-
projected gradient operators and the distributional gradient. Indeed, V f

S [u] = ∫
Ω

f (∇Su) dx

if S is a finite dimensional subspace of W
1,q

0 (Ω,Rd×d) and u ∈ US and furthermore
V

f
S [u] = ∫

Ω
f (∇u) dx if S = W

1,q

0 (Ω,Rd×d) and u ∈ W 1,p(Ω,Rd). These extensions are
only valid under appropriate conditions on f . It is worth pointing out that if f (ξ) = |ξ |
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and S = W
1,q

0 (Ω,Rd×d) then V
f
S (u) is nothing but the total variation of u on the set Ω .

We show that for a collection of sets {Sn}∞
n=1 of W

1,q

0 (Ω,Rd) satisfying Hypothesis (H1) or
Hypothesis (H2) (see Sect. 2), we have a convergence result in the same spirit as (1.7):

lim
n→∞V

f
Sn

[u] = V
f

W
1,q
0 (Ω,Rd )

[u]
(

=
∫

Ω

f (∇u) dx

)
(1.9)

for any u ∈ W 1,p(Ω,Rd×d) and appropriate conditions on f . We thus proceed to study a
more general problem:

inf
(u,β)∈U ∗

S

{
V

f
S [u] +

∫
Ω

(H(β) − F · u) dx

}
(1.10)

where S is an element of a collection of sets satisfying Hypothesis (H1) or Hypothesis (H2),
and

U ∗
S =

{
(u,β) : u ∈ US; β : Ω → [0,∞);
∫

Ω

l
(
u(x)

)
β(x) dx =

∫
Ω

l(y) dy ∀l ∈ Cc

(
R

d
)}

. (1.11)

Sublevel sets of the integrand in (1.10) are not compact. Nor is f necessarily strictly con-
vex. However, we show existence and uniqueness in problem (1.10). In fact, this result holds
for F non-degenerate as well as for a class of degenerate F provided that the set S is cho-
sen accordingly (see Corollaries 3.6 and 3.7). Unlike optimal transport theory, this analysis
suggests that the non-degeneracy condition is not essential for a uniqueness result in (1.3).

Existence and uniqueness results for problem (1.10) are established thanks to the discov-
ery of suitable dual problems. Indeed, call C the set of all functions (k, l) with k, l : Rd →
R ∪ {∞} Borel measurable, finite at least at one point, and satisfying the relation l ≡ ∞ on
R

d \ Λ̄ and such that

k(v) + t l(u) + H(t) ≥ u · v ∀u,v ∈ R
d , t > 0.

Let A be the set of (k, l, ϕ) such that (k, l) ∈ C and ϕ ∈ S . Define the following functional
over the set A :

J (k, l, ϕ) :=
∫

Ω

k(F + divϕ) dx +
∫

Λ

l dy +
∫

Ω

f ∗(ϕ) dx.

Next, assume that the map F and the set S are such that for all ϕ ∈ S ,

F + divϕ is non-degenerate. (1.12)

Then −J admits a maximizer (k0, l0, ϕ0) with k0 convex and diam(Λ)-Lipschitz. As a con-
sequence, problem (1.10) admits a unique minimizer (u0, β0) and u0 satisfies{

u0 = ∇k0(F + divϕ0)

ϕ0 ∈ ΦS(u0).
(1.13)

Here, we have denoted by ΦS(u0), the non-empty set of maximizers of problem (1.8) (see
Proposition 2.8). In order to obtain condition (1.12), we consider two distinct situations.
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First, we assume that F has a countable range, thus degenerate. If S is an element of a
collection of sets satisfying hypothesis (H2) then it holds that F + divϕ is non-degenerate.

Second, we assume F non-degenerate and S is a finite dimensional vector space, as in [2].
It holds again that F + divϕ is non-degenerate. However, unlike the hypotheses in [2], we
have allowed the map f to be as singular as the map R

d×d � ξ �→ |ξ |.
We have also studied (1.10) when H is replaced by H0 : (0,∞) → R ∪ {∞} defined by

H0(1) = 0 and H0(t) = ∞ if t �= 1. This case corresponds to the case of measure preserv-
ing maps. Note that H0 is not even continuous. However, it may be obtained as a limit of
functions Hn which are C1(0,∞) convex functions and satisfy (1.2). We show that for such
singular H0, the corresponding problem

inf
u∈U 1

S

{
V

f
S [u] −

∫
Ω

F · u dx

}
(1.14)

with

U 1
S =

{
u ∈ US :

∫
Ω

l
(
u(x)

)
dx =

∫
Ω

l(y) dy ∀l ∈ Cc

(
R

d
)}

(1.15)

admits a unique minimizer. (See Theorem 4.3.)
To obtain existence and uniqueness results in problem (1.14), we exploit a dual for-

mulation and maximize −J over the set that consists of (k, l, ϕ) such that ϕ ∈ S and
k, l : Rd → R ∪ {∞} are Borel measurable, finite at least at one point, and satisfy the rela-
tions l ≡ ∞ on R

d \ Λ̄ and

k(v) + l(u) ≥ u · v ∀u,v ∈R
d .

One shows that −J admits a maximizer (k0, l0, ϕ0) with k0 convex and Lipschitz and the
unique minimizer of problem (1.14) is u0 given by

u0 = ∇k0(F + divϕ0).

Finally, we show convergence of a sequence of problems of the form (1.10) to (1.14). More
precisely, we show that the minimizer of problem (1.14) may be obtained as limit of mini-
mizers of problems of the form (1.10) provided that the dual problems admit regular enough
maximizers. In fact, suppose the map F and the set S are such that for all ϕ ∈ S , the map
F + divϕ is non-degenerate. For (u,β) ∈ US , define

In(u,β) = V
f
S [u] +

∫
Ω

(Hn(β) − u · F) dx

and set

I0(u) = V
f
S [u] −

∫
Ω

u · F dx.

Thanks to Theorem 3.5, the problem

inf
(u,β)∈U ∗

S
In(u,β) (1.16)

admits a unique minimizer that we denote (un,βn) with un = ∇kn(F + divϕn) for some
kn :Rd →R convex and ϕn ∈ S . Denote u0 the unique minimizer of (1.14). If for all n ∈N

∗
the map kn is differentiable then the sequence {un}n∈N∗ converges almost everywhere to u0

and in addition, the minima {In(un,βn)}n∈N∗ converge to I0(u0) (cf. Theorem 4.7).
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2 Preliminaries

2.1 Notation and Definitions

• Throughout this manuscript, Ω and Λ ⊂ R
d are two bounded open convex sets; r∗ > 1

is such that B(0,1/r∗) ⊂ Λ ⊂ B(0, r∗/2); p ∈ (1,∞) and q is its conjugate, that is,
p−1 + q−1 = 1.

• Given A ⊂R
d , the indicator function of A is defined as

χA(x) =
{

0 if x ∈ A,

∞ otherwise.

• For any subset S of W
1,q

0 (Ω,Rd×d), we denote by span(S) the linear subspace of
W

1,q

0 (Ω,Rd×d) generated by S .
• We denote by f ∗ the Legendre transform of a map f :Rd×d −→ R so that

f ∗(ξ ∗)= sup
ξ∈Rd×d

{
ξ · ξ ∗ − f (ξ)

}
.

• If h : Rd −→ R ∪ {∞} is convex then the subdifferential ∂h(x) of h at x ∈ Dom(h) is
closed and convex. If ∂h(x) is non-empty we denote by grad[h](x) the element of ∂h(x)

with minimum norm:∣∣grad[h](x)
∣∣= min

{|y| : y ∈ ∂h(x)
}; x ∈ Dom(h).

• Let S ⊂ W
1,q

0 (Ω,Rd×d). We denote by Sf the set

Sf :=
{
ϕ ∈ S :

∫
Ω

f ∗(ϕ) is finite

}
. (2.1)

• Let F : Rd −→ R
d be measurable. We say that F is non-degenerate if for any N ⊂ R

d

such that Ld(N) = 0 we have Ld(F−1(N)) = 0.

2.2 Assumptions

(A0) We additionally assume that there exists a strictly convex function that is C1(Ω̄) and
vanishes on the boundary of Ω .

(A1) The set S is a subset of W
1,q

0 (Ω,Rd×d). In addition, the map f :Rd×d → R is convex
and satisfies the following three properties:

(i) There exist a, b, c > 0 such that for all ξ ∈R
d×d ,

c
|ξ |p
p

+ b ≥ f (ξ) ≥ a|ξ | − b (2.2)

and for all ξ ∗ ∈ ∂f (ξ), ∣∣ξ ∗∣∣q ≤ c|ξ |p + b. (2.3)

(ii) The set Sf is non-empty.



On the Uniqueness of Minimizers for a Class of Variational Problems 143

(iii) One of the following two conditions holds:

(a) The map f is such that ∂f ∗(x∗) is non-empty and grad[f ∗](x∗) = 0 for each
x∗ ∈ Domf ∗.

(b) The map f is strictly convex and there exist ā, b̄ > 0 such that for all ξ ∗ ∈
R

d×d , one has

f ∗(ξ ∗)≤ ā + b̄
∣∣ξ ∗∣∣q and

∣∣∇f ∗(ξ ∗)∣∣≤ ā + b̄
∣∣ξ ∗∣∣q−1

. (2.4)

(A2) The map H is C1(0,∞), strictly convex, and such that

lim
t→0+ H(t) = lim

t→∞
H(t)

t
= +∞.

(A3) The function F is measurable and belongs to L1(Ω).
Let S be a subset of W

1,q

0 (Ω,Rd×d). We say that F satisfies the condition (ND)S if

div(ϕ) + F is non-degenerate

for all ϕ ∈ S .

Remark 2.1

(i) As f satisfies (2.2), we have

−b + cp |ξ ∗|q
q

≤ f ∗(ξ ∗)≤ χB̄(0,a)

(
ξ ∗)+ b (2.5)

for all ξ ∗ ∈R
d×d .

(ii) If f satisfies case (b) in (iii) of Assumption (A1), then f ∗ is continuously differentiable.
In that case, grad[f ∗] = ∇f ∗.

