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Abstract We provide quantitative estimates in total variation distance for positive semi-
groups, which can be non-conservative and non-homogeneous. The techniques relies on a
family of conservative semigroups that describes a typical particle and Doeblin’s type con-
ditions inherited from Champagnat and Villemonais (Probab. Theory Relat. Fields 164(1–
2):243–283, 2016) for coupling the associated process. Our aim is to provide quantitative
estimates for linear partial differential equations and we develop several applications for
population dynamics in varying environment. We start with the asymptotic profile for a
growth diffusion model with time and space non-homogeneity. Moreover we provide gen-
eral estimates for semigroups which become asymptotically homogeneous, which are ap-
plied to an age-structured population model. Finally, we obtain a speed of convergence for
periodic semigroups and new bounds in the homogeneous setting. They are illustrated on
the renewal equation.
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1 Introduction

The solutions of the Cauchy problem associated to a linear Partial Differential Equation
(PDE) can be expressed through a semigroup of linear operators. In the present work, we are
interested in the ergodic properties of positive semigroups (Ms,t )t≥s≥0 acting on measures,
and their application to the study of the asymptotic profile of populations evolving in varying
environment, which can be described by linear (nonautonomous) PDEs. Roughly speaking,
for any t ≥ s ≥ 0, Ms,t is both a positive linear operator on a space of measures (μ �→ μMs,t )
and on a space of measurable functions (f �→ Ms,tf ), and the family (Ms,t )t≥s≥0 satisfies
the semigroup property

∀s ≤ u ≤ t, Ms,t = Ms,uMu,t .

For a measure μ and a measurable function f , we denote by μ(f ) the integral of f

against μ. We establish ergodic approximations of the following form

μMs,t ≈ μ(hs) rs,t γt

when t → ∞, for a fixed initial time s. The first term in this long-time decomposition is a
linear form μ �→ μ(hs) on the space of measures, independent of t , which provides the long
term impact of the initial distribution μ through the function hs . The second term is a family
(rs,t )t≥s of positive real numbers, independent of μ, describing the evolution of the “mass”.
Finally γt is the asymptotic probability distribution, which does not depend on s nor μ. The
harmonic function hs is unique up to normalization, but the two families (rs,t )t≥s and (γt )t≥0

are not. Nevertheless in particular situations, they can be chosen in certain relevant classes
in which they are unique. In Sect. 3 we detail and illustrate such cases, briefly presented
here:

Homogeneous semigroups. In the homogeneous setting Ms,t = Mt−s , and provided a topol-
ogy on the space of measures, spectral theorems suggest the behavior

μMt = μ(h)eλtγ +O
(
e(λ−ε)t

)
,

where λ is the dominant eigenvalue of the infinitesimal generator of the semigroup, γ and h

are the associated eigenvectors, and ε is the spectral gap. This is an immediate consequence
of the Perron Frobenius Theorem [23, 42] in finite state space setting. In a general Banach
lattice the existence of the eigentriplet (λ, γ,h) is ensured by the Krein-Rutman Theorem
[33] when the semigroup (or the resolvent of its generator) is positive, irreducible, and com-
pact. A refined variant of the Krein-Rutman theorem, with spectral gap, is proved in [40]
in the setting of a Banach lattice of functions. The proof relies on a spectral analysis and
applies to positive semigroups with a generator which satisfies a strong maximum principle
and admits a decomposition verifying a power compactness condition. In contrast with these
approaches, our method is based on a contraction argument and can be efficiently applied to
time-inhomogeneous semigroups.

Asymptotically homogeneous semigroups. In the case where there exists a homogeneous
semigroup (Nt )t≥0 such that Ms,s+t ≈ Nt for s large, we prove that the principal eigenvector
γ of (Nt )t≥0 provides a stationary asymptotic profile

μMs,t ≈ μ(hs) rs,t γ .
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But rs,t is not necessarily an exponential growth provided by the associated eigenvalue, and
hs is not the associated eigenfunction.

Periodic semigroups. When there exists T > 0 such that Ms+T ,t+T = Ms,t for all s ≤ t ,
the semigroup is said to be periodic. In this case we can choose for (γt )t≥0 a T -periodic
family, and similarly as in the homogeneous case, the evolution of the mass is exponential.
More precisely there exist a real number λF , named Floquet eigenvalue after the work of
G. Floquet [22], and a periodic family (ηt )t≥0 bounded from above and below such that

μMs,t ≈ μ(hs) eλF t+ηt γt .

In all cases, the bound for the speed of convergence is expressed in the total variation
norm (see Sect. 2.1 for the definition), which is the natural distance for coupling processes
in probability. The proof relies on an auxiliary conservative semigroup P (t), defined for
every bounded function f and any times 0 ≤ s ≤ u ≤ t by

P (t)
s,uf = Ms,u(f mu,t )

ms,t

, where ms,t = Ms,t1,

for which ergodic behavior can be obtained through coupling arguments. This auxiliary
semigroup describes the trajectory of a typical particle and has been used recently for the
study of branching Markov processes in discrete and continuous time [2, 4, 5, 34] and pro-
cesses killed at a boundary [11, 18, 35]. We come back in Appendix A on the link between
these topics in probability and ergodic estimates for semigroups.

Doeblin and Lyapounov techniques (or petite sets) [19, 38] provide then a powerful tool
to control the ergodic behavior of this auxiliary Markov process. More generally, the con-
structions of auxiliary Markov processes derived from a typical or tagged particle have been
well developed in probability and play a key role in the asymptotic study of stochastic pro-
cesses. They appear in Feynman-Kac formula [16] and in spine technics via many-to-one
formulae [30] for the probabilistic study of branching processes [7, 15, 20] and fragmenta-
tion processes [6], to name but a few.

When working on a compact state space or benefiting from an atom or a compact set
uniformly accessible for the whole state space, one can hope to check Doeblin conditions
on the auxiliary semigroup. Recall that a conservative, positive and homogeneous semigroup
(Qt)t≥0 satisfies the Doeblin condition if there exist a constant c > 0, a coupling probability
measure ν and a time t0 > 0 such that for all positive and bounded function f ,

Qt0f ≥ c ν(f ).

This condition is equivalent to a contraction in total variation distance and then provides
a convenient tool of analysis for non-homogenous models. Sharp assumptions expressed
in function of M have recently been obtained in [11] to get a Doeblin condition for the
auxiliary semigroup in a context of absorbed Markov process. These conditions are weaker
than the classical conditions using Birkhoff contraction [8, 25, 41] and equivalent to uniform
exponential convergence.

In Lemma 2.5 we prove that Doeblin’s condition hold for the semigroup P (t), which in
turn provides an explicit bound for the decrease of

P
(t)
s,t f (x) − P

(t)
s,t f (y) = Ms,tf (x)

ms,t (x)
− Ms,tf (y)

ms,t (y)
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as t → ∞ and the ergodic behavior of the auxiliary semigroup. The proof of this Lemma
is essentially an adaptation of the method in [11, 12] that we extend to general semigroups
in non-homogeneous environment, while they restrict their study to absorbed Markov pro-
cesses. This more general semigroup setting allows us to capture a wider range of applica-
tions, like the renewal equation we consider in Sect. 3. Moreover, we go beyond the contrac-
tion of the auxiliary semigroup P (t) and characterize the asymptotic behavior of (M0,t )t≥0,
which is a novelty compared to the previous results.

More precisely, for any initial time s ≥ 0, we propose conditions involving a coupling
probability measure ν which guarantee the existence of a positive bounded function hs and
a family of probabilities (γt )t≥0 such that when t → ∞

sup
‖μ‖TV≤1

∥
∥μMs,t − μ(hs)ν(ms,t )γt

∥
∥

TV
= o
(
ν(ms,t )

)
.

These conditions are stated in Sect. 2 and a quantified version of above convergence is
proved. In Sect. 3 the general result is declined in several applications, which are illustrated
by concrete and intentionally simple examples of linear PDE issued from population dy-
namics. We avoid too much technicality but provide some new estimates and explain the
way assumptions can be checked. We first consider in Sect. 3.1 a model of population grow-
ing in a non-homogeneous and diffusing in a varying environment, which is illustrated by
ergodic random environment. Intuitively, if the variation of parameters in the model is not
vanishing in large times, one does not expect the convergence of γt . In the case of homoge-
neous or asymptotically homogeneous semigroups, we prove that the asymptotic profile is
given by a constant probability measure γ ; see Sect. 3.2 and Sect. 3.3 respectively. Finally,
when the semigroup evolves periodically we prove that the asymptotic profile γt is periodic;
see Sect. 3.4. Results of Sect. 3.2 (homogeneous semigroups), Sect. 3.3 (asymptotically ho-
mogeneous semigroups) and Sect. 3.4 (periodic semigroups) are illustrated on the renewal
equation. In these three settings, we obtain new sharp conditions for convergence with ex-
plicit rate of convergence.

2 General Statement and Proof

2.1 Preliminaries on Measures and Semigroups

We start by recalling some definitions and results about measure theory, and we refer to [45]
for more details and proofs.

Let X be a locally compact Hausdorff space and denote by Bb(X ) the space of bounded
Borel functions f : X → R endowed with the supremum norm ‖f ‖∞ = supX |f |. We de-
note by M(X ) the space of regular signed Borel measures on X ,1 by M+(X ) its positive
cone (i.e. the set of regular finite positive Borel measures), and by P(X ) the subset of prob-
ability measures. For two measures μ, μ̃ ∈ M(X ), we say that μ is larger than μ̃, and
write μ ≥ μ̃, if μ − μ̃ ∈ M+(X ). The Jordan decomposition theorem ensures that for any
μ ∈ M(X ) there exists a unique decomposition μ = μ+ −μ− with μ+ and μ− positive and
mutually singular. The positive measure |μ| = μ+ +μ− is called the total variation measure
of the measure μ, and its mass is the total variation norm of μ

‖μ‖TV := |μ|(X ) = μ+(X ) + μ−(X ).

1Notice that if X ⊂ R
n is equipped with the induced topology, any signed Borel measure on X is regular.
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Clearly we have the identity2

‖μ‖TV = sup
‖f ‖∞≤1

∣
∣μ(f )

∣
∣,

where the supremum is taken over measurable functions. By virtue of the Riesz repre-
sentation theorem, this supremum can be restricted to the continuous functions vanishing
at infinity,3 i.e. f ∈ C0(X ) = Cc(X ). The Riesz representation theorem also ensures that
(M(X ),‖ · ‖TV) is a Banach space, as a topological dual space. It is worth noticing that the
inequality |μ(f )| ≤ ‖μ‖TV‖f ‖∞ which is valid for any μ ∈ M(X ) and f ∈ Bb(X ) can be
strengthened into |μ(f )| ≤ 1

2 ‖μ‖TV‖f ‖∞ when μ(X ) = 0 and f ≥ 0.
For any Ω ⊂ X we denote by 1Ω the indicator function of the subset Ω . And we denote

by 1 the constant function equal to 1 on X , i.e. 1 = 1X .
Now we turn to the definition of the (time-inhomogeneous) semigroups we are in-

terested in. Let (Xt )t≥0 be a family of locally compact Hausdorff spaces. A semigroup
M = (Ms,t )0≤s≤t is a family of linear operators defined as follows. For any t ≥ s ≥ 0, Ms,t

is a bounded linear operator from M(Xs) to M(Xt ) through the left action

Ms,t : M(Xs) → M(Xt )

μ �→ μMs,t
,

and a bounded linear operator from Bb(Xt ) to Bb(Xs) through the right action

Ms,t : Bb(Xt ) → Bb(Xs)

f �→ Ms,tf
.

The semigroup property means here that for all s ≤ u ≤ t and f ∈ Bb(Xt )

Ms,tf = Ms,u(Mu,tf ).

Moreover, we make the following assumptions.

Assumption 2.1 We assume that for all t ≥ s ≥ 0 we have

(f ∈ Bb(Xt ), f ≥ 0) =⇒ Ms,tf ≥ 0, (positivity)
∀x ∈ Xs , ms,t (x) := (Ms,t1)(x) > 0, (strong positivity)
∀(μ,f ) ∈ M(Xs) × Bb(Xt ), (μMs,t )(f ) = μ(Ms,tf ). (left-right compatibility)

Due to the compatibility condition, we can denote without ambiguity μMs,tf =
(μMs,t )(f ) = μ(Ms,tf ), and (μ,f ) �→ μMs,tf is a bilinear form on M(Xs) × Bb(Xt ).
Notice additionally that the compatibility condition allows to transfer the semigroup prop-
erty and the positivity to the left action, i.e. for all t ≥ s ≥ 0, we have

∀u ∈ [s, t], ∀μ ∈ M(Xs), μMs,t = (μMs,u)Mu,t ,

μ ∈ M+(Xs) =⇒ μMs,t ∈ M+(Xt ).

