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Abstract This paper deals with the quasilinear degenerate chemotaxis system with flux
limitation

⎧
⎪⎨

⎪⎩

ut = ∇ ·
(

up∇u
√

u2 + |∇u|2
)

− χ∇ ·
(

uq∇v
√

1 + |∇v|2
)

, x ∈ Ω, t > 0,

0 = �v − μ + u, x ∈ Ω, t > 0,

where Ω := BR(0) ⊂ R
n (n ∈ N) is a ball with some R > 0, and χ > 0, p,q ≥ 1, μ :=

1
|Ω|

∫

Ω
u0 and u0 is an initial data of an unknown function u. Bellomo–Winkler (Trans. Am.

Math. Soc. Ser. B 4, 31–67, 2017) established existence of an initial data such that the
corresponding solution blows up in finite time when p = q = 1. This paper gives existence
of blow-up solutions under some condition for χ and u0 when 1 ≤ p ≤ q.
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1 Introduction

In this paper we consider the quasilinear degenerate chemotaxis system with flux limitation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ ·
(

up∇u
√

u2 + |∇u|2
)

− χ∇ ·
(

uq∇v
√

1 + |∇v|2
)

, x ∈ Ω, t > 0,

0 = �v − μ + u, x ∈ Ω, t > 0,
(

up∇u
√

u2 + |∇u|2 − χ
uq∇v

√
1 + |∇v|2

)

· ν = 0, x ∈ ∂Ω, t > 0,

u(x,0) = u0(x), x ∈ Ω,

(1.1)

where Ω = BR(0) ⊂ R
n(n ∈ N) is a ball with some R > 0, χ > 0, p,q ≥ 1 and the initial

data u0 is a function fulfilling that

u0 ∈ C3(Ω) is radially symmetric and positive in Ω with
∂u0

∂ν
= 0 on ∂Ω (1.2)

and where

μ := 1

|Ω|
∫

Ω

u0(x) dx. (1.3)

The system (1.1) represents the situation such that a cellular slime moves towards higher
concentrations of the chemical substance, and the unknown function u = u(x, t) describes
the density of cell and the unknown function v = v(x, t) denotes the concentration of
chemoattractant at x ∈ Ω and t ≥ 0. This model is development of the chemotaxis system

ut = �u − ∇ · (u∇v), vt = �v − v + u; (1.4)

thanks to effect of the flux limitation, the system (1.1) describes the case that cell diffusivity
is suppressed; therefore the system (1.1) is innovative and important because it is considered
a sensitive dynamics in aggregation phenomena.

Before we introduce previous works about the system (1.1), we will recall known results
about the chemotaxis system (1.4):

The system (1.4) is proposed by Keller–Segel [14] and is called a Keller–Segel sys-
tem. About the Keller–Segel system it was known that the size of the initial data in some
Lebesgue norm determines behaviour of solutions; in the case that n = 1, Osaki–Yagi [21]
obtained global existence and boundedness of classical solutions of (1.4); in the case that
n = 2, it is shown that there is a critical value C > 0 (C = 8π in the radial setting and
C = 4π in the other setting) such that, if ‖u0‖L1(Ω) < C then global solutions exist ([20]),
and if m > C then there is an initial data satisfying that ‖u0‖L1(Ω) = m and the correspond-
ing solution blows up in finite time ([10, 18]); in the case that n ≥ 3, Horstmann–Winkler
[11] asserted possibility of existence of unbounded solutions; Winkler [23] showed that for
all m > 0 there exists an initial data such that ‖u0‖L1(Ω) = m and the corresponding solution
blows up in finite time; also in the case that n = 3, Cao [3] established global existence and
boundedness under the condition that ‖u0‖

L
n
2 (Ω)

and ‖∇v0‖Ln(Ω) are sufficiently small.

The Keller–Segel system (1.4) is now studied by many mathematicians intensively.
Moreover, many variations of generalizations of the Keller–Segel system (1.4) are also



Finite-Time Blow-up in a Quasilinear Degenerate Chemotaxis System. . . 233

sprightly studied. Here one of the important generalized problems is the quasilinear chemo-
taxis system

ut = ∇ · (D(u)∇u
) − ∇ · (S(u)∇v

)
, vt = �v − v + u. (1.5)

This problem is one of the model which has a nonlinear diffusion suggested by Hillen–
Painter [9]. In the nondegenerate chemotaxis system which is the system (1.5) with D(u) =
(u + 1)p−1 and S(u) = u(u + 1)q−2 with p,q ∈ R, it is known that the relation between
p and q determines the properties of solutions to the system; Tao–Winkler [22] established
global existence and boundedness under the conditions that q < p+ 2

n
and that Ω is a convex

domain, and the convexity of Ω was removed in [13]; Cieślak–Stinner obtained finite-time
blow-up in the case that q > p + 2

n
(the 2-dimensional setting can be found in [5], and

the 3-dimensional setting is in [4, 6]); In the parabolic–elliptic setting Lankeit [15] recently
showed several results including existence of infinite-time blow-up solutions in the case that
q ≤ 1 and q > p + 2

n
. In the degenerate chemotaxis system which is the system (1.5) with

D(u) = up−1 and S(u) = uq−1 with p,q ≥ 1, similarly, it is shown that the relation between
p and q determines behaviour of solutions; in the case q < p + 2

n
, global solutions are

obtained when Ω is a bounded domain (see [12]); in the case q = p+ 2
n

, the result is divided
by the size of the initial data with some critical mass mc = mc(n); when ‖u0‖L1(Ω) = m < mc

and q = 2, under the Dirichlet–Neumann boundary condition, Mimura [17] showed that
there are global solutions when Ω is a bounded domain; on the other hand, if m > mc , then
Laurençot–Mizoguchi [16] established that existence of an initial data such that ‖u0‖L1(Ω) =
m and the corresponding solution blows up in finite time when q = 2, Ω =R

n and n = 3,4;
in the case q > p + 2

n
, it is known that there exists an initial data such that the corresponding

solution blows up in finite time (see [8]). Moreover, some simplification of the system (1.5)
which is the system that the second equation is 0 = �v−μ+u instead of vt = �v−v+u in
(1.5) with D(u) = (u + 1)p−1 and S(u) = u(u + 1)q−2 with p,q ∈ R was studied ([7, 24]);
Cieślak–Winkler [7] established global existence and boundedness in the case that q = 2
and 2 < p + 2

n
, and existence of finite-time blow-up solutions in the case that q = 2 and

2 > p + 2
n

; Winkler–Djie [24] dealt with the case that p ≤ 1 and q ∈ R and showed global
existence and boundedness in the case that q < p + 2

n
, and existence of blow-up solutions

in the case that q > p + 2
n

. Thus, it is clear that the relation between p,q and n strongly
affects behaviour of solutions.

On the other hand, the system which describes the situation such that the movement of
the species is suppressed, that is, the chemotaxis system with flux limitation

⎧
⎪⎨

⎪⎩

ut = ∇ ·
(

Du(u, v)
u∇u

√
u2 + |∇u|2

)

− ∇ ·
(

S(u, v)
u∇v

√
1 + |∇v|2

)

+ H1(u, v),

vt = Dv�v + H2(u, v), x ∈ Ω, t > 0

(1.6)

is proposed by Bellomo–Winkler [1], where Du and Dv show properties of diffusion of the
species and the chemoattractant, respectively, and S represents the chemotactic interaction,
and H1 and H2 are mechanisms of propagation, degeneration, and interaction. Since it has
not been known whether there exist valid functions like an energy function and a Lyapunov
function yet, the system (1.6) seems to be difficult. Therefore, Bellomo–Winkler [1, 2] have
considered the following simplified system

ut = ∇ ·
(

u∇u
√

u2 + |∇u|2
)

− χ∇ ·
(

u∇v
√

1 + |∇v|2
)

, 0 = �v − μ + u. (1.7)
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In this system, Bellomo–Winkler [1] overcame the difficulty, and they showed global exis-
tence when χ < 1. On the other hand, if χ > 1 and

⎧
⎪⎨

⎪⎩

m >
1

√
χ2 − 1

if n = 1,

m > 0 is arbitrary if n ≥ 2,

(1.8)

Bellomo–Winkler [2] found an initial data such that the corresponding solution of (1.7)
blows up in finite time. However, the problem (1.6) has not been studied yet when Du and S

are general; in view of the study of the Keller–Segel system, the case that Du(u, v) = up−1

and S(u, v) = uq−1 in (1.6), i.e., the system (1.1) seems to be one of important problems.
Recently global existence of solutions to system (1.1) was shown when p > q + 1 − 1

n

(see [19]). From the results in the degenerate chemotaxis system we can expect that some
largeness condition for q derives existence of blow-up solutions.

The purpose of this paper is to determine the condition for p and q such that the cor-
responding solution blows up in finite time. Here we need to establish different methods
because we cannot adopt the same argument as in [2] when p < q holds.