(iii) If f satisfies case (a) of Assumption (A1)(iii) then 0 ∈ ∂f ∗(x∗) for every element
x∗ ∈ Dom(f ∗). Consequently, the map f ∗ is constant on Dom(f ∗) and the following
equalities are satisfied for all x∗ and y∗ in Dom(f ∗):

f ∗(x∗)− f ∗(y∗)= grad
[
f ∗](x∗)= grad

[
f ∗](y∗)= 0. (2.6)

(iv) Assumption (A0) is satisfied by Ω = B(0,1) ⊂ R
d with the strictly convex function

being the map R
d � x �→ |x|2 − 1.

(v) The map f : Rd×d → R defined by f (ξ) = |ξ | satisfies case (a) in (iii) of Assump-
tion (A1). The map f : Rd×d → R defined by f (ξ) = |ξ |p satisfies case (b) in (iii) of
Assumption (A1).

The following lemma summarizes some elementary properties of H . We refer the reader
to Remark 2.1 in [2].

Lemma 2.2 Assume (A2) holds. Then,

(i) The map H ′ : (0,∞) →R is a strictly increasing bijection.
(ii) The Legendre transform H ∗ of H is a strictly increasing bijection from R to R.

(iii) Let g :R→ R̄ be defined by g(s) = αs − βH ∗(s), with α,β > 0. Then

lim
s→−∞g(s) = lim

s→∞g(s) = −∞.
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Define H0 by

H0(t) =
{

0 t = 1

∞ t �= 1
(2.7)

and, for n ≥ 1,

Hn(t) = H(t) − H(1) + n(t − 1)2. (2.8)

The following lemma is straightforward.

Lemma 2.3 Assume (A2) holds. Then,

(i) There exists H̄ ∈R such that

H̄ = min
t∈[0,∞)

H(t).

(ii) The collection {Hn}∞
n=1 is a non-decreasing sequence of functions that converges point-

wise to H0. In addition, for all n ∈ N
∗, the map Hn is a C1(0,∞) strictly convex func-

tion that satisfies

lim
t→0+ Hn(t) = lim

t→∞
Hn(t)

t
= +∞.

(iii) Let t > 0. If {Hn(t)}∞
n=1 is uniformly bounded above by a constant c0 then

n(t − 1)2 ≤ c0 + H(1) − H̄

and t = 1.

2.3 Hypothesis on the Underlying Sets of Pseudo-Gradients

We recall that in [2], the construction of ∇Sτ u has relied on hypothesis on the underlying
sets Sτ that we summarize in Hypothesis (H1) below.

Hypothesis (H1).
A collection {An}∞

n=1 of subsets of W
1,q

0 (Ω,Rd×d) satisfies Hypothesis (H1) if

(i) An of a finite dimensional subspace of W
1,q

0 (Ω,Rd×d) for each n ∈ N
∗.

(ii) The map ∇ϕ has a countable range whenever ϕ ∈An, for any n ∈N
∗.

(iii) The set
⋃

n∈N∗ An is dense in W
1,q

0 (Ω,Rd×d).
(iv) For i ≤ j , we have the inclusion Ai ⊂ Aj .

An explicit construction of sets satisfying Hypothesis (H1) is provided in [2]. Here, we build
on the conditions of Hypothesis (H1) and we relax conditions on the underlying sets:

Hypothesis (H2).
A collection {Qn}∞

n=1 of subsets of W
1,q

0 (Ω,Rd×d) satisfies Hypothesis (H2) if

(i) Span(Qn) is of finite dimension and Qn is a non-empty closed and convex subset of
W

1,q

0 (Ω,Rd×d).
(ii) The map divϕ is non-degenerate whenever ϕ ∈Qn, for any n ∈N

∗.
(iii) The set

⋃
n∈N∗ Qn is dense in W

1,q

0 (Ω,Rd×d).
(iv) For i ≤ j , the inclusion Qi ⊂ Qj holds.
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The next lemma asserts that a collection of sets can be constructed to satisfy Hypothe-
sis (H2).

Lemma 2.4 Assume (A0) holds. Then, there exists a collection of sets {Qn}∞
n=1 satisfying

the requirements of Hypothesis (H2).

Remark 2.5 The condition (A0) in Lemma 2.4 is only needed for requirement (ii) of Hy-
pothesis (H2).

Proof Suppose that ψ is a strictly convex function that is C1(Ω̄) and vanishes on the bound-
ary of Ω as given by Assumption (A0). Let ϕ0 : Ω → R

d×d be defined by

ϕ0 =

⎛
⎜⎜⎜⎝

ψ 0 · · · 0
0 ψ · · · 0
...

...
. . .

...

0 0 · · · ψ

⎞
⎟⎟⎟⎠ .

As ψ is C1(Ω̄), we have ϕ0 ∈ W
1,q

0 (Ω,Rd×d) and it follows that divϕ0 = ∇ψ . Thus, for
almost every x in Ω , we have

det
(∇(divϕ0)(x)

)= det
(∇2ψ(x)

)
> 0.

Thanks to Lemma 5.5.3 in [1], the map divϕ0 is non-degenerate. Let {An}∞
n=1 be a collection

of sets satisfying Hypothesis (H1). One readily checks that the family of sets defined by

Qn =
{
ϕ + εϕ0 : ϕ ∈An; ε ≥ 1

n

}

for n ∈N
∗, satisfies hypothesis (H2). �

2.4 Special Displacements

To S ⊂ W
1,q

0 (Ω,Rd×d) we associate US , the set of all u : Ω → Λ̄ measurable such that
there exists c̄ = c̄(u,Ω,Λ) > 0 satisfying:∣∣∣∣

∫
Ω

u · div ϕ dx

∣∣∣∣≤ c̄‖ϕ‖Lq(Ω,Rd×d ) ∀ϕ ∈ S. (2.9)

Remark that if u ∈ US , then u belongs to L∞(Ω,Rd) since u has values in Λ̄ which is
bounded. If span(S) is of finite dimension then US is the set of all measurable maps u :
Ω → Λ̄. In fact, the linear map span(S) � ϕ �→ ∫

Ω
udivϕ is continuous with respect to

the Lq -norm as in finite dimension, all norms are equivalent. Therefore, we may find c for
which inequality (2.9) holds for all ϕ ∈ span(S) and in particular for all ϕ ∈ S .

At any rate, US contains W 1,p(Ω,Rd). Indeed, notice that for a fixed u ∈ W 1,p(Ω,Rd),
we have, for all ϕ ∈ S:∣∣∣∣

∫
Ω

u · divϕ dx

∣∣∣∣=
∣∣∣∣−

∫
Ω

〈∇u,ϕ〉 dx

∣∣∣∣≤ ‖∇u‖Lp(Ω,Rd×d )‖ϕ‖Lq(Ω,Rd×d ).
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We introduce the following set

U 1
S =

{
u ∈ US :

∫
Ω

l
(
u(x)

)
dx =

∫
Λ

l(y) dy ∀l ∈ Cc

(
R

d
)}

and

U ∗
S =

{
(u,β) : u ∈ US; β : Ω → [0,∞);
∫

Ω

l
(
u(x)

)
β(x) dx =

∫
Λ

l(y) dy ∀l ∈ Cc

(
R

d
)}

.

Notice that U 1
S = {u ∈ US : (u,1) ∈ U ∗

S }. This corresponds to measure preserving dis-
placements.

2.5 Extended Pseudo-Projected Gradient

Let S ⊂ W
1,q

0 (Ω,Rd×d) and u ∈ US . Define

GS(u) :=
{
G ∈ Lp

(
Ω,Rd×d

) :
∫

Ω

udivϕ dx = −
∫

Ω

〈G,ϕ〉 dx ∀ϕ ∈ S
}
.

Consider the operator

V
f
S (u) := sup

ϕ∈S

∫
Ω

(−udivϕ − f ∗(ϕ)
)
dx = sup

ϕ∈Sf

∫
Ω

(−udivϕ − f ∗(ϕ)
)
dx. (2.10)

We denote by ΦS(u) the set of maximizers of problem (2.10).

Lemma 2.6 Let S ⊂ W
1,q

0 (Ω,Rd×d) and u ∈ US .

1. We have

GS(u) =
{
G ∈ Lp

(
Ω,Rd×d

) :
∫

Ω

udivϕ dx = −
∫

Ω

〈G,ϕ〉dx; ∀ϕ ∈ span(S)

}
.

2. If span(S) is finite dimensional, then GS(u) is nonempty.

Proof Set

ḠS(u) =
{
G ∈ Lp

(
Ω,Rd×d

) :
∫

Ω

udivϕ dx = −
∫

Ω

〈G,ϕ〉dx ∀ϕ ∈ span(S)

}
.

As S ⊂ span(S), we have ḠS(u) ⊂ GS(u). Next, let G ∈ GS(u). Assume that ϕ ∈ span(S).
We may find n ∈N, λ1, . . . , λn ∈R and ϕ1, . . . , ϕn ∈ S such that ϕ =∑n

i=1 λiϕi . Then

∫
Ω

udivϕ dx =
∫

Ω

udiv
n∑

i=1

λiϕi dx =
n∑

i=1

λi

∫
Ω

udivϕi dx =
n∑

i=1

−λi

∫
Ω

〈G,ϕi〉dx

and

−
∫

Ω

〈G,ϕ〉dx = −
∫

Ω

〈
G,

n∑
i=1

λiϕi

〉
dx =

n∑
i=1

−λi

∫
Ω

〈G,ϕi〉dx.
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Thus G ∈ ḠS(u). We deduce that GS(u) ⊂ ḠS(u). It follows that part (1.) holds. To obtain
part (2.), we use part (1.) and the Riesz Representation Theorem. �

The following results are essentially found in Proposition 3.1 in [2].