2We see here that the definition we use for the total variation norm differs from the usual probabilistic defini-
tion of a factor 1/2.
3A function f on a locally compact Hausdorff space X is said to vanish at infinity if to every ε > 0, there
exists a compact set K ⊂X such that |f (x)| < ε for all x ∈X \ K .
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2.2 Coupling Constants

Let α,β > 0 and ν ∈ P(Xs).

Definition 2.2 (Admissible coupling constants) For any N ≥ 1, we say that (ci, di)1≤i≤N ∈
[0,1]2N are (α,β, ν)-admissible coupling constants for M on [s, t] if there exist real num-
bers (ti)0≤i≤N satisfying s ≤ t0 ≤ · · · ≤ tN ≤ t and probability measures νi on Xti such that
for all i = 1, . . . ,N and x ∈ Xti−1 ,

δxMti−1,ti ≥ cimti−1,ti (x)νi, (A1)

and for all i ∈ {1, . . . ,N − 1}, τ ≥ tN and x ∈ Xti ,

dimti ,τ (x) ≤ νi(mti ,τ ) (A2)

and for all τ ≥ tN and x ∈ XtN ,

mtN ,τ (x) ≤ α cN νN(mtN ,τ ) (A3)

and for all τ ≥ tN and x ∈ Xs ,

ms,τ (x) ≤ β ν(ms,τ ). (A4)

In the conservative case, Assumption (A1) is the classical Doeblin assumption. It is a
strong irreducibility property: whatever the initial distribution is, the semigroup between the
times ti−1 and ti is lowerbounded by a fixed measure νi . This condition is then sufficient
(and even necessary) for uniform exponential convergence.

But this condition is no longer sufficient for non-conservative semi-group. First, the mass
of the process has to be added in (A1), as will be seen in examples when the mass vanishes.
Moreover the mass of the semi-group has to be essentially the same for any starting distri-
bution. This is the meaning of Assumptions (A2), (A3) and (A4).

The two first assumptions allow to get the contraction of the auxiliary semigroup P (t) in
the total variation norm following [11, 12], see Lemma 2.5. The two additional assumptions
are needed to prove the existence of harmonic-type functions and control the speed of con-
vergence in the general result, see forthcoming Lemma 2.7. Assumptions (A2), (A3), (A4)
all involve the control of the mass m for large times and will be proved in the same time
by a coupling argument in applications of Sect. 3. The associated constants may change in
varying environment, see Sect. 3.1.

We denote by Hα,β,ν(s, t) the set of (α,β, ν)-admissible coupling constants (ci, di)1≤i≤N

for M on [s, t]. It can be easily seen from Definition 2.2 that for this set to be nonempty,
the constants α and β have to be at least greater than or equal to 1. We are interested in the
optimal admissible coupling and we set

Cα,β,ν(s, t) = sup
Hα,β,ν (s,t)

{

−
N∑

i=1

log(1 − cidi)

}

, (2.1)

where by convention sup∅ = 0. We observe that t �→ Cα,β,ν(s, t) is positive and non-
decreasing.
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2.3 General Result

Here we state the general result we obtain about the ergodicity of semigroups M which
satisfy Assumption 2.1.

Theorem 2.3 Let s ≥ 0 and assume that there exist α,β ≥ 1, and ν a probability measure
on Xs such that Cα,β,ν(s, t) → ∞ as t → ∞. Then there exists a unique function hs : Xs →
[0,∞) such that for any μ ∈ M(Xs), γ ∈ M(Xs0) with s0 ∈ [0, s], and for any t such that
Cα,β,ν(s, t) ≥ log(4α),

∥
∥∥∥μMs,t − μ(hs)ν(ms,t )

γMs0,t

γ (ms0,t )

∥
∥∥∥

TV

≤ 8(2 + α)|μ|(hs) ν(ms,t ) e−Cα,β,ν (s,t).

Moreover hs(x) ∈ (0, β] for any x ∈ Xs and ν(hs) = 1.

Before the proof, let us make two remarks. First, under the assumption of Theorem 2.3,
we also prove that for all t ≥ s,

∥∥
∥∥μMs,t − μ(hs)ν(ms,t )

γMs0,t

γ (ms0,t )

∥∥
∥∥

TV

≤ 2(2 + α)β‖μ‖TV ν(ms,t ) e−Cα,β,ν (s,t).

This bound is thus valid for any time. Second, we can change the measure ν as follows.

Remark 2.4 Suppose that for all μ ∈ M(Xs) the function t �→ μ(ms,t ) is continuous and the
Assumptions of Theorem 2.3 hold. Then for all ν̃ ∈ P(Xs) there exists a constant β̃ such
that (A4) is still valid if we replace ν and β by ν̃ and β̃ . Indeed Theorem 2.3 applied to
μ = ν̃ ensures that ν̃(ms,t )/ν(ms,t ) → ν̃(hs) > 0 when t → ∞. Since t �→ ν(ms,t )/̃ν(ms,t )

is continuous, it is bounded on [s,+∞). Using (A4), we deduce that for all T ≥ tN ,

‖ms,T ‖∞ ≤ βν(ms,T ) ≤ β sup
t≥s

(
ν(ms,t )

ν̃(ms,t )

)
ν̃(ms,T ) = β̃ ν̃(ms,T ).

2.4 Proof of Theorem 2.3

We recall from the introduction the definition of P (t). For any t ≥ u ≥ s ≥ 0, the linear
operator P (t)

s,u : Bb(Xu) → Bb(Xs) is defined by

P (t)
s,uf = Ms,u(f mu,t )

ms,t

.

By duality we define a left action P (t)
s,u : M(Xs) → M(Xu) by

∀f ∈ Bb(Xu),
(
μP (t)

s,u

)
(f ) := μ

(
P (t)

s,uf
)=
∫

Xs

μ(dx)
Ms,u(f mu,t )(x)

ms,t (x)
. (2.2)

We recall that this is a positive conservative semigroup. Indeed we readily check that
P (t)

s,u 1 = 1 and P (t)
s,u f ≥ 0 if f ≥ 0. Moreover

P (t)
s,u

(
P (t)

u,vf
)= Ms,u((P

(t)
u,vf )mu,t )

ms,t

=
Ms,u(

Mu,v(f mv,t )

mu,t
mu,t )

ms,t

= P (t)
s,vf.



36 V. Bansaye et al.

It is also worth noticing that for all t ≥ s ≥ 0 and all x ∈ Xs

δxP
(t)
s,t = δxMs,t

ms,t (x)
. (2.3)

The first key ingredient is the following lemma, which gives the ergodic behavior of the
auxiliary conservative semigroup under assumptions (A1) and (A2). This is an almost direct
generalization of [11], which holds for homogeneous and sub-conservative (or sub-Markov)
semigroups; namely Ms,t = Mt−s and Mt1 ≤ 1, for all t ≥ s ≥ 0. These semigroups are
associated to the evolution of absorbed (or killed) Markov processes (see Sect. A). This is
also related to [17, Chap. 12] or [16, Chap. 4.3.2]. The proof is given here for the sake of
completeness.

Lemma 2.5 (Doeblin contraction) Let 0 ≤ s ≤ t and (ci, di)1≤i≤N satisfying (A1) and (A2)
for the time subdivision s ≤ t0 ≤ · · · ≤ tN ≤ t . Let τ ≥ tN .

(i) For any i = 1, . . . ,N , there exists μi ∈ P(Xti ) such that for all x ∈ Xti−1

δxP
(τ)
ti−1,ti

≥ cidiμi.

(ii) For any μ, μ̃ finite measures on Xs ,

∥∥μP (τ)
s,τ − μ̃P (τ)

s,τ

∥∥
TV

≤
∏

i≤N

(1 − cidi)‖μ − μ̃‖TV.

(iii) For any non-zero μ, μ̃ ∈ M+(Xs),

∥∥∥
∥

μMs,τ

μ(ms,τ )
− μ̃Ms,τ

μ̃(ms,τ )

∥∥∥
∥

TV

≤ 2
∏

i≤N

(1 − cidi).

Remark 2.6 (Sharper bound) In view of the proof below, one can replace Lemma 2.5 (iii)
by

∥∥∥
∥

μMs,τ

μ(ms,τ )
− μ̃Ms,τ

μ̃(ms,τ )

∥∥∥
∥

TV

≤ 2
∏

i≤N

(1 − cidi)Ws,tN (μ, μ̃), (2.4)

where Ws,tN is a Wasserstein distance (see for instance [49]) defined by

Ws,tN (μ, μ̃) = inf
Π

1

μ(ms,tN )μ̃(ms,tN )

∫

Xs

ms,tN (y)ms,tN (x)1x =yΠ(dx, dy),

and the infimum runs over all coupling measures Π of μ and μ̃; a coupling measure is a
positive measure on X 2

s whose marginals are given by μ and μ̃. Even if the right-hand side
of (2.4) vanishes now when μ = μ̃, this bound depends on tN and incalculable quantities.
However if there exists As,Bs > 0 such that As ≤ supτ≥s νms,τ /μms,τ ≤ Bs then Eq. (2.4)
entails that

∥
∥∥
∥

μMs,τ

μ(ms,τ )
− μ̃Ms,τ

μ̃(ms,τ )

∥
∥∥
∥

TV

≤ 2
B2

s

A2
s

∏

i≤N

(1 − cidi)‖μ − μ̃‖TV.

See Sect. 3.1 and Inequality (3.6) for an example.
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Proof of Lemma 2.5 Proof of (i). Let i ≤ N and f be a positive function of Bb(Xti ). Using
(A1), we have

δxMti−1,ti (f mti ,τ ) ≥ ciνi(f mti ,τ )mti−1,ti (x) = ciνi(f mti ,τ )
mti−1,ti (x)

mti−1,τ (x)
mti−1,τ (x). (2.5)

Let us find μi satisfying

νi(f mti ,τ )
mti−1,ti (x)

mti−1,τ (x)
≥ diμi(f ). (2.6)

Using (A2), the semigroup and positivity properties ensure that

dimti−1,τ (x) = diδxMti−1,ti (mti ,τ ) ≤ mti−1,ti (x)νi(mti ,τ ).

Thus

νi(f mti ,τ )
mti−1,ti (x)

mti−1,τ (x)
≥ diμi(f ),

where μi defined by

μi(f ) = νi(f mti ,τ )

νi(mti ,τ )

is a probability measure. Recalling (2.2), (i) follows from (2.5) and (2.6).
Proof of (ii). We consider the conservative linear operator Ui on Bb(Xti ), defined by

Uif (x) := P
(τ)
ti−1,ti

f (x) − cidiμi(f )

1 − cidi

,

for f ∈ Bb(Xti ) and x ∈ Xti−1 . It is positive by (i) and ‖Uif ‖∞ ≤ ‖f ‖∞. Using

δxP
(τ)
s,ti

f − δyP
(τ)
s,ti

f = δxP
(τ)
s,ti−1

P
(τ)
ti−1,ti

f − δyP
(τ)
s,ti−1

P
(τ)
ti−1,ti

f

= (1 − cidi)
(
δxP

(τ)
s,ti−1

(Uif ) − δyP
(τ)
s,ti−1

(Uif )
)
,

we get
∥
∥δxP

(τ)
s,ti

− δyP
(τ)
s,ti

∥
∥

TV
≤ (1 − cidi)

∥
∥δxP

(τ)
s,ti−1

− δyP
(τ)
s,ti−1

∥
∥

TV

since ‖Uif ‖∞ ≤ ‖f ‖∞. Using that P
(τ)
tN ,τ is also contraction since it is conservative, we

obtain
∥
∥δxP

(τ)
s,τ − δyP

(τ)
s,τ

∥
∥

TV
≤ 2
∏

i≤N

(1 − cidi). (2.7)

To conclude, we now check that for any conservative positive kernel P on some X , any
μ, μ̃ ∈ M(X ) such that μ(X ) = μ̃(X ) < ∞,

‖μP − μ̃P ‖TV ≤ 1

2
sup

x,y∈X
‖δxP − δyP ‖TV‖μ − μ̃‖TV ≤ sup

x,y∈X
‖δxP − δyP ‖TV. (2.8)

Indeed, μP − μ̃P = (μ − μ̃)P = (μ − μ̃)+P − (μ̃ − μ)+P and (μ − μ̃)+(X ) = (μ̃ −
μ)+(X ),

(μP − μ̃P )(f ) = 1

(μ − μ̃)+(X )

∫

X 2
(μ − μ̃)+(dx)(μ̃ − μ)+(dy)(δxPf − δyPf ),
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so we get

‖μP − μ̃P ‖TV ≤ sup
x,y∈X

‖δxP − δyP ‖TV(μ − μ̃)+(X ).

This proves (2.8) since, by definition, ‖μ − μ̃‖TV = (μ − μ̃)+(X ) + (μ̃ − μ)+(X ) = 2(μ −
μ̃)+(X ) and yields (ii).

Proof of (iii). Using now (2.7) and recalling (2.3), for any x, y ∈ Xs , we have

∥
∥∥∥

δxMs,τ

ms,τ (x)
− δyMs,τ

ms,τ (y)

∥
∥∥∥

TV

≤ 2
∏

i≤N

(1 − cidi).