Now main results read as follows.

Theorem 1.1 Let Ω := BR(0) ⊂ R
n (n ∈N) with R > 0 and suppose that 1 ≤ p ≤ q .

(i) If n = 1, then for all χ > 1 (χ > 0 when q > p), there exists mc = mc(χ,p,q,R) > 0
with the following property: If

m > mc, (1.9)

then there exists a nondecreasing function Mm ∈ C0([0,R]) satisfying supr∈(0,R)
Mm(r)

|Br (0)| < ∞,

Mm(R) ≤ m, and that for all u0 ∈ C3(Ω) with
∫

Ω
u0(x) dx = m and

∫

Br (0)

u0(x) dx ≥ Mm(r) (1.10)

for all r ∈ [0,R], there exists T ∗ ∈ (0,∞) such that a corresponding solution (u, v) of (1.1)
blows up in finite time T ∗ in the sense that

lim sup
t↗T ∗

‖u(·, t)‖L∞(Ω) = ∞. (1.11)

(ii) If n ≥ 2 and m > 0, then for all χ > 0 satisfying

χ >

(
mn

ωnRn

)p−q

, (1.12)

where ωn defines the (n − 1)-dimensional measure of the unit sphere in R
n, there exists a

nondecreasing function Mm ∈ C0([0,R]) satisfying supr∈(0,R)
Mm(r)

|Br (0)| < ∞, and Mm(R) ≤ m,

such that for all u0 ∈ C3(Ω) with
∫

Ω
u0(x) dx = m and (1.10) for all r ∈ [0,R], there exists

T ∗ ∈ (0,∞) such that the corresponding solution (u, v) of (1.1) blows up in finite time T ∗
in the sense of (1.11).

Remark 1.1 This theorem shows existence of blow-up solutions to (1.1) when q ≥ p. On
the other hand, in [19] global existence of solutions is shown when p > q + 1 − 1

n
. Thus we
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Fig. 1 Classification of
behaviour

can observe that the case p = q is critical when n = 1. However, except for the case n = 1,
behaviour of solutions in the case q < p ≤ q + 1 − 1

n
is still an open problem (see Fig. 1).

Remark 1.2 If p = q = 1, then the condition for m connects with that in [2]; indeed, the
constant mc(χ,p,q,R) in (1.9) is given by

mc = inf

{

m

∣
∣
∣ ∃λ ∈

(
5 − √

17

2
,1

]

; {1 − (1−λ)2

3λ−1 }mχ
√

1
λ2 + (1−λ)2

λ2(3λ−1)
+ m2

=
(

m

ωn

· (1 − λ)2

λ(λ + 1)R

)p−q}

(see (3.1) and (3.54)). Thus, in the case p = q , since

mc(χ,p,p,R) = inf

{

m

∣
∣
∣ ∃λ ∈

(
5 − √

17

2
,1

]

; {1 − (1−λ)2

3λ−1 }mχ
√

1
λ2 + (1−λ)2

λ2(3λ−1)
+ m2

= 1

}

= inf

{

m

∣
∣
∣

mχ√
1 + m2

= 1

}

= 1
√

χ2 − 1

and moreover
(

mn

ωnRn

)p−p

= 1,

the conditions (1.9) and (1.12) are reduced to (1.8). Thus Theorem 1.1 is a generalization of
the previous work [2]. However, we note that the constants mc (when n = 1) and ( mn

ωnRn )p−q

(when n ≥ 2) might not be optimal constants but be ones required technically except for the
case that p = q = 1 ([1, 2]); the opposite cases are open problems.

In view of Remark 1.2 we have the following corollary.

Corollary 1.2 Let Ω := BR(0) ⊂ R
n (n ∈ N) with R > 0 and let p = q ≥ 1, and suppose

that χ > 1 and (1.8). Then there exists a nondecreasing function Mm ∈ C0([0,R]) fulfilling
supr∈(0,R)

Mm(R)

|Br (0)| < ∞ and Mm(R) ≤ m, which is such that whenever u0 satisfies (1.2), as
well as (1.10) for all r ∈ [0,R], the solution (u, v) of (1.1) blows up in finite time in the
sense of (1.11).
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Theorem 1.1 gives the following byproduct; since arguments similar to those in the proof
of [2, Proposition 1.2] enable us to see this proposition, we only write the statement.

Proposition 1.3 Let n ∈N, R > 0, Ω := BR(0) ⊂R
n and χ > 1.

(i) Let m > 0 satisfy (1.9). Then there exists a radially symmetric positive um ∈ C∞(Ω)

which is such that

∂um

∂ν
= 0 on ∂Ω and

∫

Ω

um = m,

and for which it is possible to choose ε > 0 with the property that whenever u0 satisfies (1.2)
as well as

‖u0 − um‖L∞(Ω) ≤ ε,

the corresponding solution of (1.1) blows up in finite time.
(ii) Given any u0 fulfilling (1.2), one can find functions u0k , k ∈N, which satisfy (1.2) and

u0k → u0 in Lp(Ω) as k → ∞

for all p ∈ (0,1), and which are such that for all k ∈ N the solution of (1.1) emanating from
u0k blows up in finite time.

The proof of the main result is based on that of [2, Theorem 1.1]. Thus in the same way,
we introduce s := rn for r ∈ [0,R] and the mass accumulation function w = w(s, t) defined
as

w(s, t) :=
∫ s

1
n

0
rn−1u(r, t) dr,

and then, a combination of the fact u(r∗, t) ≥ w(s∗,t)

s∗ given by using u ≥ ws and the mean
value theorem and that w is the solution of a scalar parabolic equation yields that the core of
the proof is to find a suitable subsolution w such that for some T > 0 and some s∗ ∈ (0,Rn),

w(s∗, t)
s∗

→ ∞ as t ↗ T .

In the previous study [2], the interval (0,Rn) is divided three parts, and in very inner region
thanks to construction of the subsolution w using the structure of a quadratic function, we
obtain a suitable estimate. However, in this paper we cannot establish it from the same
argument when p < q . Therefore, adopting a new subsolution w consisted by an exponential
function, we can prove existence of an initial data such that the corresponding solution blows
up in finite time. In this proof, the key idea is to employ a new viewpoint in the proof of some
suitable estimate; by establishing a new estimate where the effect of the aggregation come
from chemotactic interaction works adequately (see Lemma 3.5), we can attain a useful
estimate.

This paper is organized as follows. In Sect. 2 we recall local existence in (1.1) and we
consider the mass accumulation function and a scalar parabolic equation. In order to use the
comparison argument as in [2, Lemma 5.1] we construct subsolutions and confirm properties
in Sect. 3. Finally, we prove existence of blow-up solutions in Sect. 4.
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2 Local Existence and a Parabolic Problem Satisfied by the Mass
Accumulation

In this section we provide a local existence result and a mass accumulation function satis-
fying some parabolic problem. First, we recall a local existence result; the following result
was shown in [19, Theorem 1.1].

Lemma 2.1 Suppose that u0 complies with (1.2). Then there exist Tmax ∈ (0,∞] and a pair
(u, v) of positive radially symmetric functions u ∈ C2,1(Ω × [0, Tmax)) and v ∈ C2,0(Ω ×
[0, Tmax)) which solve (1.1) classically in Ω × (0, Tmax), and which are such that

if Tmax < ∞, then lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞. (2.1)

In the following let Ω := BR(0) ⊂ R
n (n ∈ N) with some R > 0 and let u0 satisfy (1.2),

and denote by (u, v) = (u(r, t), v(r, t)) the radially symmetric local solution of (1.1) and by
Tmax its maximal existence time obtained in Lemma 2.1. Moreover, we introduce the mass
accumulation function w and the parabolic operator P such that

w(s, t) :=
∫ s

1
n

0
rn−1u(r, t) dr (2.2)

for s ∈ [0,Rn] and t ∈ [0, T ), and

(Pw̃)(s, t) := w̃t − np+1 · s2− 2
n w̃

p
s w̃ss

√

w̃2
s + n2s2− 2

n w̃2
ss

− nqχ · (w̃ − μ

n
s)w̃

q
s

√

1 + s
2
n −2(w̃ − μ

n
s)2

. (2.3)

If w̃ ∈ C1((0,Rn) × (0, T )) is such that w̃s > 0 and w̃(·, t) ∈ W 2,∞(0,Rn) for all t ∈
(0, T ), then the expression Pw̃ is well-defined. Now we show that the function w defined
as (2.2) fulfills these corresponding condition. Thus, the following lemma yields that the
function w satisfies some parabolic problem (see [2, Lemma 2.1]).

