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Abstract This paper proves a blow-up criterion for the strong solutions with vacuum to
the density-dependent Navier–Stokes–Korteweg equations over a bounded smooth domain
in R

2, which only in terms of the density.
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1 Introduction and Main Result

The motion of a general viscous capillary fluid is governed by the nonhomogeneous incom-
pressible Navier–Stokes–Korteweg equations:

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + div(ρu) = 0,

∂t (ρu) + div(ρu ⊗ u) − div
(
2μ(ρ)d

) + ∇P + div
(
κ(ρ)∇ρ ⊗ ∇ρ

) = 0,

divu = 0,

(1.1)

in Ω × (0,∞), where Ω is a bounded domain with smooth boundary in R
2. Here ρ, u and

P denote the density, velocity field and pressure of the fluid, respectively.

d = 1

2

[∇u + (∇u)T
]

is the deformation tensor, where ∇u is the gradient matrix (∂ui/∂xj ) and (∇u)T is its trans-
pose. κ = κ(ρ) and μ = μ(ρ) stand for the capillary and viscosity coefficients of the fluid
respectively, and are both functions of density ρ. In this paper, they are assumed to satisfy

κ,μ ∈ C1[0,∞), and κ ≥ 0, μ ≥ μ > 0 on [0,∞) (1.2)

for some positive constant μ.
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We focus on the system (1.1)–(1.2) with the initial and boundary conditions:

(ρ,u)|t=0 = (ρ0, u0) in Ω, u = 0, on ∂Ω × [0, T ). (1.3)

The Navier–Stokes–Korteweg system is usually used to model the dynamics of a fluid en-
dowed with internal capillarity (in the diffuse interface setting), and in general, the capillary
tensor is written as

divK = ∇
(

ρκ(ρ)�ρ + 1

2

(
κ(ρ) + ρκ ′(ρ)

)|∇ρ|2
)

− div
(
κ(ρ)∇ρ ⊗ ∇ρ

)
. (1.4)

In the case of the nonhomogeneous incompressible Korteweg, the first term in the capil-
lary tensor (1.4) can be absorbed by the pressure term due to the incompressibility condition,
thus we directly write the capillary term as a general divergence term (see the Remark 1.1
in [1]), it is exactly the equations (1.1). See more physical background and mathematical
modelling in [10, 11].

Now we recall some mathematical results on the nonhomogeneous fluid mechanics.
When κ ≡ 0, the system (1.1)–(1.2) reduces to the nonhomogeneous incompressible Navier-
Stokes equations with density-dependent viscosity. Cho and Kim [2] proved the local exis-
tence of unique strong solution for all initial data satisfying a compatibility condition. And
later Huang and Wang [9] proved the strong solution exists globally in time when the initial
gradient of the velocity is suitably small in some Sobolev space. For the related progress,
see the references [7–9] and therein.

Let us come back to the fluids with capillary effect, that is, κ(ρ) depends on the density ρ.
The Navier–Stokes–Korteweg equations are widely studied by many mathematicians since
of its physical importance and mathematical complexity, especially a great of efforts have
been devoted to the mathematical theory for compressible capillary fluids, see the references
[4–6] and therein. To our best knowledge, there are few results on the system (1.1). As far
as I know, the first local existence of unique strong solution was obtained by Tan and Wang
[12] when the capillary coefficients κ is a nonnegative constant. And very recently, Wang
[13] extended their result to the case when κ(ρ) is a C1 function of the density.

The purpose of this paper is to prove a blow-up criterion for the strong solutions to the
problem (1.1)–(1.3). First we give the definition of strong solution to the initial and boundary
problem (1.1)–(1.3) as follows (two dimensional version).