Then for any nonzero μ ∈ M+(Xs),

∥∥
∥∥

μMs,τ

μ(ms,τ )
− δyMs,τ

ms,τ (y)

∥∥
∥∥

TV

= 1

μms,τ

∥∥
∥∥μMs,τ − μms,τ

ms,τ (y)
δyMs,τ

∥∥
∥∥

TV

≤ 1

μ(ms,τ )

∫

Xs

μ(dx)

∥
∥∥
∥δxMs,τ − ms,τ (x)

ms,τ (y)
δyMs,τ

∥
∥∥
∥

TV

= 1

μ(ms,τ )

∫

Xs

μ(dx)ms,τ (x)

∥
∥∥
∥

δxMs,τ

ms,τ (x)
− δyMs,τ

ms,τ (y)

∥
∥∥
∥

TV

≤ 2
∏

i≤N

(1 − cidi).

The inequality can be similarly extended from δy to a finite measure ν, which proves (iii).
�

Now (A3) is involved to get the following non-degenerate bound for the mass.

Lemma 2.7 Let 0 ≤ s ≤ t and (ci, di)1≤i≤N satisfying (A1), (A2) and (A3) for the time
subdivision s ≤ t0 ≤ · · · ≤ tN ≤ t . For any τ ≥ tN and any measure μ ∈ M+(Xs), we have

μMs,tN

μms,tN

(
mtN ,τ

‖mtN ,τ‖∞

)
≥ 1

α
(2.9)

and for any x ∈ Xs ,

∣∣
∣∣
ms,τ (x)

μ(ms,τ )
− ms,t (x)

μ(ms,t )

∣∣
∣∣≤ 2α

ms,tN (x)

μ(ms,tN )

∏

i≤N

(1 − cidi). (2.10)

If furthermore 2α
∏

i≤N(1 − cidi) < 1, then for any x ∈ Xs ,

∣∣
∣∣
ms,τ (x)

μ(ms,τ )
− ms,t (x)

μ(ms,t )

∣∣
∣∣≤

ms,t (x)

μ(ms,t )

2α
∏

i≤N(1 − cidi)

1 − α
∏

i≤N(1 − cidi)
. (2.11)

Proof First, using (A1),

μMs,tN

μ(ms,tN )
= μMs,tN−1MtN−1,tN

μ(ms,tN )
≥ cN

μMs,tN−1(mtN−1,tN )

μ(ms,tN )
νN = cNνN .
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Moreover (A3) ensures that for any τ ≥ tN ,

‖mtN ,τ‖∞ ≤ αcNνN(mtN ,τ ).

This proves (2.9). Now, the semigroup property yields

ms,τ (x)

μ(ms,τ )
= δxMs,tN MtN ,τ 1

μMs,tN MtN ,τ 1
= ms,tN (x)

μ(ms,tN )

δxMs,tN

ms,tN
(x)

(mtN ,τ )

μMs,tN

μ(ms,tN
)
(mtN ,τ )

.

Then

ms,τ (x)

μ(ms,τ )
− ms,tN (x)

μ(ms,tN )
= ms,tN (x)

μ(ms,tN )

[ δxMs,tN

ms,tN
(x)

− μMs,tN

μ(ms,tN
)

]
(mtN ,τ )

μMs,tN

μ(ms,tN
)
(mtN ,τ )

.

Dividing by ‖mtN ,τ‖∞ and using mtN ,τ ≥ 0 and recalling that γ (X ) = 0 and f ≥ 0 implies
that |γ (f )| ≤ 1

2 ‖γ ‖TV‖f ‖∞, we get

∣
∣∣
∣
ms,τ (x)

μ(ms,τ )
− ms,tN (x)

μ(ms,tN )

∣
∣∣
∣≤

ms,tN (x)

μ(ms,tN )

1
2

∥
∥ δxMs,tN

ms,tN
(x)

− μMs,tN

μ(ms,tN
)

∥
∥

TV

μMs,tN

μ(ms,tN
)

( mtN ,τ

‖mtN ,τ ‖∞
) .

Now combining Lemma 2.5 (iii) and (2.9) yields

∣
∣∣
∣
ms,τ (x)

μ(ms,τ )
− ms,tN (x)

μ(ms,tN )

∣
∣∣
∣≤ α

ms,tN (x)

μ(ms,tN )

∏

i≤N

(1 − cidi) (2.12)

and using twice this bound proves (2.10) by triangular inequality.
Finally, (2.12) also gives, for τ = t ,

ms,tN (x)

μ(ms,tN )
≤ ms,t (x)

μ(ms,t )

1

1 − α
∏

i≤N(1 − cidi)
.

Then (2.10) implies (2.11). �

Using the previous results, we now prove the existence of harmonic functions and Theo-
rem 2.3.

Proof of Theorem 2.3 We fix s ≥ 0, ν ∈ P(Xs) and β > 0. We begin by proving that there
exists a function hs positive and bounded such that for any x ∈ Xs and any t ≥ s,

∣∣
∣∣
ms,t (x)

ν(ms,t )
− hs(x)

∣∣
∣∣≤ 2αe−Cα,β,ν (s,t) min

{
β,

ms,t (x)

ν(ms,t )

1

(1 − αe−Cα,β,ν (s,t))+

}
. (2.13)

First, optimizing Inequality (2.10) over all the admissible coupling constants yields

∣
∣∣
∣
ms,τ (x)

ν(ms,τ )
− ms,t (x)

ν(ms,t )

∣
∣∣
∣≤ 2βαe−Cα,β,ν (s,t) (2.14)

by recalling Definition 2.1 and that (A4) guarantees ms,tN (x)/ν(ms,tN ) ≤ β .
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Using that Cα,β,ν(s, t) → ∞ as t → ∞, Cauchy criterion ensures that the following limit
exists

hs(x) = lim
τ→∞

ms,τ (x)

ν(ms,τ )
. (2.15)

Moreover, letting τ → ∞ in (2.14) shows that
∣
∣∣
∣
ms,t (x)

ν(ms,t )
− hs(x)

∣
∣∣
∣≤ 2βαe−Cα,β,ν (s,t).

Optimizing now similarly over coupling constants in (2.11) and letting τ → ∞ yields
∣
∣∣
∣
ms,t (x)

ν(ms,t )
− hs(x)

∣
∣∣
∣≤

ms,t (x)

ν(ms,t )

2αe−Cα,β,ν (s,t)

1 − αe−Cα,β,ν (s,t)
,

for any t such that α exp(−Cα,β,ν(s, t)) < 1. Combining these two bounds proves (2.13).
Integrating (2.13) over some μ ∈ M+(Xs), we get

∣
∣μ(ms,t ) − μ(hs)ν(ms,t )

∣
∣≤ 2α min

{
βμ(X )ν(ms,t ),

μ(ms,t )

(1 − αe−Cα,β,ν (s,t))+

}
e−Cα,β,ν (s,t).

(2.16)
Moreover Lemma 2.5 (iii) yields (after optimization over coupling constants) for non-
zero μ,

∥
∥∥
∥

μMs,t

μ(ms,t )
− νMs,t

ν(ms,t )

∥
∥∥
∥

TV

≤ 2e−Cα,β,ν (s,t) (2.17)

and combining the two previous inequalities gives
∥∥
∥∥μMs,t − μ(hs)ν(ms,t )

νMs,t

ν(ms,t )

∥∥
∥∥

TV

≤
∥
∥∥
∥μMs,t − μ(ms,t )

νMs,t

ν(ms,t )

∥
∥∥
∥

TV

+ ∣∣μ(ms,t ) − μ(hs)ν(ms,t )
∣∣
∥
∥∥
∥

νMs,t

ν(ms,t )

∥
∥∥
∥

TV

≤ 2

(
μ(ms,t ) + α min

{
βμ(X )ν(ms,t ),

μ(ms,t )

(1 − αe−Cα,β,ν (s,t))+

})
e−Cα,β,ν (s,t).

Using again Inequality (2.17), with μ = γMs0,s , we obtain
∥
∥∥
∥μMs,t − μ(hs)ν(ms,t )

γMs0,t

γ (ms0,t )

∥
∥∥
∥

TV

(2.18)

≤ 2

(
μ(ms,t ) + μ(hs)ν(ms,t ) + α min

{
βμ(X )ν(ms,t ),

μ(ms,t )

(1 − αe−Cα,β,ν (s,t))+

})
e−Cα,β,ν (s,t).

To conclude it remains to control μ(ms,t ) and μ(hs). First, we notice that hs is bounded by
β using (A4) and (2.15). Using again (A4), we have

μ(ms,t ) ≤ βμ(X )ν(ms,t )

and the first bound of (2.18) yields
∥
∥∥
∥μMs,t − μ(hs)ν(ms,t )

γMs0,t

γ (ms0,t )

∥
∥∥
∥

TV

≤ 2(2 + α)βμ(X )ν(ms,t )e
−Cα,β,ν (s,t).
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Moreover, if Cα,β,ν(s, t) > log(3α), using the second part of (2.16) and the fact that |a−b| ≤
η|b| and η ∈ [0,1) imply that |b| ≤ |a|/(1 − η) ensures that

μ(ms,t ) ≤ 1 − αe−Cα,β,ν (s,t)

1 − 3αe−Cα,β,ν (s,t)
μ(hs)ν(ms,t ),

so that the second part of (2.18) becomes

∥∥
∥∥μMs,t − μ(hs)ν(ms,t )

γMs0,t

γ (ms0,t )

∥∥
∥∥

TV

≤ 2
2 + α − 4αe−Cα,β,ν (s,t)

1 − 3αe−Cα,β,ν (s,t)
μ(hs)ν(ms,t )e

−Cα,β,ν (s,t).

This proves the estimate stated in Theorem 2.3 when Cα,β,ν(s, t) ≥ log(4α). Finally, this
estimate applied to μ = δx ensures that

∣
∣ms,t (x) − hs(x)ν(ms,t )

∣
∣≤ 8(2 + α)hs(x) ν(ms,t ) e−Cα,β,ν (s,t)

and then
(
1 + 8(2 + α)e−Cα,β,ν (s,t)

)
hs(x) ≥ ms,t (x)

ν(ms,t )
> 0,

so that hs > 0. The fact that ν(hs) = 1 follows directly from (2.15) and dominated conver-
gence theorem, while uniqueness of hs is derived letting t go to infinity. �

3 Applications

In the present section, we develop different applications of Theorem 2.3. We aim at illus-
trating the main result and show how to check the required assumptions. Yet we also obtain
new estimates and mention that the models can be made more complex.

We first consider the heat equation with growth and reflecting boundary on the compact
set [0,1] and time space inhomogeneity. The coupling capacity is then expressed in terms
of the function describing the diffusion coefficient.

Then we prove general statements when the semigroup is homogeneous, asymptotically
homogeneous, and periodic. The results are illustrated by asymptotic estimates for the re-
newal equation.

3.1 A Growth-Diffusion Equation with Reflecting Boundary and Varying
Environment

In this section Xt = X = [0,1] for every t ≥ 0. We consider a population of particles which
reproduce and move following a diffusion varying in time. The evolution of its density is
prescribed by the following PDE

⎧
⎪⎨

⎪⎩

∂tus,t (x) = 1
2 σt�us,t (x) + r(x)us,t (x), 0 < x < 1,

∂xus,t (0) = ∂xus,t (1) = 0,

us,s(x) = φ(x),

(3.1)

for some φ ∈ L1([0,1]). As usual, we do not stress the dependence on φ of u. This equation
is the nonautonomous Heat Equation with growth under Neumann boundary conditions.
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More precisely, particles diffuse with coefficients (σt )t≥0 on the space [0,1]. The growth
rate r(x) is the difference between birth and death rate at position x ∈ [0,1].

In this example, σ is time-dependent but not space-dependent and conversely for r . Our
coupling methods provide a relevant approach for estimating the speed of convergence in
this varying environment case. This analysis could be easily generalized for both time-
dependant and space-dependant parameters but would provide tedious computations, so it is
left for future works.

Let us work with another representation of the solution of (3.1). Let (Xx
s,t )t≥s be a re-

flected Brownian motion on [0,1] starting from x at time s, with diffusion coefficient σt at
time t , see (3.3) below for a construction. We define the positive semigroup M by

Ms,tf = Ex

[
f
(
Xx

s,t

)
e
∫ t
s r(Xx

s,u) du
]

(3.2)

for every bounded Borel function f on [0,1], and t ≥ s ≥ 0. Then μMs,t is defined by
setting for all f ∈ Bb([0,1])

(μMs,t )(f ) = μ(Ms,tf ).

Feynman-Kac formula [44, Chapter VII Proposition (3.10) p. 358] states the duality relation
of this semigroup with the solution u of (3.1):

∫ 1

0
φ(x)Ms,tf (x) dx =

∫ 1

0
us,t (x)f (x) dx

for every bounded measurable function f . This property allows to see the mapping t →
μMs,t as the unique solution to Eq. (3.1) when the initial density φ is replaced by a mea-
sure μ.