Lemma 2.2 Let n ∈ N, χ > 0. Then for T > 0 and some nonnegative radially symmetric
u0 ∈ C0(Ω), whenever (u, v) is a positive radially symmetric classical solution of (1.1) in
Ω × [0, T ), the function w defined as (2.2) satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Pw)(s, t) = 0, s ∈ (
0,Rn

)
, t ∈ (0, T ),

w(0, t) = 0, w
(
Rn, t

) = m

ωn

, t ∈ (0, T ),

w(s,0) =
∫ s

1
n

0
rn−1u0(r) dr, s ∈ [

0,Rn
]
,

(2.4)

where m := ∫

Ω
u0(x) dx and where ωn denotes the (n − 1)-dimensional measure of the unit

sphere in R
n.

Proof An argument similar to that in the proof of [2, Lemma 2.1] implies the conclusion of
this lemma. �



238 Y. Chiyoda et al.

3 Construction of Subsolutions for (2.4)

In this section we construct a subsolution w of (2.4). Then, using a suitable comparison
principle (see [2, Lemma 5.1]) to obtain w ≥ w in [0,Rn] × [0, T ), we derive that u(r, t)

blows up in finite time T > 0 (fixed later). In Sect. 3.1 we prepare a family of functions,
and define w. In Sects. 3.2, 3.3, 3.4 and 3.5 we divide [0,Rn] into three parts and show
properties of a subsolution w in respective regions.

3.1 Constructing a Family of Candidates

In order to construct subsolutions w for (2.4) we first provide some parameter and some
function; for λ ∈ [ 1

3 ,1] we put

aλ := (1 − λ)2

2λ
≥ 0 and bλ := 3λ − 1

2λ
≥ 0 (3.1)

and define

ϕ(ξ) :=
⎧
⎨

⎩

2λ

ded (edξ − 1) if ξ ∈ [0,1),

1 − aλ

ξ−bλ
if ξ ≥ 1,

(3.2)

where 1 < d < 2 is such that

(2 − d)ed − 2 = 0. (3.3)

Here we note that there is a solution d ∈ (1,2) of (3.3); indeed, since

(
(2 − d)ed − 2

)|d=1 = e − 2 > 0 and
(
(2 − d)ed − 2

)|d=2 = −2 < 0

hold, the intermediate value theorem enables us to find d ∈ (1,2) satisfying (3.3). Then we
can show that ϕ ∈ C1([0,∞)) ∩ W 2,∞(0,∞) ∩ C2([0,∞) \ {1}) with

ϕ′(ξ) =
{

2λed(ξ−1) if ξ ∈ [0,1),
aλ

(ξ−bλ)2 if ξ ≥ 1
(3.4)

and

ϕ′′(ξ) =
{

2dλed(ξ−1) if ξ ∈ [0,1),

− 2aλ

(ξ−bλ)3 if ξ ≥ 1.
(3.5)

In particular, ϕ′(ξ) > 0 for all ξ ≥ 0. Then we have to choose λ ∈ ( 5−√
17

2 ,1] suitably in the
case that n = 1 (see Lemma 3.12), and we must fix λ = 1

3 in the case n ≥ 2 (see Lemma
3.13). The following lemma has already been proved in the proof of [2, Lemma 3.1]. Thus
we recall only the statement of the lemma.

Lemma 3.1 Let n ∈ N, m > 0, λ ∈ [ 1
3 ,1], K > 0, T > 0, and suppose that B ∈ C1([0, T ))

satisfies that B(t) ∈ (0,1), K
√

B(t) < Rn for all t ∈ [0, T ) and

B(t) ≤ K2

4(aλ + bλ)2
(3.6)
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for all t ∈ [0, T ), where aλ and bλ are given by (3.1). Then the following functions are
well-defined:

A(t) := m

ωn

· K2 − 2bλK
√

B(t) + b2
λB(t)

N(t)
for t ∈ [0, T ) (3.7)

and

D(t) := m

ωn

· aλ

N(t)
for t ∈ [0, T ) (3.8)

as well as

E(t) := m

ωn

− RnD(t) = m

ωn

· K2 − (aλ + bλ)(2K
√

B(t) − bλB(t))

N(t)
for t ∈ [0, T ) (3.9)

with

N(t) := K2 + aλR
n − (aλ + bλ)

(
2K

√
B(t) − bλB(t)

)
for t ∈ [0, T ). (3.10)

Furthermore, we have

A′(t) = m

ωn

·
( K√

B(t)
− bλ) · (aλK

2 − aλbλR
n) · B ′(t)

N2(t)

as well as

D′(t) = m

ωn

·
aλ(aλ + bλ) · ( K√

B(t)
− bλ) · B ′(t)

N2(t)
(3.11)

for all t ∈ (0, T ).

Using these definitions, we can express clearly our comparison function w. Letting
K > 0 be a constant fixed later and letting B be a function chosen suitably later, we will
give a composite structure of w by separating [0,Rn] into two parts (an inner region and an
outer region).

Lemma 3.2 Let n ∈ N, m > 0, λ ∈ [ 1
3 ,1], K > 0 and T > 0, and let B ∈ C1([0, T )) satisfy

that B(t) ∈ (0,1), K
√

B(t) < Rn and (3.6) hold for all t ∈ [0, T ). Suppose that

w(s, t) :=
{

win(s, t) if t ∈ [0, T ) and s ∈ [0,K
√

B(t)],
wout(s, t) if t ∈ [0, T ) and s ∈ (K

√
B(t),Rn],

where

win(s, t) := A(t)ϕ(ξ), ξ = ξ(s, t) := s

B(t)
(3.12)

for t ∈ [0, T ), s ∈ [0,K
√

B(t)] with ϕ and A introduced as (3.2) and (3.7), respectively, and
where

wout(s, t) := D(t)s + E(t) (3.13)



240 Y. Chiyoda et al.

for t ∈ [0, T ) and s ∈ [K√
B(t),Rn] with D and E as in (3.8) and (3.9), respectively. Then

w is well-defined and satisfies

w ∈ C1
([

0,Rn
] × [0, T

))

and w(·, t) ∈ W 2,∞(0,Rn) ∩ C2([0,Rn] \ {B(t),K
√

B(t)}) for all t ∈ [0, T ) as well as

w(0, t) = 0 and w
(
Rn, t

) = m

ωn

for all t ∈ (0, T ).

Proof An argument similar to that in the proof of [2, Lemma 3.2] implies the conclusion of
this lemma. �

3.2 Subsolution Properties: Outer Region

First, we will consider in the outer region. In the following lemma, we show that if the
function B constructing w is suitably small and fulfilling a differential inequality, then w is
a subsolution of (2.4) in the region.

Lemma 3.3 Let n ∈ N, χ > 0, m > 0, λ ∈ [ 1
3 ,1], K > 0, T > 0 and B0 ∈ (0,1) fulfill

K
√

B0 < Rn and

B0 ≤ K2

16(aλ + bλ)2
(3.14)

with aλ and bλ taken from (3.1). Then if B ∈ C1([0, T )) is positive and nonincreasing and
satisfies that

⎧
⎪⎨

⎪⎩

B ′(t) ≥ − a
q−1
λ (nm)qχK

2(aλ+bλ)(K2+aλRn)q−1ω
q
nRn

√

1+K
2
n −2· m2

ω2
n

· B1− 1
2n (t),

B(0) ≤ B0

(3.15)

for all t ∈ (0, T ), then the function wout given by (3.13) fulfills that

(Pwout)(s, t) ≤ 0 (3.16)

for all t ∈ (0, T ) and all s ∈ (K
√

B(t),Rn) with P defined in (2.3).

Proof The proof is based on that of [2, Lemma 3.3]. Recalling that E(t) = m
ωn

−RnD(t) for
all t ∈ (0, T ) by (3.9), we have

wout(s, t) = D(t)s + E(t) = m

ωn

− D(t) · (Rn − s
)

(3.17)

for all t ∈ (0, T ) and all s ∈ (K
√

B(t),Rn). Straightforward calculations together with
(3.11) yield that

(wout)t (s, t) = −D′(t) · (Rn − s
)

= − m

ωn

·
aλ(aλ + bλ)(

K√
B(t)

− bλ)

N2(t)
· B ′(t) · (Rn − s

)
(3.18)
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for all t ∈ (0, T ) and all s ∈ (K
√

B(t),Rn) with N as in (3.10). In order to obtain an estimate
for Pwout, noting from (3.18) and the fact (wout)ss ≡ 0 that

(Pwout)(s, t) = (wout)t (s, t) − np+1 · s2− 2
n {(wout)s}p(wout)ss

√

(wout)s
2 + n2s2− 2

n (wout)ss
2

+ I (s, t)

= − m

ωn

·
aλ(aλ + bλ)(

K√
B(t)

− bλ)