Definition 1.1 (Strong solution) A pair of functions (ρ ≥ 0, u,P ) is called a strong solution
to the problem (1.1)–(1.3) in Ω × (0, T ), if for some q0 ∈ (2,∞),

ρ ∈ C
([0, T ];W 2,q0

)
, u ∈ C

([0, T ];H 1
0 ∩ H 2

) ∩ L2
(
0, T ;W 2,q0

)
,

ρt ∈ C
([0, T ];W 1,q0

)
, ∇P ∈ C

([0, T ];L2
) ∩ L2

(
0, T ;Lq0

)
, ut ∈ L2

(
0, T ;H 1

0

)
,

(1.5)
and (ρ,u,P ) satisfies (1.1) a.e. in Ω × (0, T ).

In the case when the initial data may vanish in an open subset of Ω , that is, the initial
vacuum is allowed, the following local well-posedness of strong solution to (1.1)–(1.3) was
obtained by Wang [13] in a three dimensional bounded domain. In fact, the local existence
of unique strong solution with vacuum to the system (1.1) in a two dimensional bounded
domain can be established in the same manner as Wang [13] and Cho and Kim [2], also see
the Remark 2 in Tan and Wang [12].
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Theorem 1.2 Assume that the initial data (ρ0, u0) satisfies the regularity condition

0 ≤ ρ0 ∈ W 2,q , 2 < q < ∞, u0 ∈ H 1
0,σ ∩ H 2, (1.6)

and the compatibility condition

−div
(
μ(ρ0)

(∇u0 + (∇u0)
T
)) + ∇P0 + div

(
κ(ρ0)∇ρ0 ⊗ ∇ρ0

) = ρ
1/2
0 g, (1.7)

for some (P0, g) ∈ H 1 × L2. Then there exist a small time T and a unique strong solution
(ρ,u,P ) to the initial boundary value problem (1.1)–(1.3).

Motivated by the work of Huang and Wang [8], which proved a new type blow-up cri-
terion for the 2D nonhomogeneous incompressible Navier–Stokes flow only involving the
density. The main purpose is to derive a similar blow-up criterion for the nonhomogeneous
Navier–Stokes–Korteweg equations with density-dependent viscosity and capillary coeffi-
cients. More precisely, our main result can be stated as follows.

Theorem 1.3 Assume that the initial data (ρ0, u0) satisfies the regularity condition (1.6)
and the compatibility condition (1.7), as in Theorem 1.2. Let (ρ,u,P ) be a strong solution
of the problem (1.1)–(1.3) satisfying (1.5). If 0 < T ∗ < ∞ is the maximal time of existence,
then

lim
T →T ∗

‖∇ρ‖L∞(0,T ;W1,q ) = ∞. (1.8)

Remark 1 It is still unknown that if we can extend the local strong solution to a global one
for any arbitrary large initial data when the viscosity and capillary coefficients are constants,
since our blow-up criterion involves the gradient of density but not the gradient of viscosity
or capillary. We will consider the problem whether we can replace the density with viscosity
or capillary in our blow-up criterion in the future work.

The proof of Theorem 1.3 is based on the contradiction argument. In view of the local
existence result, to prove Theorem 1.3, it suffices to verify that (ρ,u) satisfy (1.6) and (1.7)
at the time T ∗ under the assumption of the left hand side of (1.8) is finite.

The remainder of this paper is arranged as follows. In Sect. 2, we give some auxiliary
lemmas which is useful in our later analysis. The proof of Theorem 1.3 will be done by
combining the contradiction argument with the estimates derived in Sect. 3.

2 Preliminaries

2.1 Notations and General Inequalities

Ω is a smooth bounded domain in R
2. For notations simplicity below, we omit the integra-

tion domain Ω . And for 1 ≤ r ≤ ∞ and k ∈N, the Sobolev spaces are defined in a standard
way,

Lr = Lr(Ω), Wk,r = {
f ∈ Lr : ∇kf ∈ Lr

}
,

Hk = Wk,2, C∞
0,σ = {

f ∈ (
C∞

0

)3 : divf = 0
}
.

H 1
0 = C∞

0 , H 1
0,σ = C∞

0,σ , closure in the norm of H 1.
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The following Ladyzhenskaya inequality in 2D case will be often used.

