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Abstract The Hamiltonian action of a Lie group on a symplectic manifold induces a mo-
mentum map generalizing Noether’s conserved quantity occurring in the case of a symme-
try group. Then, when a Hamiltonian function can be written in terms of this momentum
map, the Hamiltonian is called ‘collective’. Here, we derive collective Hamiltonians for
a series of models in quantum molecular dynamics for which the Lie group is the com-
position of smooth invertible maps and unitary transformations. In this process, different
fluid descriptions emerge from different factorization schemes for either the wavefunction
or the density operator. After deriving this series of quantum fluid models, we regularize
their Hamiltonians for finite � by introducing local spatial smoothing. In the case of stan-
dard quantum hydrodynamics, the � �= 0 dynamics of the Lagrangian path can be derived
as a finite-dimensional canonical Hamiltonian system for the evolution of singular solutions
called ‘Bohmions’, which follow Bohmian trajectories in configuration space. For molecular
dynamics models, application of the smoothing process to a new factorization of the density
operator leads to a finite-dimensional Hamiltonian system for the interaction of multiple
(nuclear) Bohmions and a sequence of electronic quantum states.
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1 Introduction

1.1 Factorized Wave Functions in Quantum Molecular Dynamics

Quantum molecular dynamics deals with the problem of solving the molecular Schrödinger
equation

i�∂tΨ = (̂Tn + ̂Te + ̂Vn + ̂Ve + ̂VI )Ψ =: ̂HΨ, (1)

which governs the quantum evolution for a set of nuclei interacting with a set of electrons.
In the equation above, Ψ ({rk}, {x l}, t) is called the molecular wave function. The notation is
such that {rk} = {rk : k = 1, . . . ,Nn} and {x l} = {x l : l = 1, . . . ,Ne} denote, respectively, Nn

nuclear and Ne electronic coordinates. Each rk corresponds to a nucleus of mass Mk whilst
all electrons have the same mass m. The notation ̂T and ̂V in (1) refers to the kinetic energy
and potential energy operators, while the subscripts n and e denote nuclear and electronic
energies, respectively. The subscript I refers to the interaction potential between nuclei and
electrons. More explicitly, one has

̂H = −�
2

2

Nn
∑

k=1

1

Mk

�rk
− �

2

2m

Ne
∑

l=1

�xl
+ Vn

({rk}
) + Ve

({x l}
) + VI

({rk}, {x l}
)

, (2)

where the potentials are of Coulomb type [59]. Without loss of generality, in this paper we
shall consider only two particles, one nucleus and one electron, with coordinates denoted by
r and x, respectively.

As the molecular Schrödinger equation is practically intractable for standard computa-
tional methods, a series of different closures and approximations for extracting its dynamics
have been developed over almost a century. Since the work of Born and Oppenheimer [15]
in 1927, many efforts have been devoted to going beyond the adiabatic approximation in
molecular dynamics, e.g., in the Jahn–Teller transition [80]. In the standard approach, one
separates out the nuclear kinetic energy term by writing the molecular Hamiltonian operator
as the sum,

̂H = ̂Tn + ̂He. (3)

Here, ̂He is called electronic Hamiltonian. Since ̂He also includes the potential energy opera-
tors ̂Vn and ̂VI (both depending on r), one may write ̂He = ̂He(r). The Hamiltonian operator
̂He(r) acts on the electronic Hilbert space He, identified with the space of L2-functions of
the electronic coordinates, x, which depend parametrically on the nuclear coordinates, r .
Thus, its eigenvalue equation reads

̂He(r)φn(x; r) = En(r)φn(x; r).

At every point r , the eigenvectors φn(x; r) provide an orthonormal frame in He and the level
sets of the eigenvalues En(r) comprise hypersurfaces in the nuclear coordinate space, called
potential energy surfaces (PES) [59, 81]. As customary in the chemical physics literature,
for simplicity, here we assume a discrete electronic spectrum. Formally, one can solve the
molecular Schrödinger equation by writing the so-called Born–Huang expansion [16]

Ψ (r,x, t) =
∞

∑

n=0

Ωn(r, t)φn(x; r).
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At this point, one can proceed by writing the equations for the coefficients Ωn(r, t), which
in chemical physics are interpreted as nuclear wave functions.

Historically, various additional approximations have been made that have treated the nu-
clei as classical particles. In particular, the lowest-order truncation of the Born–Huang ex-
pansion is the Born–Oppenheimer (BO) approximation, [15]

Ψ (r,x, t) = Ω0(r, t)φ0(x; r).

In the BO approximation, the electrons remain in the ground state identified with the lowest
nuclear eigenvalue E0(r) (adiabatic hypothesis). Within the physical chemistry community,
it is widely accepted that stable molecular configurations correspond to the minima of the
lowest energy PES, E0(r), see, e.g., [59].

Despite the several successes of the BO approximation, the adiabatic hypothesis appears
to be too restrictive for realistic computer simulations. Consequently, a great deal of work
has been devoted to formulating mathematical models for nonadiabatic dynamics [7, 20].
Some of these approaches still exploit the Born–Huang expansion, while others introduce
a fully time-dependent ansatz for the molecular wave function Ψ . Among the most ac-
knowledged models for capturing nonadiabatic effects, the mean-field model is probably the
simplest. The standard mean-field factorization ansatz is given by

Ψ (r,x, t) = χ(r, t)ψ(x, t), (4)

where both χ and ψ are wave functions (in their corresponding Hilbert spaces; respec-
tively, Hn and He). After finding the wave equations for χ and ψ , semiclassical methods
are typically applied to the nuclear wave function, χ , thereby treating the nuclei as classi-
cal particles. Two different approaches are commonly used in dealing with factorized wave
functions for molecular dynamics: 1) Frozen Gaussian wavepackets, [35, 52], whose un-
derlying geometric structure is based on coherent states [65]; and 2) Bohm’s hydrodynamic
approach [14] which reduces the nuclear dynamics to a Hamilton–Jacobi equation. While
the geometry of the first approach has been illustrated in [11, 62, 63] (see also [22] for related
discussions), the present paper deals only with Bohm’s hydrodynamic approach [14].

While capturing nonadiabatic effects, the mean-field model does not adequately repro-
duce particle correlations between nuclei and electrons, [59]. Thus, the mean-field model is
apparently too simple to apply accurately to realistic situations in which correlations are im-
portant. Therefore, alternative methods have been developing during the past few decades.
For example, in Tully’s surface hopping algorithm [75, 76], probability amplitudes are used
to design a stochastic algorithm that enforces “hopping” between different energy levels
En(r). In recent years, an augmented factorization scheme has also been proposed [1, 2],
following earlier works by Hunter [42] and going back to von Neumann’s book [77]. This
approach is currently known as exact factorization (EF), which reads as follows

Ψ (r,x, t) = χ(r, t)ψ(x, t; r). (5)

In the exact factorization approach, the electronic wave function ψ depends parametrically
on the nuclear coordinates r ; so, it can be regarded as a mapping from the nuclear co-
ordinate space into the electronic Hilbert space He . In this sense, the exact factorization
provides a time dependent generalization of the BO approximation. Although the classical
limit of the nuclear wave function χ(r, t) could also have been taken by exploiting Gaus-
sian wavepackets, the present work will investigate exact factorization by employing Bohm’s
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hydrodynamic approach. For an excellent review of the Gaussian wavepacket approach to
nonadiabatic electronic effects, see [45].

This paper aims to investigate and compare the hydrodynamic approaches for both the
mean-field models and the exact factorization ansatz in the context of geometric mechanics.
Within this framework, separating out the nuclear kinetic energy in the molecular Hamilto-
nian (3) corresponds in the hydrodynamic approach to transforming into a Lagrangian coor-
dinate frame moving with the nuclei. Then, the momentum map associated to the evolution
of the nuclear wave function collectivizes in the sense of Guillemin and Sternberg, [32, 33,
51, 56, 57]. This means that equivariant momentum maps transform canonical Hamiltonian
dynamics into motion on coadjoint orbits generated by the action of a Lie group on the dual
of its Lie algebra. Eventually, Lie–Poisson reduction leads to a new hydrodynamic formula-
tion of nonadiabatic dynamics in which hyperbolicity is retained, rather than setting � → 0
and passing to the Hamilton–Jacobi equation.

1. The remainder of Sect. 1 introduces background material which links standard elements
of quantum mechanics with familiar objects in the setting of geometric mechanics. The
fundamental variational principles and symplectic Hamiltonian structure in nonrelativis-
tic quantum mechanics appear in Sect. 1.2.

2. The transformation to quantum hydrodynamics is discussed in Sect. 2.1. In Sect. 2.2,
Bohmian trajectories [14] are reinterpreted as Lagrangian paths associated with the quan-
tum hydrodynamic flow. Section 2.4 regularizes the � → 0 limit of standard quantum
hydrodynamics by suitably applying a spatial smoothing operator to the fluid variables
of both the collectivized Hamiltonian and the corresponding Lagrangian before taking
� → 0. The resulting smoothed quantum fluid equations are found to admit singular
solutions supported on delta functions. We call these singular solutions ‘Bohmions’, be-
cause the delta functions on which they are supported move along Lagrangian paths of
the regularized quantum fluid Hamiltonians. Section 2.5 shows how the cold-fluid clo-
sure of Wigner distributions corresponds to a classical closure of mixed state dynamics
arising from the Liouville–von Neumann equation.

3. In the mean-field approximation of coupled nuclear and electronic systems, the wave
function is separated into a product of two independent factors, as in equation (4), above.
Thus, the mean-field factorization of the wave function neglects the classical-quantum
correlations between nuclei and electrons. Section 3 reviews the mean-field model and
derives its quantum fluid representation in the geometric mechanics setting.

4. The exact factorization (EF) model [1–3, 6] captures some of the nuclear and electronic
correlation effects which are neglected in the mean field approximation, by letting the
electron wave function depend on the nuclear spatial parameters, as in equation (5),
above. Section 4 discusses the EF model in both the wave function and density matrix
representations, then derives its quantum fluid representation in the geometric mechanics
setting.

5. In Sect. 5 a new model is introduced by invoking a factorization ansatz at the level of the
molecular density operator. Then, combining the classical closure of nuclear mixed states
with the smoothing process presented in Sect. 2.4 leads to an entirely finite-dimensional
Hamiltonian system for the interaction of nuclear Bohmion solutions with an ensem-
ble of quantum electronic states. Two different finite-dimensional schemes are presented
depending on whether the smoothing process is applied in the Hamiltonian or in the
variational formalism.
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1.2 Quantum Lagrangians, Hamiltonians, and Momentum Maps

This section introduces the standard setting of the Hamiltonian approach to quantum dy-
namics by focusing on the evolution of pure quantum states. Later sections of this work will
introduce von Neumann’s density operators and their evolution for mixed states. However,
the present section considers only Schrödinger-type equations.

Among the most commonly used tools in chemical physics, the Dirac–Frenkel (DF) vari-
ational principle [25] for the evolution of the wave function is expressed in terms of the
symplectic Hamiltonian structure of Schrödinger’s equation. For a time-dependent quantum
state ψ(t) in the Hilbert space H , the DF variational principle is expressed as a phase space
Lagrangian, which reads

δ

t2ˆ

t1

〈ψ, i�ψ̇ − ̂Hψ〉dt = 0. (6)

Here, the bracket operation, 〈 ·, · 〉, defines the real-valued pairing

〈ψ1,ψ2〉 := Re 〈ψ1|ψ2〉, (7)

which is induced by the natural inner product 〈ψ1|ψ2〉 on H , given by 〈ψ1|ψ2〉 = ψ
†
1 ψ2 =´

ψ∗
1 (x)ψ2(x)d3x, in which, e.g., ψ∗

1 denotes the complex conjugate of ψ1, and ψ
†
1 carries

an implied integration.
The Schrödinger equation i�ψ̇ = ̂Hψ follows as the Euler–Lagrange equation for the

DF variational principle in (6), in which ̂H is the self-adjoint Hamiltonian operator con-
structed from the canonical operators ̂Q and ̂P (the so called canonical observables). Thus,
̂H = ̂H(̂Q, ̂P ) and [̂Q, ̂P ] = i�1. Notice that, since ̂H is self-adjoint, the DF Lagrangian in
(6) is U(1)-invariant so that the condition ‖ψ‖2

L2 = 1 is naturally preserved. This amounts
to conservation of the total probability. As presented in [11], the Euler–Poincaré formula-
tion [38] of pure state dynamics is derived from the DF variational principle upon letting
ψ(t) = U(t)ψ0 with U(t) ∈ U(H ). Here, U(H ) denotes the group of unitary operators on
H . In earlier years, this strategy was also exploited in [49, 69] upon restricting U(t) to
be the unitary representation of a finite-dimensional Lie group. For example, if U(t) is a
representation of the Heisenberg group, substituting the ansatz ψ(t) = U(t)ψ0 into the DF
variational principle yields canonical Hamiltonian motion on phase space [68].

Notice that in (6), the functional h(ψ) = 〈ψ, ̂Hψ〉 identifies the total energy of the sys-
tem and, thus, it is deemed the Hamiltonian functional. The functional h(ψ) is sometimes
called Dirac Hamiltonian, to distinguish it from the Hamiltonian operator, ̂H . Depending on
the context, the operator ̂H and the functional h(ψ) may both be called the ‘Hamiltonian’.
More general systems (such as the nonlinear Schrödinger equation) can be obtained by re-
placing 〈ψ, ̂Hψ〉 by a suitable functional h(ψ). In this case, the normalization condition
‖ψ‖2

L2 = 1 must be incorporated as a constraint, [64], as

δ

t2ˆ

t1

(〈ψ, i�ψ̇〉 − h(ψ) + λ
(‖ψ‖2 − 1

))

dt = 0, (8)

where λ(t) is a real-valued Lagrange multiplier. For such constrained systems, the Euler–
Lagrange equations yield the projective Schrödinger equation [48]

(

1 − ψψ†
)

(

i�ψ̇ − 1

2

δh

δψ

)

= 0, (9)
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along with the condition

Im

〈

ψ

∣

∣

∣

∣

δh

δψ

〉

= 0, (10)

which implies that h(ψ) is U(1)-invariant, since for a phase shift δh = 〈iψ, δh/δψ〉.
Then, Noether’s theorem for the U(1) symmetry of the constrained Lagrangian in (8)

again implies conservation of ‖ψ‖2 = 〈ψ,ψ〉, since the Lagrangian is invariant under in-
finitesimal phase shifts. Consequently, the constraint ‖ψ‖2 − 1 = 0 is satisfied and we may
write, simply,

i�ψ̇ = 1

2

δh

δψ
, (11)

which is the Hamiltonian form of the class of Schrödinger equations.
The Hamiltonian structure for the class of Schrödinger equations is encoded in the fol-

lowing symplectic form on H : ω(ψ1,ψ2) = 2� Im〈ψ1|ψ2〉 = 2�〈iψ1,ψ2〉. In turn, this sym-
plectic structure leads to the Poisson bracket given by

{f,g}(ψ) = 1

2�
Im

〈

δf

δψ

∣

∣

∣

∣

δg

δψ

〉

=
〈

δf

δψ
,− i

2�

δg

δψ

〉

.