N2(t)
· B ′(t) · (Rn − s

) + I (s, t), (3.19)

where

I (s, t) := −nqχ · (wout − μ

n
s) · {(wout)s}q

√

1 + s
2
n −2(wout − μ

n
s)2

(3.20)

for t ∈ (0, T ) and s ∈ (K
√

B(t),Rn), we shall derive an estimate for I (s, t). Since (3.17)
holds, we first obtain from the identity μ

n
= m

ωnRn that

wout − μ

n
s = m

ωn

− D(t) · (Rn − s
) − m

ωnRn
· s

=
(

m

ωnRn
− D(t)

)

· (Rn − s
)

(3.21)

for all t ∈ (0, T ) and all s ∈ (K
√

B(t),Rn). Noticing from arguments similar to those in the
proof of [2, Lemma 3.3] that

√

1 + s
2
n −2

(

wout(s, t) − μ

n
s

)2

≤
√

1 + K
2
n −2 · m2

ω2
n

· B 1
2n

− 1
2 (t)

for all t ∈ (0, T ) and all s ∈ (K
√

B(t),Rn), we infer from (3.20) and (3.21) that

−I (s, t) ≥ nqχ
( m

ωnRn − D(t)) · Dq(t)
√

1 + K
2
n −2 · m2

ω2
n

· B 1
2 − 1

2n (t) · (Rn − s
)

(3.22)

holds for all t ∈ (0, T ) and all s ∈ (K
√

B(t),Rn). Here in light of the definitions of D and
N (see (3.8) and (3.10), respectively), we can see that

(
m

ωnRn
− D(t)

)

· Dq(t) =
(

m

ωnRn
− m

ωn

· aλ

N(t)

)(
m

ωn

· aλ

N(t)

)q

= mq+1a
q

λ

ω
q+1
n Nq(t)

· N(t) − aλR
n

RnN(t)

= mq+1a
q

λ

ω
q+1
n N2(t)

· K2 − 2(aλ + bλ)K
√

B(t) + (aλ + bλ)bλB(t)

RnN(t)q−1

(3.23)
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for all t ∈ (0, T ) and all s ∈ (K
√

B(t),Rn). Moreover, the fact B0 < 4K2

b2
λ

by (3.14) leads to

that

N(t) = K2 + aλR
n − (aλ + bλ)

(
2K

√
B(t) − bλB(t)

) ≤ K2 + aλR
n (3.24)

for all t ∈ (0, T ), a combination of the relation

K2 − 2(aλ + bλ)K
√

B(t) ≥ 1

2
K2

(by (3.6)), (3.23), (3.24) and the fact (aλ + bλ)bλB(t) ≥ 0 yields that

(
m

ωnRn
− D(t)

)

· Dq(t) ≥ mq+1a
q

λ

ω
q+1
n N2(t)

· K2 − 2(aλ + bλ)K
√

B(t)

Rn(K2 + aλRn)q−1

≥ mq+1a
q

λ

ω
q+1
n N2(t)

· K2

2Rn(K2 + aλRn)q−1

= m

ωn

· aλ

N2(t)
· mqa

q−1
λ

ω
q
n

· K2

2Rn(K2 + aλRn)q−1

for all t ∈ (0, T ). Therefore we verify from (3.22) that

−I (s, t) ≥ nqχ ·
m
ωn

· aλ

N2(t)
· mqa

q−1
λ

ω
q
n

· K2

2Rn(K2+aλRn)q−1
√

1 + K
2
n −2 · m2

ω2
n

· B 1
2 − 1

2n (t) · (Rn − s
)

(3.25)

for all t ∈ (0, T ) and all s ∈ (K
√

B(t),Rn). Here putting

c1 := a
q−1
λ (nm)qχ

2(K2 + aλRn)q−1ω
q
nRn

√
1 + K

2
n −2 · m2

ω2
n

and using the fact (aλ + bλ)bλB
′(t) ≤ 0 for all t ∈ (0, T ), from (3.19) and (3.25) we can

confirm that

(Pwout)(s, t) ≤ m

ωn

· aλ

N2(t)
· (Rn − s

) ·
{(

− (aλ + bλ)K√
B(t)

+ (aλ + bλ)bλ

)

· B ′(t)

− nqχ ·
mqa

q−1
λ

ω
q
n

· K2

2Rn(K2+aλRn)q−1
√

1 + K
2
n −2 · m2

ω2
n

· B 1
2 − 1

2n (t)

}

≤ m

ωn

· aλ

N2(t)
· (Rn − s

) ·
{

− (aλ + bλ)K√
B(t)

· B ′(t)

− a
q−1
λ (nm)qχK2

2(K2 + aλRn)q−1ω
q
nRn

√
1 + K

2
n −2 · m2

ω2
n

· B 1
2 − 1

2n (t)

}

= m

ωn

· aλ

N2(t)
· (Rn − s

) ·
{

− (aλ + bλ)K√
B(t)

· B ′(t) − c1K
2B

1
2 − 1

2n (t)

}

(3.26)
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for all t ∈ (0, T ) and all s ∈ (K
√

B(t),Rn). Thanks to (3.15), we finally derive that

− (aλ + bλ)K√
B(t)

· B ′(t) − c1K
2B

1
2 − 1

2n (t) = (aλ + bλ)K√
B(t)

·
{

−B ′(t) − c1K

(aλ + bλ)
B1− 1

2n (t)

}

≤ 0

for all t ∈ (0, T ) and all s ∈ (K
√

B(t),Rn), which together with (3.26) implies (3.16) holds.
�

3.3 Subsolution Properties: Inner Region

In this subsection we will consider in the inner region. In the following lemma we provide
calculations of Pwin and properties of the function A defined as (3.7) constructing w in the
corresponding region.

Lemma 3.4 Let n ∈N, m > 0, λ ∈ [ 1
3 ,1], K > 0 be such that K ≥ √

bλRn, and T > 0, and
let B ∈ C1([0, T )) be positive and fulfill (3.6) and K

√
B(t) < Rn for all t ∈ [0, T ). Then the

function win defined as (3.12) satisfies that

(Pwin)(s, t) = A′(t)ϕ(ξ) + A(t)ϕ′(ξ)

B(t)
· {−ξB ′(t) + J1(s, t) + J2(s, t)

}
(3.27)

for all t ∈ (0, T ) and all s ∈ (0,K
√

B(t)) \ {B(t)}, where ξ = ξ(s, t) = s
B(t)

, P is given by
(2.3), and

J1(s, t) := −np+1 · ξ 2− 2
n ϕ′′(ξ)

√

B
4
n −2(t)ϕ′(ξ) + n2B

2
n −2(t)ξ 2− 2

n ϕ′′2(ξ)

·
(

A(t)ϕ′(ξ)

B(t)

)p−1

(3.28)

as well as

J2(s, t) := −nqχ · A(t)ϕ(ξ) − μ

n
B(t)ξ

√

1 + B
2
n −2(t)ξ

2
n −2(A(t)ϕ(ξ) − μ

n
B(t)ξ)2

·
(

A(t)ϕ′(ξ)

B(t)

)q−1

(3.29)

for t ∈ (0, T ) and s ∈ (0,K
√

B(t))\{B(t)}. Moreover, the function A defined as (3.7) fulfills

A′(t) ≤ 0 (3.30)

for all t ∈ (0, T ); in particular,

A(t) ≥ AT := m

ωn

· 1

1 + aλRn

K2

(3.31)

holds for all t ∈ (0, T ).

Proof Aided by arguments similar to those in the proofs of [2, Lemmas 3.4 and 3.5], from
straightforward calculations we can attain the conclusion of this lemma. �
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3.4 Subsolution Properties: Very Inner Region

In this subsection we will consider the case that ξ = s
B(t)

∈ (0,1) which means 0 < s < B(t).
In order to show Pwin ≤ 0 we have to see that for some C > 0 and some β ≥ 0,

J1(s, t) + J2(s, t) ≤ −CBβ(t) (3.32)

holds for all t ∈ (0, T ) and all s ∈ (0,B(t)) with J1 and J2 as in (3.28) and (3.29), respec-
tively. Thanks to the convexity of ϕ for ξ ∈ (0,1), we obtain the term J1 is negative in this
region. However, it seems to be difficult to show (3.32) in the case that p < q . Indeed, when
ϕ(ξ) = λξ 2 which is used in [2], if B(t) is close to 0, then we obtain from an arguments that

J1(s, t)+J2(s, t) ≥ −C1B
1− 1

n (t)ξ 1− 1
n ·

(
A(t)ϕ′(ξ)

B(t)

)p−1

+C2B(t)ξ ·
(

A(t)ϕ′(ξ)

B(t)

)q−1

≥ 0

with some C1,C2 > 0. Thus, we modify a function ϕ on (0,1) from [2] to infer that even
though B(t) is suitably small, the term A(t)ϕ(ξ) − μ

n
B(t)ξ is positive which means J2 < 0

for t ∈ (0, T ) and ξ ∈ (0,B(t)). Furthermore, we divide the estimate for Pwin into the case
n = 1 and the case n ≥ 2 to achieve our purpose.