‖u‖2
L4 ≤ C‖u‖L2‖∇u‖L2 . (2.1)

However, to deal with a nonhomogeneous problem with vacuum, some interpolation in-
equality for u with degenerate weight like

√
ρ is required. We look for a similar estimate

for
√

ρu as in (2.1). This technique can be found in the paper of Desjardin [3].

Lemma 2.1 Assume that 0 ≤ ρ ≤ ρ̄, u ∈ H 1
0 ; then

‖√ρu‖2
L4 ≤ C

(
1 + ‖ρu‖L2

)‖∇u‖L2

√

log
(
2 + ‖∇u‖2

L2

)
(2.2)

where C is a positive constant depending only on ρ̄ and the domain Ω .

2.2 Higher Order Estimates on u

High-order a priori estimates of velocity field u rely on the following regularity results for
the stationary density-dependent Stokes equations.

Lemma 2.2 Assume that ρ ∈ W 2,q , 2 < q < ∞, and 0 ≤ ρ ≤ ρ̄. Let (u,P ) ∈ H 1
0,σ × L2 be

the unique weak solution to the boundary value problem

−div
(
2μ(ρ)d

) + ∇P = F, divu = 0 in Ω, and
∫

Pdx = 0, (2.3)

where d = 1
2 [∇u + (∇u)T ] and

μ ∈ C1[0,∞), μ ≤ μ(ρ) ≤ μ̄ on [0, ρ̄].
Then we have the following regularity results:

(1) If F ∈ L2, then (u,P ) ∈ H 2 × H 1 and

‖u‖H 2 + ‖P ‖H 1 ≤ C
(
1 + ‖∇ρ‖L∞

)‖F‖L2 , (2.4)

(2) If F ∈ Lr for some r ∈ (2,∞), then (u,P ) ∈ W 2,r × W 1,r and

‖u‖W2,r + ‖P ‖W1,r ≤ C
(
1 + ‖∇ρ‖L∞

)‖F‖Lr . (2.5)

The proof of Lemma 2.2 has been given by Wang [13]. And refer to Lemma 2.1 in his
paper.

3 Proof of Theorem 1.3

Let (ρ,u,P ) be a strong solution to the initial and boundary value problem (1.1)–(1.3) as
derived in Theorem 1.2. Then it follows from the standard energy estimate that

Lemma 3.1 For any 0 < T < T ∗, it holds that for any p ∈ [1,∞],

sup
0≤t≤T

(‖ρ‖Lp + ∥
∥√

ρu
∥
∥2

L2 + ∥
∥
√

κ(ρ)∇ρ
∥
∥2

L2 +
∫∫ T

0
|∇u|2dxds ≤ C. (3.1)
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As mentioned in the Sect. 1, the main theorem will be proved by using a contradiction
argument. Denote 0 < T ∗ < ∞ the maximal existence time for the strong solution to the
initial and boundary value problem (1.1)–(1.3). Suppose that (1.8) were false, that is

M0 := lim
T →T ∗ ‖∇ρ‖L∞(0,T ;W1,q ) < ∞. (3.2)

Under the condition (3.2), one will extend the existence time of the strong solutions to (1.1)–
(1.3) beyond T ∗, which contradicts the definition of maximum of T ∗.

The following estimate can be derived quickly from the Lemma 2.2, which is used later.

Lemma 3.2 Under the assumption (3.2), it holds for all 0 < T < T ∗,

‖∇u‖H 1 ≤ C‖ρut‖L2 + C‖ρu‖2
L4‖∇u‖L2 + C, (3.3)

and consequently by Sobolev embedding,

‖∇u‖H 1 ≤ C‖ρut‖L2 + C‖∇u‖3
L2 + C. (3.4)

Proof According to the Lemma 2.2 and the Gagliardo–Nirenberg inequality,

‖∇u‖H 1 ≤ C
(
1 + ‖∇ρ‖L∞

)(‖ρut‖L2 + ‖ρu · ∇u‖L2 + 1
)

≤ C‖ρut‖L2 + C‖ρu‖L4‖∇u‖ 1
2
L2‖∇u‖ 1

2
H 1 + C

≤ C‖ρut‖L2 + C‖ρu‖2
L4‖∇u‖L2 + C + 1

2
‖∇u‖H 1 ,

which complete the proof of (3.3). �

The key step is to derive the L2-norm of the first order spatial derivatives of u under the
assumption of initial data and (3.2).