3.1.1 Statements

We assume that t �→ σt is a non-negative and càdlàg function, r is continuous and

−∞ < r := inf
x∈[0,1]

r(x); r := sup
x∈[0,1]

r(x) < +∞.

Introduce the function g with value in R∪ {+∞} to measure the coupling capacity in func-
tion of the parameters

g : (s, t) �→ (r − r)(t − s) − log
(
(1 − 4/σs,t )+

)
,

where

σs,t :=
√

2π

∫ t

s

σ 2
u du.

These functions allow to control the coupling capacity in this model by considering

Cτ,ρ(s, t) = sup
Tτ,ρ (s,t)

{

−
N∑

i=1

log
(

1 − exp
(−(g(ti−1, ti) + g(ti , ti+1)

)))
}

,

where Tτ,ρ(s, t) is the set of subdivisions (ti)
N+1
i=0 such that N ≥ 1, s = t0 ≤ · · · ≤ tN+1 ≤ t

and

t1 − t0 ≤ ρ, tN − tN−1 ≤ τ, tN+1 − tN ≤ τ and for i ∈ {0,N − 1,N}, σti ,ti+1 ≥ 5.
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Indeed, Cτ,ρ(s, t) is a lower bound of (2.1). The constant 5 may be improved and replaced
for instance by 4+ε, but we restrict ourselves here to this value which allows to get a simple
expression of the coupling constants α and β , namely α = γ 2

τ , β = γργτ where

γs = 5 exp
(
(r − r)s

) ∈ [5,∞).

The first time interval of size ρ is involved in the control of the mass and the expression
of β . A general quantitative bound can now be given as follows, writing λ the Lebesgue
measure on [0,1].

Theorem 3.1 Let s ≥ 0 and τ > 0. Assume that Cτ,ρ(s, t) → ∞ as t → ∞. Then there
exists a function hs : [0,1] → (0, γργτ ] and probabilities (πt )t≥0 such that

∥
∥μMs,t − μ(hs)λ(ms,t )πt

∥
∥

TV
≤ 8
(
2 + γ 2

τ

)|μ|(hs)λ(ms,t )e
−Cτ,ρ (s,t),

for any μ ∈ M([0,1]) and t such that Cτ,ρ(s, t) ≥ 2 log(2) + 2 log(γτ ).

The proof of Theorem 3.1 is postponed to Sect. 3.1.2. Let us now illustrate this result by
constructing a relevant lower bound of Cτ,ρ(s, t). Let s ≥ 0, τ > 0 and set

t1(s, τ ) = inf{u ≥ s : σs,u ≥ 10},
and the sequence (tk(s, τ ))k defined by induction:

tk+1(s, τ ) = inf
{
u ≥ tk(s, τ ) + τ : σu,u+τ ≥ 10

}
(k ≥ 1),

using again the convention inf∅ = +∞. As (s, t) �→ σs,t is continuous, there exists t ′k(s, τ )

such that

σtk(s,τ ),t ′
k
(s,τ ) ≥ 5 and σt ′

k
(s,τ ),tk (s,τ )+τ ≥ 5.

Using then the time subdivision s, t1(s, τ ), . . . , tk(s, τ ), t ′k(s, τ ), tk(s, τ ) + τ, . . . (k ≥ 2), we
get an upper bound for g(t ′k(s, τ ) − tk(s, τ )) and g(tk(s, τ ) + τ − t ′k(s, τ )) and

Cτ,t1(s,τ )−s(s, t) ≥ − log
(
1 − 1/γ 2

τ

)
max
{
N : tN+1(s, τ ) ≤ t − τ

}
.

We derive then immediately a speed of convergence from Theorem 3.1.

Corollary 3.2 Let s ≥ 0 and τ > 0. Assume that tk(s, τ ) < ∞ for any k ≥ 1.
Then there exists a positive bounded function hs and probabilities (πt )t≥0 such that

lim inf
t→∞ −1

t
log

∥∥
∥∥

μMs,t

λ(ms,t )
− μ(hs)πt

∥∥
∥∥

TV

≥ − log
(
1 − 1/γ 2

τ

)
. lim inf

k→∞
k

tk(s, τ )
,

uniformly over μ ∈ P([0,1]). Moreover hs is bounded by γτγt1(s,τ )−s .

As soon as lim supi ti (s, τ )/i < ∞, we obtain an exponential speed. Note also that super-
exponential or subexponential speed could be obtained by alternative constructions of time
sequences.

As an application for exponential convergence in random environment, let us consider a
Feller càdlàg Markov process (t,w) ∈ [0,∞)×Ω → σt (w) ∈ [0,∞) on a probability space
(Ω,F,P). We assume that the process (σt )t≥0 is Harris positive recurrent with stationary
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probability π = δ0. For each w ∈ Ω , we write Ms,t = Ms,t (w) the semigroup defined by
(3.2) and associated to the diffusion coefficient (σt (w))t≥0. By a Birkhoff Theorem (see [37,
Theorem 8.1] and [37, Theorem 3.2]), we obtain that max{N : tN+1(s, τ ) ≤ t − τ } grows
linearly as t → ∞ with a deterministic speed. It yields the following quenched estimate:
there exists v > 0 such that

P

(
lim inf
t→∞ −1

t
log

(
sup

μ∈P([0,1])

∥
∥∥
∥

μMs,t

λ(ms,t )
− μ(hs)πt

∥
∥∥
∥

TV

)
≥ v

)
= 1,

and the convergence is uniform and (at least) exponential. Let us observe that the diffusion
may be zero for arbitrarily large time intervals.

3.1.2 Proof of Theorem 3.1

We begin by the construction and some useful estimates for process (Xx
s,t )s,t , which is asso-

ciated to a nonhomogeneous diffusion [0,1] with Neumann boundary condition. Let (Bt )t≥0

be a classical Brownian motion on R, and set (Wx
s,t )t≥s≥0 defined for all x ∈ [0,1] and

t ≥ s ≥ 0 by

Wx
s,t = x +

∫ t

s

σu dBu. (3.3)

The random variable Wx
s,t is distributed according to a Gaussian law N (x, σs,t ). The reflected

process (Xx
s,t ) can now be defined by

∀t ≥ s ≥ 0, Xx
t,s =
∑

n∈Z

(
Wx

s,t − 2n
)
1Wx

s,t ∈[2n,2n+1] + (2n − Wx
s,t

)
1Wx

s,t∈[2n−1,2n].

Lemma 3.3 (Bounds on the density for the diffusion) For any t > s ≥ 0, there exists cs,t ≥ 1
such that for any Borel set A of [0,1],

(
cs,t − 4

σs,t

)

+
λ(A) ≤ P

(
Xx

s,t ∈ A
)≤ cs,tλ(A),

with the convention 1/0 = ∞.

Proof We define

φx
s,t (y) = 1

√
2πσs,t

exp

(
− (y − x)2

2σs,t

)

the density of Wx
s,t . Using that

Px(Xs,t ∈ A) =
∑

n∈Z
P
(
Wx

t ∈ (A + 2n) ∩ [2n,2n + 1])+ P
(
Wx

t ∈ (2n − A) ∩ [2n − 1,2n]),

we obtain

dx
s,t (A)λ(A) ≤ Px(Xs,t ∈ A) ≤ cx

s,t (A)λ(A), (3.4)

with

cx
s,t (A) =

∑

n∈Z

(
sup
A+2n

φx
s,t + sup

2n−A

φx
s,t

)
,
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dx
s,t (A) =

∑

n∈Z

(
inf

A+2n
φx

s,t + inf
2n−A

φx
s,t

)
.

Using (3.4), these constants verify

cs,t := sup
x∈[0,1]

cx
s,t

([0,1])≥ cx
s,t (A) ≥ 1 ≥ dx

s,t (A) ≥ inf
x∈[0,1]

dx
s,t

([0,1])=: ds,t .

It remains to prove an upperbound of the difference cs,t − ds,t and conclude. Decomposing
the sum following n = 0, n ≥ 1 and n ≤ −1 shows on a first hand that

cs,t = sup
x∈[0,1]

∑

n∈Z
sup

[n,n+1]
φx

s,t = sup
x∈[0,1]

(
φ0

s,t (0) +
∑

n∈Z
φ0

s,t (n − x)

)
,

and on the other hand

ds,t = inf
x∈[0,1]

∑

n∈Z
inf

[n,n+1]
φx

s,t = inf
x∈[0,1]

(
φ0

s,t

(
max(x,1 − x)

)+
∑

n∈Z\{0,1}
φ0

s,t (n − x)

)
.

Combining

cs,t ≤ φ0
s,t (0) +

∑

n∈Z
sup

x∈[0,1]
φ0

s,t (n − x) = 2φ0
s,t (0) +

∑

n∈Z
φ0

s,t (n),

and

ds,t ≥ inf
x∈[0,1]

φ0
s,t

(
max(x,1 − x)

)+
∑

n∈Z\{0,1}
inf

x∈[0,1]
φ0

s,t (n − x)

= φ0
s,t (1) +

∑

n∈Z\{−1,0,1}
φ0

s,t (n) =
∑

n∈Z\{−1,0}
φ0

s,t (n),

we obtain cs,t − ds,t ≤ 4φ0
s,t (0). This ends the proof. �

We give now the coupling constants and introduce

σ s,t =
(

1 − 4

σs,t

)
1σs,t >4.

Lemma 3.4 (Coupling constants) Let s = t0 ≤ · · · ≤ tN ≤ tN+1 ≤ t .

(i) Assumptions (A1) and (A2) are satisfied with the constants

ci = σ ti−1,ti e
−(r−r)(ti−ti−1), i = 1, . . . ,N + 1,

and

di = ci+1 = σ ti ,ti+1 e−(r−r)(ti+1−ti ), i = 1, . . . ,N,

and νi = λ for i = 1, . . . ,N + 1.
(ii) If σt0,t1 > 4, σtN−1,tN > 4, σtN ,tN+1 > 4, then (A3) and (A4) hold with

α = e(r−r)(tN+1−tN−1)

σ tN−1,tN σ tN ,tN+1

, β = e(r−r)(t1−t0)

σ t0,t1

,

and ν = λ.
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Proof Lemma 3.3 and Eq. (3.2) ensure that for any probability measure μ, u > v ≥ 0

du,ver(v−u)λ ≤ μMu,v ≤ cu,ver(v−u)λ,

where du,v := (cu,v − 4/σu,v)+. Then

σu,vcu,ver(v−u)λ ≤ μMu,v ≤ cu,ver(v−u)λ, (3.5)

recalling that cu,v ≥ 1. In particular

σu,vcu,ver(v−u) ≤ μ(mu,v) ≤ cu,ver(v−u). (3.6)

Combining the two last bounds, we find

μMu,v ≥ σu,vcu,ver(v−u)λ ≥ σu,ve−(r−r)(v−u) μ(mu,v)λ

and obtain the expected value of ci , with u = ti−1, v = ti .
Moreover for all w ∈ (u, v] such that du,w > 0, we also have by integration of (3.5)

σu,wcu,wer(w−u)λ(mw,v) ≤ μ(mu,w) ≤ cu,wer(w−u)λ(mw,v).

Taking respectively μ = δx and μ = λ for the second (resp. first) inequality,

σu,we−(r−r)(w−u)mu,v(x) ≤ λ(mu,v) (3.7)

and we get the value of di , with u = ti ,w = ti+1, v = τ .
Let us turn to the proof of (ii). Using again (3.7) with now u = tN ,w = tN+1, v = τ yields

mtN ,T (x) ≤ 1

σ tN ,tN+1

e−(r−r)(tN+1−tN )λ(mtN ,τ ).

Recalling the expression of cN from (i) provides the expected value of α. Finally, using (3.7)
with u = s, w = t1, v = tN yields β . �

Remark that the previous proof could be achieved, without probabilistic notation. Indeed,
bounding r , one can build sub and super solutions, which, up to renormalization, satisfy
Eq. (3.1) with r = 0. It is then enough to use Lemma 3.3 which is only based on the explicit
solutions of (3.1) with constant r .

Proof of Theorem 3.1 Consider a sequence (ti)
N+1
i=0 such that N ≥ 1, s = t0 ≤ · · · ≤ tN+1 ≤ t

and

t0 − t1 ≤ ρ, tN − tN−1 ≤ τ, tN+1 − tN ≤ τ and for i ∈ {0,N − 1,N}, σti+1,ti ≥ 5.

By Lemma 3.4, the following constants

ci = e−g(ti−1,ti ), di = e−g(ti ,ti+1)

are (α,β,λ) admissible coupling constants for M on [s, t], with α = γ 2
τ and β = γρ . Then,

optimizing over admissible coupling constants yields

Cα,β,λ(s, t) ≥ Cτ,ρ(s, t),

and applying Theorem 2.3 ends the proof. �
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3.2 Homogeneous Semigroups and the Renewal Equation

First, we specify the general result in the homogeneous setting, which simplifies the assump-
tions. Second, we develop an application to the renewal equation.