Lemma 3.5 Let n ∈ N, m > 0, λ ∈ [ 1
3 ,1], and K > 0 be such that K ≥ √

bλRn, and let
B0 ∈ (0,1) be such that K

√
B0 < Rn and

B0 ≤ K2

4(aλ + bλ)2
(3.33)

as well as

B0 <
2λnAT

edμ
(3.34)

with μ, d and AT given by (1.3), (3.3) and (3.31), respectively. Then, under the condition
that for some T > 0, B ∈ C1([0, T )) is a positive and nonincreasing function satisfying
B(0) ≤ B0, the inequality

A(t)ϕ(ξ) − μ

n
B(t)ξ > 0 (3.35)

holds for all t ∈ (0, T ) and all s ∈ (0,B(t)) with ϕ and A as in (3.2) and (3.7), respectively.

Proof We write ξ = s
B(t)

for t ∈ (0, T ) and s ∈ (0,B(t)). According to (3.31) and B(t) ≤
B(0) ≤ B0, we obtain from (3.2) that

A(t)ϕ(ξ) − μ

n
B(t)ξ ≥ AT · ϕ(ξ) − μ

n
B0 · ξ

= μ

n
ξ

{
nAT

μ
· ϕ(ξ)

ξ
− B0

}

= μ

n
ξ

{
2λnAT

edμ
· edξ − 1

dξ
− B0

}

(3.36)
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for all t ∈ (0, T ) and all s ∈ (0,B(t)). Thanks to that

edξ − 1

dξ
≥ 1 (3.37)

for all ξ ∈ (0,1), we infer from (3.34) and (3.36) that

A(t)ϕ(ξ) − μ

n
B(t)ξ ≥ μ

n
ξ

{
2λnAT

edμ
· edξ − 1

dξ
− B0

}

≥ μ

n
ξ

{
2λnAT

edμ
− B0

}

> 0

for all t ∈ (0, T ) and all s ∈ (0,B(t)). �

Invoking Lemma 3.5, under the assumption that the function B is small and satisfies a
suitable inequality, we derive that w becomes a subsolution of (2.4). First, we will note when
n = 1. In this case, thanks to the definition of ϕ on (0,1), we can establish that J1 ≤ −C

holds with some C > 0 and show the purpose of this subsection.

Lemma 3.6 Let n = 1, m > 0, λ ∈ [ 1
3 ,1] and K > 0 be such that K ≥ √

bλRn, and let B0 ∈
(0,1) be such that K

√
B0 ≤ Rn, (3.33) and (3.34) hold. For some T > 0, if B ∈ C1([0, T ))

satisfies that
⎧
⎪⎪⎨

⎪⎪⎩

B ′(t) ≥ − d√
d2 + 1

·
(

2λAT

ed

)p−1

,

B(0) ≤ B0

(3.38)

for all t ∈ (0, T ) with d and AT as in (3.3) and (3.31), respectively, then the function win

defined as (3.12) has the property that

(Pwin)(s, t) ≤ 0

for all t ∈ (0, T ) and all s ∈ (0,B(t)).

Proof Writing ξ = s
B(t)

for t ∈ (0, T ) and s ∈ (0,B(t)), we establish that

B2(t)ϕ′2(ξ)

ϕ′′2(ξ)
= B2(t) · (2λed(ξ−1))2

(2dλed(ξ−1))2
= B2(t) · 1

d2
≤ 1

d2

for all t ∈ (0, T ) and all s ∈ (0,B(t)). The inequality leads to that

−J1(s, t) = ϕ′′(ξ)
√

B2(t)ϕ′2(ξ) + ϕ′′2(ξ)
·
(

A(t)ϕ′(ξ)

B(t)

)p−1

≥ ϕ′′(ξ)
√

( 1
d2 + 1)ϕ′′2(ξ)

·
(

A(t)ϕ′(ξ)

B(t)

)p−1

= d√
d2 + 1

·
(

A(t)ϕ′(ξ)

B(t)

)p−1

(3.39)
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for all t ∈ (0, T ) and all s ∈ (0,B(t)). Thanks to (3.31) and ϕ′(ξ) ≥ ϕ′(0) = 2λ

ed , we infer
from B(t) < 1 that

(
A(t)ϕ′(ξ)

B(t)

)p−1

≥
(

AT · 2λ

ed

1

)p−1

=
(

2λAT

ed

)p−1

(3.40)

for all t ∈ (0, T ) and all s ∈ (0,B(t)). On the other hand, using (3.35), we have

J2 < 0 (3.41)

for all t ∈ (0, T ) and all s ∈ (0,B(t)). Thus, plugging (3.39) and (3.41) into (3.27), we derive
from (3.38), (3.40) and the inequality ξ ≤ 1 that

B(t)

A(t)ϕ′(ξ)
(Pwin)(s, t) ≤ −ξB ′(t) + J1(s, t) + J2(s, t)

≤ −ξB ′(t) − d√
d2 + 1

·
(

A(t)ϕ′(ξ)

B(t)

)p−1

≤ −ξB ′(t) − d√
d2 + 1

·
(

2λAT

ed

)p−1

≤ ξ

{

−B ′(t) − d√
d2 + 1

·
(

2λAT

ed

)p−1}

≤ 0

for all t ∈ (0, T ) and all s ∈ (0,B(t)), and it concludes the proof. �

In the case n ≥ 2, if the function B is suitably small, then we can obtain that J2 ≤ −C

holds with some C > 0, which leads to achievement of the purpose.

Lemma 3.7 Let n ≥ 2, m > 0, λ ∈ [ 1
3 ,1], and K > 0 be such that K ≥ √

bλRn, and let
B0 ∈ (0,1) be such that K

√
B0 ≤ Rn, (3.33), (3.34) and

B
2− 2

n

0 ≤
(

2λAT

ed
− μ

n
B0

)2

(3.42)

hold. For some T > 0, if B ∈ C1([0, T )) satisfies that

⎧
⎪⎪⎨

⎪⎪⎩

B ′(t) ≥ −nqχ√
2

·
(

2λAT

ed

)q−1

B1− 1
n (t),

B(0) ≤ B0

(3.43)

for all t ∈ (0, T ) with d and AT as in (3.3) and (3.31), respectively, then the function win

defined as (3.12) has the property that

(Pwin)(s, t) ≤ 0

for all t ∈ (0, T ) and all s ∈ (0,B(t)).
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Proof We write ξ = s
B(t)

for t ∈ (0, T ) and s ∈ (0,B(t)). Thanks to (3.42) and

B(t) ≤ B(0) ≤ B0,

we obtain that

B2− 2
n (t) ≤ B

2− 2
n

0 ≤
(

2λAT

ed
− μ

n
B0

)2

≤
(

2λAT

ed
− μ

n
B(t)

)2

for all t ∈ (0, T ) and all s ∈ (0,B(t)). Moreover, since (3.31) and (3.37) hold, we can see
from (3.2), (3.37) and the inequality ξ < 1 that

B2− 2
n (t) ≤

(
2λAT

ed
· 1 − μ

n
B(t)

)2

≤
(

A(t) · 2λ

ed
· edξ − 1

dξ
− μ

n
B(t)

)2

= ξ−2

(

A(t)ϕ(ξ) − μ

n
B(t)ξ

)2

for all t ∈ (0, T ) and all s ∈ (0,B(t)). Therefore, we derive that

1 ≤ B
2
n −2ξ−2

(

A(t)ϕ(ξ) − μ

n
B(t)ξ

)2

(3.44)

for all t ∈ (0, T ) and all s ∈ (0,B(t)). Thanks to (3.44), we infer from ξ < 1 that

−J2(s, t) = nqχ · A(t)ϕ(ξ) − μ

n
B(t)ξ

√

1 + B
2
n −2(t)ξ

2
n −2(A(t)ϕ(ξ) − μ

n
B(t)ξ)2

·
(

A(t)ϕ′(ξ)

B(t)

)q−1

≥ nqχ · A(t)ϕ(ξ) − μ

n
B(t)ξ

√

(1 + ξ
2
n )B

2
n −2(t)ξ−2(A(t)ϕ(ξ) − μ

n
B(t)ξ)2

·
(

A(t)ϕ′(ξ)

B(t)

)q−1

≥ nqχ · 1
√

(1 + 1
2
n )B

2
n −2(t)ξ−2

·
(

A(t)ϕ′(ξ)

B(t)

)q−1

= nqχ√
2

B1− 1
n (t)ξ

(
A(t)ϕ′(ξ)

B(t)

)q−1

(3.45)

for all t ∈ (0, T ) and all s ∈ (0,B(t)). Moreover, using (3.31) and ϕ′(ξ) ≥ ϕ′(0) = 2λ

ed , we
obtain from B(t) < 1 that

(
A(t)ϕ′(ξ)