Lemma 3.3 Under the condition (3.2), it holds that for any 0 < T < T ∗,

sup
0≤t≤T

‖∇u‖2
L2 +

∫ T

0

∥
∥√

ρut

∥
∥2

L2dt ≤ C. (3.5)

Proof Multiplying the momentum equations (1.1)2 by ut , and integrating the resulting equa-
tions over Ω , we have

∫

ρ|ut |2dx + d

dt

∫

μ(ρ)|d|2dx

= −
∫

(ρu · ∇u) · utdx −
∫

u · ∇μ(ρ)|d|2dx +
∫

κ(ρ)∇ρ ⊗ ∇ρ : ∇utdx

= d

dt

∫

κ(ρ)∇ρ ⊗ ∇ρ : ∇udx +
∫

κ ′(ρ)(u · ∇ρ)∇ρ ⊗ ∇ρ : ∇udx

+ 2
∫

κ(ρ)∇(u · ∇ρ) ⊗ ∇ρ : ∇udx −
∫

(ρu · ∇u) · utdx −
∫

u · ∇μ(ρ)|d|2dx

= d

dt

∫

κ(ρ)∇ρ ⊗ ∇ρ : ∇udx +
4∑

k=1

Ik. (3.6)
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Now let us estimate these terms one by one, by use of the Poincaré inequality, we get

I1 =
∫

κ ′(ρ)(u · ∇ρ)∇ρ ⊗ ∇ρ : ∇udx

≤ ∥
∥κ ′(ρ)

∥
∥

L∞‖∇ρ‖3
L∞‖u‖L2‖∇u‖L2

≤ C‖∇u‖2
L2 . (3.7)

Similarly, dividing I2 into two parts,

I2 =
∫

κ(ρ)∇(u · ∇ρ) ⊗ ∇ρ : ∇udx

≤ ∥
∥κ(ρ)

∥
∥

L∞‖∇ρ‖L∞‖∇2ρ‖Lq ‖u‖Lq∗ ‖∇u‖L2

+ ∥
∥κ(ρ)

∥
∥

L∞‖∇ρ‖2
L∞‖∇u‖2

L2

≤ C‖∇u‖2
L2 , (3.8)

here 1
q

+ 1
q∗ = 1

2 . and q∗ > 2. For the term I3, using Cauchy-Schwarz inequality to get

I3 =
∫

ρut · (u · ∇u)dx

≤ 1

8

∥
∥√

ρut

∥
∥2

L2 + C
∥
∥√

ρu
∥
∥2

L4‖∇u‖2
L4

≤ 1

8

∥
∥√

ρut

∥
∥2

L2 + C
∥
∥√

ρu
∥
∥2

L4‖∇u‖L2‖∇u‖H 1

≤ 1

4

∥
∥√

ρut

∥
∥2

L2 + C
∥
∥√

ρu
∥
∥4

L4‖∇u‖2
L2 , (3.9)

and finally

I4 =
∫

u · ∇μ(ρ)|d|2dx

≤ ∥
∥μ′(ρ)

∥
∥

L∞‖∇ρ‖L∞‖u‖L2‖∇u‖2
L4

≤ C‖u‖L2‖∇u‖L2‖∇u‖H 1

≤ C‖∇u‖2
L2‖∇u‖H 1

≤ C‖∇u‖2
L2‖ρut‖L2 + C‖ρu‖2

L4‖∇u‖3
L2 + C‖∇u‖2

L2

≤ 1

4

∥
∥√

ρut

∥
∥2

L2 + C‖ρu‖4
L4‖∇u‖2

L2 + C‖∇u‖4
L2 + C‖∇u‖2

L2 . (3.10)