3.2.1 Existence of Eigenelements and Speed of Convergence

In this subsection we consider a semigroup (Ms,t )0≤s≤t which is homogeneous, meaning
that the sets Xt = X are time-independent and that there exists a semigroup (Mt)t≥0 set on
X such that Ms,t = Mt−s for all t ≥ s ≥ 0. In this case Assumptions (A1), (A2), (A3) and
(A4) can be simplified as follows.

First, there exist constants c > 0, r > 0 and a probability measure ν such that for any
x ∈ X ,

δxMr ≥ cmr(x) ν. (H1)

Second, there exists a constant d > 0 such that for any t ≥ 0,

ν(mt) ≥ d ‖mt‖∞, (H2)

where we recall the notation mt = Mt1. These assumptions have been obtained in [12] for
the study of process conditioned on non-absorption. Let us note that [12] also prove that they
are necessary conditions for uniform exponential convergence in total variation distance.
Additionally the main result can be strengthened, provided an additional assumption:

The function t �→ ‖mt‖∞ is locally bounded on R+. (H3)

Notice that this last assumption is satisfied by classical semigroups appearing in applica-
tions.

Theorem 3.5 Under Hypotheses (H1), (H2) and (H3), there exists a unique triplet
(γ,h,λ) ∈ P(X ) × Bb(X ) ×R such that γ (h) = 1 and for all t ≥ 0,

γMt = eλtγ and Mth = eλth. (3.8)

Additionally h is bounded and positive on X and there exists C > 0 such that for all t ≥ 0
and μ ∈ M(X ),

∥∥e−λtμMt − μ(h)γ
∥∥

TV
≤ C ‖μ‖TV(1 − cd)t/r .

Theorem 3.5 strictly extends the main result of [11]. For instance their theorems do not
apply for the semigroup of Sect. 3.2.2 below. This semigroup cannot be written as a the
semigroup of a killed Markov process, even up to exponential normalization.

Remark 3.6 By differentiating (3.8), the triplet (γ,h,λ) is a triplet of eigenelements for the
infinitesimal generator of (Mt)t≥0, that is γA = λγ and Ah = λh where the (unbounded)
operator A is defined by A = limt→0

1
t
(Mt − I ).

Remark 3.7 With Lemma 2.5 (iii), we also recover (as expected) the statement from [12]:
∥
∥∥
∥

μMt

μ(mt)
− γ

∥
∥∥
∥

TV

≤ 2(1 − cd)t/r .
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Proof Assume (H1) and (H2) and consider (ti)0≤i≤N defined by ti = ir . Then Assumptions
(A1)–(A4) hold with, for every 0 ≤ i ≤ N ,

ci = c, di = d, νi = ν, α = 1

cd
, β = 1

d
.

This implies

Cα,β,ν(0, t) ≥ ⌊(t − r)/r
⌋

log(1 − cd).

By Theorem 2.3 applied to M on [0, t], there exist C > 0 and h0 : X → [0,∞) such that for
any μ, μ̃ ∈ M(X )

∥
∥∥
∥μMt − μ(h0)ν(mt)

μ̃Mt

μ̃(mt )

∥
∥∥
∥

TV

≤ C ν(mt)‖μ‖TV(1 − cd)t/r . (3.9)

Moreover, taking μ = δx ,

h0 = lim
T →∞

mT

ν(mT )

for the supremum norm and h0 is positive, bounded by 1/d , and ν(h0) = 1. By the semi-
group property we have mt+s(x) = δxMtms from which we deduce that

mt+s(x)

ν(mt+s)

νMtms

ν(ms)
= δxMt(

ms

ν(ms)
).

Letting s → ∞, we get

(νMth0)h0 = Mth0.

This means that h0 is an eigenvector of Mt associated to the eigenvalue νMth0. Since the
semigroup property yields

νMt+sh0 = νMtMsh0 = (νMth0).(νMsh0)

and t �→ νMth0 is locally bounded (by assumption (H3), because 0 ≤ νMth0 ≤ ‖mt‖∞/d),
we deduce the existence of λ ∈R such that

νMth0 = eλt ν(h0) = eλt .

Let us now show the existence of a left eigenvector γ . Applying (3.9) to μ = ν and
μ̃ = νMs we get that

∥
∥∥
∥

νMt

ν(mt)
− νMt+s

ν(mt+s)

∥
∥∥
∥

TV

≤ C(1 − cd)t/r .

This ensures that the family ( νMt

ν(mt )
)t≥0 satisfies the Cauchy property and we deduce the

existence of a probability measure γ such that
∥
∥∥
∥

νMt

ν(mt)
− γ

∥
∥∥
∥

TV

≤ C(1 − cd)t/r .

Then we use the semigroup property to write that for all s, t ≥ 0 we have

νMs

ν(ms)
Mt = νMt

(
ms

ν(ms)

)
νMs+t

ν(ms+t )
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and letting s tend to infinity we find

γMt = (νMth0) γ = eλtγ .

Now we set h = h0/γ (h0), so that γ (h) = 1. Applying (3.9) to μ = μ̃ = γ and dividing
by ν(mt) yields

∣
∣∣
∣

eλt

ν(mt )
− γ (h0)

∣
∣∣
∣≤ C(1 − cd)t/r .

Finally, using (3.9) with μ̃ = γ , we write for μ ∈ M(X ) and t ≥ 0

∥
∥e−λtμMt − μ(h)γ

∥
∥

TV
≤ ν(mt)e

−λt

(∥∥
∥∥

μMt

ν(mt)
− μ(h0)γ

∥∥
∥∥

TV

+ ∣∣μ(h)
∣
∣
∣∣
∣∣γ (h0) − eλt

ν(mt )

∣∣
∣∣

)

≤ C ′ν(mt)e
−λt‖μ‖TV(1 − cd)t/r .

The conclusion follows from the fact that the function t �→ ν(mt)e−λt is bounded. Indeed it
is locally bounded due to (H3), and it converges to 1/γ (h0) when t → +∞. �

3.2.2 Example: The Renewal Equation

We consider an age-structured population of proliferating cells which divide at age a ≥ 0
according to a division rate b(a), giving birth to two daughter cells with age zero. The
evolution of the age distribution density ut is given by the so-called renewal PDE

⎧
⎨

⎩

∂tut (a) + ∂aut (a) + b(a)ut (a) = 0, t, a > 0,

ut (0) = 2
∫ ∞

0
b(a)ut (a) da, t > 0.

(3.10)

This model has been introduced by Sharpe and Lotka [46] in a more general context, namely
with a “birth rate” not necessarily equal to twice the “death rate”. Since then, it has become
a very popular model in population dynamics (see for instance [1, 31, 36, 43, 48, 51]).

The state space here is X = R+ = [0,∞). Following [24] we associate to Eq. (3.10) the
homogeneous semigroup (Mt)t≥0 defined as follows. For any f ∈ Bb(R+), we define the
family (Mtf )t≥0 ⊂ Bb(R+) as the unique solution to the equation

Mtf (a) = f (a + t)e− ∫ t0 b(a+τ) dτ + 2
∫ t

0
e− ∫ τ0 b(a+τ ′) dτ ′

b(a + τ)Mt−τ f (0) dτ. (3.11)

The proof of the existence and uniqueness of a solution to (3.11) is postponed in Appendix B,
Lemma B.1. We also refer to Appendix B for the rigorous definition of μMt , which provides
the unique measure solution to Eq. (3.10) with initial distribution μ. In particular if μ has
a density u0 with respect to the Lebesgue measure, we get that ut = μMt is the unique L1

solution to Eq. (3.10) with initial distribution u0. Appendix B also contains a verification of
Assumption 2.1 for the semigroup (Mt)t≥0.

Now we can use Theorem 3.5 to obtain the long time asymptotic behavior of the solutions
to Eq. (3.10).

Theorem 3.8 Assume that b is a non-negative locally bounded function on R+, and suppose
the existence of a0 > 0, p > 0, l ∈ (p/2,p], and b > 0 for which

∀k ∈N,∀a ∈ [a0 + kp,a0 + kp + l], b(a) ≥ b.
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Then there exists a unique triplet of eigenelements (γ,h,λ) ∈ P(R+) × Bb(R+) ×R+ veri-
fying γ (h) = 1 and

∀t ≥ 0, γMt = eλtγ, Mth = eλth.

Moreover there exist C > 0 and an explicit ρ > 0, given by (3.13), such that for all μ ∈
M(R+) and all t ≥ 0

∥∥e−λtμMt − μ(h)γ
∥∥

TV
≤ C‖μ‖TV e−ρt .

The convergence of the solutions to a time-independent asymptotic profile multiplied by
an exponential function of time, sometimes referred to as asynchronous exponential growth,
was first conjectured for the renewal equation by Sharpe and Lotka [46] and was then proved
by many authors using various methods, see for instance [21, 26–28, 32, 43, 47, 50]. More-
over it is known that the so-called Malthus parameter λ is characterized as the unique real
number which satisfies the characteristic equation

1 = 2
∫ ∞

0
b(a)e− ∫ a0 (λ+b(a′)) da′

da,

the asymptotic probability measure has an explicit density with respect to the Lebesgue
measure

γ (da) = κ e− ∫ a0 (λ+b(a′)) da′
da

where κ is a normalization constant which ensures that γ ∈ P(R+), and the harmonic func-
tion h is explicitly given by

h(a) = 2h(0)

∫ ∞

a

b(a′)e− ∫ a′
a (λ+b(a′′)) da′′

da′,

where h(0) is chosen so that γ (h) = 1.
The existing results about asynchronous exponential growth for the renewal equation

hold for birth and death rates which are not necessarily related by a multiplicative factor,
as we assume here. But in these previous works the birth rate is assumed to be bounded or
integrable, a condition which is not required in our situation. In Eq. (3.10) if the division
rate is unbounded, then the unboundedness of the birth rate 2b is “compensated” by the
unboundedness of the death rate b. Thus our result is new in the sense that the assumptions
on the division rate are very general, but also because it provides an explicit spectral gap in
terms of the division rate and a convergence which is valid for measure solutions.

The assumptions on the division rate b include some functions which are not bounded
neither from above nor from below by a positive constant when a tends to infinity. The
only assumption is that, outside a compact interval, b is larger than a crenel function with
period p and a crenel width l. The condition l > p/2 is only a technical assumption which
simplifies the computations. It can be removed to the price of a larger number of iterations
of the Duhamel formula in the proof.

Before proving Theorem 3.8, we define the probability distribution of age of division

Φ(a) := b(a)e− ∫ a0 b(a′) da′

and we give a useful property of mt = Mt1.

Lemma 3.9 For any a ≥ 0 the function t �→ mt(a) is non-decreasing.
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Proof First we check that mt(0) ≥ 1 for all t ≥ 0. By definition t �→ mt(0) is the unique
fixed point of

Γ g(t) = e− ∫ t0 b(τ) dτ + 2
∫ t

0
Φ(τ)g(t − τ) dτ

and if g ≥ 1 then for all t ≥ 0

Γ g(t) ≥ e− ∫ t0 b(τ) dτ + 2
∫ t

0
Φ(τ)dτ = 2 − e− ∫ t0 b(τ) dτ ≥ 1.

So the fixed point necessarily satisfies mt(0) ≥ 1, since Γ is a contraction for small times
(see Lemma B.1).

In a second step we prove that t �→ mt(0) is non-decreasing. Let ε > 0. For all t ≥ 0 we
have by definition of mt(0)

mt+ε(0) − mt(0) = −
∫ t+ε

t

Φ(τ) dτ + 2
∫ t+ε

t

Φ(τ)mt+ε−τ (0) dτ

+ 2
∫ t

0
Φ(τ)
(
mt+ε−τ (0) − mt−τ (0)

)
dτ

=
∫ t+ε

t

Φ(τ)
(
2mt+ε−τ (0) − 1

)
dτ + 2

∫ t

0
Φ(τ)
(
mt+ε−τ (0) − mt−τ (0)

)
dτ.

So t �→ mt+ε(0) − mt(0) is the unique fixed point of

Γ g(t) = f0(t)e
− ∫ t0 b(τ) dτ + 2

∫ t

0
Φ(τ)g(t − τ) dτ

with f0(t) = ∫ t+ε

t
e− ∫ τt b(τ ′) dτ ′

b(τ)(2mt+ε−τ (0) − 1) dτ ≥ 0. We deduce from the positivity
property in Lemma B.1 that mt+ε(0) − mt(0) ≥ 0 for all t ≥ 0.