This Poisson bracket then yields the corresponding Hamiltonian equation (11) via the ex-
pected relation ḟ = {f,h}.

Both the DF variational principle and the Hamiltonian structure presented above will be
used again and again throughout this paper to illuminate the geometric features of current
models in nonadiabatic molecular dynamics. The next section will review the geometric set-
ting of Bohm’s quantum hydrodynamics in terms of its Hamiltonian structure. In particular,
the next section will show that the Hamiltonian functional 〈ψ | ̂Hψ〉 collectivizes, in the sense
of Guillemin and Sternberg [32, 33, 51, 56, 57], through the momentum maps leading from
Schrödinger’s equation to quantum hydrodynamics. A (left) Hamiltonian action of a Lie
group G on a symplectic manifold (M,ω) induces the momentum map J : M → g∗, where
g∗ is the dual space to the Lie algebra g of G. In the special case when M is a symplectic
vector space (so that M = V ), then the momentum map is defined by

〈

J (x), ξ
〉 = 1

2
ω

(

ξ(x), x
) ∀x ∈ V, ∀ξ ∈ g, (12)

where ξ(x) denotes the infinitesimal generator associated to the linear G-action on V . For
example, if G = SO(3), the momentum map J (q,p) evaluates the angular momentum at
each point (q,p) ∈ R

6. In more generality, if M is replaced by a Poisson manifold (so that
M = P ) with Poisson bracket {·, ·}P , the momentum map (if it exists) is defined as

{

F,
〈

J (x), ξ
〉}

P
= ξ [F ] ∀x ∈ P, ∀ξ ∈ g, ∀F ∈ C∞(P ). (13)

Any function h on g∗ then gives rise to a function H = h ◦ J on M which is a collective
Hamiltonian associated to the group action G. Symplectic momentum maps are Poisson.
That is, for smooth functions f and h, we have {F,H } = {f ◦ J,h ◦ J } = {f,h} ◦ J . This
relation defines the Lie–Poisson bracket on g∗, given in terms of the adjoint action of the
Lie algebra on itself, ad : g× g → g, denoted as adξ ζ = [ξ, ζ ] for any Lie algebra elements
ξ, ζ ∈ g. Upon denoting the pairing by 〈 ·, · 〉g : g∗ × g → R, the Lie–Poisson bracket on g∗
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reads as [58]

{

f (J ), h(J )
} :=

〈

J,

[

∂f

∂J
,

∂h

∂J

]〉

g

= −
〈

J, ad∂h/∂J

∂f

∂J

〉

g

. (14)

Momentum maps are ubiquitous in quantum mechanics. For example, the projection opera-
tor J (ψ) = −i�ψψ† is a momentum map for the left action of the unitary group U(H ) on
the quantum state space H . Other important examples are given by quantum expectation
values [12] and covariance matrices of Gaussian wavepackets [62].

2 Quantum Hydrodynamics

This section illustrates the geometry of the hydrodynamic setting of quantum mechanics,
which has its foundations in the Madelung transform [54, 55]. After reviewing the geometry
of half-densities and their momentum maps, the latter are exploited to derive the quantum
hydrodynamic (QHD) equations.

2.1 Half-densities and Momentum Maps

It is known [8, 26] that wave functions ψ(x) in H = L2(R3) can be regarded as half-
densities, i.e., tensor fields ψ ∈ Den1/2(R3) such that |ψ |2 ∈ Den(R3). More generally,
if ψ1,ψ2 ∈ Den1/2(R3), then Re(ψ∗

1 ψ2) ∈ Den(R3). The space Den1/2(R3) is acted on
by the diffeomorphism group Diff(R3) with the left action Φ : Diff(R3) × Den1/2(R3) →
Den1/2(R3) given by

Φ(η,ψ) =: Φη(ψ) = ψ ◦ η−1

√

det∇ηT
, (15)

where ◦ denotes composition of functions and det∇ηT denotes the Jacobian of the smooth
invertible map, η, acting on coordinates x ∈ R

3 as η : x 
→ η(x) ∈ R
3. The notation in (15)

defines the mapping Φη : Den1/2(R3) → Den1/2(R3) that is naturally induced by the group
action Φ(η,ψ) of the diffeomorphism η ∈ Diff(R3) on the half-density ψ ∈ Den1/2(R3).
Indeed, the left action in (15) of diffeomorphisms on half-densities can be thought of as
defining the push-forward of a half-density by a diffeomorphism.

Upon using the anticommutator notation {A,B}+ := AB + BA, the corresponding in-
finitesimal generator is given by

uDen1/2(ψ) = − i

2
�

−1
{

ûk, ̂Pk

}

+ψ = −u · ∇ψ − 1

2
(∇ · u)ψ, (16)

where u(x) ∈ X(R3) is a smooth vector field on R
3, û k denotes the multiplicative operator

associated to uk(x), and we recall that ̂Pk = −i�∂k denotes the momentum operator.
The equivariant momentum map J : Den1/2(R3) → X∗(R3) for the left action (16) is

found as in [26, 46] from the standard definition (12), that is 〈J (ψ),u〉 = �〈iuDen1/2(ψ),ψ〉.
Here we have identified the Hilbert space as H = L2(R3) = Den1/2(R3).

Consequently, the space Den1/2(R3) inherits the standard symplectic form on L2(R3).
As a result, we have the 1-form density,

J (ψ) = Re
(

ψ∗
̂Pψ

) = � Im
(

ψ∗∇ψ
) = �D∇θ, (17)
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where the last equality follows from writing the wave function ψ in polar form, ψ = √
Deiθ .

The momentum map J (ψ) coincides (up to the mass factor, m) with the well-known proba-
bility current from quantum mechanics. It is also well known that the physical Hamiltonian
operator ̂H = −�

2�/2m + V (x) transforms the total energy into the form

〈ψ | ̂Hψ〉 =
ˆ [

1

2m

|J (ψ)|2
|ψ |2 + �

2

8m

(∇|ψ |2)2

|ψ |2 + |ψ |2V (x)

]

d3x = h
(

J (ψ), |ψ |2), (18)

as can be verified by a direct calculation. Here, the quantity D = |ψ |2 arises as another
momentum map which is associated to the action of (local) phase transformations ψ(x) 
→
eiϕ(x)ψ(x). Indeed, this action on the phase of the wave function has the momentum map
�|ψ |2 = �D.

Relation (18) shows that the Hamiltonian functional 〈ψ | ̂Hψ〉 collectivizes, in the sense
of Guillemin and Sternberg [32, 33], through the momentum maps J (ψ) and |ψ |2. That is,
the Hamiltonian in (18) may be expressed solely in terms of the collective variables μ and
D, given by 〈ψ | ̂Hψ〉 = h(μ,D) with μ = J (ψ) and (μ,D) ∈ (X(R3)�C∞(R3))∗. Here,
X(R3)�C∞(R3) denotes the semidirect-product Lie algebra of the semidirect-product
Lie group Diff(R3)�C∞(R3, S1), whose elements (η,ϕ) act from the left on the space
Den1/2(R3) of half-densities as

ψ 
→ 1
√

det∇ηT

((

e−iϕψ
) ◦ η−1

)

. (19)

This formula extends the action in (15) to include a local phase shift.
The important feature here is that, under the collectivization (J (ψ), |ψ |2) → (μ,D),

the Hamiltonian h(μ,D) given by (18) belongs to a widely studied class of Hamiltoni-
ans possessing the Lie–Poisson bracket structure. This structure has been derived from the
Euler–Poincaré formulation of ideal classical continuum dynamics with advected quantities
in [38]. In particular, upon defining the velocity vector field via the reduced Legendre trans-
form, u = δh/δμ = m−1μ/D, the Euler–Poincaré Lagrangian associated to the Hamiltonian
(18) reads

�(u,D) =
ˆ [

mD

2
|u|2 − �

2

8m

|∇D|2
D

− DV (x)

]

d3x. (20)

Throughout this paper, we shall denote Euler–Poincaré Lagrangians by � and ordinary La-
grangians by L. In (20), the velocity vector field is given by u = η̇ ◦ η−1 ∈X(R3), while the
Eulerian density D is defined as

D(x, t) = η∗D0 :=
ˆ

D0(x0) δ
(

x − η(x0, t)
)

d3x0 ∈ Den
(

R
3
)

, (21)

for a reference density, D0 = D0(x)d3x. In the last definition, the symbol η∗ denotes the
operation of push-forward by the map η ∈ Diff(R3); so, η∗D0 denotes the push-forward
of the reference density, D0 by the map η. Push-forward by the smooth flow η is called
advection in hydrodynamics. In this context, the Lagrangian particle path of a fluid parcel
is given by the smooth, invertible, time-dependent map, ηt : R3 → R

3, as follows, ηtx0 =
η(x0, t) ∈ R

3 for initial reference position η0x0 = η(x0,0) = x0. After this definition, there
should be no confusion between ηt ∈ Diff(R3) and ηtx0 = η(x0, t) ∈ R

3. The subscript t is
omitted in most of this paper, for simplicity of notation.
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Now, taking variations in Hamilton’s principle δ
´ t2

t1
�(u,D)dt = 0 for the reduced La-

grangian (20) yields the following quantum hydrodynamics (QHD) equations,

∂u

∂t
+ (u · ∇)u = − 1

m
∇(V + VQ),

∂D

∂t
+ div(Du) = 0. (22)

Here, the quantum potential

VQ := − �
2

2m

�
√

D√
D

(23)

arises from taking variations of the middle term of the reduced Lagrangian in (20), which
can be rearranged as |∇D|2/D = 4|∇√

D|2.

Remark 1 (Effects of the quantum potential) The appearance of the amplitude of the wave
function in the denominator of the quantum potential in (23) implies that its effects do not
necessarily fall off with distance. That is, the effects of the quantum potential need not
decrease, as the amplitude of the wave function decreases. Moreover, the middle term in
(20) is known as the Fisher–Rao norm, which is well-known in information theory. For
further discussion of the information geometry in quantum mechanics, see, e.g., [17].

Equations (22) follow from Hamilton’s principle for the reduced (collective) Lagrangian
(20), upon using the following constrained variations from the Euler–Poincaré theory of
ideal fluids with advected quantities, derived in [38],

δu = δ
(

η̇ ◦ η−1
) = ∂tw + (u · ∇)w − (w · ∇)u, δD = δ(η∗D0) = −div(Dw). (24)

Here, the arbitrary vector field w = δη ◦ η−1 ∈X(R3) vanishes at the endpoints in time. The
density D is an advected quantity, satisfying the mass transport equation in (22).

2.2 Bohmian Trajectories, Lagrangian Paths & Newton’s Law

In quantum hydrodynamics, the role of the Lagrangian path η ∈ Diff(R3) is of paramount
importance. Namely, it plays the role of a hidden variable in the Bohmian interpretation of
quantum dynamics [14]. Indeed, in this framework the path η is the fundamental dynamical
variable, while the wave function is simply transported in time along the Lagrangian motion
of η(x0, t), which in turn satisfies

η̇(x0, t) = u
(

η(x0, t), t
)

. (25)

This relation defines the so-called Bohmian trajectory, which is precisely the Lagrangian
fluid path of the hydrodynamic picture!

At this point, it is important to emphasize that the (infinite-dimensional) Bohmian tra-
jectories η(x0, t) are completely different from the point particle trajectories q(t) (finite-
dimensional), which arise when the quantum dispersion is neglected. In order to clarify this
point, it is convenient to rewrite the Lagrangian (20) in terms of the Bohmian trajectory by
using (21) and (25). We have

L(η, η̇) =
ˆ [

mD0

2
|η̇|2 − D0(x0)

(

VQ

(

η(x0, t), t
) + V

(

η(x0, t)
))

]

d3x0, (26)
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where the quantum potential is written in terms of η as

VQ(x, t) = − �
2

2m

√

det∇η(x, t)T

D0(η−1(x, t))
�

√

D0(η−1(x, t))

det∇η(x, t)T
.

The dynamics of the Bohmian trajectory η is given by the Euler–Lagrange equation [81]
mD0η̈ = −D0∇η(VQ(η, t)+V (η)). We emphasize that the dynamics of the Bohmian trajec-
tory η is not equivalent to point particle dynamics. In principle, the latter could be obtained
by setting a point-like initial density of the type D0(x0) = δ(x0 − q0) and then integrating
the Euler–Lagrange equation over D0. However, this type of initial condition is not allowed
by the structure of the quantum potential. For this reason, asymptotic semiclassical meth-
ods are required to properly derive the effects of the quantum potential in a weak limit as
�

2 → 0. For more details, see, e.g., [44].
Nonetheless, the Newtonian limit neglects the order O(�2) quantum dispersion term in

the Lagrangian (20) (or, equivalently, (26)) and varies the remainder. The resulting equation
for the Bohmian trajectory becomes D0(mη̈+∇ηV (η)) = 0. It is clear that the point-particle
initial condition D0(x0) = δ(x0 − q0) is now allowed and thus denoting q(t) = η(q0, t) and
integrating over space yields Newton’s Law mq̈ + ∇V (q) = 0.

In the Eulerian picture, one proceeds analogously by discarding the O(�2) in the La-
grangian (20), so that the equations of motion (22) restrict to

D(∂tu + u · ∇u) = −m−1D∇V, ∂tD + div(Du) = 0. (27)

Then, one considers the relations (21) and (25) between Lagrangian and Eulerian quanti-
ties. We observe that the initial particle-type initial density D0(x0) = δ(x0 − q0) yields the
Eulerian relation D(x, t) = δ(x − q(t)) with q̇ = u(q, t). Integrating (27) over space again
recovers Newton’s Law for q(t).