Proposition 2.7 Suppose that the set S is a finite dimensional subspace of W
1,q

0 (Ω,Rd×d)

and f is C1 and strictly convex. Suppose, in addition that there exist constants c1, c2, c3 > 0
such that

−c3 + c2|ξ |p ≤ f (ξ) ≤ c3 + c1|ξ |p∣∣Df (ξ)
∣∣≤ c3 + c1|ξ |p−1

∣∣Df ∗(ξ)
∣∣≤ c3 + c1|ξ |q−1

for all ξ ∈R
d×d . Then, there exists a unique map denoted ∇Su that minimizes

inf
G∈GS (u)

∫
Ω

f (G) dx.

Moreover, ∇Su is the unique map G ∈ GS(u) that satisfies Df (G) ∈ S .

In the next proposition, we establish similar results as in Proposition 2.7 but under weaker
assumptions on S and f (except in part 4).

Proposition 2.8 Assume (A1) holds. Assume S is a finite dimensional non-empty closed
and convex subset of W

1,q

0 (Ω,Rd×d) and let u ∈ US .

1. For all G ∈ GS(u), ϕ ∈ S , we have∫
Ω

f (G) dx ≥
∫

Ω

(−udivϕ − f ∗(ϕ)
)
dx.

2. The supremum in problem (2.10) is attained.
3. A map ϕ̄ belongs to ΦS(u) if and only if ϕ̄ belongs to Sf and

∫
Ω

(
grad

[
f ∗](ϕ̄) · (ϕ − ϕ̄) + u · (divϕ − div ϕ̄)

)
dx ≥ 0

for all ϕ ∈ Sf .
4. Suppose that the hypotheses of Proposition 2.7 are satisfied. Then we have∫

Ω

f (∇Su) dx = V
f
S (u)

and ΦS(u) = {Df (∇Su)}.

Proof (1.) Let ϕ ∈ S and G ∈ GS(u). By using the Legendre transformation,∫
Ω

f (G) dx ≥
∫

Ω

(
G · ϕ − f ∗(ϕ)

)
dx =

∫
Ω

(−u · divϕ − f ∗(ϕ)
)

dx.
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(2.) Let ϕ ∈ S . We use (2.9) and (2.5) to get∫
Ω

(
udivϕ + f ∗(ϕ)

)
dx ≥ −c̄‖ϕ‖Lq(Ω,Rd×d ) +

∫
Ω

f ∗(ϕ) dx

≥ −c̄‖ϕ‖Lq(Ω,Rd×d ) + q−1c−q‖ϕ‖q

Lq (Ω,Rd×d )
. (2.11)

In light of (2.11), q > 1 implies that the map

Sf � ϕ �→ T (ϕ) :=
∫

Ω

(
udivϕ + f ∗(ϕ)

)
dx

is Lq -coercive. Moreover, the convexity of f ∗ guarantees that T is lower semi-continuous.
The direct methods of the calculus of variations thus yield the existence of a maximizer in
problem (2.10).

(3.) Let ϕ̄ ∈ ΦS(u) so that ϕ̄ ∈ Sf . Let ϕ ∈ Sf and ε ∈ (0,1). The convexity of f ∗
ensures that ϕ̄ + ε(ϕ − ϕ̄) ∈ Sf and the maximality property of ϕ̄ implies that∫

Ω

u · div ϕ̄ +f ∗(ϕ̄) dx ≤
∫

Ω

u · (div ϕ̄ + ε div(ϕ − ϕ̄)
)
dx +f ∗(ϕ̄ + ε(ϕ − ϕ̄)

)
dx. (2.12)

We rewrite (2.12), in turn, as∫
Ω

f ∗(ϕ̄ + ε(ϕ − ϕ̄)) − f ∗(ϕ̄)

ε
+ u · div(ϕ − ϕ̄) dx ≥ 0. (2.13)

Note that grad[f ∗](ϕ̄ + ε(ϕ − ϕ̄)) belongs to the set ∂f ∗((ϕ̄ + ε(ϕ − ϕ̄))) whenever (ϕ̄ +
ε(ϕ − ϕ̄)) is in the domain of f ∗. It follows that∫

Ω

(
grad

[
f ∗]((ϕ̄ + ε(ϕ − ϕ̄)

)) · (−ε(ϕ − ϕ̄)
))

dx ≤
∫

Ω

(
f ∗(ϕ̄) − f ∗(ϕ̄ + ε(ϕ − ϕ̄)

))
dx

that is,∫
Ω

(
grad

[
f ∗](ϕ̄ + ε(ϕ − ϕ̄)

) · (ϕ − ϕ̄)
)
dx ≥

∫
Ω

f ∗(ϕ̄ + ε(ϕ − ϕ̄)) − f ∗(ϕ̄)

ε
dx. (2.14)

We combine (2.13) and (2.14) to get∫
Ω

(
grad

[
f ∗](ϕ̄ + ε(ϕ − ϕ̄)

) · (ϕ − ϕ̄) + udiv(ϕ − ϕ̄)
)
dx ≥ 0. (2.15)

First, we assume that (A1)(iii)(a) holds. In light of (2.6), we have grad[f ∗](ϕ̄ + ε(ϕ − ϕ̄)) =
grad[f ∗](ϕ̄). Equation (2.15) becomes∫

Ω

(
grad

[
f ∗](ϕ̄) · (ϕ − ϕ̄) + udiv(ϕ − ϕ̄)

)
dx ≥ 0.

Second, we assume that (A1)(iii)(b) holds. In light of Remark 2.1(ii), we use the growth
condition on ∇f ∗ in (2.4), the Lebesgue dominated convergence theorem and let ε go to 0
in (2.15) to obtain that:∫

Ω

(
grad

[
f ∗](ϕ̄) · (ϕ − ϕ̄) + udiv(ϕ − ϕ̄)

)
dx ≥ 0.
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We next show the converse implication. Let ϕ ∈ Sf such that

0 ≤
∫

Ω

(
udiv(ϕ − ϕ̄) + grad

[
f ∗](ϕ̄) · (ϕ − ϕ̄)

)
dx, (2.16)

for all ϕ ∈ Sf . We notice that, as f ∗ is convex, the range of the map grad[f ∗](ϕ̄) lies in the
sub-differential of f ∗ so that f ∗(ϕ) − f ∗(ϕ̄) ≥ grad[f ∗](ϕ̄)(ϕ − ϕ̄) for all ϕ ∈ Sf . Then,
the inequality (2.16) implies that

0 ≤
∫

Ω

(
udiv(ϕ − ϕ̄) + (

f ∗(ϕ) − f ∗(ϕ̄)
))

dx

for all ϕ ∈ Sf , that is,∫
Ω

(
udiv ϕ̄ + f ∗(ϕ̄)

)
dx ≤

∫
Ω

(
udivϕ + f ∗(ϕ)

)
dx

for all ϕ ∈ Sf . We conclude that ϕ̄ ∈ ΦS(u).
(4.) Thanks to Proposition 2.7, Df (∇Su) ∈ S . Next, we set ϕ0 := Df (∇Su). By defini-

tion of f ∗,

f (∇Su) + f ∗(ϕ) ≥ ϕ · ∇Su

for all ϕ ∈ S . As f is convex and ϕ0 = Df (∇Su), we have

f (∇Su) + f ∗(ϕ0) = ϕ0 · ∇Su.

Thus,∫
Ω

f (∇Su) dx ≥
∫

Ω

ϕ · ∇Su dx −
∫

Ω

f ∗(ϕ) dx =
∫

Ω

−udivϕ dx −
∫

Ω

f ∗(ϕ) dx

and∫
Ω

f (∇Su) dx =
∫

Ω

ϕ0 · ∇Su dx −
∫

Ω

f ∗(ϕ0) dx =
∫

Ω

−udivϕ0 dx −
∫

Ω

f ∗(ϕ0) dx.

We deduce that ϕ0 ∈ ΦS(u). Since f ∗ is strictly convex, we conclude that ΦS(u) =
{Df (∇Su)} and moreover,

∫
Ω

f (∇Su) = V
f
S (u), see (2.10). �

In the next proposition, we establish a convergence result in the spirit of (1.7). We also
connect the operator V

f
S with the usual notions of gradient and total variation.

Proposition 2.9 Assume (A1) holds. Assume that Sn is a finite dimensional non-empty
closed and convex subset of W

1,q

0 (Ω,Rd×d) for each n ≥ 1. The following holds.

1. If {Sn}∞
n=1 is a monotonically increasing family of subsets of some set S0 and

⋃
n∈N∗ Sn

is dense in S0 with respect to the W
1,q

0 (Ω,Rd×d) norm then

lim
n→∞V

f
Sn

[u] = V
f
S0

[u]

for any u ∈ US0 .
2. If S = W

1,q

0 (Ω,Rd×d) and u ∈ W 1,p(Ω,Rd) then V
f
S [u] = ∫

Ω
f (∇u)dx.
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3. Assume u ∈ BV (Ω,Rd×d) and f (ξ) = |ξ | for all ξ ∈ R
d×d . If S = W

1,q

0 (Ω,Rd×d) then
V

f
S [u] is the total variation of u.

Remark 2.10 A consequence of Proposition 2.9 is the following: If the sequence of sets
{Sn}n∈N∗ is monotonically increasing to W

1,q

0 (Ω,Rd×d) and u ∈ W 1,p(Ω,Rd) we have

lim
n→∞V

f
Sn

[u] =
∫

Ω

f (∇u) dx.

Proof (1.) Recall that

V
f
Sn

[u] = sup
ϕ∈Sn

{∫
Ω

(−u · divϕ − f ∗(ϕ)
)
dx

}
.

As {Sn}∞
n=1 is a monotonically increasing, limn→∞ V

f

Sn
[u] exists. Moreover, since Sn ⊂ S0

for all n ≥ 1,

lim
n→∞V

f
Sn

[u] ≤ V
f
S0

[u]. (2.17)

Let ε > 0 and choose ϕε ∈ S0 such that

V
f
S0

[u] ≤ ε +
∫

Ω

(−u · divϕε − f ∗(ϕε
))

dx.

Let {ϕε
n}n∈N∗ be a sequence converging to ϕε in W

1,q

0 (Ω,Rd×d) and such that ϕε
n ∈ Sn for all

n ∈ N
∗. Then, we use the growth conditions on f ∗ in (2.4) and (2.5), the continuity of f ∗

on its domain and the Lebesgue dominated convergence theorem to obtain that

∫
Ω

−f ∗(ϕε
)
dx = lim

n→∞

∫
Ω

−f ∗(ϕε
n

)
dx.