The last step consists in extending the result of the second step to t �→ mt(a) for any
a ≥ 0. Let a ≥ 0 and ε > 0. For all t ≥ 0 we have

mt+ε(a) − mt(a) =
∫ t+ε

t

e− ∫ τt b(a+τ ′) dτ ′
b(a + τ)

(
2mt+ε−τ (0) − 1

)
dτ

+ 2
∫ t

0
e− ∫ τt b(a+τ ′) dτ ′

b(a + τ)
(
mt+ε−τ (0) − mt−τ (0)

)
dτ ≥ 0. �

Corollary 3.10 For all t, a ≥ 0 we have mt(a) ≤ 2mt(0).

Proof Starting from the Duhamel formula (3.11) and using Lemma 3.9 we have

mt(a) = e− ∫ t0 b(a+τ) dτ + 2
∫ t

0
e− ∫ s0 b(a+τ) dτ b(a + s)mt−s(0) ds

≤ e− ∫ t0 b(a+τ) dτ + 2mt(0)

∫ t

0
e− ∫ s0 b(a+τ) dτ b(a + s) ds

= e− ∫ t0 b(a+τ) dτ + 2mt(0)
[
1 − e− ∫ t0 b(a+τ) dτ

]

= 2mt(0) + e− ∫ t0 b(a+τ) dτ
(
1 − 2mt(0)

)≤ 2mt(0). �



52 V. Bansaye et al.

We are now ready to prove Theorem 3.8.

Proof of Theorem 3.8 We prove that Assumptions (H1), (H2), and (H3) are satisfied by the
renewal semigroup and then apply Theorem 3.5.

We start with (H1). For α > 0, we define the probability measure ν by

∀f ∈ C0(R+), ν(f ) :=
∫ α

0 Msf (0) ds
∫ α

0 ms(0) ds
.

We want to prove that for α small enough (to be determined later), there exists a time t0 > 0
and c > 0 such that for all f ≥ 0 and a ≥ 0,

Mt0f (a) ≥ c ν(f )mt0(a). (3.12)

Iterating the Duhamel formula (3.11) we have for all f ≥ 0 and all t, a ≥ 0,

Mtf (a) = f (a + t)e− ∫ t0 b(a+τ) dτ + 2
∫ t

0
e− ∫ τ0 b(a+τ ′) dτ ′

b(a + τ)f (t − τ)e− ∫ t−τ
0 b(τ ′) dτ ′

dτ

+ 4
∫ t

0
e− ∫ τ0 b(a+τ ′) dτ ′

b(a + τ)

∫ t−τ

0
Φ
(
τ ′)Mt−τ−τ ′f (0) dτ ′ dτ

≥ 4
∫ t

0
e− ∫ τ0 b(a+τ ′) dτ ′

b(a + τ)

∫ t−τ

0
Φ(t − τ − s)Msf (0) ds dτ.

Let t0 > 0, α ∈ [0, t0], and 0 ≤ t1 ≤ t2 ≤ t0 − α. We have

Mt0f (a) ≥ 4
∫ t2

t1

e− ∫ τ0 b(a+τ ′) dτ ′
b(a + τ)

∫ α

0
Φ(t0 − τ − s)Msf (0) ds dτ.

This inequality means that for bounding Mt0f from below we only keep the individuals
which: do not divide between times 0 and t1; divide a first time between t1 and t2; do not
divide between t2 and t0 − α; divide a second time between t0 − α and t0.

Let us check that we can choose t0, t1, t2 and α such that b and then Φ have a lower
bound on [t0 − t2 − α, t0 − t1] and then give a lower bound for

∫ t2

t1

e− ∫ τ0 b(a+τ ′) dτ ′
b(a + τ) dτ = e− ∫ a+t1

a b(τ ) dτ
(
1 − e− ∫ a+t2

a+t1
b(τ) dτ )

and obtain (3.12). For that purpose, we define n = �a0/p� + 1 the smallest integer such
that np > a0. Let α ∈ (0,2l − p) and t0 = a0 + np + l. The choice of t1 and t2 depends on
whether a < a0 or a ≥ a0.

For a < a0 we choose t1 = np and t2 = np+ l −α. We have b ≥ b on [t − t2 −α, t − t1] =
[a0, a0 + l], so that Φ ≥ b e− ∫ a0+l

0 b(τ) dτ on [t − t2 − α, t − t1], and
∫ t2

t1

e− ∫ s0 b(a+τ) dτ b(a + s) ds ≥ e− ∫ a0+np

0 b(τ) dτ
(
1 − e−b(2l−p−α)

)
> 0.

For a ≥ a0 we choose t1 = 0 and t2 = l − α. We have Φ ≥ b e− ∫ A+np+l
0 b(τ) dτ > 0 on [t −

t2 − α, t − t1] = [a0 + np,a0 + np + l], and
∫ t2

0
e− ∫ s0 b(a+τ) dτ b(a + s) ds = 1 − e− ∫ a+l−α

a b(τ) dτ ≥ 1 − e−b(2l−p−α) > 0.
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As a consequence, (3.12) is satisfied with

c = 4

∫ α

0 ms(0) ds

‖mt0‖∞
b
(
1 − e−b(2l−p−α)

)
e−2
∫ a0+np+l

0 b(τ) dτ ,

which gives Assumption (H1).

Now we turn to (H2). Since we know from Corollary 3.10 that mt(0) ≥ 1
2mt(a) for all

t, a ≥ 0, it suffices to find d > 0 such that for all t ≥ 0,

ν(mt) ≥ 2d mt(0).

Lemma 3.9 ensures that for all t ≥ 0,

ν(mt) = 1
∫ α

0 ms(0) ds

∫ α

0
mt+s(0) ds ≥ α

∫ α

0 ms(0) ds
mt(0)

and the constant d = α

2
∫ α

0 ms(0) ds
suits.

It remains to check (H3). In that view, we define

b(a) := sup
[0,a]

b

and we write for t ≥ s ≥ 0

ms(0) = e− ∫ s0 b(τ) dτ + 2
∫ s

0
e− ∫ s−τ

0 b(τ ′) dτ ′
b(s − τ)mτ (0) dτ ≤ 1 + 2b(t)

∫ s

0
mτ(0) dτ.

Applying the Grönwall’s lemma we get ms(0) ≤ e2b(t)s for all s ∈ [0, t], so mt(0) ≤ e2b(t)t ,
and using Corollary 3.10 we obtain

‖mt‖∞ ≤ 2 e2b(t)t .

Finally we can apply Theorem 3.5 which ensures the exponential convergence with the
rate

− log(1 − cd)

t0
=

− log(1 − 2α
‖mt0 ‖∞ b (1 − e−b(2l−p−α)) e−2

∫ a0+np+l

0 b(τ) dτ )

a0 + np + l
≥ ρ

where

ρ = − log(1 − αb (1 − e−b(2l−p−α)) e−2
∫ 2a0+p+l

0 b(τ) dτ−2(2a0+p+l)b(2a0+p+l))

2a0 + p + l
(3.13)

and the result follows by choosing α = l − p/2. �

3.3 Asymptotically Homogeneous Semigroups and Increasing Maximal Age

In this section, we present a general theorem for semigroups which become homogeneous
when time tends to infinity. We then apply this theorem to an age structured population
where the state space has a maximal age which increases with time.
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3.3.1 Convergence of the Profile and Evolution of the Mass

We consider the situation of a semigroup which becomes homogeneous when time goes
to ∞. For the sake of simplicity and in view of our application, we restrict ourselves to the
case when the state space is increasing:

∀s < t, Xs ⊂ Xt , X =
⋃

s≥0

Xs .

We say that a semigroup (Ms,t )0≤s≤t is asymptotically homogeneous if there exists a homo-
geneous semigroup (Nt )t≥0 defined on X and satisfying Assumption 2.1, such that for all
s ≥ 0

lim
t→∞ sup

x∈Xt

‖δxMt,t+s − δxNs‖TV = 0 (H′0)

In our framework, the assumptions (A1)–(A4) rewrite as follows. There exist s0, r > 0,
c, d > 0 and some probability measure ν on Xs0 such that for any t ≥ s0 and x ∈ Xt ,

δxMt,t+r ≥ cmt,t+r (x) ν, (H′1)

and for any τ ≥ 0,

d mt,t+τ (x) ≤ ν(mt,t+τ ). (H′2)

As for the homogeneous case, writing nt (x) = δxNt1, for x ∈ X and t ≥ 0, we need that

t �→ ‖nt‖∞ is locally bounded on R+. (H′3)

Theorem 3.11 Let s ≥ 0. Under Assumptions (H′0), (H′1), (H′2) and (H′3), there exists a
probability measure γ on X and a positive bounded function hs on Xs such that

lim
t→∞ sup

μ∈P(Xs )

∥∥∥
∥

μMs,t

ν(ms,t )
− μ(hs)γ

∥∥∥
∥

TV

= 0.

Notice that the TV norm above is the TV norm on the state space X , the measure μMs,t ∈
M(Xt ) being extended by zero on X \Xt .

Notice also that in Theorem 3.11 we do not provide a speed of convergence. It could be
achieved by taking into account the speed of convergence of M to N .

Proof Following (2.3), we set

δxQ
(t)
s,t = δxNt−s

nt−s(x)
,

for any x ∈ X , t ≥ s ≥ 0. Fix x0 ∈ X . First, using (H′0), for any u ≥ 0, we obtain

lim
t→∞mt,t+u(x0) = nu(x0) > 0

and then using again (H′0),

lim
t→∞
∥∥δx0P

(t+u)
t,t+u − δx0Q

(t+u)
t,t+u

∥∥
TV

= 0. (3.14)
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Now we note that (H′1) and (H′2) ensure that (A1)–(A4) are satisfied for any regular
subdivision of [s, t] with step r (i.e. ti − ti−1 = r) and t0 ≥ s0, for the constants

ci = c, di = d, νi = ν, α = 1/(cd), β = 1/d.

We apply then Theorem 2.3 to M with γ = δx0 , which ensures that, for every s ≥ 0,

lim
t→∞ sup

μ∈P(Xs )

∥∥
∥∥

μMs,t

ν(ms,t )
− μ(hs)δx0P

(t)

0,t

∥∥
∥∥

TV

= 0, (3.15)

while Lemma 2.5 (ii) guarantees

lim
u→∞ sup

t≥0,x,y∈Xt

∥∥δxP
(t+u)
t,t+u − δyP

(t+u)
t,t+u

∥∥
TV

= 0. (3.16)

Using (H′0) and letting t → ∞ in (H′1), (H′2) and (H′3), we obtain that the semigroup N

satisfies (H1), (H2) and (H3). Then by Theorem 3.5, there exists a probability measure γ

such that

lim
u→∞ sup

x∈X ,t≥0

∥∥δxQ
(t+u)
t,t+u − γ

∥∥
TV

= 0.

Hence, (3.14) becomes

lim
u→∞ lim sup

t→∞

∥
∥δx0P

(t+u)
t,t+u − γ

∥
∥

TV
= 0.

Using now δx0P
(t+u)

0,t+u = (δx0P
(t+u)

0,t )P
(t+u)
t,t+u and (3.16), we get

lim
u→∞ sup

t≥0

∥∥δx0P
(t+u)

0,t+u − δx0P
(t+u)
t,t+u

∥∥
TV

= 0.

Combing the two last bounds yields

lim sup
t→∞

∥∥δx0P
(t)

0,t − γ
∥∥

TV
= lim

u→∞ sup
t≥0

∥∥δx0P
(t+u)

0,t+u − γ
∥∥

TV

≤ lim
u→∞ sup

t≥0

∥
∥δx0P

(t+u)

0,t+u − δx0P
(t+u)
t,t+u

∥
∥

TV
+ lim

u→∞ lim sup
t→∞

∥
∥δx0P

(t+u)
t,t+u − γ

∥
∥

TV
= 0.

Plugging this in (3.15) concludes the proof. �

3.3.2 Example: The Renewal Equation with Maximal Age

We consider the renewal equation on a domain bounded by a maximal age which increases
along time. When an individual reaches the maximal age, he dies. We denote by at the max-
imal age, which grows from a0 to a∞ when t → +∞. To avoid pathological situations we
assume that t �→ t − at is strictly increasing. Inside the domain [0, at ) the individuals repro-
duce with a birth rate b(a) bounded from below by b > 0 and from above by b. The partial
differential equation which prescribes the evolution of the density us,t (a) of individuals with
age a at time t (starting from a distribution us(a) at time s ∈ [0, t)) writes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tus,t (a) + ∂aus,t (a) = 0, t > s, 0 < a < at ,

us,t (0) =
∫ at

0
b(a)us,t (a) da, t > s,

us,s(a) = us(a), 0 ≤ a < as.

(3.17)
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The motivation of such a model comes from [3] which studies a related branching model for
the bus paradox problem.