A common alternative method to derive Newton’s Law exploits the analogy with the
Hamilton–Jacobi equation of classical mechanics. Since u = m−1μ/D = �∇θ according to
the momentum map relation for the collective variable J (ψ) in (17), the first of these re-
stricted QHD equations happens to recover the Hamilton–Jacobi equation for S = �θ , as for
geometrical optics with the classical Hamiltonian H(q,p) = |p|2/2M + V (q). This is not
necessarily convenient for a fluids interpretation, though, because solutions of Hamilton–
Jacobi equations may become singular (e.g., form caustics) even for smooth initial data.

Remark 2 (Regularization of an “ultraviolet catastrophe” for �2 → 0) The Newtonian limit
of QHD (22), obtained by simply neglecting the contribution to the Euler–Poincaré equa-
tions from the quantum potential in (23) turns out to be problematic. In particular, because
the potential (which plays the role of a pressure term) is assumed to be independent of
time, the Newtonian limit system (27) is not strictly hyperbolic. This observation is a well
known signal, [50], that the solution behaviour in the classical limit �2 → 0 can become
singular, as �

2 multiplies the highest spatial derivative. This is especially clear when the
wave function is written in the usual WKB form, as ψ = √

D exp(iS/�), where S is the
action integral for the Schrödinger equation. Indeed, in the �

2 → 0 limit, the gradient of
the quantum potential produces highly oscillatory spatial behaviour. See, e.g., [27, 44] and
references therein for discussions of the weak convergence of the rapidly oscillatory solu-
tions obtained in passing the WKB description of the Schrödinger equation to the classical
limit as �2 → 0. As indicated in [44], one convenient way to carry out the limit �2 → 0 is to
apply the Wigner transform of the wave function [78, 82]. The real-valued Wigner function
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then acts as the quantum-equivalent of the phase-space distribution function in classical me-
chanics; although the quantum version introduces mathematically technical features, such
as Moyal operator brackets, instead of Poisson brackets. One could also treat the rapid os-
cillations as being stochastic and use probability theory to obtain the expected solution as
a classical limit, [70]. Thus, in retrospect, one can appreciate the role of non-zero �

2 in the
quantum potential (23) in equations (22) as a dispersive regularization of what would other-
wise have led to a type of ultraviolet catastrophe [21] for the restricted (Hamilton–Jacobi)
QHD in (27), as the solutions of the restricted QHD equations form caustics.

2.3 Lie–Poisson Structure of Quantum Hydrodynamics

In terms of the variables (μ,D), the collective Hamiltonian in (18) for the QHD equations
in (22) reads

h(μ,D) =
ˆ (

1

2m

|μ|2
D

+ �
2

8m

|∇D|2
D

+ DV (x)

)

d3x. (28)

In these variables, the QHD equations can be written in Hamiltonian form, with a Lie–
Poisson bracket written symbolically as, see, e.g., [38]

∂

∂t

[

μ

D

]

=
{[

μ

D

]

, h(μ,D)

}

= −C
[

δh/δμ

δh/δD

]

= −
[

ad∗
� μ � � D

£� D 0

][

δh/δμ

δh/δD

]

, (29)

in which each box � in (29) indicates where to substitute elements of the last column
of variational derivatives of the Hamiltonian in the matrix multiplication. Here ad∗ de-
notes the coadjoint action of the Lie algebra X(R3) on its dual, the 1-form densities
X(R3)∗ = Λ1(R3) ⊗ Den(R3). The coadjoint action ad∗ : g × g∗ → g∗ in (29) is dual to
the adjoint action ad : g × g → g, via the pairing 〈 ·, · 〉g : g∗ × g → R in which the Lie–
Poisson bracket in equation (14) was defined, see, e.g., [40, 58], 〈ad∗

∂h/∂μ μ, ∂f /∂μ〉g :=
〈μ, ad∂h/∂μ(∂f /∂μ)〉g. The symbol £u in (29) denotes Lie derivative with respect to the
vector field u = η̇ ◦ η−1 ∈X(R3). For example, the corresponding Lie derivative of the den-
sity D(x, t)d3x is given by

£u

(

D(x, t)d3x
) = d

dt

∣

∣

∣

∣

t=0

(

D
(

η(x, t), t
)

d3η(x, t)
) = div

(

uD(x, t)
)

d3x, (30)

for the Lagrangian path, η(x, t) such that η(x,0) = x. Finally, the diamond operation (�) is
defined for right action of Φη(t) as [40]

〈

δh

δa
� a, ξ

〉

g

:=
〈

δh

δa
, −£ξ a

〉

V ∗×V

, (31)

in the L2(R3) pairing 〈 ·, · 〉V ∗×V : V ∗ × V → R for elements of the tensor space a ∈ V and
on its dual δh/δa ∈ V ∗. In the example of the advected density, we have D ∈ Den(R3).
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The corresponding notation is defined explicitly for QHD in components by

(

ad∗
δh/δμ μ

)

i
= (∂jμi + μj∂i)

δh

δμj

∈ Λ1
(

R
3
) ⊗ Den

(

R
3
)

,

£δh/δμ D := div

(

D
δh

δμ

)

∈ Den
(

R
3
)

,

δh

δD
� D := D∇ δh

δD
∈ Λ1

(

R
3
) ⊗ Den

(

R
3
)

.

(32)

The Hamiltonian operator C in (29) is linear in the dynamical variables (μ,D). The
corresponding Lie–Poisson bracket is given explicitly by

{f, h}(μ,D) = −
ˆ

Tr

((

δf

δ(μ,D)

)T

C
δh

δ(μ,D)

)

d3x

= −
ˆ

μj

(

δf

δμ
· ∇ δh

δμj

− δh

δμ
· ∇ δf

δμj

)

+ D

(

δf

δμ
· ∇ δh

δD
− δh

δμ
· ∇ δf

δD

)

d3x.

(33)

This is the Lie–Poisson bracket dual to the semidirect product Lie algebra X(R3)�C∞(R3),
with dual coordinates μ ∈ X∗(R3) = Λ1(R3) ⊗ Den(R3) (1-form densities) and D ∈
Den(R3). For further discussions of Lie–Poisson brackets, see, e.g., [40, 58] and references
therein.

2.4 Regularized QHD and Bohmion Solutions

In remark 2, we have emphasized that the order O(�2) term in the QHD Hamiltonian (28)
may be regarded as a dispersive regularization of the “ultraviolet catastrophe” which occurs
in the quantum fluid Hamiltonians as �

2 → 0. The order O(�2) term is an energy penalty
for high gradients |∇D|2/D = 4|∇√

D|2 that yields only a weak classical limit as �
2 → 0

[44].
In this section we proceed by regularizing the Lagrangian or Hamiltonian to allow for

single-particle solutions. As we have observed in Sect. 2.2, the O(�2)-terms in QHD pre-
vent the existence of particle-like solutions so that Bohmian trajectories can only be identi-
fied with Lagrangian paths following the characteristic curves of the Eulerian fluid velocity.
Thus, the O(�2)-terms in QHD must be treated with particular attention. Instead of adopting
semiclassical methods to take the limit �2 → 0, this section presents an alternative strategy
consisting in regularizing the O(�2)-terms by a smoothening process. More particularly, we
shall discuss Bohmian trajectories which can be computed from regularized QHD Hamil-
tonians and Lagrangians, whose fluid variables have been spatially smoothed; so that their
�

2 → 0 limit is no longer singular.
Depending on which terms are regularized, different particle motions may emerge. We

present two regularization strategies. The first simply smoothens all the terms in the Hamil-
tonian, while the second only smoothens the O(�2)-terms. Although all the equations of
motion derived here are Hamiltonian equations on a canonical phase space, they may or
may not be in the usual Newtonian form, depending on which regularization scheme is
adopted. In particular, the first regularization scheme is adopted in the Hamiltonian frame-
work to regularize the hydrodynamic momentum and density, while the second scheme is
based on the variational approach following the standard Bohmian method.
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Hamiltonian Regularization The first regularization introduces the mollified collective
Hamiltonian for regularized quantum hydrodynamics (RQHD). This is simply obtained by
replacing the variables μ and D in (28) by the corresponding spatially smoothed variables,

μ → μ̄ = K ∗ μ =
ˆ

K(x, s)μ(s)d3s and D → D̄ = K ∗ D =
ˆ

K(x, s)D(s)d3s,

(34)
where K(x, s) is a positive definite, symmetric smoothing kernel which falls off at least ex-
ponentially in |x − s|. For example, we may take the kernel K(x, s) to be the Green’s func-
tion of the Helmholtz operator (1 − α2�), where α is a length scale and the limit α → 0 re-
turns the original hydrodynamic variables. This choice of smoothing kernel is also an energy
penalty for high gradients. It promotes functions (μ,D) that are bounded in the L2 norm
to functions (μ̄, D̄) that are bounded in the H 1 Sobolev norm. Similarly, choosing K(x, s)

to be the Greens function for an integer power p of the Helmholtz operator would smooth
gradients to promote functions of (μ̄, D̄) from being bounded in L2, to being bounded in
the Sobolev space, Hp . Yet another choice would be to take K(x, s) to be a Gaussian.

Upon replacing the variables (μ,D) in (28) for Hamiltonian h(μ,D) by the spatially
smoothed variables (μ̄, D̄) as h(μ̄, D̄) = h(K ∗ μ,K ∗ D), we find the following Hamilto-
nian equations for the original variables, (μ,D),

∂

∂t

[

μ

D

]

=
{[

μ

D

]

, h(μ̄, D̄)

}

= −
[

ad∗
� μ � � D

£� D 0

][

K ∗ (δh/δμ̄)

K ∗ (δh/δD̄)

]

. (35)

Of course, the regularized quantum hydrodynamics (RQHD) equations arising after replac-
ing the Hamiltonian in (28) by hRQHD = h(μ̄, D̄) must take the same Lie–Poisson form as
in equations (29), modified now to read

hRQHD(μ,D) = h(μ̄, D̄) =
ˆ (

1

2m

|μ̄|2
D̄

+ �
2

2m

∣

∣∇
√

D̄
∣

∣

2 + D̄V (x)

)

d3x. (36)

The variations of hRQHD(μ,D) are given by the following L2 functions for an appropriate
choice of the kernel K , rewritten in the same form as for the unsmoothed variables,

δhRQHD

δμ
= K ∗ δh

δμ̄
= K ∗

(

μ̄

mD̄

)

, (37)

δhRQHD

δD
= K ∗ δh

δD̄
= −K ∗

( |μ̄|2
2mD̄2

+ �
2

2m

�
√

D̄√
D̄

− V (x)

)

. (38)

At this point, the advantage of having regularized by simply smoothing the variables in the
Hamiltonian by K∗ will emerge. Namely, while the physical meaning of the various expres-
sions in the Hamiltonian has been preserved, the solutions in the original variables (μ,D)

can now be singular and finite dimensional along the Lagrangian paths for the diffeomor-
phism, η in Sect. 2.2.

Specifically, equations (35) for hRQHD = h(μ̄, D̄) admit Lagrangian paths as particle-like
singular solutions for (μ,D), which we propose to call ‘Bohmions’. These are given by the
singular momentum map

μ(x, t) =
N

∑

a=1

pa(t)δ
(

x − qa(t)
)

, D(x, t) =
N

∑

a=1

waδ
(

x − qa(t)
)

, (39)
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with
∑

a wa = 1. The momentum map (39) was presented in [41] as the immediate ex-
tension of the singular momentum map represented by the first relation in (39) and first
discovered in [37]. This singular momentum map underlies the ‘peakon’ singular solutions
for the nonlinear wave/fluid equations in [19, 39]. These previously investigated ‘peakon’
singular solutions were obtained, respectively, by smoothing the momentum in the kinetic
energy for either geodesic motion on Diff(R3) in the case of [19], and by smoothing both
the momentum and the depth for shallow water dynamics in [39]. Before proceeding further,
let us emphasize that the formal process leading to the singular solutions (39) has provided
a Lagrangian-particle representation of the dynamics. However, this does not imply that the
variables D = |ψ |2 and μ = � Im(ψ∗∇ψ) will become delta functions. Nevertheless, as we
shall see below, the dynamics emerging from the singular expressions (39) does reveal the
Lagrangian-particle content of quantum hydrodynamics. Namely, the Bohmian ‘particles’
are merely fluid labels following Lagrangian flow trajectories. As such, the Bohmion singu-
lar solutions in (39) represent flow lines in quantum hydrodynamics as virtual particles. Of
course, this is not a radically new idea, since particle methods have a long and successful
history in computational fluid dynamics.

Upon restricting to consider smoothing kernels of the type K(x, s) = K(x − s), substitu-
tion of the Bohmion singular solutions (39) into the Hamiltonian hRQHD = h(μ̄, D̄) in (36),
with regularized quantities

μ̄(x, t) = K ∗ μ =
N

∑

a=1

pa(t)K
(

x − qa(t)
)

,

D̄(x, t) = K ∗ D =
N

∑

a=1

waK
(

x − qa(t)
)

,

(40)

one evaluates the Bohmion Hamiltonian hRQHD({qa}, {pa}) in terms of its canonical phase
space variables ({qa}, {pa}), as

hRQHD

({qa}, {pa}
) = 1

2m

ˆ ∑

a,b pa · pbK(s − qa)K(s − qb)
∑

c wcK(s − qc)
d3s

+ �
2

8m

ˆ ∑

a,b wawb∇K(s − qa) · ∇K(s − qb)
∑

c wcK(s − qc)
d3s

+
∑

a

wa

ˆ
K(s − qa)V (s) d3s.