It follows that

V
f
S0

[u] ≤ ε +
∫

Ω

(−u · divϕε − f ∗(ϕε
))

dx

= ε + lim
n→∞

∫
Ω

(−u · divϕε
n − f ∗(ϕε

n

))
dx

≤ ε + lim sup
n→∞

V
f
Sn

[u]

= ε + lim
n→∞V

f
Sn

[u].

As ε is arbitrary, we have

lim
n→∞V

f
Sn

[u] ≥ V
f
S0

[u]. (2.18)

From (2.17) and (2.18), we conclude that limn→∞ V
f
Sn

[u] = V
f
S0

[u].
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(2.) One has

V
f
S [u] = sup

ϕ∈W
1,q
0 (Ω,Rd×d )

{∫
Ω

(−u · divϕ − f ∗(ϕ)
)
dx

}

= sup
ϕ∈W

1,q
0 (Ω,Rd×d )

{∫
Ω

(∇u · ϕ − f ∗(ϕ)
)
dx

}

≤
∫

Ω

f (∇u) dx.

The inequality above is obtained by using the definition of the Legendre transform f ∗ of f .
Let ϕ̄ ∈ ∂f (∇u). Then f ∗(ϕ̄) + f (∇u) = ∇u · ϕ̄. Thanks to the growth conditions (2.2) and
(2.3) on f , it holds that ϕ̄ ∈ Lq(Ω,Rd×d). Since W

1,q

0 (Ω,Rd×d) is dense in Lq(Ω,Rd×d)

for the Lq(Ω,Rd×d) norm, we get∫
Ω

f (∇u) dx =
∫

Ω

(∇u · ϕ̄ − f ∗(ϕ̄)
)
dx

≤ sup
ϕ∈W

1,q
0 (Ω,Rd×d )

{∫
Ω

(∇u · ϕ − f ∗(ϕ)
)
dx

}

= V
f
S [u].

We conclude that V
f

S [u] = ∫
Ω

f (∇u) dx.
(3.) The total variation of u ∈ BV (Ω,Rd×d) is

‖Du‖(Ω) = sup

{∫
Ω

u · divϕ dx : ϕ ∈ C1
c

(
Ω,Rd×d

); |ϕ| ≤ 1

}
(2.19)

while, using the Legendre transform of f (ξ) = |ξ |, we obtain for every q > 1

V
f

S (u) = sup

{∫
Ω

u · divϕ dx : ϕ ∈ W
1,q

0

(
Ω,Rd×d

); |ϕ| ≤ 1

}
. (2.20)

It follows directly from (2.19) and (2.20) that ‖Du‖(Ω) ≤ V
f
S [u]. The converse inequality

‖Du‖(Ω) ≥ V
f
S [u] follows from the density of C1

c (Ω,Rd×d) in W
1,q

0 (Ω,Rd×d) and an
argument similar to the one made in the proof of (2) in the proposition. �

3 Minimization with General Displacements

We consider the following:

inf
(u,β)∈U ∗

S

{
I (u,β) = V

f
S (u) +

∫
Ω

(
H(β) − F · u)dx

}
. (3.1)

This problem will be studied via a dual problem that we will formulate next. We assume in
this section that Assumption (A2) holds.
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3.1 An Auxiliary Problem

For l, k :Rd → (−∞,∞], define for u,v ∈R
d

l#(v) := sup
u∈Λ̄,t>0

{
u · v − l(u)t − H(t)

}
(3.2)

and

k#(u) := sup
v∈Rd ,t>0

{
(1/t)

(
u · v − k(v) − H(t)

)}
. (3.3)

Under Assumption (A2), it is known that ((l#)#)
# = l# and ((k#)

#)# = k# (see for instance
Lemma A1 of [11]). Call C the set of all functions (k, l) with k, l : Rd → R ∪ {∞} Borel
measurable, finite at least at one point, and satisfying l ≡ ∞ on R

d \ Λ̄ and such that

k(v) + t · l(u) + H(t) ≥ u · v ∀u,v ∈R
d , t > 0. (3.4)

Call C′ the set of all functions (k, l) ∈ C such that l = k# and k = l#. The set C′ is nonempty.
Indeed, (χ#

Λ̄
, (χ#

Λ̄
)#) ∈ C′ as ((χ#

Λ̄
)#)

# = χ#
Λ̄

.
Let A be the set of (k, l, ϕ) such that (k, l) ∈ C and ϕ ∈ S . Consider the following

functional defined on A :

J (k, l, ϕ) :=
∫

Ω

k(F + divϕ) dx +
∫

Λ

l dy +
∫

Ω

f ∗(ϕ) dx.

The following problem will play an important role in this section:

inf
{
J (k, l, ϕ) : (k, l, ϕ) ∈ A

}
. (3.5)

The value of the expression (3.5) is the opposite of the value of the following expression:

sup
{−J (k, l, ϕ) : (k, l, ϕ) ∈ A

}
. (3.6)

Let A ′ denote the subset of A consisting of all (k, l, ϕ) ∈ A that satisfy (k, l) ∈ C′. It holds
that

inf
{
J (k, l, ϕ) : (k, l, ϕ) ∈ A

}= inf
{
J (k, l, ϕ) : (k, l, ϕ) ∈ A ′}. (3.7)

Indeed, the key observation to this end is that for (k, l, ϕ) ∈ A , one has l ≥ k# and k ≥
(k#)

# so that

J (k, l, ϕ) ≥ J
(
(k#)

#, k#, ϕ
)

and
(
(k#)

#, k#, ϕ
) ∈ A ′.

For R > 0, we set

AR = {
(k, l, ϕ) ∈ A ′ : J (k, l, ϕ) ≤ R

}
.

Lemma 3.1 Assume that (A1), (A2) and (A3) hold. Let (k, l, ϕ) ∈ AR . Set sl :=
− infu∈Λ̄ l(u). Then,∫

Ω

k(F + divϕ) dx ≥ Ld(Ω)H ∗(sl) − r∗‖F‖L1(Ω).

Moreover, there exists M := M(R,F,f,Ω,Λ) > 0 such that

|sl | ≤ M. (3.8)
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Proof As Λ is bounded and l is convex, we choose ul ∈ Λ such that −l(ul) = sl . Since
k := l#, in view of (3.2), we have

−t l(ul) − H(t) + ul · v = tsl − H(t) + ul · v ≤ H ∗(sl) + ul · v ≤ k(v). (3.9)

Using the last inequality in (3.9), one gets∫
Ω

k(F + divϕ) dx ≥
∫

Ω

(
H ∗(sl) + ul · (F + divϕ)

)
dx (3.10)

= H ∗(sl)Ld(Ω) +
∫

Ω

ul · F dx. (3.11)

We have used the fact that ul is a constant vector and ϕ ∈ W
1,q

0 (Ω,Rd×d) to obtain the
equality in (3.11). Hence,∫

Ω

k(F + divϕ) dx ≥ Ld(Ω)H ∗(sl) − r∗‖F‖L1(Ω).

Thus,

R ≥ J (k, l, ϕ) ≥ −slLd(Λ) +Ld(Ω)H ∗(sl) − r∗‖F‖L1(Ω) + inff ∗.

Thanks to Lemma 2.2(iii), sl is bounded uniformly in l. �

Lemma 3.2 Assume that (A1), (A2) and (A3) hold.

1. There exists M > 0 such that for all (k, l, ϕ) ∈ AR one has∫
Λ

∣∣l(y)
∣∣dy ≤ M. (3.12)

2. There exist a0, b0, c0 > 0 such that for all (k, l, ϕ) ∈ AR , the map k is r∗-Lipschitz, and
one has for all v ∈R

d

−c0 + a0|v| ≤ k(v) ≤ b0 + r∗|v|. (3.13)

Proof (1.) Recall that for (k, l, ϕ) ∈ AR , one has

J (k, l, ϕ) =
∫

Ω

k(F + divϕ) dx +
∫

Λ

l dy +
∫

Ω

f ∗(ϕ) dx.

By Lemma 3.1, for all (k, l, ϕ) ∈ AR , if we define sl := − infu∈Λ̄ l(u), we get

R ≥ J (k, l, ϕ) ≥ Ld(Ω)H ∗(sl) − r∗‖F‖L1(Ω) +
∫

Λ

l(y) dy +Ld(Ω) inff ∗.

Rearranging the terms, we get:∫
Λ

l(y) dy ≤ R −Ld(Ω)H ∗(sl) + r∗‖F‖L1(Ω) − inff ∗Ld(Ω).

By definition of sl we also have −slLd(Ω) ≤ ∫
Λ

l(y) dy and thus

−slLd(Ω) ≤
∫

Λ

l(y) dy ≤ R −Ld(Ω)H ∗(sl) + r∗‖F‖L1(Ω) − inff ∗Ld(Ω). (3.14)
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We consider the negative part of l defined by l− := max{−l,0} and note that∫
Λ

∣∣l(y)
∣∣dy =

∫
Λ

l(y) dy + 2
∫

Λ

l−(y) dy. (3.15)

Observe that, by the definition of sl , we have l− ≤ |sl |. This, combined with (3.14), (3.15)
and (3.8) yields (3.12).

(2.) Let (k, l, ϕ) ∈ AR . Since k = l#, by Eq. (3.2), k is a r∗-Lipschitz as Λ has diameter
less or equal to r∗. Next, we have

k(0) = sup
u∈Λ̄,t>0

{−t l(u) − H(t)
}

= sup
t>0

{−tsl − H(t)
}
.