The details of the construction of the associated semigroup are postponed to Appendix C.
Here we only give the main steps. For t ≥ s ≥ 0 we define the operator Ms,t : Bb([0, at )) →
Bb([0, as)) as follows: for any f ∈ Bb([0, at )) the family (Ms,tf )t≥s≥0 is the unique solution
to the equation

Ms,tf (a) = f (a + t − s) +
∫ t

s

bτ (a + τ − s)Mτ,tf (0) dτ, (3.18)

where we have denoted bt (a) = b(a)1[0,at )(a) and f has been extended by 0 beyond at . Then
for μ ∈ M(Xs) the measure μMs,t is defined on [0, at ) in such a way that (μMs,t )(f ) =
μ(Ms,tf ) for all f ∈ Bb([0, at )).

Using Theorem 3.11 we prove the following ergodic result for the semigroup (Ms,t )t≥s≥0.
It provides the long time asymptotic behavior of the measure solutions (μMs,t )t≥s to (3.17).

Theorem 3.12 Let s ≥ 0. There exist γ ∈ P([0, a∞)), ν ∈ P([0, as)), and a positive hs ∈
Bb([0, as)) such that for all μ ∈ M([0, as)),

lim
t→∞ sup

μ∈P(Xs )

∥
∥∥
∥

μMs,t

ν(ms,t )
− μ(hs)γ

∥
∥∥
∥

TV

= 0.

Before proving this theorem we start with a useful lemma.

Lemma 3.13 For any s ≤ t and any f ∈ C0([0, at )), we have

‖Ms,tf ‖∞ ≤ eb(t−s)‖f ‖∞.

Proof By definition of Ms,tf (0) we have

∣
∣Ms,tf (0)

∣
∣=
∣∣
∣∣f (t − s) +

∫ t

s

bτ (τ − s)Mτ,tf (0) dτ

∣∣
∣∣≤ ‖f ‖∞ + b

∫ t

s

∣
∣Mτ,tf (0)

∣
∣dτ

and the Grönwall’s lemma gives |Ms,tf (0)| ≤ ‖f ‖∞eb(t−s). Then for a ≥ 0 we write

∣
∣Ms,tf (a)

∣
∣≤ ‖f ‖∞ + b‖f ‖∞

∫ t

s

eb(τ−s)dτ = eb(t−s)‖f ‖∞. �

Proof of Theorem 3.12 We start by verifying (H′0) with X = [0, a∞). The homogeneous
semigroup N on M(X ) × Bb(X ) is defined by the following Duhamel formula

Ntf (a) = f (a + t) +
∫ t

0
b∞(a + τ)Nt−τ f (0) dτ.

Existence, uniqueness and Assumption 2.1 can be proved in the same way as for the homo-
geneous renewal equation (see Appendix B).

Fix t > 0, a ∈ Xt = [0, at ), and f ∈ C0([0, at )) such that ‖f ‖∞ ≤ 1. For any r ≥ a∞ we
have

Mt,t+rf (a) =
∫ t+r

t

bτ (a + τ − t)Mτ,t+rf (0) dτ
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and

Nrf (a) =
∫ t+r

t

b∞(a + τ − t)Nt+r−τ f (0) dτ.

We start by comparing Mt,t+rf (0) and Nrf (0). We have, using Lemma 3.13,

∣
∣Nrf (0) − Mt,t+rf (0)

∣
∣

≤
∫ t+r

t

∣∣b∞(τ − t) − bτ (τ − t)
∣∣ ∣∣Nt+r−τ f (0)

∣∣dτ

+
∫ t+r

t

bτ (τ − t)
∣∣Nt+r−τ f (0) − Mτ,t+rf (0)

∣∣dτ

≤
∫ t+r

t

b 1aτ ≤τ−t≤a∞eb(t+r−τ) dτ + b

∫ t+r

t

∣
∣Nt+r−τ f (0) − Mτ,t+rf (0)

∣
∣dτ

≤ b ebr (a∞ − at ) + b

∫ t+r

t

∣∣Nt+r−τ f (0) − Mτ,t+rf (0)
∣∣dτ,

which gives by Grönwall’s lemma

∣∣Nrf (0) − Mt,t+rf (0)
∣∣≤ b e2br (a∞ − at ).

Now we come back to a ∈ [0, at ) and we have similarly

∣
∣Nrf (a) − Mt,t+rf (a)

∣
∣≤ bebr (a∞ − at ) + b

∫ t+r

t

∣
∣Nt+r−τ f (0) − Mτ,t+rf (0)

∣
∣dτ

≤ b ebr (a∞ − at ) + b
2
re2br (a∞ − at )

≤ max
(
bebr ,
(
bebr
)2

r
)
(a∞ − at ).

We deduce that for all r ≥ a∞,

sup
0≤a<at

‖δaMt,t+r − δaNr‖TV ≤ max
(
bebr ,
(
bebr
)2

r
)
(a∞ − at ) −−−→

t→+∞ 0.

Now we turn to (H′1). Iterating the Duhamel formula (3.18), we get for f ≥ 0,

Ms,tf (a) = f (a + t − s) +
∫ t

s

bτ (a + τ − s)Mτ,tf (0) dτ

= f (a + t − s) +
∫ t

s

bτ (a + τ − s)f (t − τ) dτ

+
∫ t

s

bτ (a + τ − s)

∫ t

τ

bτ ′
(
τ ′ − τ

)
f
(
t − τ ′)dτ ′ dτ + (≥ 0).

Thus

Ms,tf (a) ≥
∫ t

s

bτ (a + τ − s)

∫ t

τ

bτ ′
(
τ ′ − τ

)
f
(
t − τ ′)dτ ′ dτ.
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We consider s large enough so that � := a∞−as ≤ as/2. We set α := �
2 and take t −s = 2�.

For s ≤ τ ≤ τ ′ ≤ t we have τ ′−τ ≤ t −s = 2� ≤ as ≤ a′
τ and so bτ ′(τ ′−τ) = b(τ ′−τ) ≥ b.

We deduce that

Ms,tf (a) ≥ b

∫ t

s

bτ (a + τ − s)

∫ t

τ

f (t − τ ′) dτ ′ dτ.

We consider separately a ≤ as − α and a ≥ as − α. For a ≤ as − α et τ ∈ [s, s + α] we have
a + τ − s ≤ as ≤ aτ and so bτ (a + τ − s) = b(a + τ − s) ≥ b. Thus we can write

Ms,tf (a) ≥ b

∫ t

s

bτ (a + τ − s)

∫ t

τ

f
(
t − τ ′)dτ ′ dτ

≥ b2
∫ s+α

s

∫ t

t−α

f
(
t − τ ′)dτ ′ dτ ≥ αb2

∫ α

0
f (r) dr = (αb)2ν(f ),

where ν(f ) = 1
α

∫ α

0 f (r) dr . Now for a > as − α we have that if τ ≥ t − α then a + τ − s ≥
as + � = a∞ and so bτ (a + τ − s) = 0. We deduce that

Ms,tf (a) ≥ b

∫ t

s

bτ (a + τ − s)

∫ t

τ

f
(
t − τ ′)dτ ′ dτ

≥ b

∫ t

s

bτ (a + τ − s)

∫ t

t−α

f
(
t − τ ′)dτ ′ dτ = αb

(∫ t

s

bτ (a + τ − s) dτ

)
ν(f ).

To conclude that (H′1) is satisfied it remains to compare these lower bounds with ms,t (a).
We start from the Duhamel formula

ms,t (a) = 1a+t−s<at +
∫ t

s

bτ (a + τ − s)mτ,t (0) dτ

and use Lemma 3.13 which ensures that mτ,t (0) ≤ eb(t−τ). If a ≤ as − α, we write that

ms,t (a) ≤ 1 + b

∫ t

s

eb(t−τ) dτ = e2b�.

For a > as − α we use that a + t − s ≥ as + � = a∞ ≥ at to write

ms,t (a) ≤
∫ t

s

bτ (a + τ − s)mτ,t (0) dτ ≤ eb�

∫ t

s

bτ (a + τ − s) dτ.

Finally we get

Ms,tf (a) ≥ min
(
αb e−b�,

(
αb e−b�

)2)
ms,t (a) ν(f ).

For (H′2) we start by comparing ms,t (a) to ms,t (0). We have

ms,t (a) = 1a+t−s<at +
∫ t

s

bτ (a + τ − s)mτ,t (0) dτ

≤ 1t−s<at + b

∫ t

s

1a+τ−s≤aτ mτ,t (0) dτ ≤ 1t−s<at + b

∫ t

s

1τ−s≤aτ mτ,t (0) dτ

≤ 1t−s<at + b

b

∫ t

s

bτ (τ − s)mτ,t (0) dτ ≤ b

b
ms,t (0).
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Then we compare ms,t (0) to ν(ms,t ). We consider separately the cases s ≤ t ≤ s + α and
t > s + α. For s ≤ t ≤ s + α we have, since α + t − s ≤ 2α = � ≤ a(0) ≤ at ,

∫ α

0
ms,t (a) da ≥

∫ α

0
1a+t−s<at da ≥ α

and we have already seen that ms,t (0) ≤ eb(t−s), so

ms,t (0) ≤ eαbν(ms,t )

and

b

b
e−αb‖ms,t‖∞ ≤ ν(ms,t ).

For the case t > s + α we split into two steps. We start by comparing ms,t (0) to mr,t (0)

for s ≤ r ≤ s + α. The semigroup property allows to decompose ms,t (0) = δ0Ms,rmr,t .
Lemma 3.13 ensures that ‖δ0Ms,r‖TV ≤ eb(r−s) so, using again the bound mr,t (a) ≤ b

b
mr,t (0),

we get

ms,t (0) = δ0Ms,rmr,t ≤ ‖δ0Ms,r‖TV
b

b
mr,t (0) ≤ b

b
eαbmr,t (0).

To conclude we write

1

α

∫ α

0
ms,t (a) da ≥ 1

α

∫ α

0

∫ s+α

s

bτ (a + τ − s)mτ,t (0) dτ da

≥ b

∫ s+α

s

mτ,t (0) dτ ≥ αb2

b
e−αbms,t (0).

Finally, we have proved that for all t > s + α we have

αb3

b
2 e−αb‖ms,t‖∞ ≤ ν(ms,t ).

Finally, (H′3) comes from similar computations and a generalization of Lemma 3.13 for N .
�

3.4 Periodic Semigroups and the Renewal Equation

In this section, we establish the convergence to a periodic profile for periodic semigroups.
This generalizes the Floquet theory [22] for periodic matrices. We apply this result to the
renewal equation and obtain an explicit exponential rate of convergence. Let us mention that
it provides an exponential decay to Floquet eigenelements for a periodic PDE, which up to
our knowledge has not been achieved so far.

3.4.1 Exponential Convergence for Periodic Semigroups

We start by a definition of the so-called Floquet eigenelements.
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Definition 3.14 (Periodic semigroup and Floquet eigenelements) We say that a semigroup
(Ms,t )0≤s≤t is periodic with period T if for all t ≥ 0 we have Xt+T = Xt and for all t ≥ s ≥ 0,

Ms+T ,t+T = Ms,t .

We say that (λF , γs,t , hs,t )t≥s≥0 is a Floquet family for (Ms,t )t≥s≥0 if for all t ≥ s ≥ 0
the triplet (λF , γs,t , hs,t ) ∈ R × M(Xs) × Bb(Xt ), for all s ≥ 0 we have γs,s ∈ P(Xs) and
γs,s(hs,s) = 1, for all t ≥ s ≥ 0,

γs+T ,t+T = γs,t = γs,t+T and hs+T ,t+T = hs,t = hs,t+T ,

and

γs,sMs,t = eλF (t−s)γs,t and Ms,tht,t = eλF (t−s)hs,t .

We state the general periodic result, recalling Definition (2.1) of the coupling capacity
Cα,β,ν(s, t).

Theorem 3.15 Let (Ms,t )t≥s≥0 be a T -periodic semigroup and let α,β ≥ 1 such that for
all s ≥ 0, there exists ν ∈ P(Xs) such that Cα,β,ν(s, t) → +∞ when t → +∞. Assume also
that the function (s, t) �→ ‖ms,t‖∞ is locally bounded. Then there exists a unique T -periodic
Floquet family (λF , γs,t , hs,t )t≥s≥0 for (Ms,t )t≥s≥0 and there exist C,ρ > 0 such that for all
t ≥ s ≥ 0 and all μ ∈ M(Xs),

∥
∥e−λF (t−s)μMs,t − μ(hs,s)γs,t

∥
∥

TV
≤ Ce−ρ(t−s)‖μ‖TV. (3.19)

Notice that in general the exponential rate of convergence ρ can be quantified.