B(t)

)q−1

≥
(

AT · 2λ

ed

1

)q−1

=
(

2λAT

ed

)q−1

. (3.46)
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On the other hand, from the fact ϕ′, ϕ′′ > 0 (given by (3.4) and (3.5), respectively), we verify
that

J1 < 0 (3.47)

for all t ∈ (0, T ) and all s ∈ (0,B(t)). Recalling (3.27) and (3.30) (see Lemma 3.4), we can
show that a combination of (3.45) and (3.47) yields that by (3.43) and (3.46),

B(t)

A(t)ϕ′(ξ)
(Pwin)(s, t) ≤ −ξB ′(t) − nqχ√

2
·
(

A(t)ϕ′(ξ)

B(t)

)q−1

B1− 1
n (t)ξ

≤ ξ

{

−B ′(t) − nqχ√
2

·
(

2λAT

ed

)q−1

B1− 1
n (t)

}

≤ 0

for all t ∈ (0, T ) and all s ∈ (0,B(t)), which means the end of the proof. �

3.5 Subsolution Properties: Intermediate Region

In this subsection we will consider the case that s ∈ (B(t),K
√

B(t)). Here the term J1 is
positive due to the definition of ϕ in the region. Therefore, an estimate for J2 is important in
this part. The following arguments are based on these of [2].

Lemma 3.8 Let n ∈ N, m > 0, K > 0 and T > 0, and let B ∈ C1([0, T )) be positive and
satisfy that (3.6) and K

√
B(t) < Rn for all t ∈ [0, T ). Then the function J1 defined as (3.28)

satisfies

J1(s, t) ≤ npB1− 1
n (t)ξ 1− 1

n

(
A(t)ϕ′(ξ)

B(t)

)p−1

(3.48)

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)) with ξ = s
B(t)

.

Proof An argument similar to that in the proof of [2, Lemma 3.7] implies the conclusion
this lemma. �

The following two lemmas have already been proved in proofs of [2, Lemmas 3.8 and
3.10]. Thus we only recall statements of lemmas.

Lemma 3.9 Let n ∈ N, m > 0, λ ∈ [ 1
3 ,1], K > 0 be such that K ≥ √

bλRn, and let B0 ∈
(0,1) satisfy K

√
B0 < Rn and (3.33), as well as for some T > 0 let B ∈ C1([0, T )) be

positive and nonincreasing and be such that B(0) ≤ B0. Then the inequality

1

A2(t)B
2
n −2(t)ξ

2
n −2ϕ2(ξ)

≤ ω2
n

λ2m2
·
(

1 + aλR
n

K2

)

· K2− 2
n B

3− 3
n

0 (3.49)

holds for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)) with ξ = s
B(t)

.
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Lemma 3.10 Let n ∈ N, m > 0, λ ∈ [ 1
3 ,1], K > 0, δ ∈ (0,1), and let B0 ∈ (0,1) fulfill

K
√

B0 < Rn, (3.33) and

μ

nAT

· max

{
B0

λ
, 2K

√
B0

}

≤ δ

with μ and AT introduced in (1.3) and (3.31), respectively, and suppose that T > 0 and
B ∈ C1([0, T )) is positive and such that

B(t) ≤ B0

for all t ∈ (0, T ). Then the inequality

A(t)ϕ(ξ) − μ

n
B(t)ξ ≥ (1 − δ)A(t)ϕ(ξ) (3.50)

holds for all t ∈ (0, T ) and all s ∈ ((B(t),K
√

B(t)) with ξ = s
B(t)

for s ∈ (B(t),K
√

B(t))

and t ∈ (0, T ).

In order to have the estimate for Pwin in the intermediate region when p < q , we will
provide the following lemma.

Lemma 3.11 Let n ∈ N, m > 0, λ ∈ [ 1
3 ,1], K > 0, and let B ∈ C1([0, T )) be such that

K
√

B(t) < Rn and be a positive and nonincreasing function and put

σ := m

ωn

· aλ

K2 + aλRn
. (3.51)

Then the inequality

(
A(t)ϕ′(ξ)

B(t)

)−k

≤ σ−k (3.52)

holds for all k ≥ 0 and all s ∈ (B(t),K
√

B(t)), t ∈ (0, T ) with ξ = s
B(t)

, where A and ϕ′

are as in (3.7) and (3.4), respectively.

Proof We write ξ = s
B(t)

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)). Using that

ϕ′(ξ) = aλ

(ξ − bλ)2

for 1 < ξ < K√
B(t)

, we infer from B(t) < 1 and 0 ≤ bλ ≤ 1 for λ ∈ [ 1
3 ,1] that

ϕ′(ξ) = aλ

(ξ − bλ)2
= aλ

ξ 2 − 2ξbλ + b2
λ

≥ aλ

( K√
B(t)

)2 − 2 · 1 · bλ + b2
λ

= aλB(t)

K2 + (b2
λ − 2bλ)B(t)

≥ aλ

K2
B(t). (3.53)
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A combination of (3.31) and (3.53) yields that
(

A(t)ϕ′(ξ)

B(t)

)

≥ m

ωn

· 1

1 + aλRn

K2

· aλ

K2

= m

ωn

· aλ

K2 + aλRn
= σ

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)), which means the end of proof. �

Thanks to above lemmas, we can see that if a function B is suitably small and nonin-
creasing and fulfills some differential inequality, then w becomes a subsolution of (2.4) in
the intermediate region (B(t),K

√
B(t)).

First, we will consider the case n = 1. The largeness condition for m (see (1.9)) will lead
to the following lemma.

Lemma 3.12 Let p ≤ q , n = 1, χ > 0 and λ ∈ ( 5−√
17

2 ,1], and put δλ := aλ

bλ
with aλ and bλ

as in (3.1), and let mc(p,q,χ,λ,R) be such that

mc := inf

{

m

∣
∣
∣ ∃λ ∈

(
5 − √

17

2
,1

]

; (1 − δλ)mχ
√

1+δλ
λ2 + m2

−
(

m

ωn

· aλ

(aλ + bλ)R

)p−q

= 0

}

.

(3.54)

Then for all m > mc there exist K > 0, κ1 > 0, and B01 such that K
√

B01 < Rn, and for
some T > 0, if B ∈ C1([0, T )) is a positive and nonincreasing function fulfilling (3.6) as
well as

{
B ′(t) ≥ −κ1

√
B(t),

B(0) ≤ B01

(3.55)

for all t ∈ (0, T ), then win as in (3.12) satisfies

(Pwin)(s, t) ≤ 0

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)).

Proof The proof is based on that of [2, Lemma 3.11]. Since δλ = aλ

bλ
holds, we obtain bλR =

aλR

δλ
with aλ and bλ as in (3.1), which enables us to pick K > 0 such that

K ≥ √
bλR (3.56)

and

aλR

K2
≤ δλ (3.57)

as well as

c1 := (1 − δλ)mχ
√

1+δλ
λ2 + m2

−
(

m

ωn

· aλ

K2 + aλR

)p−q
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= (1 − δλ)mχ
√

1+δλ
λ2 + m2

− σp−q (3.58)

is positive (by (3.54) and m > mc) with σ as in (3.51). Furthermore, it is possible to fix
B01 ∈ (0,1) fulfilling K

√
B01 < R and

B01 ≤ K2

4(aλ + bλ)2
(3.59)

as well as

μ

nAT

· max

{
B01

λ
, 2K

√
B01

}

≤ δλ (3.60)

with AT as in (3.31), and put

κ1 := σq−1c1

K
, (3.61)

and let T > 0 and B ∈ C1([0, T )) be positive and nonincreasing and such that (3.55) holds.
Then, recalling A′ ≤ 0 on (0, T ) (see Lemma 3.4), we infer from (3.27) that

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB ′(t) + J1(s, t) + J2(s, t) (3.62)

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)) with ξ = s
B(t)

and J1 and J2 as in (3.28) and
(3.29). Here, according to Lemma 3.8, we obtain from (3.48) that

J1(s, t) ≤
(

A(t)ϕ′(ξ)

B(t)

)p−1

(3.63)

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)). Since (3.56), (3.57), (3.59) and (3.60) hold,
a combination of Lemmas 3.9 and 3.10 with an argument similar to that in the proof of [2,
Lemma 3.11] leads to that

√

1 + (
A(t)ϕ(ξ) − μB(t)ξ

)2 ≤
√

1 + δλ

λ2m2
+ 1 · A(t)ϕ(ξ)

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)). Therefore, we can see from (3.50) that

−J2(s, t) = χ · A(t)ϕ(ξ) − μB(t)ξ
√

1 + (A(t)ϕ(ξ) − μB(t)ξ)2
·
(

A(t)ϕ′(ξ)

B(t)