As sl is uniformly bounded, the growth condition on H ensures that |k(0)| is uniformly
bounded say by some b0 > 0. We get then the inequality k(v) ≤ b0 + r∗|v| for all v ∈R

d .
Because of the hypothesis on the domain Λ, we take a0 > 0 such that B(0, a0) ⊂ Λ. As

(k, l, ϕ) ∈ AR , we use relation (3.4) to obtain for v �= 0

k(v) ≥ v ·
(

a0
v

|v|
)

− l

(
a0

v

|v|
)

− H(1). (3.16)

Thanks to inequality (3.12),
∫

Λ
|l|dy is uniformly bounded in l. We use in addition the fact

that l is bounded to deduce that supy∈B̄(0,a0) |l|(y) is bounded by a constant independent of l

(see for instance Theorem 1, p. 236 in [6]). Thus Eq. (3.16) implies that there exists c0 > 0
such that k(v) ≥ a0|v| − c0 for all v ∈R

d . �

Proposition 3.3 Assume that (A1), (A2), and (A3) hold. Assume S is a finite dimensional
non-empty closed and convex subset of W

1,q

0 (Ω,Rd×d). Then, the functional J admits a
minimizer (k0, l0, ϕ0) in A ′.

Proof Let (k̄, l̄, ϕ̄) ∈ A . Set R = J (k̄, l̄, ϕ̄). Take a minimizing sequence {(kn, ln, ϕn)}n∈N∗
of problem (3.5) that is in AR . By Lemma 3.1 and the growth condition on f ∗ we
may assume without loss of generality that {ϕn}∞

n=1 converges to some ϕ0 ∈ S weakly
in Lq(Ω,Rd×d). Since Span(S) is finite dimensional, {ϕn}∞

n=1 converges to some ϕ0 ∈ S
strongly in the Lq(Ω,Rd×d) norm. We deduce∫

Ω

f ∗(ϕ0) dx ≤ lim inf
n→∞

∫
Ω

f ∗(ϕn) dx. (3.17)

From Lemma 3.2, as ln is convex, we use Ascoli-Arzelà Theorem together with Theorem 1,
p. 236 in [6] to deduce that up to a subsequence, we may assume that (kn, ln) converges
locally uniformly R

d × Λ to (k0, l0) ∈ C′. The Lebesgue dominated convergence together
with inequality (3.13) yield∫

Ω

k(F + divϕ0) dx ≤ lim inf
n→∞

∫
Ω

kn(F + divϕn) dx. (3.18)

Since {ln}∞
n=1 is uniformly bounded below (thanks to Lemma 3.1), by Fatou’s Lemma we

get ∫
Λ

l0 dy ≤ lim inf
n→∞

∫
Λ

ln dy. (3.19)
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By inequalities (3.17), (3.18) and (3.19), we get

J (k0, l0, ϕ0) ≤ lim inf
n→∞ J (kn, ln, ϕn)

and (k0, l0, ϕ0) is a minimizer of J over A ′. �

3.2 A Uniqueness Result

Here, we prove the main result of this section. We will need the following lemma which is in
the spirit of Lemma 4.3 and Lemma 4.4 in [2]. A proof of Lemma 3.4 is given in Sect. A.1.

Lemma 3.4 Assume that (A2) holds. Consider a lower semicontinuous function l0 :Rd → R̄

such that infΛ̄ l0 > −∞; l0 is finite on Λ and l0 ≡ +∞ on R
d \ Λ̄. Set k0 = (l0)

#. Let v ∈R
d

be such that k0 is differentiable at v.

1. There exist unique u0 ∈ Λ̄ and t0 > 0 such that k0(v) = −t0l0(u0) − H(t0) − u0 · v. In
addition, u0 and t0 are characterized by u0 = ∇k0(v) and H ′(t0) + l(u0) = 0.

2. Let l̂ ∈ Cb(R
d) and let 1 ≥ ε > 0. Define lε = l0 + εl̂ and kε = (lε)

#.
(a) There exists a constant M independent of v and ε such that∣∣∣∣kε(v) − k0(v)

ε

∣∣∣∣≤ M.

(b) We have

lim
ε→0

kε(v) − k0(v)

ε
= −t0 l̂(u0).

Next, we give the main result of this section.

Theorem 3.5 Assume that (A1), (A2), and (A3) hold. Assume S is a finite dimensional non-
empty closed and convex subset of W

1,q

0 (Ω,Rd×d). Assume F satisfies the condition (ND)S .
Then, problems (3.1) and (3.6) are dual. Problem (3.6) admits a maximizer (k0, l0, ϕ0) with
k0 = l#

0 and l0 = (k0)#. Problem (3.1) admits a unique minimizer (u0, β0). Moreover u0

satisfies {
u0 = ∇k0(F + divϕ0)

ϕ0 ∈ ΦS(u0).

Proof Step 1. For (u,β) ∈ U ∗
S and (k, l, ϕ) ∈ A , one has

I (u,β) = V
f
S (u) +

∫
Ω

(
H(β) − F · u) dx

≥
∫

Ω

(−u · (div ϕ + F)
)
dx −

∫
Ω

f ∗(ϕ) dx

+
∫

Ω

H(β)dx +
∫

Ω

βl(u) dx −
∫

Λ

l(y) dy

≥
∫

Ω

−k(div ϕ + F) dx −
∫

Ω

f ∗(ϕ) dx −
∫

Λ

l(y) dy.
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Thus I (u,β) ≥ −J (k, l, ϕ) with equality if and only if ϕ ∈ ΦS(u) and

k(F + divϕ) + βl(u) + H(β) = u · (F + divϕ).

Note that if k is convex, the map ∇k(F + divϕ) is well defined as the map F + divϕ is non-
degenerate. Using Lemma 3.4(i), it follows that if k is convex, then I (u,β) = −J (k, l, ϕ) if
and only if ⎧⎪⎨

⎪⎩
ϕ ∈ ΦS(u)

u = ∇k(F + divϕ)

β = (H ′)−1(−l(u)).

(3.20)

Step 2. Thanks to Eq. (3.7), we may find a maximizer (k0, l0, ϕ0) of problem (3.5) satisfy-
ing k0 = l#

0 and l0 = (k0)#. The function u0 = ∇k0(F +divϕ0) is well defined as k0 is convex
and we set β0 = (H ′)−1(−l(u0)). We have to show that (u0, β0) ∈ U ∗

S and ϕ0 ∈ ΦS(u0).
Step 3. Let l̄ ∈ Cc(R

d). For ε ∈ (0,1), define lε = l0 + εl̄ and kε = (lε)
#. Using

Lemma 3.4, one has

lim
ε→0+

∫
Ω

(1/ε)
(
k0(F + divϕ0) − kε(F + divϕ0)

)
dx

=
∫

Ω

β0 l̄
(∇k0(F + divϕ0)

)
dx =

∫
Ω

β0 l̄(u0) dx. (3.21)

Since J (k0, l0, ϕ0) ≤ J (kε, lε, ϕ0), we deduce that − ∫
Λ

l̄ dy +∫
Ω

β0 l̄(u0) dx ≤ 0. As we can
replace l̄ by −l̄, one deduces that

∫
Λ

l̄ dy = ∫
Ω

β0 l̄(u0) dx. Therefore (u0, β0) ∈ U ∗
S .

Step 4. Let ϕ ∈ S . For ε ∈ (0,1), set ϕε = εϕ + (1 − ε)ϕ0. By the convexity of S , the
map ϕε belongs to S . As J (k0, l0, ϕ0) ≤ J (k0, l0, ϕε), we have

0 ≤
∫

Ω

(1/ε)
(
k0
(
F + divϕ0 + ε div(ϕ − ϕ0)

)− k0(F + divϕ0)
)
dx

+ (1/ε)

∫
Ω

(
f ∗(ϕ0 + ε(ϕ − ϕ0)

)− f ∗(ϕ0)
)
dx (3.22)

Thanks to Lemma 3.4, Inequality (3.22) implies∫
Ω

(
u0 · div(ϕ − ϕ0) + grad

[
f ∗](ϕ0) · (ϕ − ϕ0)

)
dx

=
∫

Ω

(∇k0(F + divϕ0) · div(ϕ − ϕ0) + grad
[
f ∗](ϕ0) · (ϕ − ϕ0)

)
dx

≥ 0.

It follows from Proposition 2.8 that ϕ0 ∈ ΦS(u0).
Step 5. Since (u0, β0) ∈ U ∗

S , ϕ0 ∈ ΦS(u0), u0 = ∇k0(F + divϕ0), and β0 =
(H ′)−1(−l(u0)), we deduce that I (u0, β0) = J (k0, l0, ϕ0) and u0 is a minimizer of prob-
lem (3.1) thanks to relation (3.20). Suppose (u1, β1) ∈ U ∗

S is another minimizer of
problem (3.1). Then we have I (u1, β1) = J (k0, l0, ϕ0) and by relation (3.20), we get
u1 = ∇k0(F + divϕ0) which implies u1 = u0. Next the strict convexity of H yields that
β0 = β1. We conclude that (u0, β0) is the unique minimizer of problem (3.1) and u0 is
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characterized by

{
u0 = ∇k0(F + divϕ0)

ϕ0 ∈ ΦS(u0). �

Corollary 3.6 Assume that (A0), (A1), (A2), and (A3) hold. Assume S is a finite dimen-
sional non-empty closed and convex subset of W

1,q

0 (Ω,Rd×d) and ∇ϕ is non-degenerate
whenever ϕ ∈ S . Suppose F has a countable range (thus degenerate). Then, F satisfies the
condition (ND)S and problem (3.1) admits a unique solution.

Corollary 3.7 Assume that (A1), (A2), and (A3) hold. Assume S is a finite dimensional
subspace of W

1,q

0 (Ω,Rd×d) and ∇ϕ has a countable range whenever ϕ ∈ S . Suppose F is
non-degenerate. Then, F satisfies the condition (ND)S and problem (3.1) admits a unique
solution.

4 The Incompressible Case

Throughout this section, we assume that S is a subset of W
1,q

0 (Ω,Rd×d). We consider the
following problem:

inf
u∈U1

S

{
I0(u) := V

f
S (u) −

∫
Ω

F · u dx

}
(4.1)

and we recall that the set U1
S is defined as

U 1
S =

{
u ∈ US :

∫
Ω

l
(
u(x)

)
dx =

∫
Λ

l(y) dy ∀l ∈ Cc

(
R

d
)}

.