(41)

Then, according to equivariance of the momentum map (39) discovered in [37, 41], the
dynamics of (q,p) satisfy the canonically conjugate Hamiltonian equations in phase space,

q̇a = δhRQHD

δpa

= u
(

qa(t), t
)

and ṗa = −δhRQHD

δqa

. (42)

Both the momentum term and the quantum term proportional to �
2 in the canonical equa-

tions (42) provide extensive, potentially long-range coupling among the singular particle-
like Bohmion solutions, because of the presence of D̄ in the denominators of these terms
in the Hamiltonian hRQHD in (36). However, the limit �2 → 0 in the canonical Bohmion
equations (42) is no longer singular.
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Lagrangian Regularization So far, the discussion has been entirely based on the Hamil-
tonian structure of QHD. In this section, we shall take an alternative route: instead of regu-
larizing all terms in the QHD Hamiltonian, we shall regularize only the O(�2)-terms in the
QHD Lagrangian (20). As a first step, we perform the substitution D → D̄ in the O(�2)-
term of the original QHD Lagrangian (20), which then becomes

�(u,D) =
ˆ [

mD

2
|u|2 − �

2

8m

|∇D̄|2
D̄

− DV

]

d3x. (43)

Then, upon following the arguments in the previous section, we set the initial condition

D0(x) =
N

∑

a=1

waδ
(

x − qa(0)
)

(44)

(with
∑

a wa = 1) and denote qa(t) = η(qa(0), t), where η(x, t) is the Lagrangian path such
that η̇(t) = u(η(t), t). Then, upon recalling the Lagrange-to-Euler map in (21), the Eulerian
density becomes D(x, t) = ∑

a waδ(x − qa(t)). In turn, this expression can be inserted into
the regularized QHD Lagrangian (43), which becomes

L
({qa}, {q̇a}

) =
∑

a

(

mwa

2
|q̇a|2

− �
2

8m

ˆ ∑

b wawb∇K(y − qa) · ∇K(y − qb)
∑

c wcK(y − qc)
d3y − waV (qa)

)

(45)

for which Hamilton’s principle produces the Euler–Lagrange equation

mq̈a = −∇V (qa) − �
2

8m

∂

∂qa

ˆ ∑

b wb∇K(y − qa) · ∇K(y − qb)
∑

c wcK(y − qc)
d3y.

In analogy to the arguments in the previous section, we emphasize that the formal process
outlined here reveals a form of Newtonian dynamics, which is suitably modified by the
regularized expression of the quantum potential. While the formal relation (44) provides a
particle description, it does not imply, for example, that a smooth initial probability distri-
bution D = |ψ |2 would evolve to concentrate into a delta function.

2.5 Density Operators and Classical Closures

So far, the discussion has focused uniquely on wave functions for pure quantum states.
However, mixed quantum states are a more general class of states that can be represented by
a Hermitian, unit-trace, and positive-definite integral operator ρ satisfying the Liouville–von
Neumann equation

i� ∂tρ = [

̂H,ρ
]

. (46)

Pure states are regarded as a special case of mixed states under the identification ρ = ψψ†,
or equivalently ρ(x,x ′) = ψ(x)ψ∗(x ′). Here, the notation ρ(x,x ′) is used for the kernel
(matrix element, in the physics literature) of the integral operator ρ. In more generality,
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for an arbitrary sequence {ψn(x)} of N square-integrable functions, the density operator is
given by

ρ
(

x,x ′) =
N

∑

n=1

wn ψn(x)ψ∗
n

(

x ′) (47)

with
∑

n wn = 1. For the momentum map aspects of quantum mixed states, see [61, 73].
Equation (46) is of Lie–Poisson type, with the bracket structure

{f,h}(ρ ) = −i�−1 Tr

(

ρ

[

δf

δρ
,
δh

δρ

])

and one can verify that the following Diff(R3)-action is Hamiltonian:

ρ
(

x,x ′) 
→ ρ(η−1(x),η−1(x ′))
√

det(∇xη(x)T ∇x′η(x ′)T )
. (48)

Given the above left action, the verification detailed in the Appendix A shows that its in-
finitesimal generator may be written as

u(ρ ) = − i

2�

[{

ûk, ̂Pk

}

+ , ρ
]

(49)

where ̂Pk = −i�∂k and thus, by using (13), one can prove that the corresponding momentum
map is given in matrix element notation as

J (ρ ) = 1

2
{̂P ,ρ }+(x,x) =: μ(x). (50)

For the special case of pure states, one verifies that ρ(x,x ′) = ψ(x)ψ∗(x ′) recovers the
momentum map (17). However, in the general case of mixed quantum states, the dynamics
of J (ρ ) cannot be expressed only in terms of μ(x) itself and D(x) := ρ(x,x) as in the
case of pure states [81]. Rather, mixed states lead to a multi-fluid system that is obtained
by combining the arguments in Sect. 2.1 with the relation (47). Nevertheless, here we show
that the classical limit of mixed state dynamics (as given by the Liouville–von Neumann
equation (46)) can be obtained from an exact closure by allowing for the operator ρ to be
sign-indefinite. This should come as no surprise, since classical states violate the uncertainty
principle in such a way that the density operator can no longer be positive-definite. The
proposed classical closure for the Liouville–von Neumann equation (46) is expressed as

ρ
(

x,x ′) = D

(

x + x ′

2

)

exp

[

i
m

�

(

x − x ′) · u
(

x + x ′

2

)]

, (51)

where mD(x)u(x) = μ(x), as one can show by a direct verification. With the ansatz above,
the total energy 〈ρ, ̂H 〉 becomes 〈ρ, ̂H 〉 = ´

(|μ|2/(2mD)+ DV)d3x, which coincides with
the QHD Hamiltonian (28) after dropping the �

2-term. Thus, the corresponding equations
of motion naturally coincide with the classical hydrodynamic limit (27) in terms of New-
ton’s Law, as discussed in Sect. 2.2. However, it is important to emphasize that, unlike pure
states, here the fluid velocity u is no longer an exact differential and thus the corresponding
hydrodynamic flow preserves the nontrivial circulation

¸
γ
u(x) · dx, for an arbitrary loop

γ moving with velocity u. Then, this produces the vorticity dynamics ∂tω = curl(u × ω),
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with ω = curlu. In addition, since the probability density is no longer defined in terms of a
square-integrable function, the discussion in Sect. 2.2 can be extended by allowing for the
multi-particle initial condition (44). Then, upon defining qa(t) = η(qa(0), t), the relations
(21) lead to the Eulerian density D(x, t) = ∑N

a=1 waδ(x −qa(t)), where each qa(t) satisfies
Newton’s Law for N non-interacting particles.

We conclude this section by discussing the nature of the closure (51) in terms of the
Wigner function W(x,p) = (2π�)−3

´
ρ(x + y/2,x − y/2) e−i

p·y
� d3y. Without entering

discussions about the Wigner–Moyal formulation of quantum mechanics, we shall simply
address the reader to [82] and present the closure (51) as the operator ρ associated to the
following Wigner function:

W(x,p) = D(x)δ
(

p − mu(x)
)

. (52)

Similar considerations of the cold-fluid closure (52) have already appeared [44] in the con-
text of the semiclassical limit for pure state dynamics. See also [18] and references therein
for the use of delta-function closures in hybrid quantum-classical dynamics.

Finally, we emphasize again that the Wigner function in (52) does not identify a quantum
state. This is analogous to what happens for the quantum harmonic oscillator: in this case,
the Wigner–Moyal equation coincides with the classical Liouville equation thereby allow-
ing for delta-function solutions returning classical motion. However, delta-function Wigner
distributions do not correspond to quantum states, as their associated density operator is
sign-indefinite.

3 Mean-Field Model

This section presents the mean-field model, which is based on the factorization (4). Although
this model fails to retain correlation effects between nuclei and electrons, it is of paramount
importance as the basis of most common models in nonadiabatic dynamics. As we shall
see, the geometry of quantum hydrodynamics can be directly applied to this model, thereby
leading to the most basic example of hybrid classical-quantum dynamics.

3.1 The Mean-Field Ansatz

Here we apply the Euler–Poincaré method [38] to formulate the mean-field model in terms
of reduction by symmetry. Then, the molecular wave function for a nucleus and an electron
is written as Ψ := Ψ (r,x) ∈ L2(R3 ×R

3). We think of the coordinate r as that correspond-
ing to the nucleus, while x corresponds to the electron. In physics, a mean-field ansatz
introduces a factorization of the type

Ψ (r,x, t) = χ(r, t)ψ(x, t), (53)

where χ(r, t) is regarded as the wave function describing nuclear dynamics (correspond-
ing to the subsystem we want to treat classically) and both ψ and χ are normalized with
respect to the coordinate upon which they depend. The Hamiltonian operator now takes the
form ̂H = ̂H(̂Γ , ̂Z), where we introduce the notation ̂Γ = (r,−i�∇r) and ̂Z = (x,−i�∇x).
Upon recalling the pairing 〈Ψ1,Ψ2〉 = Re

´
Ψ ∗

1 (r,x)Ψ2(r,x)d3r d3x, insertion of the ansatz
(53) into the action principle (6) yields a Lagrangian L : T Hn × T He → R, given by
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L(Ψ, Ψ̇ ) = 〈χψ, i�χ̇ψ + i�χψ̇〉 − 〈χψ, ̂Hχψ〉
= 〈ψ, i�ψ̇〉x + 〈χ, i�χ̇〉r − 〈ψ,H ′ψ〉x =: L(χ, χ̇,ψ, ψ̇), (54)

where the second equality uses the natural pairings on the respective Hilbert spaces Hn and
He , and we have introduced the effective Hamiltonian

H ′(̂Z) =
ˆ

R3

χ∗(r, t) ̂Hχ(r, t)d3r. (55)

As the Lagrangian (54) is again of the type Dirac–Frenkel, we focus on its corresponding
Hamiltonian. The effective Hamiltonian (55) can generally be understood as a mapping
χ 
→ H ′(̂Z) of the type Hn → L(He). This is a mapping from the nuclear Hilbert space,
Hn, into the space L(He) of linear operators on the electronic Hilbert space. As we shall
see, the linear operator H ′(̂Z) ∈ L(He) is also Hermitian (self-adjoint).

At this point, a further approximation is often introduced; namely, one assumes that the
nuclear dynamics can be treated as classical. This assumption produces a mixed classical-
quantum system. In what follows, we will introduce a geometric approach which restricts
the nuclear evolution to classical particle trajectories.

3.2 Quantum Hydrodynamics and Nuclear Motion

In this section, we derive the quantum fluid picture for the mean-field model. We assume the
effective Hamiltonian operator (55) may be computed from a Hamiltonian operator of the
form

̂H = −�
2�r/2M + Vn(r) + ̂He + VI (r,x), (56)

where ̂He := −�
2�x/2m+Ve(x), while M and m denote the nuclear and electronic masses,

respectively. Consequently, upon recalling (17), we have

H ′ :=
ˆ

R3

χ∗(r, t) ̂Hχ(r, t)d3r

=̂He +
ˆ [

1

2M

|J (χ)|2
|χ |2 + �

2

8M

(∇|χ |2)2

|χ |2 + |χ |2(Vn + VI (x)
)

]

d3r,

where we have suppressed the r-dependence for convenience of notation. Thus, upon de-
noting D = |χ |2 and μ = J (χ), the mean-field Hamiltonian functional h(μ,D,ψ) :=
〈ψ |H ′ψ〉 reads

h = 〈ψ |̂Heψ〉 +
ˆ [

1

2M

|μ|2
D

+ �
2

8M

|∇D|2
D

+ DVn + D
〈

ψ,VI (x)ψ
〉

]

d3r. (57)

This Hamiltonian functional is a mapping h : He × (X∗(R3) × Den(R3)) → R, where
X∗(R3) is understood to be the space of 1-form densities on R

3. At this point, accord-
ing to the procedure outlined in Sect. 2.1, we may perform the partial Legendre transform
u = δh/δμ = M−1μ/D, and write the mean-field Lagrangian in the following collective, or
reduced, form:

�(ψ, ψ̇,u,D) =
ˆ [

MD

2
|u|2 − �

2

8M

|∇D|2
D

− DVn − D〈ψ,VI (x)ψ〉
]

d3r + 〈ψ, i�ψ̇ − ̂Heψ〉.
(58)
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The reduced mean-field Lagrangian in (58) defines a map � : T He × (X(R3)× Den(R3)) →
R which can be regarded as a mixed hydrodynamic/phase-space Lagrangian. If the term cor-
responding to the quantum potential were simply discarded in taking the classical restriction
of neglecting �

2 in the nuclear dynamics, the reduced mean-field Lagrangian (58) would
become,

�(ψ, ψ̇,u,D) =
ˆ [

MD

2
|u|2 − DVn − D

〈

ψ,VI (x)ψ
〉

]

d3r + 〈ψ, i�ψ̇ − ̂Heψ〉. (59)

An analogous result could be obtained by following an alternative procedure which would
exploit the density operator formalism for the nuclear dynamics, as indicated in Sect. 2.5. In
this case, one would obtain the same Lagrangian (59), although with ∇ × u �= 0.

At this point, one can apply Hamilton’s variational principle by taking arbitrary variations
δψ and constrained variations (24) for u and D. In general, a Lagrangian of this type yields
the following Euler–Poincaré equations of motion [38]

(∂t + £u)
δ�

δu
= D∇ δ�

δD
, (60)

(∂t + £u)D = 0, (61)

δ�

δψ
− ∂t

(

δ�

δψ̇

)

= 0, (62)

where £u denotes the Lie derivative along the vector field u. These equations take the fol-
lowing forms, upon specializing to the mean-field Lagrangian (59):

M(∂tu + u · ∇u) = −∇Vn + 〈

ψ |∇VI (x)ψ
〉

, (63)

∂tD + div(Du) = 0, (64)

i�ψ̇ =
(

̂He +
ˆ

DVI (x)d3r

)

ψ. (65)

Again, as explained in Sect. 2.2, setting D(r, t) = δ(r − q(t)) and integrating (63) over
space yields classical trajectories. Eventually, the corresponding classical system reads

M q̈ = −∂qVn(q) − ∂q

〈

ψ,VI (q,x)ψ
〉

, i�ψ̇ = (

̂He + VI (q,x)
)

ψ. (66)

This classical restriction preserves the variational structure, whose Lagrangian is now given
by L(q, q̇,ψ, ψ̇) = M|q̇|2/2 − Vn(q) + 〈ψ, i�ψ̇ − (̂He + VI (q,x))ψ〉.

Equations (66) represent the standard mean-field model as it is usually implemented in
molecular dynamics simulations [59] (although here we have focused on the simplest case of
one nucleus and one electron). As we can see in the previous equation, the classical-quantum
coupling in this model occurs solely through the interaction potential VI .