Note that Lemma 2.1 tells us that

∥
∥√

ρu
∥
∥4

L4 ≤ C
(
1 + ‖ρu‖2

L2

)‖∇u‖2
L2 · log

(
2 + ‖∇u‖2

L2

)

≤ C‖∇u‖2
L2 · log

(
2 + ‖∇u‖2

L2

)
. (3.11)
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Insert the estimates (3.7)–(3.10) into (3.6) to obtain

1

2

∫

ρ|ut |2dx + d

dt

∫
(
μ(ρ)|d|2 − κ(ρ)∇ρ ⊗ ∇ρ : ∇u

)
dx

≤ C‖∇u‖2
L2

(
1 + ‖∇u‖2

L2

)(
1 + log

(
2 + ‖∇u‖2

L2

))
(3.12)

and we know that

3

4
μ‖∇u‖2

L2 − C0 ≤
∫

(
μ(ρ)|d|2 − κ(ρ)∇ρ ⊗ ∇ρ : ∇u

)
dx ≤ 5

4
μ‖∇u‖2

L2 + C0, (3.13)

owing to the following estimate

∫

κ(ρ)∇ρ ⊗ ∇ρ : ∇udx ≤ ∥
∥
√

κ(ρ)∇ρ
∥
∥

L∞
∥
∥
√

κ(ρ)∇ρ
∥
∥

L2‖∇u‖L2

≤ 1

4
μ‖∇u‖2

L2 + C
∥
∥
√

κ(ρ)∇ρ
∥
∥2

L∞
∥
∥
√

κ(ρ)∇ρ
∥
∥2

L2

≤ 1

4
μ‖∇u‖2

L2 + C0.

Taking this into account, we can conclude from (3.12) and the logarithmic type Gron-
wall inequality that (3.5) holds for all 0 ≤ T < T ∗. Therefore we complete the proof of
Lemma 3.3. �

Before we prove the boundedness of ‖√ρut‖L2 , we insert the following estimate on the
L∞-norm of u.

Lemma 3.4 Under the condition (3.2), it holds that for any 0 < T < T ∗,

sup
0≤t≤T

(‖u‖L2(0,T ;L∞) + ‖u‖L4(0,T ;L∞)

) ≤ C. (3.14)

Proof By the Gagliardo–Nirenberg inequality and Lemma 3.2, we have

∫ T

0
‖u‖4

L∞dt ≤ C

∫ T

0
‖u‖2

L2‖∇u‖2
H 1dt

≤ C

∫ T

0

(‖∇u‖2
L2‖ρut‖2

L2 + ‖∇u‖8
L2 + ‖∇u‖2

L2

)
dt, (3.15)

which completes the proof of (3.14), owing to the Lemma 3.3. �

Now we can give the proof of the boundedness of ‖√ρut‖L2 , by use of the compatibility
condition (1.7) on the initial data.

Lemma 3.5 Under the condition (3.2), it holds that for any 0 < T < T ∗,

sup
0≤t≤T

∥
∥√

ρut

∥
∥2

L2 +
∫ T

0
‖∇ut‖2

L2dt ≤ C. (3.16)
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Proof Differentiating the momentum equations (1.1)2 with respect to t , along with the con-
tinuity equation (1.1)1, we get

ρutt + ρu · ∇ut − div
(
2μ(ρ)dt

) + ∇Pt

= (u · ∇ρ)(ut + u · ∇u) − ρut · ∇u − div
(
2μ′(ρ)(u · ∇ρ)d

)

+ div
(
κ ′(ρ)(u · ∇ρ)∇ρ ⊗ ∇ρ

) + 2 div
(
κ(ρ)∇(u · ∇ρ) ⊗ ∇ρ

)
. (3.17)

Multiplying (3.17) by ut and integrating over Ω , we get after integration by parts that