We assume Ld(Ω) = Ld(Λ) so that U 1
S is non-empty.

4.1 Existence and Uniqueness via Duality

We study problem (4.1) via duality. Let u ∈ U 1
S , ϕ ∈ S , l ∈ C(Λ) and k : Rd → R satisfy

k(v) + l(u) ≥ u · v for all u ∈ Λ and all v ∈ R
d . One has

V
f
S (u) −

∫
Ω

F · u dx (4.2)

= −
∫

Ω

u · (F + divϕ) dx +
∫

Ω

l(u) dx −
∫

Λ

l(y) dy −
∫

Ω

f ∗(ϕ) dx (4.3)

≥ −
∫

Ω

k(F + divϕ) dx −
∫

Λ

l(y) dy −
∫

Ω

f ∗(ϕ) dx. (4.4)

This suggests that we consider the dual problem

M0 := inf
(k,l,ϕ)∈A0

{
J (k, l, ϕ) :=

∫
Ω

k(F + divϕ) dx +
∫

Λ

l(y) dy +
∫

Ω

f ∗(ϕ) dx

}
(4.5)
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with A0 being the set of all (k, l, ϕ) such that ϕ ∈ S , l ∈ C(Λ), infΛ l = 0 and k : Rd → R

satisfies k(v) + l(u) ≥ u · v for all u ∈ Λ̄, and all v ∈R
d . Remark that we have

−M0 = sup
(k,l,ϕ)∈A0

{−J (k, l, ϕ)
}
. (4.6)

4.1.1 Existence and Regularity of Minimizers of Problem (4.5)

Denote by C the set of all (k, l) such that k : Rd → R and l :Rd →R∪ {∞} satisfy

k(v) + l(u) ≥ u · v; ∀u ∈ Λ̄; ∀v ∈R
d (4.7)

and l ≡ ∞ on R
d \ Λ̄. Consider the subset C0 of C consisting of (k, l) ∈ C such that l ∈ C(Λ)

and infΛ l = 0. The following lemma is standard:

Lemma 4.1 Let (k, l) ∈ C. It holds that (l∗, l∗∗) ∈ C, l∗ ≤ k, 0 ≤ l∗∗ ≤ l and l∗∗∗ = l∗. If
(k, l) ∈ C0 then l∗(0) = 0.

Let us denote by C ′
0 the set of all (k, l) ∈ C0 such that l∗ = k, k∗ = l, k(0) = 0, and l ≥ 0,

and by A′
0 the set of all (k, l, ϕ) with (k, l) ∈ C ′

0 and ϕ ∈ S . Remark that an element in C ′
0

is the couple (χΛ̄, (χΛ̄)∗). Hence A′
0 is nonempty when S is nonempty. One readily checks

that, in light of Lemma 4.1, problem (4.5) has the same infimum value as

inf
(k,l,ϕ)∈A′

0

{
J (k, l, ϕ) :=

∫
Ω

k(F + divϕ) dx +
∫

Ω

f ∗(ϕ) dx +
∫

Λ

l(y) dy

}
. (4.8)

We recall that r∗ is such that B(0,1/r∗) ⊂ Λ ⊂ B(0, r∗/2).

Lemma 4.2 Assume that (A1) and (A3) hold. Assume that the set S is a finite dimensional
non-empty closed and convex subset of W

1,q

0 (Ω,Rd×d). Then, problem (4.8) admits a mini-
mizer (k0, l0, ϕ0) ∈ A′

0 with k0 convex and r∗-Lipschitz and k0(0) = 0.

Proof Consider a minimizing sequence {(kn, ln, ϕn)}∞
n=1 of problem (4.8). Since kn = l∗n and

ln = (kn)
∗, kn is r∗-Lipschitz. As kn(0) = 0, we use Ascoli-Arzelà theorem to deduce that

a subsequence of {kn}∞
n=1 converges locally uniformly to some k0. Next, using the growth

condition (2.5) on f ∗ as well as the facts that kn is r∗-Lipschitz, kn(0) = 0, we establish the
following estimate:

J (kn, ln, ϕn) ≥
∫

Ω

(
−r∗|F + divϕn| + cp |ϕn|q

q
− b

)
dx +

∫
Λ

ln(y) dy. (4.9)

As the left hand side of (4.9) is bounded, ln ≥ 0 and S is finite dimensional, we deduce
from (4.9) that a subsequence of {ϕn}∞

n=1 converges strongly to some ϕ0 in W
1,q

0 (Ω,Rd×d).
Invoking (4.9) again, we show that {∫

Λ
ln(y) dy}∞

n=1 is bounded. This, combined with the
fact that ln is non-negative and convex, yields the existence of a subsequence of {ln}∞

n=1 that
converges locally uniformly to some l0 (see for instance Theorem 1, p. 236 in [6]). One
readily checks that (k0, l0, ϕ0) ∈ A′

0. We next exploit lower semi-continuity properties of the
functional J to conclude that (k0, l0, ϕ0) is a minimizer of J over A′

0. �
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4.1.2 A Duality Result

We have the following theorem.

Theorem 4.3 Assume that (A1) and (A3) hold. Assume S is a finite dimensional non-
empty closed and convex subset of W

1,q

0 (Ω,Rd×d). Suppose that the map F satisfies the
condition (ND)S . Then problems (4.1) and (4.6) are dual. Problem (4.6) admits a maxi-
mizer (k0, l0, ϕ0) with k0 = l∗0 and l0 = (k0)

∗. Problem (4.1) admits a unique minimizer u0.
Moreover u0 satisfies {

u0 = ∇k0(F + divϕ)

ϕ0 ∈ ΦS(u0).

Proof Suppose u ∈ U 1
S and (k, l, ϕ) ∈ A0. Using (4.3) and (4.4), we see that I0(u) ≥

−J (k, l, ϕ) with equality if and only if ϕ ∈ ΦS(u) and l(u)+ k(F + divϕ) = u · (F + divϕ)

for almost every x ∈ Ω . The latter condition reduces to u(x) = ∇k(F (x) + divϕ(x)) if k

is convex, under the assumption F + divϕ is non-degenerate. Now, let (k0, l0, ϕ0) ∈ A′
0 be

a minimizer of J over A0. Since F + divϕ0 is non-degenerate and k0 is convex, the map
u0 = ∇k0(F + divϕ0) is well defined.

Variation around l0. Let l̄ ∈ Cc(R
d). For ε ∈ (0,1), set lε = l0 + εl̄ and kε = (lε)

∗. Let
v ∈ R

d be a point where k0 is differentiable. Using the measurable selection theorem, one
deduces that there exists Tε :Rd →R

d measurable such that for all ε ∈ [0,1)

kε(v) = Tε(v) · v − lε
(
Tε(v)

)
.

Then, for ε ∈ (0,1), we have

l̄
(
Tε(v)

)≤ −(1/ε)
(
kε(v) − k0(v)

)≤ l̄
(
T0(v)

)
(4.10)

and ∣∣(1/ε)
(
kε(v) − k0(v)

)∣∣≤ ‖l̄‖L∞(Rd ). (4.11)

Moreover,

lim
ε→0+ −(1/ε)

(
kε(v) − k0(v)

)= l̄
(
T0(v)

)
. (4.12)

We refer the reader to Lemma A.3 for (4.10)–(4.12). Hence, as

T0(F + divψ0) = ∇k0(F + divψ0) = u0 a.e.

using again (4.12), one has

lim
ε→0+

∫
Ω

(1/ε)
(
k0(F + divψ0) − kε(F + divψ0)

)
dx

=
∫

Ω

l̄
(
T0(F + divψ0)

)
dx =

∫
Ω

l̄(u0) dx. (4.13)

Since J (k0, l0, ϕ0) ≤ J (kε, lε, ϕ0), we deduce from (4.13) that − ∫
Λ

l̄ + ∫
Ω

l̄(u0) ≤ 0. By
replacing l by −l in the above argument, one deduces that

∫
Λ

l̄ = ∫
Ω

l̄(u0). As a result,
u0 ∈ U 1

S .
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Variation around ϕ0. Let ϕ ∈ S . For ε ∈ (0,1), by convexity of S , we have ϕε := εϕ +
(1 − ε)ϕ0 ∈ S . Then J (k0, l0, ϕ0) ≤ J (k0, l0, ϕε). This implies that

0 ≥
∫

Ω

(1/ε)
(
k0(F + divϕ0) − k0

(
F + divϕ0 + ε div(ϕ − ϕ0)

)
+ f ∗(ϕ0) − f ∗(ϕ0 + ε(ϕ − ϕ0)

)
dx.

As ε tends to 0+, the above equation yields

0 ≥ −
∫

Ω

∇k0(F + divϕ0) · div(ϕ − ϕ0) − grad
[
f ∗](ϕ0) · (ϕ − ϕ0) dx

It follows from Proposition 2.8 that ϕ0 ∈ ΦS(u0). �

Corollary 4.4 Assume that (A0), (A1), and (A3) hold. Assume that S is a finite dimensional
non-empty closed and convex subset of W

1,q

0 (Ω,Rd×d) and ∇ϕ is non-degenerate whenever
ϕ ∈ S . Suppose F has a countable range (thus degenerate). Then, F satisfies the condition
(ND)S and problem (4.1) admits a unique solution.

Corollary 4.5 Assume that (A1) and (A3) hold. Assume that S is a finite dimensional
subspace of W

1,q

0 (Ω,Rd×d) and ∇ϕ has a countable range whenever ϕ ∈ S . Suppose F is
non-degenerate. Then, F satisfies the condition (ND)S and problem (4.1) admits a unique
solution.

4.2 A Link Between Problem (3.1) and Problem (4.1)

Here, we explore the relationships between problem (3.1) and problem (4.1). For this pur-
pose, we make a further assumption of the domains Ω and Λ by requiring that Ω = Λ.
Assume (A1) holds and recall {Hn}∞

n=0 as defined in (2.7) and (2.8). Then, Lemma 2.3 en-
sures that (A2) holds for Hn for all n ≥ 1. Define

In(u,β) := V
f
S (u) +

∫
Ω

(Hn(β) − u · F) dx n ≥ 1

and

I0(u) := V
f
S (u) −

∫
Ω

u · F dx.