Unfortunately, this quantum fluid picture of the mean-field model is not satisfactory in
many cases, because the mean-field factorization (53) disregards the classical-quantum cor-
relations between nuclei and electrons. A more advanced model capturing part of these
correlation effects will be presented in the next section.
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4 Exact Factorization

First appearing in von Neumann’s book [77] and later developed by Hunter [42], the follow-
ing factorization ansatz has also been called exact factorization in recent work [1–3, 6]:

Ψ (r,x, t) = χ(r, t)ψ(x, t; r). (67)

Here, the electron degree of freedom ψ depends parametrically on the nuclear coordinate r .
This means that ψ is a smooth map ψ ∈ C∞(R3,He) from physical space to the Hilbert
space He = L2(R3) of electronic wave functions. Furthermore, the factorization (67) in-
vokes the partial normalization condition (PNC)

ˆ
∣

∣ψ(x, t; r)
∣

∣

2
d3x = 1, (68)

which as a result of (67) ensures that
´ |Ψ (r,x, t)|2d3x = |χ(r, t)|2, so that D(r, t) :=

|χ(r, t)|2 may be interpreted as the nuclear probability density.

4.1 Wave Functions vs. Density Operators

The assumption of exact factorization (67) in the wave function transfers to the density
operator, which is then written as

Ψ (r,x)Ψ ∗(r ′,x′) = χ(r)χ∗(r ′)ψ(x; r)ψ∗(x ′; r ′), (69)

where we have dropped the time-dependence for convenience of notation. Then, the physical
electron density operator is given by the partial trace, written in matrix element notation as

ρe

(

x,x ′) =
¨

d3r Ψ (r,x)Ψ ∗(r,x′) =
ˆ

d3r |χ(r)|2 ψ(x; r)ψ∗(x ′; r)

. (70)

The corresponding nuclear density operator is

ρn

(

r, r ′) =
¨

d3x Ψ (r,x)Ψ ∗(r ′,x
) = χ(r)χ∗(r ′)

ˆ
ψ(x; r)ψ∗(x; r ′)d3x, (71)

in which we notice that the PNC (68) does not apply. This means the quantities χ and
ψ are not true wave functions for the nuclei and electrons (which may not even ex-
ist in the presence of decoherence, i.e. quantum mixing). However, we shall continue to
refer to them as such, because they retain certain mnemonic relationships. We remark
that expectation values of nuclear observables involve integration over the r-parameters
of the electron “wave functions”. More specifically, the expectation value 〈An〉 for a
nuclear observable An(r, r ′) is given by (again, in matrix element notation) 〈An〉 :=˜

d3r d3r ′´ d3x χ∗(r ′)ψ∗(x; r ′)An(r
′, r)ψ(x; r)χ(r). As we shall see, this structure of the

nuclear density operator leads to important consequences in the development of the exact
factorization theory.

At this stage, we shall only emphasize that all the relations above also apply naturally in
the context of the Born–Oppenheimer approximation [43], thereby indicating again that the
interpretation of nuclear and electronic motion in terms of genuine wave functions needs to
be revisited. For example, backreaction effects generated by the presence of ψ in (71) can
lead to nuclear decoherence effects since indeed one has ρ2

n �= ρn. This is a general feature
of classical-quantum coupling [10], which in fact erodes purity in both the classical and the
quantum subsystems.
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4.2 General Equations of Motion

In this section, we generalize the approach to exact factorization used in [1–3, 6] by al-
lowing for an arbitrary Dirac Hamiltonian functional h(χ,ψ) and thereby extending the
treatment in Sect. 1.2. Thus, inserting the ansatz (67) in the Dirac–Frenkel Lagrangian and
then enforcing the PNC in (68) via a Lagrange multiplier λ(r, t) gives

L(χ, ∂tχ,ψ, ∂tψ,λ, ∂tλ) = Re
ˆ

[

i�χ∗∂tχ + |χ |2〈ψ |i�∂tψ〉

+ λ
(‖ψ‖2 − 1

)]

d3r − h(χ,ψ), (72)

where we have introduced the notation: 〈ψ1|ψ2〉(r) = ψ
†
1 ψ2(r) = ´

ψ∗
1 (x; r)ψ2(x; r)d3x,

to denote the natural L2 inner product on He .
Naturally, the λ equation enforces the PNC, and computing the χ Euler–Lagrange equa-

tion yields

i�∂tχ + 〈ψ |i�∂tψ〉χ − 1

2

δh

δχ
= 0. (73)

Consequently, upon using �∂t |χ |2 = Im(χ∗δh/δχ), we can compute the ψ equation, as

i�|χ |2∂tψ + i

2
Im

(

χ∗ δh

δχ

)

ψ = 1

2

δh

δψ
− λψ. (74)

Upon taking the real part of the inner product of this equation with ψ , one obtains that
λ = 〈ψ, (δh/δψ)〉/2 − |χ |2 〈ψ, i�∂tψ〉. Analogously, taking the imaginary part of the inner
product of equation (74) with ψ yields the following compatibility condition,

Im

〈

ψ

∣

∣

∣

∣

δh

δψ

〉

= Im

(

χ∗ δh

δχ

)

. (75)

In conclusion, this produces the final form of the ψ equation as

(

1 − ψψ†
)

(

i�∂tψ − 1

2|χ |2
δh

δψ

)

= 0, (76)

in terms of the notation ψ† · := 〈ψ | · 〉. Before closing this section, we remark that the differ-
ence between equation (75) and the compatibility condition in (10) is its non-zero right-hand
side, which arises because the inner product is taken only over the electronic degrees of free-
dom. That is, equation (75) depends on the nuclear coordinate r .

4.3 Local Phases and Gauge Freedom

One may observe that the exact factorization (67) is defined only up to compensating local
phase shifts of the nuclear and electronic wave functions. Namely, the replacements

ψ(x, t; r) →ψ ′(x, t; r) = e−iθ(r,t)ψ(x, t; r)

χ(r, t) →χ ′(r, t) = eiθ(r,t)χ(r, t)
(77)
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leave the EF product wave function Ψ (r,x, t) = χ(r, t)ψ(x, t; r) invariant for an arbitrary
local phase θ(r, t). This is a typical example of gauge freedom in a field theory.

To specify the evolution completely, one may either transform to gauge invariant func-
tions, such as the electric and magnetic fields in electromagnetism, or one may fix the gauge
by imposing one condition per degree of gauge freedom. Gauge fixing is not always the
best option, though, because it may obscure physical effects arising due to local breaking
of gauge symmetry. An example is the Berry phase, which arises from locally breaking the
gauge symmetry of phase shifts in nonrelativistic quantum mechanics [9]. See also [79] for
broadly ranging discussions of geometric phases in physics.

The gauge freedom under the compensating local phase shifts in (77) implies that
〈ψ ′, i∂tψ

′〉 = ∂tθ + 〈ψ, i∂tψ〉. Hence, one may choose θ at will (gauge fixing) so as
to accommodate any value of 〈ψ ′, i∂tψ

′〉. For example, one may fix 2|χ |2〈ψ |i�∂tψ〉 =
Re〈ψ |(δh/δψ)〉, so that the ψ equation in (76) reads 2i�|χ |2∂tψ = δh/δψ −
i Im〈ψ |(δh/δψ)〉ψ . The same type of gauge was chosen in passing from equation (9) to
equation (11), earlier.

Another convenient choice consists in fixing 〈ψ |i�∂tψ〉 = 0, so that the ψ equation in
(76) becomes 2i�|χ |2∂tψ = δh/δψ − 〈ψ |(δh/δψ)〉ψ . This gauge is called the temporal
gauge (or Weyl gauge) in electromagnetism and it has been adopted recently in [1, 4, 71].
We remark that gauge theory is also important in other aspects of chemical physics; for
example, see [53] for applications of gauge theory in molecular mechanics.

4.4 The Hamiltonian Functional

We now return to the Hamiltonian operator ̂H in (1), written as the sum in (3),

̂H = − �
2

2M
�r

︸ ︷︷ ︸

:= ̂Tn

− �
2

2m
�x + V (r,x)

︸ ︷︷ ︸

:= ̂He

,

where ̂He is the electron Hamiltonian operator defined in the Introduction. Henceforth, we
will suppress the subscript r , and write ∇r simply as ∇ . In this simplified notation, we define
the Berry connection [9] as

A(r, t) := 〈ψ | − i�∇ψ〉 , (78)

where the notation A(r, t) suggests that this quantity plays a role as a gauge field, analogous
to the magnetic vector potential in electromagnetism. Here, we recall that 〈 · | · 〉 denotes the
natural L2 inner product on He and ‖ · ‖ denotes the corresponding norm (whose values
again depend on the nuclear coordinate r).

We also define the effective electronic potential, ε(ψ,∇ψ), given by

ε(ψ,∇ψ) := 〈ψ | ̂Heψ〉 + �
2

2M
‖∇ψ‖2 − A2

2M

= 〈ψ | ̂Heψ〉 + �
2

2M
〈∂iψ,

(

1 − ψψ†
)

∂iψ〉.
(79)

The last term in (79) is the trace of the real part of the complex quantum geometric tensor
[67]

Qij := 〈

∂iψ
∣

∣

(

1 − ψψ†
)

∂jψ
〉 = 〈∂iψ |∂jψ〉 − �

−2AiAj , (80)
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where we denote Aj := 〈ψ | − i�∂jψ〉. The imaginary part of Qij is proportional to the
Berry curvature Bij := ∂iAj − ∂jAi ; namely, 2�Im(Qij ) = Bij [47]. The emergence of the
trace of its real part,

Tij = Re(Qij ), (81)

in the electron energy in (79) indicates the geometry underlying the present formulation.
Notice that the interpretation of ε(ψ,∇ψ) in (79) as an effective electronic potential departs
slightly from that found in the literature, where this quantity is called the gauge invariant
part of the time-dependent potential energy surface [4, 5, 71].

After some manipulation involving completing the square and integration by parts, the
Hamiltonian for exact factorization in [1, 2] can be expressed as

h(χ,ψ) :=
ˆ

〈χψ, ̂Hχψ〉 d3r

=Re
ˆ (

1

2M
χ∗(−i�∇ + A)2χ + |χ |2ε(ψ,∇ψ)

)

d3r . (82)

This formula for the EF Hamiltonian agrees with the chemical physics literature; see, e.g.,
[4, 5, 71].

For the Hamiltonian (82), one computes

δh

δχ
= 2

(

̂Tn + ε(ψ,∇ψ)
)

χ + 1

M
A · (A − 2i�∇)χ

δh

δψ
= 2|χ |2 ̂Heψ − 2i�2 Im(χ∗∇χ)

M
· ∇ψ − i�2 Im(χ∗�χ)

M
ψ − �

2

M
div

(|χ |2∇ψ
)

(83)

so that the Euler–Lagrange equations (73)–(76) specialize to,

i�∂tχ = (

̂Tn + 〈ψ |i�∂tψ〉 + ε(ψ,∇ψ)
)

χ + 1

2M
A · (A − 2i�∇)χ, (84)

(

1 − ψψ†
)

[

i�∂tψ + �
2 χ∗∇χ

M|χ |2 · ∇ψ − ̂Heψ + �
2

2M
�ψ

]

= 0. (85)

These equations also agree with the results found in the recent chemical physics literature
[1, 2]. In this case, one can show that λ vanishes identically (in agreement with [3]) and that
the compatibility condition (75) is indeed satisfied.

4.5 Hydrodynamic Approach

In this section, we again transform into the hydrodynamic picture for the nuclear wave func-
tion χ . Upon applying the same procedure as in the mean-field case, now denoting collective
fluid variables as D = |χ |2 and μ := J (χ) = �Im(χ∗∇χ), the Hamiltonian functional (82)
reads

h(μ,D,ψ) =
ˆ (

1

2M

|μ + DA|2
D

+ �
2

8M

|∇D|2
D

+ D ε(ψ,∇ψ)

)

d3r . (86)

At this stage, we will treat the quantity ψ in (86) as a parametric variable, whose variations
will be taken independently of those for μ and D. Applying the partial Legendre transform
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in this case yields u = δh/δμ = M−1(μ + DA)/D, with A defined in terms of ψ in (78),
and we write the EF Lagrangian in the following form:

�(u,D,ψ, ∂tψ,λ, ∂tλ) =
ˆ [

1

2
MD|u|2 − DA · u − �

2

8M

|∇D|2
D

+ D
(〈ψ, i�∂tψ〉 − ε(ψ,∇ψ)

) + λ
(‖ψ‖2 − 1

)

]

d3r. (87)

We now apply Hamilton’s variational principle by taking arbitrary variations in δψ and δλ,
and Euler–Poincaré variations (24) for u and D. As before, a Lagrangian of this type yields
general equations of motion (60)–(62), this time along with a standard Euler–Lagrange equa-
tion in λ, which naturally recovers the PNC. Then, the equation for the electronic wave
function ψ reads

(

1 − ψψ†
)

(

i�∂tψ + i�u · ∇ψ − 1

2D

δF

δψ

)

= 0, (88)

where we have introduced the functional

F(D,ψ) :=
ˆ

Dε(ψ,∇ψ)d3r, (89)

which we will call the electronic Hamiltonian functional. Upon making use of the effective
electronic potential ε(ψ,∇ψ) defined in (79), one obtains the functional derivative

δF

δψ
= D

∂ε

∂ψ
− div

(

D
∂ε

∂∇ψ

)

= 2D ̂Heψ + i�

M
DA · ∇ψ + i�

M
div

(

D(i�∇ + A)ψ
)

, (90)

whose insertion into (88) yields

(

1 − ψψ†
)

(

i�∂tψ + i�

(

u − 1

2M
A

)

· ∇ψ − ̂Heψ − i�

2MD
div

(

D(i�∇ + A)ψ
)

)

= 0.

(91)

Again, we obtain a compatibility condition from varying the Lagrange multiplier λ in (87).
In this case, the relation (75) becomes

Im

〈

ψ

∣

∣

∣

∣

δF

δψ

〉

= 0, (92)

as one can see by replacing the Hamiltonian (86) in (75). In addition, one can show that
F is invariant under local phase transformations. As we will see in Sect. 5, this local U(1)

invariance will ultimately lead to a density matrix formulation of the electronic dynamics.
The Lagrangian (87) yields the electron dynamics (88), as well as the following Euler–

Poincaré equations of nuclear hydrodynamics. Specifically, the Euler–Poincaré variations
(24) yield

M(∂t + u · ∇)u = −∇(VQ + ε) − E − u × B, (93)
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∂tD + div(Du) = 0. (94)

Here, VQ denotes the nuclear quantum potential (23) for the nuclei, while B := ∇ × A
is the Berry curvature, effectively a magnetic field generated by the electrons, and E :=
− ∂tA − ∇〈ψ |i�∂tψ〉 plays the role of an electric field generated by the electrons. In this
analogy, � in the Berry connection defined in equation (78) plays the role of the coupling
constant (charge) in the electromagnetic force on a charged particle.