)q−1

≥ χ · (1 − δλ)A(t)ϕ(ξ)
√

1+δλ
λ2m2 + 1 · A(t)ϕ(ξ)

·
(

A(t)ϕ′(ξ)

B(t)

)q−1

= (1 − δλ)mχ
√

1+δλ
λ2 + m2

·
(

A(t)ϕ′(ξ)

B(t)

)q−1

(3.64)
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for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)). From the relation p ≤ q , a combination of
(3.52) and (3.61)–(3.64), along with the definition of c1 (see (3.58)) implies that

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t)

≤ −ξB ′(t) +
(

A(t)ϕ′(ξ)

B(t)

)p−1

− (1 − δλ)mχ
√

1+δλ
λ2 + m2

·
(

A(t)ϕ′(ξ)

B(t)

)q−1

=
(

A(t)ϕ′(ξ)

B(t)

)q−1{

−ξB ′(t)
(

A(t)ϕ′(ξ)

B(t)

)1−q

+
(

A(t)ϕ′(ξ)

B(t)

)p−q

− (1 − δλ)mχ
√

1+δλ
λ2 + m2

}

≤
(

A(t)ϕ′(ξ)

B(t)

)q−1{

−ξB ′(t)σ 1−q + σp−q − (1 − δλ)mχ
√

1+δλ
λ2 + m2

}

=
(

A(t)ϕ′(ξ)

B(t)

)q−1

σ 1−q
(−ξB ′(t) − σq−1c1

)
(3.65)

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)). Recalling that ξ ≤ K√
B(t)

holds in the region,
we infer from the definition of κ1 (see (3.61)) that

−ξB ′(t) − σq−1c1 = ξ ·
(

−B ′(t) − σq−1c1

ξ

)

≤ ξ ·
(

−B ′(t) − σq−1c1
√

B(t)

K

)

= ξ · (−B ′(t) − κ1

√
B(t)

)

≤ 0 (3.66)

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)). A combination of (3.65) and (3.66) leads to
that we can attain the conclusion of the proof. �

Secondly, we will consider the case n ≥ 2. Due to choosing suitably χ as in (1.12), we
will infer from the condition for a function B that w becomes a subsolution of (2.4).

Lemma 3.13 Let p ≤ q , n ≥ 2, m > 0, χ > 0 and λ = 1
3 . Then for all χ > ( mn

ωnRn )p−q

there exist K > 0, κn > 0, and B0n such that K
√

B0n < Rn, and such that if T > 0 and
B ∈ C1([0, T )) is a positive and nonincreasing such that

{
B ′(t) ≥ −κnB

1− 1
2n (t),

B(0) ≤ B0n

(3.67)

for all t ∈ (0, T ), then the function win defined in (3.12) satisfies

(Pwin)(s, t) ≤ 0

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)).
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Proof The proof is based on that of [2, Lemma 3.12]. Thanks to λ = 1
3 and χ > ( mn

ωnRn )p−q ,
we have that bλ = 0 and

χ >

(

n · m

ωn

· aλ

aλRn

)p−q

with aλ as in (3.1). Then there exists some K > 0 fulfilling

χ >

(

n · m

ωn

· aλ

K2 + aλRn

)p−q

= (nσ)p−q (3.68)

with σ given by (3.51). Using (3.68), we can choose δ ∈ (0,1) suitably small such that

c1 := nq ·
{

(1 − δ)χ√
1 + δ

− (nσ)p−q

}

(3.69)

is positive. Finally, we take B0n ∈ (0,1) such that K
√

B0n < Rn and

B0n ≤ K2

4(aλ + bλ)2
(3.70)

as well as

μ

nAT

· max

{
B0n

λ
, 2K

√
B0n

}

≤ δ (3.71)

with AT as in (3.31) and

ω2
n

λ2m2
·
(

1 + aλR
n

K2

)

· K2− 2
n B

3− 3
n

0n ≤ δ, (3.72)

and we put

κn := σq−1c1K
− 1

n , (3.73)

and suppose T > 0 and B ∈ C1([0, T )) is positive and nonincreasing and such that (3.67)
holds. Then, from (3.70), Lemma 3.4 implies that A′ ≤ 0 on (0, T ). Recalling (3.27), we
derive that

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB ′(t) + J1(s, t) + J2(s, t) (3.74)

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)) with ξ = s
B(t)

, and J1 and J2 given by (3.28)
and (3.29), respectively. From (3.70) and (3.71), using Lemma 3.10, we obtain that

A(t)ϕ(ξ) − μ

n
B(t)ξ ≥ (1 − δ)A(t)ϕ(ξ) (3.75)
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for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)). Noticing (3.70), we can use Lemma 3.9 to
show from (3.72) that

1

A2(t)B
2
n −2(t)ξ

2
n −2ϕ2(ξ)

≤ ω2
n

λ2m2
·
(

1 + aλR
n

K2

)

· K2− 2
n B

3− 3
n

0n (3.76)

≤ δ

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)). Employing (3.75), (3.76) and the fact that
δ < 1, we can estimate that

−J2(s, t) = nqχ · A(t)ϕ(ξ) − μ

n
B(t)ξ

√

1 + B
2
n −2(t)ξ

2
n −2(A(t)ϕ(ξ) − μ

n
B(t)ξ)2

·
(

A(t)ϕ′(ξ)

B(t)

)q−1

≥ nqχ · (1 − δ)A(t)ϕ(ξ)
√

1 + B
2
n −2(t)ξ

2
n −2A2(t)ϕ2(ξ)

·
(

A(t)ϕ′(ξ)

B(t)

)q−1

≥ nqχ · (1 − δ)A(t)ϕ(ξ)
√

(δ + 1)B
2
n −2(t)ξ

2
n −2A2(t)ϕ2(ξ)

·
(

A(t)ϕ′(ξ)

B(t)

)q−1

= (1 − δ)nqχ√
δ + 1

· B1− 1
n (t)ξ 1− 1

n ·
(

A(t)ϕ′(ξ)

B(t)

)q−1

(3.77)

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)). On the other hand, we use Lemma 3.8 to show
that

J1(s, t) ≤ npB1− 1
n (t)ξ 1− 1

n

(
A(t)ϕ′(ξ)

B(t)

)p−1

(3.78)

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)). Thanks to (3.74), (3.77) and (3.78), we derive
that

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB ′(t) + npB1− 1

n (t)ξ 1− 1
n

(
A(t)ϕ′(ξ)

B(t)

)p−1

− (1 − δ)nqχ√
δ + 1

· B1− 1
n (t)ξ 1− 1

n

(
A(t)ϕ′(ξ)

B(t)

)q−1

. (3.79)

Since

− ξB ′(t) + npB1− 1
n (t)ξ 1− 1

n

(
A(t)ϕ′(ξ)

B(t)

)p−1

− (1 − δ)nqχ√
δ + 1

· B1− 1
n (t)ξ 1− 1

n

(
A(t)ϕ′(ξ)

B(t)

)q−1

=
(

A(t)ϕ′(ξ)

B(t)

)q−1{

−ξB ′(t)
(

A(t)ϕ′(ξ)

B(t)

)1−q

+
(

np

(
A(t)ϕ′(ξ)

B(t)

)p−q

− (1 − δ)nqχ√
δ + 1

)

B1− 1
n (t)ξ 1− 1

n

}
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holds, a combination of (3.69), (3.79) and Lemma 3.11, along with the relation p ≤ q yields
that

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t)

≤
(

A(t)ϕ′(ξ)

B(t)

)q−1{

−ξB ′(t)σ 1−q +
(

npσp−q − (1 − δ)nqχ√
δ + 1

)

B1− 1
n (t)ξ 1− 1

n

}

=
(

A(t)ϕ′(ξ)

B(t)

)q−1

σ 1−q

{

−ξB ′(t) − nqσ q−1

(
(1 − δ)χ√

δ + 1
− (nσ)p−q

)

B1− 1
n (t)ξ 1− 1

n

}

=
(

A(t)ϕ′(ξ)

B(t)

)q−1

σ 1−q
(−ξB ′(t) − σq−1c1B

1− 1
n (t)ξ 1− 1

n
)

(3.80)

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)). Finally, according to that

ξ <
K√
B(t)

which means that s < K
√

B(t), we infer from (3.67) and (3.73) that

−ξB ′(t) − σq−1c1B
1− 1

n (t)ξ 1− 1
n = ξ · (−B ′(t) − σq−1c1B

1− 1
n (t)ξ− 1

n
)

≤ ξ · (−B ′(t) − σq−1c1B
1− 1

n (t) · K− 1
n B

1
2n (t)

)

= ξ · (−B ′(t) − κnB
1− 1

2n (t)
)

≤ 0 (3.81)

for all t ∈ (0, T ) and all s ∈ (B(t),K
√

B(t)). Thus (3.80) and (3.81) lead to the end of the
proof. �

4 Blow-up. Proof of Theorem 1.1

In this section, by virtue of a combination of Lemmas 3.3, 3.6, 3.7, 3.12 and 3.13, we can
show our main purpose such that there is an initial data satisfying that the corresponding
solution blows up by using the comparison argument from [2, Lemma 5.1].