Recall that C0 is the set of all (k, l) such that l ∈ C(Λ̄), inf l = 0 and k :Rd →R satisfies
for all u ∈ Λ and all v ∈R

d :

k(v) + l(u) ≥ u · v. (4.14)

Let Cn be the set of all (k, l) such that l ∈ C(Λ̄) and k :Rd → R satisfy:

k(v) + t l(u) + Hn(t) ≥ u · v; ∀u ∈ Λ; ∀v ∈R
d . (4.15)

We denote by A0 the set of all (k, l, ϕ) satisfying (k, l) ∈ C0 and ϕ ∈ S. Similarly An denotes
the set of all (k, l, ϕ) satisfying (k, l) ∈ Cn and ϕ ∈ S. If (k, l, ϕ) ∈ A0 ∪An, we still set

J (k, l, ϕ) =
∫

Ω

k(F + divϕ) dx +
∫

Λ

l(y) dy +
∫

Ω

f ∗(ϕ) dx.
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Lemma 4.6 Assume that (A1), (A2), and (A3) hold. Assume that S is a finite dimensional
non-empty closed and convex subset of W

1,q

0 (Ω,Rd×d). For each n ∈ N, let (un,βn) be the
unique minimizer of In over U ∗

S as given by Theorem 3.5 and let (kn, ln, ϕn) be a minimizer
of J over An with kn convex and r∗-Lipschitz as ensured by Proposition 3.3 and Lemma 4.2.
Then,

1. The sequence {In(un,βn)}n∈N∗ is bounded.
2. The sequence {βn}n∈N∗ converges to 1 in L2(Ω).
3. The sequence {ϕn}n∈N∗ admits a subsequence that converges to some ϕ̄ in S with respect

to the W
1,q

0 (Ω,Rd×d)-norm.

Proof Step 1. Let ū ∈ U 1
S . We have (ū,1) ∈ U ∗

S and thus In(un,βn) ≤ In(ū,1) for all n ≥ 1.
As Hn(1) = 0, it holds that In(ū,1) = V

f
S (ū) − ∫

Ω
ū · F dx which is finite. Hence

R0 := V
f
S (ū) −

∫
Ω

ū · F dx ≥ In(un,βn). (4.16)

On the other hand, we use growth condition (2.5) to get

In(un,βn) ≥
∫

Ω

(−b + un · F) dx ≥ −bLd(Ω) − r∗‖F‖L1(Ω,Rd ) := −R1. (4.17)

Finally, we use (4.16) and (4.17) to prove (1).
Step 2. Let ϕ0 ∈ S . As un has values in Λ, it holds that

V
f
S (un) = sup

ϕ∈S

∫
Ω

(−un divϕ − f ∗(ϕ)
)
dx ≥

∫
Ω

(−r∗|divϕ0| − f ∗(ϕ0)
)
dx =: R2 (4.18)

and ∫
Ω

−un · F dx ≥ −r∗‖F‖L1(Ω,Rd ). (4.19)

We combine (4.16), (4.17), (4.18), (4.19) to get

R2 − r∗‖F‖L1(Ω,Rd ) +
∫

Ω

Hn(βn) dx ≤ In(un,βn) ≤ R0. (4.20)

Setting c0Ld(Ω) := R0 − R2 + r∗‖F‖L1(Ω,Rd ), we use Lemma 2.3 and (4.20) to obtain

∫
Ω

n
(
βn(x) − 1

)2
dx ≤ (

c0 + H̄ − H(1)
)
Ld(Ω).

This establishes (2).
Step 3. As {Hn}∞

n=1 is a non-decreasing sequence that converges to H0, it holds that
Cn+1 ⊂ Cn ⊂ C0 for all n ∈N. Thus, as (kn, ln) ∈ Cn, we have (kn, ln) ∈ C0 so that

kn(F + divϕn) + ln(x) ≥ x · (F + divϕn). (4.21)
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Since −J (kn, ln, ϕn) = In(un,βn), we have J (kn, ln, ϕn) ≤ R1 for all n ∈N
∗. This, combined

with Ω = Λ, and (4.21) yields

R1 ≥
∫

Ω

(
kn(F + divϕn) + ln(x) + f ∗(ϕn)

)
dx (4.22)

≥
∫

Ω

(
x · (F + divϕn) + f ∗(ϕn)

)
dx. (4.23)

In view of the growth condition (2.5) and boundedness of Ω , (4.22) implies

R1 ≥
∫

Ω

(
r∗|F + divϕn| − b + cp |ϕn|q

q

)
dx. (4.24)

As the space S is of finite dimension and the div operator is continuous on S , we con-
clude that {ϕn}∞

n=1 is convergent up to a subsequence in W
1,q

0 (Ω,Rd×d) which allows us to
conclude (3). �

Theorem 4.7 Assume that (A1), (A2), and (A3) hold. Assume that S is a finite dimensional
non-empty closed and convex subset of W

1,q

0 (Ω,Rd×d). Assume F satisfies the condition
(ND)S . For each n ∈ N, let (un,βn) be the unique minimizer of In over U ∗

S as given by
Theorem 3.5 and let (kn, ln, ϕn) be a minimizer of J over An with kn convex and r∗-Lipschitz
as ensured by Proposition 3.3 and Lemma 4.2. Suppose that kn is differentiable for all n ∈
N

∗. Then, the sequence {un}n∈N∗ converges almost everywhere to the unique minimizer u0

of I0 over U 1
S . In addition, the minima {In(un,βn)}∞

n=1 converge to I0(u0).

Proof Step 1. For n ∈ N
∗, set k̄n = kn − kn(0). Note that we have k̄n(0) = 0. Since the

functions kn are r∗-Lipschitz, so are the functions k̄n and we obtain that, up to a subse-
quence, the sequence {k̄n}∞

n=1 converges locally uniformly to a certain function k̄. Since
F + divϕn is non-degenerate, we have that ∇ k̄n(F + divϕn) is well-defined. Furthermore,
Lemma 4.6 ensures that {ϕn}∞

n=1 converges up to a subsequence to some ϕ̄ ∈ S with respect
to the W 1,q (Ω,Rd)-norm. As a result, {divϕn}∞

n=1 converges to div ϕ̄ in Lq(Ω,Rd). Since S
is of finite dimension, the Lq convergence of {divϕn}∞

n=1 reduces to a pointwise convergence.
Next, using the convexity of the k̄n and the pointwise convergence of {divϕn}∞

n=1 to divϕ,
we deduce that up to a subsequence {∇ k̄n(F + divϕn)}∞

n=1 converges a.e to ∇ k̄(F + div ϕ̄)

(cf. [13] Theorem 25.7).
As a duality result, Theorem 3.5 ensures that ∇ k̄n(F + divϕn) = un. If we denote ū :=

∇ k̄(F + div ϕ̄), then, up to a subsequence, the sequence {un}n∈N converges a.e to ū.
Step 2. Let l ∈ Cb(R

d). The strong convergence in L2(Ω) of {βn}∞
n=1 to 1 established

in Lemma 4.6 and the almost everywhere convergence of {un}n∈N to ū obtained in Step 1
ensure that limn→∞

∫
Ω

βnl(un) dx = ∫
Ω

l(ū(x)) dx. As (un,βn) ∈ U ∗
S ,

∫
Ω

βn(x)l(un) dx =∫
Ω

l(y) dy for all l ∈ Cb(R
d). It follows that in the limit

∫
Ω

l(ū) dx = ∫
Ω

l(y) dy for all
l ∈ Cb(R

d) and thus ū ∈ U 1
S .

Step 3. We recall that

In(u,β) = V
f
S (u) +

∫
Ω

(
Hn(β) − u · F )

dx.

Since u �→ V
f

S (u) is lower-semicontinuous as a supremum of affine functions, by applying
the Fatou’s Lemma, we have

lim inf
n

In(un,βn) ≥ V
f

S (ū) +
∫

Ω

−ū · F dx = I0(ū).
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Let u0 be the unique minimizer of I0 over U 1
S as given by Theorem 4.3. Then,

lim inf
n

In(un,βn) ≥ I0(ū) ≥ I0(u0). (4.25)

Meanwhile, as Cn ⊂ C0 and (k0, l0, ϕ0) is a minimizer of J over C0, we have

J (k0, l0, ϕ0) ≤ J (kn, ln, ϕn).

This, along with the duality established in Theorem 3.5 imply that

lim sup
n

In(un,βn) ≤ lim sup
n

(−J (kn, ln, ϕn)
)≤ −J (k0, l0, ϕ0) = I0(u0). (4.26)

We combine (4.25) and (4.26) to obtain I0(ū) = I0(u0). As u0 is the unique minimizer of I0

over U 1
S we have u0 = ū. We note that the limit ū does not depend on the subsequence of

{un}n chosen. Thus, the whole sequence {un}n converges a.e. to u0. In addition, {In(un,βn)}n

converges to I0(u0). �
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Appendix

A.1 Proof of Lemma 3.4

We will prove Lemma 3.4 through two lemmas. The results of the first lemma can be found
in Lemma 4.3 of [2]. We give here a sketch of the proof for the convenience of the reader.

Lemma A.1 Assume that (A2) holds. Consider a lower semicontinuous function l :Rd → R̄

such that infΛ̄ l > −∞; l is finite on Λ and l ≡ +∞ on R
d \ Λ̄. Set k = l# and let w ∈ R

d .
Then:

1. There exist ū ∈ Λ̄ and t̄ > 0 such that

k(w) = −t̄ l(ū) − H(t̄) − ū · w. (A.1)

Moreover, ū and t̄ satisfy ū ∈ ∂k(w) and H ′(t̄) + l(ū) = 0.
2. If k is differentiable at w then ū and t̄ are uniquely determined by ū = ∇k(w) and

t̄ = (H ′)−1(−l(ū)).