The quantity 〈ψ |i�∂tψ〉 in the definition of E can be fixed by selecting a particular
gauge; for example, possible options are the temporal gauge, 〈ψ |i�∂tψ〉 = 0, and the hy-
drodynamic gauge 〈ψ |i�∂tψ〉 = A · u. A more explicit expression of E can be found by
using (88), thereby leading to the equation

E = − ∂tA − ∇〈ψ |i�∂tψ〉 = −u × B − 1

D

〈

∇ψ,
δF

δψ

〉

, (95)

where we recall the notation 〈 ·, ·〉 = Re 〈 · | · 〉 in (7) for the real-valued pairing. Then, we
have

〈

∇ψ,
δF

δψ

〉

− D∇ε =
〈

∇ψ,D
∂ε

∂ψ
− div

(

D
∂ε

∂∇ψ

)〉

− D∇ε

= − D
〈

ψ, (∇ ̂He)ψ
〉 − ∂j

〈

D∇ψ,
∂ε

∂ψ,j

〉

= − D
〈

ψ, (∇ ̂He)ψ
〉 − 1

M
∂j

(

�
2D〈∇ψ,∂jψ〉 − DAAj

)

. (96)

This may be written in components, in terms of the real part of the quantum geometric
tensor Tij = Re(Qij ) in equation (81), as 〈∂iψ, (δF/δψ)〉 − D∂iε = −D〈ψ, (∂i

̂He)ψ〉 −
M−1∂j (DT ij ). Then, the equations (93)–(94) and (88) take the form,

M(∂t + u · ∇)ui = −∂iVQ + 〈

ψ, (∂i
̂He)ψ

〉 − 1

MD
∂j (DT ij ), (97)

∂tD + div(Du) = 0, (98)

(

1 − ψψ†
)

(

i�∂tψ + i�

(

u − 1

M
A

)

· ∇ψ − ̂Heψ + �
2

2MD
div(D∇ψ)

)

= 0. (99)

We emphasize that the equations of motion (97)–(99) could also be derived from the coupled
Schrödinger equations (84)–(85). Indeed, (97)–(98) can be derived from (84) by writing χ =√

DeiS/� and by finding the evolution for u = (∇S + A)/M . In addition, (99) is equivalent
to (85), as it can be verified by replacing (83) in (76).

Notice that equation (97) does not conserve the spatial integral of the nuclear momentum
density,

MDu = μ + DA = D(∇S + A). (100)

Here, S is the local phase of the wave function χ = √
D eiS/� and D = |χ |2, while DA is part

of the nuclear momentum density. This non-conservation of the hydrodynamic momentum
should come as no surprise. In fact, this is already apparent in the original system (84)–(85)
which, instead, conserves the total momentum

�

¨
Ψ ∗(r,x)(−i∇r − i∇x)Ψ (r,x)d3x d3r =

ˆ
(

μ + DA + D〈̂Pe〉
)

d3r, (101)
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where 〈̂Pe〉 = 〈ψ | − i�∇x |ψ〉. Thus, the total motion has two momentum contributions: one
from the r-gradient and the other from the x-gradient. In particular, the momentum density
of the nuclei is given by �

´
Ψ ∗(r,x)(−i∇r)Ψ (r,x)d3x = μ + DA where A is the Berry

connection defined in equation (78), and μ := J (χ) = �Im(χ∗∇χ).

4.6 Newtonian Limit and Lorentz Force

The Newtonian limit performed in the chemical physics literature neglects the order quan-
tum potential term in the Lagrangian (87) and varies the remainder, treating the nuclei as
classical particles. The corresponding dynamics may be obtained by neglecting VQ in (93)
and by replacing Mu = ∇S + A. One then verifies that this process leads to the follow-
ing Hamilton–Jacobi equation: ∂tS + M−1|∇S + A|2/2 = 〈ψ |i�∂tψ〉 − ε(ψ,∇ψ), which
corresponds to charged particle motion in a Maxwell field, governed by the equation [5]

M q̈ = −E − q̇ × B − ∇ε(ψ,∇ψ). (102)

The same result can be obtained by setting D(r, t) = δ(r − q(t)) in (94) to produce q̇(t) =
u(q(t), t). Then, after multiplying (93) by D(r, t), integration of the delta function over
physical space returns the classical equation (102) above.

An important point here is that the customary operation in chemical physics of neglecting
the quantum potential term in the Lagrangian (87) can be problematic. Normally, this step
would invoke the limit �2 → 0. However, here this process would also lead to discarding
the terms M−1(�2‖∇ψ‖2 − A2)/2 in the effective electronic potential (79), thereby taking
the exact-factorization model into the standard mean-field theory. This crucial issue will be
resolved in Sect. 5 by performing the exact factorization at the level of the molecular density
operator.

We should also comment on the Lorentz force appearing in (102). We notice that the
combination of this electromagnetic-type force with the potential energy contribution ∇ε

suggests that the conventional picture of nuclei evolving on potential energy surfaces fixed
in space may be oversimplified. As we shall see, despite the claims made in [72], the force
E + u × B cannot vanish without requiring major modifications of the electron energy
function ε(ψ,∇ψ). Such modifications would result in singular solution behaviour for the
Berry curvature that is unexpected for the exact factorization model.

In the present context, one may regard the assumption of E + u × B = 0 as an incom-
pressible magnetohydrodynamic (MHD) approximation of the quantum fluid-plasma equa-
tions in (93) and (94). Setting D = 1, for which (94) implies divu = 0, and taking the curl
of (95) yields

∂tB = curl(u × B) +
〈

∇ψ,×∇ δF

δψ

〉

. (103)

Vanishing of the second term on the right side of equation (103) would require a functional
relation between ψ and δF/δψ . To see the implications of this requirement, we specialize
to the 2D case for which the vector A(r, t) := 〈ψ | − i�∇ψ〉 lies in the plane, so that B =
curlA = Bẑ points normal to the plane. Hence, equation (103) becomes

∂tB + u · ∇B = ẑ ·
〈

∇ψ,×∇ δF

δψ

〉

= J

(

ψ,
δF

δψ

)

(104)

where ẑ ·∇f ×∇h = J (f,h), is the Jacobian between functions f and h on the (x, y) plane.
As expected, vanishing of the right hand side of equation (104) requires a functional relation
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between ψ and δF/δψ . This occurs, for example, in the Ginzburg–Pitaevskii description of
Bose–Einstein condensation (BEC) [66], in which case the B-equation (104) admits singu-
lar Berry-curvature solutions of the form B(x, y, t) = ∑

k Γkδ(x − xk(t))δ(y − yk(t)), for
constants Γk [24]. The emergence of this type of singular behaviour in the solutions of equa-
tion (104) is precluded by the dependence on both ψ and ∇ψ of the electron energy function
ε(ψ,∇ψ) in equation (89) for the exact factorization model.

4.7 Circulation Dynamics for the Berry Connection

The dynamics of the Berry connection A(r, t) := 〈ψ | − i�∇ψ〉 in (78) governs the cir-
culation of the nuclear fluid around closed loops which move with the velocity u =
(μ/D + A)/M . To see this, we write the motion equation (97) as the Lie derivative of a
circulation 1-form,

M(∂t + £u)(u · dr) = −d

(

1

2
|u|2 + VQ

)

− 〈

ψ, (d ̂He)ψ
〉 − 1

MD
∂j (DT ij )dri

= d(∂tS + u · ∇S) + (∂t + £u)(A · dr),

(105)

where we have used the relation (100) in the second line and d denotes spatial differential
in r . Equating the right hand sides of equation (105) and integrating around an arbitrary
closed loop γ (t) moving with the nuclear flow velocity u(r, t) annihilates the exact differ-
ential terms and produces the following circulation dynamics for the Berry connection:

d

dt

˛

γ (t)

A · dr = −
˛

γ (t)

(

〈

ψ, (∂i
̂He)ψ

〉 + 1

MD
∂j (DT ij )

)

dri . (106)

This means that the nuclear circulation integral
¸

γ (t)
A · dr , interpreted as the Berry phase

obtained by integration around a loop moving with the nuclear fluid, is generated dynami-
cally by an interplay between nuclear and electronic properties. Likewise, the evolution of
the Berry curvature B = curlA follows by applying the Stokes theorem to relation (106).

Thus, the flux of the Berry curvature through a surface S whose boundary ∂Σ = γ (t) is
a closed loop moving with the nuclear fluid (simply known as the Berry phase) satisfies

d

dt

¨

Σ

Bij drj ∧ dri = −
˛

∂Σ

(

〈

ψ, (∂i
̂He)ψ

〉 + 1

MD
∂j (DT ij )

)

dri . (107)

In terms of the real and imaginary parts of the quantum geometric tensor, Qij in (80), this
becomes

2�
d

dt

¨

Σ

Im(Qij )drj ∧ dri = −
˛

∂Σ

(

〈

ψ, (∂i
̂He)ψ

〉 + 1

MD
∂j

(

D Re(Qij )
)

)

dri . (108)

Equation (108) expresses the quantum geometric mechanics of the correlated nuclear and
electronic degrees of freedom in the EF model. Namely, the nuclear probability density D

and expectation of the gradient ∇ ̂He are coupled dynamically with the real and imaginary
parts of the quantum geometric tensor, Qij .
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4.8 Electron Dynamics in the Nuclear Frame

So far, we have presented the geometric aspects of the exact factorization model which are
currently available in the literature. This section takes a step further to consider the evolution
of the electron density matrix. Upon following the arguments in [5], we shall write the
electron dynamics in the Lagrangian frame moving with the nuclear hydrodynamic flow.

Recalling the notation He for the electronic Hilbert space, we begin by introducing the
group, C∞(R3,U(He)), of smooth mappings from the physical space into the unitary group
of the electronic Hilbert space. Then, we make the following evolution ansatz for the elec-
tronic wave function: ψ(t) = (Uψ0) ◦ η−1, or more explicitly

ψ(x, t; r) = U
(

η−1(r, t), t
)

ψ0

(

x;η−1(r, t)
)

, (109)

where η is the nuclear hydrodynamic path obeying η̇ = u(η, t) and U(r, t)∈C∞(R3,U(He))

is a local unitary operator on He. The evolution ansatz (109) results in the following equa-
tion for the time evolution of ψ :

∂tψ + u · ∇ψ = ξψ, (110)

where we have defined ξ := (U̇U−1) ◦ η−1. Upon substituting these relations into the La-
grangian (87), one finds

�(u, ξ,D,ψ) =
ˆ [

1

2
MD|u|2 − �

2

8M

|∇D|2
D

+ D
(〈ψ, i�ξψ〉 − ε(ψ,∇ψ)

)

]

d3r. (111)

At this point, we shall prove that the electron energy function ε(ψ,∇ψ) can be written
uniquely in terms of the density operator ρ = ψψ† and proceed for the rest of this Section
by employing a density matrix description of the electronic dynamics. Indeed, we find by
direct calculation that

‖∇ρ‖2 = Tr(∇ρ · ∇ρ)

= Tr
((

(∇ψ)ψ† + ψ
(∇ψ†

)) · ((∇ψ)ψ† + ψ
(∇ψ†

)))

= 〈ψ |∇ψ〉2 + 2‖∇ψ‖2 + 〈∇ψ |ψ〉2

= 2 TrT ,

(112)

where the tensor T with components Tij = Re(Qij ) is the real part of the quantum geo-
metric tensor in equation (80). Regardless of the minus sign in equation (80) the term in
the parentheses on the right side of equation (112) is positive, since the left side is positive.
Relations resembling (112) also appear in standard quantum mechanics when writing the
Fubini-Study metric on the projective Hilbert space PH , see e.g. [23].

Hence, we conclude that the electron energy function (79) may be expressed as,

ε(ψ,∇ψ) = 〈ρ| ̂He〉 + �
2

4M
‖∇ρ‖2, (113)

where one defines 〈A|B〉 := Tr(A†B) by using the generalized trace. In matrix element
notation, one has 〈A|B〉 :=˜

A(x ′,x)∗B(x ′,x)d3x d3x ′.
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The key formula (113) enables us to write the previous Euler–Poincaré Lagrangian equiv-
alently as

�(u,D, ξ,ρ) =
ˆ [

1

2
MD|u|2 − �

2

8M

|∇D|2
D

+ D

(

〈ρ, i�ξ〉 − 〈ρ| ̂He〉 − �
2

4M
‖∇ρ‖2

)]

d3r. (114)

At this point, along with (24), one finds the variational relations

δξ = ∂tν − w · ∇ξ + u · ∇ν − [ξ, ν],
δρ = [ν,ρ] − w · ∇ρ,

(115)

where we have defined ν := (δU)U−1 ◦ η−1. Overall, the relations (24), (115) and the defi-
nitions D = η∗D0 and ρ = (Uρ0U

−1) ◦ η−1 (where for pure states ρ0 = ψ0ψ
†
0 ) produce the

equations of motion for the entire class of reduced Lagrangians of the form �(u,D, ξ,ρ),
with u ∈ X(R3), D ∈ Den(R3), ξ ∈ C∞(R3,u(He)) and iρ ∈ C∞(R3,u(He)). Namely, cf.
[28, 30, 31, 36]

(∂t + £u)
δ�

δu
= −

〈

∇ξ,
δ�

δξ

〉

−
〈

∇ρ,
δ�

δρ

〉

+ D∇ δ�

δD
,

(∂t + £u)
δ�

δξ
−

[

ξ,
δ�

δξ

]

=
[

δ�

δρ
,ρ

]

,

(∂t + £u)D = 0,

(∂t + £u)ρ = [ξ, ρ].