1

2

d

dt

∫

ρ|ut |2dx + 2
∫

μ(ρ)|dt |2dx

=
∫

−2ρu · ∇ut · utdx +
∫

(u · ∇ρ)(u · ∇u) · utdx −
∫

ρut · ∇u · utdx

+
∫

2μ′(ρ)(u · ∇ρ)d : ∇utdx −
∫

κ ′(ρ)(u · ∇ρ)∇ρ ⊗ ∇ρ : ∇utdx

−
∫

2κ(ρ)∇(u · ∇ρ) ⊗ ∇ρ : ∇utdx =:
6∑

k=1

Jk. (3.18)

Now let us estimate the terms on the right hand side one by one. First

J1 =
∫

−2ρu · ∇ut · utdx

≤ C‖ρ‖ 1
2
L∞

∥
∥√

ρut

∥
∥

L2‖u‖L∞‖∇ut‖L2

≤ 1

8
μ‖∇ut‖2

L2 + C‖u‖2
L∞

∥
∥√

ρut

∥
∥2

L2 . (3.19)

Similarly,

J2 =
∫

(u · ∇ρ)(u · ∇u) · utdx

≤ C‖∇ρ‖L∞‖∇u‖L2‖u‖2
L∞‖ut‖L2

≤ C‖∇ρ‖L∞‖∇u‖L2‖u‖2
L∞‖∇ut‖L2

≤ 1

8
μ‖∇ut‖2

L2 + C‖u‖4
L∞‖∇u‖2

L2 , (3.20)

J3 = −
∫

ρut · ∇u · utdx

≤ C‖ρ‖ 1
2
L∞‖ut‖L4

∥
∥√

ρut

∥
∥

L2‖∇u‖L4

≤ C‖∇ut‖L2

∥
∥√

ρut

∥
∥

L2‖∇u‖H 1

≤ 1

8
μ‖∇ut‖2

L2 + C
∥
∥√

ρut

∥
∥2

L2‖∇u‖2
H 1 ,

≤ 1

8
μ‖∇ut‖2

L2 + C
∥
∥√

ρut

∥
∥4

L2 + C
∥
∥√

ρut

∥
∥2

L2 + C
∥
∥√

ρut

∥
∥2

L2‖∇u‖6
L2 , (3.21)
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J4 =
∫

2μ′(ρ)(u · ∇ρ)d : ∇utdx

≤ C
∥
∥μ′(ρ)

∥
∥

L∞‖∇ρ‖L∞‖u‖L∞‖∇u‖L2‖∇ut‖L2

≤ 1

8
μ‖∇ut‖2

L2 + C‖u‖2
L∞‖∇u‖2

L2 , (3.22)

J5 =
∫

κ ′(ρ)(u · ∇ρ)∇ρ ⊗ ∇ρ : ∇utdx

≤ C
∥
∥κ ′(ρ)

∥
∥

L∞‖∇ρ‖3
L∞‖u‖L2‖∇ut‖L2

≤ 1

8
μ‖∇ut‖2

L2 + C‖∇u‖2
L2 , (3.23)

J6 =
∫

2κ(ρ)∇(u · ∇ρ) ⊗ ∇ρ : ∇utdx

≤ C
∥
∥κ(ρ)

∥
∥

L∞‖∇ρ‖2
L∞‖∇u‖L2‖∇ut‖L2

+ C
∥
∥κ(ρ)