Proof of Theorem 1.1 If n = 1, thanks to (1.9), for all χ > 1 (χ > 0 when q > p) and some
λ ∈ ( 5−√

17
2 ,1), Lemma 3.12 entails that there exist K > 0, κ1 > 0 and B01 ∈ (0,1) with

properties listed there. On the other hand, if n ≥ 2, m > 0 and λ = 1
3 , then from the condition

(1.12) we can use Lemma 3.13 to see that for all χ > 0 there exist K > 1, κn > 0 and
B0n ∈ (0,1) with properties noted there. Moreover, we introduce κ ∈ (0, κn] given by

κ ≤ a
q−1
λ (nm)qχK

2(aλ + bλ)(K2 + aλRn)q−1ω
q
nRn

√
1 + K

2
n −2 · m2

ω2
n

(4.1)

and

κ ≤ d√
d2 + 1

·
(

2λAT

ed

)p−1

(4.2)
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as well as

κ ≤ nqχ√
2

·
(

2λAT

ed

)q−1

(4.3)

with d and AT as in (3.3) and (3.31), respectively, and we take B0 ∈ (0,B0n] satisfying
(3.14), (3.34) and (3.42). Here we define

B(t) :=
(

B
1

2n

0 − κ

2n
t

)2n

for t ∈ (0, T ) with

T := 2n

κ
· B 1

2n

0 .

Then, B ∈ C1([0, T )) is the solution of the following initial-value problem:

{
B ′(t) = −κB1− 1

2n (t),

B(0) = B0

(4.4)

for all t ∈ (0, T ). According to Lemma 3.2, putting

w(s, t) :=
{

win(s, t) if t ∈ [0, T ) and s ∈ [0,K
√

B(t)],
wout(s, t) if t ∈ [0, T ) and s ∈ (K

√
B(t),Rn]

with functions win and wout as in (3.12) and (3.13), respectively, we see that the function w

is well-defined and satisfies

w ∈ C1
([

0,Rn
] × [0, T )

)

and w(·, t) ∈ C2([0,Rn] \ {B(t),K
√

B(t)}) for all t ∈ [0, T ). Moreover, thanks to (4.1),
(4.2), (4.3), (4.4) and the fact that B(t) ≤ B0 < 1, we can use Lemmas 3.3, 3.6, 3.7, 3.12 and
3.13 to lead to functions wout and win fulfilling

(Pwout)(s, t) ≤ 0 (4.5)

for all t ∈ (0, T ) and all s ∈ (K
√

B(t),Rn) as well as

(Pwin)(s, t) ≤ 0 (4.6)

for all t ∈ (0, T ) and all s ∈ (0,B(t)) ∪ (B(t),K
√

B(t)). Therefore, we obtain that

(Pw)(s, t) ≤ 0

for all t ∈ (0, T ) and all s ∈ (0,Rn) \ {B(t),K
√

B(t)} since (4.5) and (4.6) hold. Here we
assume that u0 satisfies (1.2) and also

∫

Br (0)

u0(x) dx ≥ Mm(r) := ωnw
(
rn,0

)

for all r ∈ [0,R]. Then, we can see that

w(s,0) ≥ w(s,0)
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for all s ∈ (0,Rn) with the solution w of (2.4) defined by (2.2). Moreover, putting T̃ :=
min{Tmax, T }, we derive that

w(0, t) = w(0, t) = 0 and w
(
Rn, t

) = w
(
Rn, t

) = m

ωn

for all t ∈ (0, T̃ ). In order to use the comparison principle stated in [2, Lemma 5.1] we write
α := 2 − 2

n
≥ 0 and let

φ(s, t, y0, y1, y2) := np+1 · sαy1
py2

√

y2
1 + n2sαy2

2

+ nqχ · (y0 − μ

n
s)y1

q

√
1 + s−α(y0 − μ

n
s)2

for (s, t, y0, y1, y2) ∈ G := (0,Rn) × (0,∞) ×R× (0,∞) ×R. Then φ ∈ C1(G) with

∂φ

∂y2
(s, t, y0, y1, y2) = np+1sαy

p+2
1

√

y2
1 + n2sαy2

2

3 ≥ 0 (4.7)

and

∂φ

∂y1
(s, t, y0, y1, y2) = np+1 · psαy

p−1
1 y2(y

2
1 + n2sαy2

2 ) − sαy
p+1
1 y2

√

y2
1 + n2sαy2

2

3

+ nqχ · q(y0 − μ

n
s)y

q−1
1

√
1 + s−α(y0 − μ

n
s)2

as well as

∂φ

∂y0
(s, t, y0, y1, y2) = nqχ

y
q

1
√

1 + s−α(y0 − μ

n
s)2

3

for all (s, t, y0, y1, y2) ∈ G. Here if S ⊂ (0,Rn) × R × (0,∞) × R is compact, then there
exist a1, a2 ∈ (0,∞) and b1, b2 ∈R satisfying that

S ⊂ (
0,Rn

) ×R× (a1, a2) × (b1, b2).

Therefore, putting b := max{|b1|, |b2|} and a := max{ap−2
1 , a

p−2
2 }, we establish that for any

t ∈ (0, T̃ ),

∣
∣
∣
∣
∂φ

∂y1
(s, t, y0, y1, y2)

∣
∣
∣
∣ ≤

∣
∣
∣
∣n

p+1 · psαy
p−1
1 y2(y

2
1 + n2sαy2

2 ) − sαy
p+1
1 y2

√

y2
1 + n2sαy2

2

3

∣
∣
∣
∣

+
∣
∣
∣
∣n

qχ · q(y0 − μ

n
s)y

q−1
1

√
1 + s−α(y0 − μ

n
s)2

∣
∣
∣
∣
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≤
∣
∣
∣
∣n

p+1 · (p − 1)sαy
p+1
1 y2

√

y2
1

3

∣
∣
∣
∣ +

∣
∣
∣
∣n

p+3 · ps2αy
p−1
1 y3

2
√

n2sαy2
2

3

∣
∣
∣
∣

+
∣
∣
∣
∣n

qχqs
α
2 y

q−1
1 ·

√
s−α(y0 − μ

n
s)2

√
1 + s−α(y0 − μ

n
s)2

∣
∣
∣
∣

≤ ∣
∣np+1(p − 1)sαy

p−2
1 y2

∣
∣ + ∣

∣nppsαy
p−1
1

∣
∣ + ∣

∣nqχqs
α
2 y

q−1
1

∣
∣

≤ ∣
∣np+1(p − 1)Rnαap−2b

∣
∣ + ∣

∣nppRnαa
p−1
2

∣
∣ + ∣

∣nqχqR
nα
2 a

q−1
2

∣
∣

(4.8)

for all (s, y0, y1, y2) ∈ S, and thus | ∂φ

∂y1
(·, t, ·, ·, ·)| ∈ L∞

loc((0,Rn)×R× (0,∞)×R), and for

all T0 ∈ (0, T̃ ) and all Λ > 0 we derive that

∣
∣
∣
∣
∂φ

∂y0
(s, t, y0, y1, y2)

∣
∣
∣
∣ ≤ nqχy

q

1 ≤ nqχΛq (4.9)

for all (s, t, y0, y1, y2) ∈ G with t ∈ (0, T0) and y1 ∈ (0,Λ). Thanks to (4.7), (4.8) and (4.9),
we can use [2, Lemma 5.1] to yield that

w(s, t) ≥ w(s, t)

for all s ∈ [0,Rn] and all t ∈ [0, T̃ ). Since w(0, t) = w(0, t) = 0 for all t ∈ [0, T̃ ), the mean
value theorem implies that for each t ∈ [0, T̃ ) there is some θ(t) ∈ (0,Rn) with the property
that

ws

(
θ(t), t

) = w(B(t), t)

B(t)
≥ w(B(t), t)

B(t)
= A(t)ϕ(1)

B(t)
= λ · A(t)

B(t)

for all t ∈ [0, T̃ ). Noting that u(r, t) = nws(r
n, t) for all r ∈ (0,R) and all t ∈ (0, T̃ ), we can

show that

sup
r∈(0,R)

u(r, t) ≥ ws

(
θ(t), t

) = λ · A(t)

B(t)

for all t ∈ (0, T̃ ). Thanks to the facts that

B(t) ↘ 0 and A(t) → m

ωn

· K2

K2 + aλRn

as t ↗ T by (3.7), using a consequence of the extensibility criterion (2.1), we can see that
(1.11) holds with T ∗ = Tmax ≤ T < ∞, which enables us to attain Theorem 1.1. �
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