(116)

Remark 3 (Analogies with complex fluids) We take this opportunity to make the connection
between the hydrodynamic exact factorization system and previous investigations of the ge-
ometry of liquid crystal flows, as found in [28–31, 36, 74]. In this comparison, the electronic
wave function ψ(r, t) ∈ C∞(R3,He) is replaced by the director, an orientation parameter
field n(r, t) ∈ C∞(R3, S2); the unitary evolution operator U(r, t) ∈ C∞(R3,U(He)) be-
comes a rotation matrix R(r, t) ∈ C∞(R3,SO(3)); and one still considers the coupling to
the fluid velocity u(r, t) given by the action of diffeomorphisms η ∈ Diff(R3). Indeed, with
these replacements, one has a reduced Lagrangian of the same type, �(u, ξ ,D,n), and the
resulting Euler–Poincaré equations are equivalent to those in (116).

For convenience, we rewrite the electronic Hamiltonian functional in (89) as F(D,ρ) =´
D(〈ρ| ̂He〉 + M−1

�
2‖∇ρ‖2/4)d3r . Consequently, the fluid velocity equation in (116) be-

comes:

M(∂t + u · ∇)u = 1

D

〈

∇ρ,
δF

∂ρ

〉

− ∇(VQ + ε), (117)

which indeed reduces to equation (97) upon specializing to pure states ρ = ψψ†. Also, we
notice the following analogue of relation (96):
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〈

∇ρ,
δF

∂ρ

〉

− D∇ε =
〈

∇ρ,D
∂ε

∂ρ
− div

(

D
∂ε

∂∇ρ

)〉

− D∇ε

= − D〈ρ,∇ ̂He〉 − ∂j

〈

D∇ρ,
∂ε

∂ρ,j

〉

= − D〈ρ,∇ ̂He〉 − �
2

2M
∂j 〈D∇ρ, ∂jρ〉,

and the relation for pure states, 〈ρ,∇ρ〉 = 0, implies ∂j 〈D∇ρ, ∂jρ〉 = −∂j 〈Dρ,∂j∇ρ〉.
On the other hand, varying the Lagrangian in (114) yields the relation δ�/δξ = −i�Dρ.

Upon substituting this relation into the ξ equation in (116) one finds, via the D and ρ equa-
tions, the following simplifying algebraic relation [i�Dξ − δF/δρ,ρ] = 0. The equation
in (116) for density operator ρ = ψψ† now implies the following Liouville–von Neumann
equation,

i�(∂t + u · ∇)ρ =
[

̂He − �
2

2MD
div(D∇ρ),ρ

]

. (118)

Remark 4 (Electron decoherence) Equation (118) will determine the evolution of the
electron density matrix defined in (70), ρe(t) := ´

Dρ d3r = ´
ρ̃ d3r . Namely, i�ρ̇e(t) =´ [D ̂He − �

2M−1div(D∇ρ)/2, ρ]d3r . This result implies that spatially uniform pure ini-
tial states (such that ρ2

e = ρe) become mixed states as time proceeds. Thus, in agreement
with, e.g., [60], the exact factorization model captures electronic decoherence effects (that
is, quantum state mixing) from pure initial states; since the density matrix evolution is no
longer unitary.

Upon collecting equations, now we may specialize the general system (116) to our case
as

M(∂t + u · ∇)u = −∇VQ − 〈ρ,∇ ̂He〉 − �
2

2MD
∂j 〈D∇ρ, ∂jρ〉,

i�(∂t + u · ∇)ρ = [ ̂He,ρ] + �
2

2MD
div

(

D[ρ,∇ρ]),
∂tD + div(Du) = 0.

(119)

4.9 Hamiltonian Structure

The Hamiltonian structure of equations (119) can be conveniently rewritten in terms of the
quantities

m := MDu, ρ̃ := Dρ, (120)

so that the total energy (86) reads

h(m,D, ρ̃) =
ˆ (

1

2M

|m|2
D

+ �
2

8M

|∇D|2
D

+ 〈ρ̃| ̂He〉 + �
2D

4M

∥

∥

∥

∥

∇
(

ρ̃

D

)∥

∥

∥

∥

2)

d3r. (121)

Upon restricting to pure quantum states, for which 〈ρ,∇ρ〉 = 0 and 〈ρ̃,∇ρ̃〉 = D∇D, we
find

�
2D

4M

∥

∥

∥

∥

∇
(

ρ̃

D

)∥

∥

∥

∥

2

= �
2D

4M

∥

∥

∥

∥

∇ρ̃

D
− ∇D

D2
ρ̃

∥

∥

∥

∥

2

= �
2

4M

(‖∇ρ̃‖2

D
− |∇D|2

D

)

. (122)
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Here, the minus sign arises as in the calculation in (112). The term in the parentheses on the
right side of this equation is positive, though, since the left side is positive.

Consequently, for pure quantum states, the Hamiltonian (121) may be expressed as

h(m,D, ρ̃) =
ˆ (

1

2M

|m|2
D

− �
2

8M

|∇D|2
D

+ 〈ρ̃| ̂He〉 + �
2

4M

‖∇ρ̃‖2

D

)

d3r. (123)

The appearance of the amplitude of the probability density D in the denominators of the �
2

terms in the Hamiltonian in (123) implies that the dynamical effects of the quantum terms
in (123) need not decrease, as the squared amplitude of the wave function decreases.

In terms of the variables (m,D, ρ̃) defined in (120), the system of equations in (119)
may be rewritten equivalently, as follows:

M
(

∂tm + div(um) + (∇u)T · m) = D∇VQ − 〈ρ̃,∇ ̂He〉 − �
2

2M
∂j

( 〈∇ρ̃, ∂j ρ̃〉
D

)

,

i�
(

∂t ρ̃ + div(uρ̃)
) = [ ̂He, ρ̃] + �

2

2M
div

(

D−1[ρ̃,∇ρ̃]),
∂tD + div(Du) = 0.

(124)

A direct verification shows that equations (124) may be written in Hamiltonian form
df /dt = {f, h} for a given functional f (m,D, ρ̃) with the following Lie–Poisson bracket

{f, k}(m,D, ρ̃) =
ˆ

m ·
(

δk

δm
· ∇ δf

δm
− δf

δm
· ∇ δk

δm

)

d3r (125)

−
ˆ

D

(

δf

δm
· ∇ δk

δD
− δk

δm
· ∇ δf

δD

)

d3r

−
ˆ 〈

i�−1ρ̃,

[

δf

δρ̃
,
δk

δρ̃

]

+ δf

δm
· ∇ δk

δρ̃
− δk

δm
· ∇ δf

δρ̃

〉

d3r (126)

where h(m,D, ρ̃) is taken to be the Hamiltonian in (123), and homogeneous boundary con-
ditions are assumed, under integration by parts.

The change of variable ρ̃ → i�ρ̃ shows that this bracket is Lie–Poisson on the dual of
the following Lie algebra L comprising a direct sum of semidirect product actions: L =
X(R3)� (C∞(R3) ⊕ C∞(R3,u(He))). Here, the dual coordinates are m = m · dx ⊗ d3x ∈
X(R3)∗ = Λ1(R3) ⊗ Den(R3), D ∈ Den(R3) and iρ̃ ∈ u(He) ⊗ Den(R3). Therefore, the
Lie–Poisson bracket may be written as

{f,h}(m,D, ρ̃) = −
〈

(m,D, ρ̃),

[

δf

δ(m,D, ρ̃)
,

δh

δ(m,D, ρ̃)

]〉

r

, (127)

where in (127) the angle brackets 〈 ·, · 〉r denote L2 pairing in the r coordinates, and the
square brackets denote the components of the adjoint action of the semidirect-product Lie
algebra L, whose r-coordinate pairings are given explicitly in equation (126).

5 Density Operator Factorization and Singular Solutions

Our discussion in Sect. 4.7 shows that the only contribution to the circulation of the hydro-
dynamic flow arises from the Berry connection associated to the electronic function ψ . This
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is due to the fact that the hydrodynamic velocity M−1μ/D = � Im(χ∗∇χ)/|χ |2 is an exact
differential and therefore has zero vorticity. However, we showed in Sect. 2.5 that this re-
striction can be relaxed by considering density operators. In the same section we also showed
that the classical closure of mixed state dynamics allows for multi-particle trajectories aris-
ing from the initial condition (44), which in turn is not compatible with the standard QHD
definition D0 = |χ0|2. In this section we shall include mixed state dynamics by extending
the exact factorization model to a density operator formulation.

5.1 Factorization of the Molecular Density Operator

In order to generalize the exact factorization (67) to density operators, we recall the relation
(69) and extend it to consider a molecular density operator of the form

ρmol

(

r, r ′,x,x ′) = ρn

(

r, r ′)ψ(x; r)ψ†
(

x ′, r ′). (128)

In order to formulate the dynamical equations for such a factorization ansatz, it is convenient
to consider a sequence {Ψk(r,x)} and exploit (47) to write

ρmol

(

r, r ′,x,x ′) =
N

∑

k=1

wkΨk(r,x)Ψ ∗
k

(

r ′,x ′), (129)

where
∑

k wk = 1 and each Ψk satisfies a separate (uncoupled) Schrödinger equation with
Hamiltonian (1). We remark that (129) is the equivariant momentum map for unitary trans-
formations of the {Ψk} recently studied in [73]. Correspondingly, the overall dynamics of
{Ψk} is produced by the variational principle

L
({Ψk}, {Ψ̇k}

) =
N

∑

k=1

wk

¨
(

�Re
(

iΨ ∗
k (r,x)Ψ̇k(r,x)

) − Ψ ∗
k (r,x)ĤΨk(r,x)

)

d3rd3x.

(130)
At this stage, we consider a ψ(x; r) satisfying (68), and we restrict to the case Ψk(r,x) =
χk(r)ψ(x; r). Consequently, the ansatz (128) is recovered by setting ρn(r, r ′) =
∑

k wkχk(r)χ∗
k (r ′) and the above Lagrangian becomes

L
({χk}, {χ̇k},ψ, ψ̇

) = Re
ˆ [

∑

k

wk

(

i�χ∗
k χ̇k + |χk|2〈ψ |i�ψ̇〉)

+ λ
(‖ψ‖2 − 1

)

]

d3r − h
({χk},ψ

)

. (131)

Here, the Lagrange multiplier enforces ‖ψ‖2 = 1 and the Hamiltonian reads as h({χk},ψ) =
∑

k wk

˜
χ∗

k (r)ψ∗(x; r)Ĥ (χkψ)(r,x)d3r d3x. Now, we restrict ρn to undergo unitary evo-
lution by writing, for each k, χk(r, t) = Un(t)χ

(0)
k (r), where Un ∈ U(Hn) is a time-

dependent unitary operator on the nuclear quantum space Hn = L2(R3). Then, the La-
grangian above in (131) can be rewritten in terms of the nuclear density matrix ρn(r, r ′)
and its diagonal elements D(r) := ρn(r, r) as

�(̂ξ, ρn,ψ, ψ̇) = Re
ˆ

[

i�ρn

(

r, r ′)ξ
(

r ′, r
) + D(r)〈ψ |i�ψ̇〉 + λ

(‖ψ‖2 − 1
)]

dr − h(ρn,ψ),

(132)
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where ̂ξ := U̇nU
−1
n , ρn = Unρ

(0)
n U−1

n , and the Hamiltonian is:

h(ρn,ψ) = 1

2M

〈

(̂P + A)2
∣

∣ρn

〉 +
ˆ

D(r)ε(ψ,∇ψ)d3r, (133)

in which ε(ψ,∇ψ) is the same as in (79) and ̂P denotes the nuclear momentum operator.
The Lagrangian (132) produces dynamics for ρn which is identical to the dynamics for
χ(r)χ∗(r ′) emerging from the equation (73). In this generalized case, the compatibility
condition (75) is replaced by

Im

〈

ψ(r)

∣

∣

∣

∣

δh

δψ
(r)

〉

= 2Im
ˆ

ρn

(

r, r ′) δh

δρn

(

r ′, r
)

d3r ′. (134)

Now that the variational principle and the Hamiltonian functional are completely char-
acterized, we may proceed by restricting nuclear dynamics to undergo classical motion. To
this purpose, we combine the two approaches described in Sects. 2.4 and 2.5, by applying
the regularization technique after performing the classical closure for density operators.

5.2 Classical Closure and Singular Solutions

In following the discussion in Sect. 2.5, we wish to collectivize the Hamiltonian in terms of
the hydrodynamic quantities (μ,D). This can be achieved by applying the closure (51) to ρn

in Section (128), that is ρn(r, r ′) = D(r/2+ r ′/2) exp(iM(r − r ′) · v(r/2 + r ′/2)/�), with
MD(r)v(r) = μ(r). Lengthy but straightforward computations using matrix elements (or,
by Wigner transforming, direct applications of Weyl calculus) eventually take the Hamilto-
nian (133) into the hydrodynamic form

h(μ,D,ψ) = 1

2M

ˆ |μ + DA|2
D

d3r +
ˆ

Dε(ψ,∇ψ)d3r, (135)

which coincides with the Hamiltonian (86), except for the quantum potential term. Now
however, note that the nuclear hydrodynamic variables (μ,D) are no longer given in terms
of a unique wavefunction, so that curl(M−1μ/D) �= 0. Thus, equation (106) becomes

d

dt

˛

γ (t)

u · dr = − 1

M

˛

γ (t)

(

〈

ψ, (∂i
̂He)ψ

〉 + 1

MD
∂j (DT ij )

)

dri . (136)

This means that the dynamics of the nuclear circulation integral
¸

γ (t)
u ·dr is now interpreted

as a genuine hydrodynamic Kelvin theorem for the circulation around a loop moving with
the nuclear fluid with Eulerian velocity u := M−1(μ/D + A).

At this point, one can Legendre transform the Hamiltonian (135) and follow the treatment
in Sect. 4.8 to express the electron function ψ in the nuclear frame. Then, rearranging yields
the new Hamiltonian

h(m,D, ρ̃) =
ˆ ( |m|2

2MD
+ 〈ρ̃| ̂He〉 + �

2

4MD

(‖∇ρ̃‖2 − |∇D|2)
)

d3r, (137)

which again coincides with (121) except for the quantum potential, although a similar po-
tential (the last term) with opposite sign is produced according to the relation (122). The
equations of motion associated to the Hamiltonian (137) can now be easily formulated by
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applying the Lie–Poisson bracket structure (126). The last two equations in (124) do not
change, although the force arising from the quantum potential is modified accordingly in
the momentum equation.