∥
∥

L∞‖∇ρ‖L∞‖∇2ρ‖Lq ‖u‖Lq∗ ‖∇ut‖L2

≤ 1

8
μ‖∇ut‖2

L2 + C‖∇u‖2
L2 , (3.24)

here note we take q > 2. Substituting all the estimates (3.19)–(3.24) into (3.18), we deduce

d

dt

∫

ρ|ut |2dx +
∫

μ(ρ)|dt |2dx

≤ C‖u‖2
L∞

∥
∥√

ρut

∥
∥2

L2 + C
(
1 + ‖∇u‖6

L2

)∥
∥√

ρut

∥
∥2

L2

+ ∥
∥√

ρut

∥
∥4

L2 + C
(
1 + ‖u‖4

L∞
)‖∇u‖2

L2 , (3.25)

consequently, it follows from Gronwall inequality and Lemma 3.3, 3.4 that

sup
0≤t≤T

∥
∥√

ρut

∥
∥2

L2 +
∫ T

0
‖∇ut‖2

L2dt ≤ C. �

Lemma 3.6 Under the condition (3.2), it holds that for any 0 < T < T ∗,

sup
0≤t≤T

(‖ρt‖W1,q + ‖u‖H 2 + ‖P ‖H 1

) +
∫ T

0

(‖u‖2
W2,q + ‖P ‖2

W1,q

)
dt ≤ C. (3.26)

Proof By Lemma 2.2 and (3.4), it is easy to deduce

‖u‖H 2 + ‖P ‖H 1 ≤ C‖ρut‖L2 + C‖∇u‖3
L2 + C ≤ C, (3.27)

with the aid of Lemma 3.3 and 3.5.
And, together with (1.1)1, yields

‖ρt‖W1,q ≤ C
(‖ρt‖Lq + ‖∇ρt‖Lq

)

≤ C
(‖u · ∇ρ‖Lq + ∥

∥∇(u · ∇ρ)
∥
∥

Lq

)
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≤ C
(‖u‖L∞‖∇ρ‖Lq + ‖u‖L∞

∥
∥∇2ρ

∥
∥

Lq + ‖∇u‖L2‖∇ρ‖
L

2q
q−2

)

≤ C‖u‖H 2‖∇ρ‖W1,q ≤ C. (3.28)

Finally, applying (2.5) in Lemma 2.2 with F = −ρut − ρu · ∇u − div(κ(ρ)∇ρ ⊗ ∇ρ), we
get

‖∇u‖W1,q + ‖P ‖W1,q ≤ C
(
1 + ‖∇ρ‖L∞

)(‖ρut‖Lq + ‖ρu · ∇u‖Lq

+ ∥
∥κ(ρ)

∣
∣∇2ρ

∣
∣|∇ρ|∥∥

Lq + ∥
∥κ ′(ρ)|∇ρ|3∥∥

Lq

)

≤ C
(‖ρut‖Lq + ‖ρu · ∇u‖Lq + 1

)

≤ C
(‖∇ut‖L2 + ‖∇u‖2

H 1 + 1
)
, (3.29)

hence
∫ T

0

(‖∇u‖2
W1,q + ‖P ‖2

W1,q

)
dt ≤ C

∫ T

0

(‖∇ut‖2
L2 + ‖∇u‖4

H 1

)
dt + C

≤ C. (3.30)

Therefore we complete the proof of Lemma 3.6. �

Proof of Theorem 1.3 In fact, in view of (3.2) and (3.27), it is easy to see that the functions
(ρ,u)(x, t = T ∗) = limt→T ∗(ρ,u) have the same regularities imposed on the initial data
(1.6) at the time t = T ∗. Furthermore,

− div
(
2μ(ρ)d

) + ∇P + div
(
κ(ρ)∇ρ ⊗ ∇ρ

)∣
∣
t=T ∗

= lim
t→T ∗ ρ

1
2
(
ρ

1
2 ut + ρ

1
2 u · ∇u

) := ρ
1
2 g

∣
∣
t=T ∗

with g = (ρ
1
2 ut + ρ

1
2 u · ∇u)|t=T ∗ ∈ L2 due to (3.16). Thus the functions (ρ,u)|t=T ∗ satisfy

the compatibility condition (1.7) at time T ∗. Therefore we can take (ρ,u)|t=T ∗ as the initial
data and apply the local existence theorem (Theorem 1.2) to extend the local strong solution
beyond T ∗. This contradicts the definition of maximal existence time T ∗, and thus, the proof
of Theorem 1.3 is completed. �
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