Proof (1.) We have

k(w) = sup
{
u · w − l(u)t − H(t) : u ∈ Λ̄, t > 0

}
. (A.2)

Consider a maximizing sequence {(un, tn)}∞
n=1 in (A.2). As 0 ∈ Λ, we may assume without

loss of generality that

unw − l(un)tn − H(tn) ≥ 0 · w − l(0) − H(1)

for n ≥ 1. It follows that

|w|r∗ + l(0) + H(1) ≥
(

inf
Λ̄

l
)
tn + H(tn)
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for n ≥ 1. In light of the growth condition on H in (A2) there exists a positive real number
α such that {tn}∞

n=1 ⊂ [α,α−1]. As Λ is bounded, we may assume without loss of generality
that the sequence {(un, tn)}∞

n=1 converges to some (ū, t̄ ) ∈ Λ̄ × [α,α−1]. We next use the
lower semicontinuity of H and l to deduce that

k(w) = ū · w − l(ū)t̄ − H(t̄). (A.3)

Note that k(w) ≥ ū · w − l(ū)t − H(t) for all t > 0. In view of (A.3), it follows that
g : (0,∞) → R defined by g(t) = ū · w − l(ū)t − H(t) admits a maximum at t̄ . As g

is differentiable at t̄ , we have g′(t̄) = 0, that is, l(ū) + H ′(t̄) = 0. Next, observe that
k(z) ≥ ū · z − l(ū)t̄ − H(t̄) for all z ∈ R

d . In light of the convexity of k we have that
ū ∈ ∂k(w).

(2.) Assume that k is differentiable at w. Then, ū is uniquely determined as ū = ∇k(w).
As H ′(t̄) = −l0(ū) and H ′ is a bijection, we obtain that t̄ is also uniquely determined as
t̄ = (H ′)−1(−l(ū)). �

The second lemma which is inspired by Lemma 4.4 in [2] is the following:

Lemma A.2 Assume that (A2) holds. Consider a lower semicontinuous function l0 :Rd →
R̄ such that infΛ̄ l0 > −∞; l0 is finite on Λ and l0 ≡ +∞ on R

d \ Λ̄. Set k0 = (l0)
#. Let

l̂ ∈ Cb(R
d) and let 1 ≥ ε > 0. Define lε = l0 + εl̂ and kε = (lε)

#. Let v ∈ R
d be such that k0

is differentiable at v.

1. There exists a constant M independent of v and ε such that∣∣∣∣kε(v) − k0(v)

ε

∣∣∣∣≤ M. (A.4)

2. We have

lim
ε→0

kε(v) − k0(v)

ε
= −t0 l̂(u0). (A.5)

Proof Note that the map lε = l0 + εl̂ is bounded below by m − |l̂|∞. As kε = (lε)
# and

k0 = (l0)
#, Lemma A.1 ensures that there exist t0, tε > 0 and u0, uε ∈ Λ̄ such that

kε(v) = uεv − l(uε)tε − H(tε)

and

k0(v) = u0v − l(u0)t0 − H(t0).

We then have

kε(v) = −εl̂(uε)tε + uεv − l0(uε)tε − H(tε) ≤ −εl̂(uε)tε + k0(v) (A.6)

and

k0(v) = εl̂(u0)t0 + u0v − lε(u0)t0 − H(t0) ≤ εl̂(u0)t0 + kε(v). (A.7)

We combine (A.6) and (A.7) to get

−l̂(u0)t0 ≤ (kε(v) − k0(v))

ε
≤ −l̂(uε)tε . (A.8)
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Using again Lemma A.1 we have

tδ = (
H ′)−1(

lδ(uδ)
)
, uδ ∈ ∂kδ(v), δ ∈ {0, ε}.

As lδ is bounded below by m − |l|∞, we use the fact that H ′ is a continuous and strictly
increasing bijection from (0,∞) to R to deduce that tδ is bounded above by M1 > 0 given
by M1 := (H ′)−1(−m + |l̂|∞). This bound on tδ combined with (A.8) yields a constant
M := |l̂|∞(H ′)−1(−m + |l̂|∞) such that (A.4) holds. As a result limε→0+ kε(v) = k0(v).
Next, let {en}∞

n=1 ⊂ (0,1] converging to 0 such that lim supε→0 l̂(uε)tε = limn→∞ l̂(uen)ten .
Without loss of generality, we may assume that {uen}∞

n=1 converges to some ū ∈ Λ̄ and
{ten}∞

n=1 converges to t̄ ∈ [0,M1]. Exploiting the lower semicontinuity of l0, l̂ and H , we
get:

k0(v) = lim
n→∞ ken(v)

= lim
n→∞uenv − len (uen)ten − H(ten)

≤ ūv − l0(ū)t̄ − H(t̄)

≤ k0(v).

It follows that k0(v) = ūv − l0(ū)t̄ − H(t̄). As k0 is differentiable at v, we have t0 = t̄ and
u0 = ū. We use (A.8), the definition of {en}∞

n=1, the convergence of {uen}∞
n=1 and {ten}∞

n=1 to
obtain

−t0 l̂(u0) ≤ lim inf
ε→0

−tε l̂(uε) ≤ lim sup
ε→0

−tε l̂(uε) = lim
n→∞−ten l̂(uen) = −t0 l̂(u0). (A.9)

As a result, limε→0 −tε l̂(uε) = −t0 l̂(u0). We invoke one more time Eq. (A.8) to obtain
(A.5). �

A.2 Some Properties of the Legendre Transform

We have the following lemma which is similar to Lemma 3.4 but uses the Legendre trans-
form instead of the (·)# operator.

Lemma A.3 Consider a lower semicontinuous function l0 : Rd → R̄ such that infΛ̄ l0 >

−∞; l0 is finite on Λ and l0 ≡ +∞ on R
d \ Λ̄. Set k0 = (l0)

∗.

1. There exists a measurable map T0 : Rd → R
d such that k0(v) = v · T0(v) − l0(T0(v)) for

all v ∈ R
d and T0(v) = ∇k0(v) whenever k0 is differentiable at v ∈R

d .
2. Let l̂ ∈ Cb(R

d) and let 1 ≥ ε > 0. Define lε = l0 + εl̂ and kε = (lε)
∗.

(a) For all v ∈ R
d we have: ∣∣∣∣kε(v) − k0(v)

ε

∣∣∣∣≤ |l̂|∞.

(b) For ε ∈ (0,1), there exists a map Tε : Rd → R
d satisfying for all v ∈ R

d : kε(v) =
vTε(v) − lε(Tε(v)). When k0 is differentiable at v ∈ R

d , we have limε→0 Tε(v) =
∇k0(v) and

lim
ε→0

kε(v) − k0(v)

ε
= −t0 l̂

(∇k0(v)
)
.
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Proof (1.) Let v ∈R
d . We have

k0(v) = sup
{
uv − l0(u) : u ∈ R

d
}= sup

{
uv − l0(u) : u ∈ Λ̄

}
.

We use the lower semicontinuity of l0 and the compactness of Λ̄ to deduce that there exists
ū ∈ Λ such that k0(v) = ūv − l0(ū). We have k0(w)− (ūw − l0(ū)) ≥ 0 for all w ∈R

d while
k0(v) − (ūv − l0(ū)) = 0. Since k0 is convex, we deduce that ū ∈ ∂k0(v).

Next, for v ∈ R
d , define

Γ (v) = {
u ∈ Λ̄ : k0(v) = uv − l0(u)

}
.

Assume {un}n∈N ⊂ R
d converges to u; {vn}n∈N ⊂ R

d converges to v and for all n ∈ N, one
has un ∈ Γ (vn). Then u ∈ Γ (v). Indeed, one has

k0(v) ≤ lim inf
n→∞ k0(vn) = lim inf

n→∞
(
unvn − l0(un)

)≤ uv − l0(u) ≤ k0(v).

Therefore, uv − l0(u) = k0(v) and u ∈ Γ (v). As a result, the multifunction Γ : Rd ⇒R
d is

closed and nonempty valued. By the Measurable Selection Theorem [14, Corollary 14.6],
there exists a measurable map T0 : Rd → R

d such that for all v ∈ R
d , one has T0(v) ∈

Γ (v). That is k0(v) = vT0(v)− l0(T0(v)). As T (v) ∈ Γ (v) ⊂ ∂k0(v), we also have T0 = ∇k0

almost everywhere.
(2.) For ε > 0, lε is bounded below and satisfies the hypothesis on l0. Let kε = l∗ε and

consider a map Tε satisfying for all v ∈R
d : kε(v) = vTε(v) − lε(Tε(v)) as given by part 1.).

We have for v ∈R
d :

kε(v) = vTε(v) − lε
(
Tε(v)

)= −εl̂
(
Tε(v)

)+ vTε(v) − l0
(
Tε(v)

)≤ −εl̂
(
Tε(v)

)+ k0(v).

(A.10)
Similarly, for v ∈ R

d we have

k0(v) = vT0(v)− l0
(
T0(v)

)= εl̂
(
T0(v)

)+ vT0(v)− lε
(
T0(v)

)≤ εl̂
(
T0(v)

)+ kε(v). (A.11)

We combine (A.10) and (A.11) to get

−l̂
(
T0(v)

)≤ kε(v) − k0(v)

ε
≤ −l̂

(
Tε(v)

)
, (A.12)

which leads to ∣∣∣∣kε(v) − k0(v)

ε

∣∣∣∣≤ |l̂|∞. (A.13)

Consider a sequence {εn}n converging to 0. The sequence {Tεn(v)}n is bounded so we may
find a subsequence {ε′

n}n of {εn}n such that the sequence {Tε′
n
(v)}n converges to u ∈ Λ̄. We

then have:

k0(v) = lim
n→∞ kε′

n
(v) = lim

n→∞
(
vTε′

n
(v) − lεn

(
Tε′

n
(v)

))≤ vu − l0(u) ≤ k0(v). (A.14)

We use (A.14) to obtain k0(v) = vu − l0(u) and thus u = ∇k0(v) as k0 is differentiable at v.
It follows that limε→0 Tε(v) = ∇k0(v). We use Eq. (A.12) and the continuity of l̂ to obtain

lim
ε→0

kε(v) − k0(v)

ε
= −t0 l̂

(∇k0(v)
)
. �
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