Remarkably, Hamiltonian systems with Lie–Poisson brackets of the type (126) for the
exact factorization (EF) model have already been studied and their geodesic motions have
been shown to admit singular solutions for certain choices of quadratic Hamiltonians, in
[41]. Following this previous work, in this Section we will extend the momentum map (39)
which led to the Bohmion singular solutions in Sect. 2.4, to a singular solution momen-
tum map for a regularized version of the Lie–Poisson system associated to the Hamiltonian
(137). Again, in analogy with Sect. 2.4, here we shall present two different treatments: while
the first is uniquely based on the Hamiltonian structure, the second exploits the associated
variational principle.

5.2.1 Hamiltonian Regularization in 1D

For further simplification, we consider a one dimensional nuclear coordinate. Upon consid-
ering the Lie–Poisson structure given by the Hamiltonian (137) and the bracket (126), we
can write the dynamical variables according to the momentum map given as follows [41]:

m(r, t) =
N

∑

a=1

pa(t)δ
(

r − qa(t)
)

, D(r, t) =
N

∑

a=1

wa(t)δ
(

r − qa(t)
)

,

ρ̃(r, t) =
N

∑

a=1

�a(t)δ
(

r − qa(t)
)

.

(138)

Here, the D-equation in (124) implies that the wa with a = 1,2, . . . ,N in (138) are all con-
stant. In contrast, as we shall see, the ρ̃-equation for the regularized Hamiltonian obtained
from introducing smoothed variables in (137) will imply an evolution equation for the co-
efficients �a(t) = waϕa(t)ϕ

†
a(t) in (138). The corresponding singular solutions represent

Bohmions in the density matrix formulation.
In addition to the last term in the Hamiltonian (137), which was already regularized in

Sect. 2.4, a further barrier to singular solutions is represented by the term involving the gra-
dient of ρ̃. Hence, we again smoothen our variables by replacing h(m,D, ρ̃) → h(m̄, D̄, ρ̄)

for m̄ = K ∗ m, D̄ = K ∗ D, and ρ̄ = K ∗ ρ̃, in the collectivized Hamiltonian (137). Then,
the corresponding regularized Hamiltonian hREG for the singular solutions is given by

hREG

({q}, {p}; {�}, {w}) = 1

2M

∑

a,b

papb

ˆ
K(r − qa)K(r − qb)

∑

c wcK(r − qc)
dr

+ �
2

4M

∑

a,b

(〈�a|�b〉 − wawb

)

ˆ
K ′(r − qa)K

′(r − qb)
∑

c wcK(r − qc)
dr

+
∑

a

〈

�a

∣

∣̂He(qa)
〉

ˆ
K(r − qa)dr. (139)

Thus, substitution of the singular solutions (138) into the regularized Hamiltonian (137)
yields the Hamiltonian (139) in terms of its canonical phase space variables (qa,pa) with
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a = 1,2, . . . ,N , augmented as expected by the equation for the matrix ρa , given by substi-
tution of the last equation in (138) into the middle equation of (124) as

i��̇a =
[

δhREG

δ�a

, �a

]

= [

H̄e(qa), �a

] + �
2

2M

∑

b

[�b,�a]
ˆ

K ′(r − qa)K
′(r − qb)

∑

c wcK(r − qc)
dr,

(140)
where we have introduced H̄e(qa) = ´

He(r)K(r −qa)dr and we do not sum on the index a.
As for the QHD Bohmions in Sect. 2.4, the equivariance of the momentum map (138)

discovered in [37, 41] implies that the dynamics of ({q}, {p}) satisfy the canonically conju-
gate Hamiltonian equations

q̇a = δhREG

δpa

= u
(

qa(t), t
)

and ṗa = − δhREG

δqa

, for a = 1,2, . . . ,N, (141)

where K ′ denotes the derivative of the smoothing kernel K with respect to its argument.
As remarked in Sect. 2.4 for QHD, these singular solutions for the regularized dynamics
extend the ‘peakon’ singular solutions for nonlinear wave equations in [19, 39]. As such, the
peakon-like equations in (138) do not possess the usual Newtonian form. This is because of
the smoothing which was introduced in the kinetic energy term.

Again, the term in the canonical equations (141) arising from summands in hREG in (139)
proportional to �

2 provides extensive, potentially long-range coupling among the singular
particle-like solutions, because of the presence of D̄ in the denominators of these terms in
the Hamiltonian hREG in (36). However, as in the previous section, the limit �2 → 0 in the
canonical Bohmion equations (141) in the density matrix formulation is regular.

5.2.2 Lagrangian Regularization in 1D

At this point, we perform the analogous procedure to that in the last part of Sect. 2.4 now
for the above model obtained by factorizing the molecular density matrix. As before, in-
stead of regularizing all terms as in the Hamiltonian approach, we shall regularize only the
O(�2)-terms. We now consider the cold-fluid closure of the Lagrangian (114), obtained by
Legendre transforming the Hamiltonian (137) to obtain

�(u,D, ξ, ρ̃) =
ˆ (

1

2
MDu2 + 〈ρ̃, i�ξ〉 − 〈ρ̃| ̂He〉 − �

2

4MD

(‖ρ̃ ′‖2 − (

D′)2)
)

dr . (142)

As a first step, we perform the substitution D → D̄ and ρ̃ → ρ̄ in the O(�2)-terms, so that
the Lagrangian now becomes:

�(u,D, ξ, ρ̃) =
ˆ (

1

2
MDu2 + 〈ρ̃, i�ξ〉 − 〈ρ̃| ̂He〉 − �

2

4M

(‖ρ̄ ′‖2

D̄
− (D̄′)2

D̄

))

dr . (143)

Then in addition to the inital delta function condition on D, (44), we set the following
electronic initial condition:

ρ̃0(r0) =
N

∑

a=1

�(0)
a δ

(

r0 − q(0)
a

)

. (144)

Now, the evolution of ρ̃ in terms of the Lagrangian path η and the electronic propagator
U(r0) is given as ρ̃ = η∗ρ̂ = ´

ρ̂(r0, t) δ(r − η(r0, t))dr0, with ρ̂(r0, t) = U(r0, t)ρ̃0(r0) ×
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U †(r0, t), so that (144) yields

ρ̃(r, t) =
N

∑

a=1

�a(t)δ
(

r − qa(t)
)

, with �a(t) := U
(

q(0)
a , t

)

�(0)
a U †

(

q(0)
a , t

)

.

Here, we set �(0)
a = waϕ

(0)
a ϕ(0)

a

† so that �a(t) = waϕa(t)ϕ
†
a(t) is a projection at all times.

Furthermore, we evaluate

ˆ
〈ρ̃|iξ 〉dr =

N
∑

a=1

〈�a|iξa〉, where ξa(t) := (

∂tU
(

q(0)
a , t

))

U †
(

q(0)
a , t

)

,

and we have recalled q(0)
a = η−1(q(t), t) as well as ξ(r) = (∂tU(η−1(r), t))U †(η−1(r), t).

Then, insertion of (44) and (144) in (143) yields the following Lagrangian

L
({q}, {q̇}, {�}) =

∑

a

(

Mwa

2
q̇2

a + 〈�a, i�ξa〉 − 〈

�a

∣

∣ ̂He(qa)
〉

− �
2

4M

∑

b

(〈�a|�b〉 − wawb

)

ˆ
K ′(r − qa)K

′(r − qb)
∑

c wcK(r − qc)
dr

)

. (145)

While the Euler–Lagrange equations for the trajectories qa are obvious, the electronic dy-
namics is obtained as an Euler–Poincaré equation by using the variational relation δξa =
∂tνa − [ξa, νa], with νa arbitrary and vanishing at the endpoints. As usual, this is obtained
by an explicit calculation using the definition of ξa(t). Eventually, we obtain the following
quantum equation

i��̇a = [

̂He(qa), �a

] + �
2

2M

∑

b

[�b,�a]
ˆ

K ′(r − qa)K
′(r − qb)

∑

c wcK(r − qc)
dr,

which coincides with (140) except that H̄e is now replaced by the unfiltered operator ̂He .
The comparison of solution behaviour between these two regularized Bohmion models in
the density matrix formulation will be discussed elsewhere by using computer simulations.

6 Conclusions

In this paper, we have exploited momentum maps to collectivize a sequence of molecular
quantum chemistry models for factorized nuclear and electronic wave functions, thereby
obtaining a sequence of quantum fluid models with shared semidirect-product Lie–Poisson
structures. After reviewing the Born–Oppenheimer product of nuclear and electronic wave
functions, we started with mean-field theory, and then passed to a recent development called
‘exact factorization’ (EF) for nonadiabatic correlated electron-nuclear dynamics, which has
been reported to describe decoherence of pure electron quantum states into mixed states. In
the last part, we extended the exact factorization approach to apply for density operators.

In Sect. 2.4, we mollified the weakly convergent WKB �→ 0 limit by applying a smooth-
ing operator to the quantum variables in the collectivized Hamiltonian for regularized quan-
tum hydrodynamics. This smoothing operation preserved the Hamiltonian structure of the
quantum fluid model and it resulted in the discovery of singular delta function solutions
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called ‘Bohmions’ for smooth quantum fluid Hamiltonians. Depending on which terms are
regularized in the Hamiltonian, different sets of Bohmion equations are available.

In the development of the paper, we showed that the Hamiltonian formulation of the col-
lectivized quantum fluid equations for EF possesses the same Lie–Poisson bracket structure
as in earlier work on perfect complex fluids (PCF), such as liquid crystals, [28–31, 36, 74].
The parallel between EF and PCF is that the nuclear fluid velocity vector field Lie-transports
both the nuclear probability density and the electron density matrix, while the latter also has
its own unitary dynamics in the moving frame of the nuclear fluid. This picture was also
extended to present a new PCF dynamical model based on the factorization of the molecular
density operator.

In the PCF formulation of the nonadiabatic electron problem, smoothing all terms in
(137) yields singular momentum maps corresponding to the ‘peakon’ solutions of the well
known EPDiff equation [37]. In one spatial dimension, this more general class of Bohmions
is governed by a countably infinite set of canonical Hamiltonian equations in phase space, in
analogy to the solitons for the Camassa–Holm equation [19]. The countably infinite phase
space system can be truncated to a multi-particle phase space system at any finite number
of Bohmions, because the Hamiltonian dynamics does not create new Bohmions. In fact,
the Bohmion collectivized solutions discussed in Sects. 2.4 and 5.2 comprise a semidirect-
product version of the class of ‘peakon’ solutions for the CH equation [19] which arise from
the well-known singular momentum map for the entire class of EPDiff equations [37].

A second approach to Bohmion dynamics was presented in Sect. 5.2.2. This approach
was developed in the variational framework by smoothening only the O(�2)-terms in the
Lagrangian (142). Although the analogy to the peakon solutions of the Camassa–Holm equa-
tion no longer holds entirely, the resulting dynamical system still consists of a countable set
of finite dimensional Hamiltonian equations.

Future work will take further advantage of the analogy between continuum dynamics
and the collectivization of quantum dynamics via momentum maps. For example, products
of delta functions in different spaces can be introduced, corresponding to Bohmion dynam-
ics for the different factorized wave functions of many interacting molecules. This approach
is reminiscent of the closure models arising in time dependent Hartree (TDH) theory [34]
for quantum dynamics in nuclear physics. Approaches such as these have long been applied
in several fields of science, including molecular chemistry, nuclear physics, and condensed
matter physics, as well as in celestial mechanics, in hopes of lifting the “curse of dimen-
sions” which tends to be ubiquitous in many-body problems [13].
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Appendix A: Proof of Relation (49)

In this Appendix, we prove formula (49) for the infinitesimal generator. Instead of consider-
ing the left action in (48), we simplify the treatment here by considering the corresponding
right action (given by replacing η → η−1). Thus, we begin by considering the following
unitary (right) Diff(R3)-action:

Φη(ρ) = Uη ρ U †
η , (146)

for the unitary operator (in matrix element notation)

Uη

(

x,x ′) =
√

det∇xη(x)T δ
(

x ′ − η(x)
)

.

At this point we compute the infinitesimal generator from its definition to find

ξ(ρ) = [ξ̂ , ρ]. (147)

The matrix elements of ξ̂ can be computed as follows. Upon considering a curve η(t) ∈
Diff(R3) such that η(0) = 1 and η̇(0) = u, we have

ξ̂
(

x,x ′) = d

dt

∣

∣

∣

∣

t=0

(

Uη(t)
)(

x,x ′)

=
[

δ(x ′ − η(x, t))

2
√

det∇xη(x, t)T

d

dt

(

det∇xη(x, t)T
)

+
√

det∇xη(x, t)T
d

dt
δ
(

x ′ − η(x, t)
)

]

t=0

=
[

√

det∇xη(x, t)T

(

1

2
δ
(

x ′ − η(x, t)
) − η̇(x, t) · ∇x′δ

(

x ′ − η(x, t)
)

)]

t=0

= 1

2

(∇x · u(x)
)

δ
(

x ′ − x
) + ∇xδ

(

x ′ − x
) · u(x).

The third step uses Jacobi’s formula for the derivative of the determinant. Next, we show
that ξ̂ = i�−1{̂uk, ̂Pk}/2 thereby recovering (49). This is verified as follows:

i

2�

{

ûk, ̂Pk

}(

x,x ′) = i

2�

ˆ
ûk(x,y)̂Pk

(

y,x ′) + ̂Pk(x,y )̂uk
(

y,x ′)d3y

= i

2�

ˆ
i�δ

(

y − x ′)∇yk
ûk(x,y) − i�δ(x − y)∇yk

ûk
(

y,x ′)d3y

= i

2�

(

i�∇x′
k
ûk

(

x,x ′) − i�∇xk
ûk

(

x,x ′))

= i

2�

(

i�∇x′
k

(

uk(x)δ
(

x − x ′)) − i�∇xk

(

uk(x)δ
(

x − x ′)))
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= 1

2

(∇x · u(x)
)

δ
(

x − x ′) + u(x) · ∇xδ
(

x − x ′),

where we have used the matrix elements

û
(

x,x ′) = u(x)δ
(

x − x ′), ̂P
(

x,x ′) = −i�∇xδ
(

x − x ′).

Thus we have proved that the infinitesimal generator for the right action (146) is indeed
given by (147), with ξ̂ = i�−1{̂uk, ̂Pk}/2. Correspondingly, the infinitesimal generator for
the left action (48) is given by ξ(ρ) = −[ξ̂ , ρ], which then proves (49).
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