Proof We start by the construction of (γs,t )t≥s≥0. From Theorem 2.3 there exist C > 0 and
hs : Xs → (0, β] such that ν(hs) = 1 and for any μ,γ ∈ M(Xs) and all t ≥ s,

∥∥
∥∥μMs,t − μ(hs)ν(ms,t )

γMs,t

γ (ms,t )

∥∥
∥∥

TV

≤ C ν(ms,t )‖μ‖TV e−Cα,β,ν (s,t). (3.20)

Considering t = s + kT for k ∈ N, μ = ν and γ = νMs,s+lT for l ∈ N and using the period-
icity of M , we get

∥∥
∥∥

νMs,s+kT

ν(ms,s+kT )
− νMs,s+(k+l)T

ν(ms,s+(k+l)T )

∥∥
∥∥

TV

≤ C e−Cα,β,ν (s,s+kT ),

which ensures that (
νMs,s+kT

ν(ms,s+kT )
)k∈N is a Cauchy sequence in (M(Xs),‖ · ‖TV). We denote

the limit γs,s , which belongs to P(Xs). Using again (3.20) with μ = ν we have that for all
γ ∈ M+(X ),

γMs,s+kT

γ (ms,s+kT )
−−−→
k→∞

γs,s . (3.21)

For f ∈ Bb(Xs) we have, using the periodicity of Ms,t ,

γs,sMs,s+(k+1)T f = γs,s Ms,s+kT Ms,s+T f,
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which gives

γs,s(ms,s+(k+1)T )

γs,s(ms,s+kT )

γs,sMs,s+(k+1)T f

γs,s(ms,s+(k+1)T )
= γs,sMs,s+kT

γs,s(ms,s+kT )
Ms,s+T f. (3.22)

Letting f = 1 in (3.22),

Λs = lim
k→∞

γs,s(ms,s+(k+1)T )

γs,s(ms,s+kT )
= γs,s(ms,s+T )

and letting k → ∞,

Λsγs,s(f ) = γs,sMs,s+T f. (3.23)

We check now that Λs is independent of s. To do so we start by proving that for any s ′ > s,

γs′,s′ = γs,sMs,s′

γs,s(ms,s′)
. (3.24)

By the semigroup property we have on the one hand, using (3.21) with γ = γs,sMs,s′ ,

γs,sMs,s′+kT

γs,sms,s′+kT

= (γs,sMs,s′)Ms′,s′+kT

(γs,sMs,s′)ms′,s′+kT

−−−→
k→∞

γs′,s′ ,

and on the other hand using (3.23)

γs,sMs,s′+kT

γs,sms,s′+kT

= γs,sMs,s+kT Ms+kT ,s′+kT

γs,sMs,s+kT ms+kT ,s′+kT

= Λk
sγs,sMs,s′

Λk
sγs,s(ms,s′)

= γs,sMs,s′

γs,s(ms,s′)
.

This proves (3.24) which gives, using again (3.23) and the semigroup property,

Λs′γs′,s′ = γs′,s′Ms′,s′+T = γs,sMs,s′+T

γs,s(ms,s′)
= Λsγs,sMs,s′

γs,s(ms,s′)
.

Testing this identity against 1 and using that γs,s are probabilities we get that Λs′ = Λs , and
we denote this constant by Λ. Now we define λF = (logΛ)/T and for all t ≥ s,

γs,t = γs,sMs,te
−λF (t−s).

The definition of λF implies that γs,t = γs,t+T , and the identity γs+T ,s+T = γs,s , which is
clear on the definition (3.21) of γs,s , ensures the periodicity γs+T ,t+T = γs,t .

We turn to the family (hs,t )t≥s≥0. Using Remark 2.4 we have that Theorem 2.3 is valid
for ν = γs,s and it ensures the existence of a harmonic function

hs,s = lim
t→+∞

ms,t

γs,s(ms,t )
,

which satisfies γs,s(hs,s) = 1. Now we define for s ≤ t ,

hs,t = e−λF (t−s)Ms,tht,t .

It only remains to check that (hs,t )t≥s≥0 thus defined is T -periodic. By definition of hs,s and
using the T -periodicity of Ms,t and γs,t we have

hs,s = lim
k→∞

ms,s+kT

γs,s(ms,s+kT )
= lim

k→∞
ms+T ,s+(k+1)T

γs+T ,s+T (ms+T ,s+(k+1)T )
= hs+T ,s+T .



62 V. Bansaye et al.

Then we write

hs,s = lim
t→∞

ms,t+T

γs,s(ms,t+T )
= lim

t→∞
Ms,s+T ms,t

γs,s(Ms,s+T ms,t )
= lim

t→∞
Ms,s+T ms,t

eλF T γs,s(ms,t )
= e−λF T Ms,s+T hs,s ,

where we have used the dominated convergence theorem for the last equality. And finally

hs,s+T = e−λF T Ms,s+T hs+T ,s+T = e−λF T Ms,s+T hs,s = hs,s .

Now we check the convergence (3.19). Applying Theorem 2.3 with ν = γ = γs,s and
s0 = s, we get that there exists C > 0 such that for all t ≥ s ≥ 0 and all μ ∈ M(Xs),

∥
∥μMs,t − μ(hs,s)e

λF (t−s)γs,t

∥
∥

TV
≤ C eλF (t−s)γs,t (1)‖μ‖TV e−Cα,β,ν (s,t).

By periodicity we have γs,t (1) = e−λF (t−s)γs,s(ms,t ) ≤ e|λF |T sup0≤s≤T ,s≤t≤s+T ‖ms,t‖∞. Still
by periodicity, for all n ∈ N and all t ≥ s + nT , we have Cα,β,ν(s, t) ≥ Cα,β,ν(0, nT )� t−s

nT
�.

Using that Cα,β,ν(0, t) → +∞ when t → +∞ we can choose n ∈ N large enough so that
Cα,β,ν(0, nT ) > 0 and this gives (3.19) with ρ = Cα,β,ν(0, nT )/nT .

The uniqueness follows from the convergence. Assume the existence of another Flo-
quet family (λ̃, γ̃s,t , h̃s,t ). Applying (3.19) to μ = γ̃s,s guarantees that λ̃F = λF and γ̃s,t =
γ̃s,s (hs,s)γs,t . Since γs,s and γ̃s,s are both probabilities this implies that γ̃s,s (hs,s) = 1, and
γ̃s,t = γs,t . Applying again (3.19) but with μ = δx , t = s + kT , and the test function
h̃s,s = h̃s+kT ,s+kT , we get h̃s,s = hs,s . The equality h̃s,t = hs,t is then ensured by the iden-
tity λ̃F = λF . �

3.4.2 Example: The Periodic Renewal Equation

We consider the renewal equation with a time-periodic division rate, which is used as a
model for circadian rhythms (see [13, 14] and the references therein). More precisely the
equation is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tus,t (a) + ∂aus,t (a) + b(t, a)us,t (a) = 0, t > s, a > 0,

us,t (0) = 2
∫ ∞

0
b(t, a)us,t (a) da, t > s,

us,s(a) = us(a), a ≥ 0,

(3.25)

and we assume that there exists T > 0 such that b(t +T , ·) = b(t, ·) for any t ≥ 0. Addition-
ally b is supposed to be non-negative and globally bounded (in time and age) by a constant
b > 0. Similarly as in the homogeneous or asymptotically homogeneous case we associate
to Eq. (3.25) a semigroup (Ms,t )0≤s≤t defined on Bb(R+) by the Duhamel formula

Ms,tf (a) = f (a + t − s)e− ∫ ts b(τ,a+τ−s) dτ (3.26)

+ 2
∫ t

s

e− ∫ τs b(τ ′,a+τ ′−s) dτ ′
b(τ, a + τ − s)Mτ,tf (0) dτ

and on M(R+) by setting (μMs,t )(f ) = μ(Ms,tf ) for all f ∈ Bb(R+). As for the homo-
geneous case, this semigroup is well defined and satisfies Assumption 2.1. Mimicking the
proof of Lemma 3.9 we can prove the following monotonicity result.

Lemma 3.16 For all s, a ≥ 0, the function t �→ ms,t (a) is nondecreasing.
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Notice however that the function s �→ ms,t (a) is not nonincreasing in general. Yet, since
(Ms,t )0≤s≤t is T -periodic we have, using Lemma 3.16, ms+T ,t (a) = ms,t−T (a) ≤ ms,t (a).

The aim of the current section is to provide sufficient conditions on b so that we can
apply Theorem 3.15. In Theorem 3.17 we give a general such result, and in Theorem 3.18 we
optimize the rate of convergence in the case when the division rate depends only on time. Let
us point out that in this latter case the mean number of individuals ms,t (a) does not depend
on a and satisfies a simple differential equation. Classical Floquet theory [22] then easily
applies for proving that it tends to a periodic solution. However it is no longer the case
for the age repartition described by the semigroup which remains an infinite-dimensional
object. Its asymptotic periodicity cannot be deduced from those of ms,t .

The convergence of the solutions of the periodic renewal equation to the Floquet elements
has been obtained in [39] by the way of entropy techniques. Here, we provide an explicit
exponential rate of convergence.

Theorem 3.17 Let b be a time-periodic function with period T > 0, non-negative and glob-
ally bounded by b > 0. Assume that there exist A ≥ 0 and b > 0 such that

∀t ≥ 0, ∀a ≥ A, b(t, a) ≥ b.

Then there exists a unique Floquet family (λF , γs,t , hs,t )0≤s≤t for the semigroup (Ms,t )0≤s≤t

and a constant C > 0 such that for all t ≥ s ≥ 0 and all μ ∈ M(R+),

∥∥e−λF (t−s)μMs,t − μ(hs,s)γs,t

∥∥
TV

≤ C ‖μ‖TV e−ρ(t−s)

where

ρ = −1

A + 2T
log

(
1 − 2bT e−b(3A+8T )

1
2bT

+ A
T

+ 3 + 1
1−e−bT

)
.

Proof We will use several times the inequality

‖ms,t‖∞ ≤ e2b(t−s),

whose proof follows Lemma 3.13. In particular it ensures that the function (s, t) �→ ‖ms,t‖∞
is locally bounded.

Now we exhibit constants for the assumptions in Definition 2.2. We start with (A1). Let
s ≥ 0 and define n := �A

T
�, so that (n+1)T ∈ (A,A+T ]. From the Duhamel formula (3.26)

and using the periodicity of the semigroup we get that for any f ≥ 0 and any a ≥ 0

Ms,s+(n+2)T f (a) ≥ 2
∫ s+(n+2)T

s+(n+1)T

e− ∫ τs b(τ ′,a+τ ′−s) dτ ′
b(τ, a + τ − s)Mτ,s+(n+1)T f (0) dτ

≥ 2be−b(A+2T )

∫ s+T

s

Mτ,s+T f (0) dτ.

We have ms,s+(n+2)T ≤ e2b(A+2T ) and Lemma 3.16 ensures that
∫ s+T

s
mτ,s+T (0) dτ ≥ T . So

(A1) is satisfied with

ν(f ) =
∫ s+T

s
Mτ,s+T f (0) dτ

∫ s+T

s
mτ,s+T (0) dτ

and c = 2bT e−3b(A+2T ).
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We treat the last three assumptions (A2)–(A4) together by proving that there exists d > 0
such that for all t ≥ s,

d ‖ms,t‖∞ ≤ ν(ms,t ).

If t − s ≤ A, we have ‖ms,t‖∞ ≤ e2bA, and from Lemma 3.16 νs(ms,t ) ≥ 1, so it remains to
treat the case t − s > A. Keeping n = �A

T
� and setting N = � t−s

T
� ≥ n, we have from (3.26)

ms,t (a) = e− ∫ ts b(τ,a+τ−s) dτ + 2
∫ t

s

e− ∫ τs b(τ ′,a+τ ′−s) dτ ′
b(τ, a + τ − s)mτ,t (0) dτ

≤ 1 + 2b

n∑

k=0

∫ s+(k+1)T

s+kT

e− ∫ τs b(τ ′,a+τ ′−s) dτ ′
mτ,t (0) dτ

+ 2b

N∑

k=n+1

∫ s+(k+1)T

s+kT

e− ∫ τs b(τ ′,a+τ ′−s) dτ ′
mτ,t (0) dτ

+ 2b

∫ t

s+NT

e− ∫ τs b(τ ′,a+τ ′−s) dτ ′
mτ,t (0) dτ

≤ 1 + 2b

n∑

k=0

∫ s+T

s

mτ+kT ,t (0) dτ

+ 2b

N∑

k=n+1

∫ s+T

s

e− ∫ τ+kT
s b(τ ′,a+τ ′−s) dτ ′

mτ+kT ,t (0) dτ

+ 2b

∫ t−NT

s

mτ+NT,t (0) dτ

≤ 1 + 2b(n + 1)

∫ s+T

s

mτ,t (0) dτ + 2b

∫ t−NT

s

mτ,t (0) dτ

+ 2b

N∑

k=n+1

∫ s+T

s

e− ∫ kT
(n+1)T b1t1≤u−�u/T �≤t2 du

mτ,t (0) dτ

≤ (1/T + 2b(n + 2)
)∫ s+T

s

mτ,t (0) dτ + 2b

N−n−1∑

k=0

e−kb(t2−t1)

∫ s+T

s

mτ,t (0) dτ

≤
(

1

T
+ 2

(
A

T
+ 3

)
b + 2b

1 − e−bT

)∫ s+T

s

mτ,t (0) dτ.

On the other hand we have

ν(ms,t ) = ν(ms+T ,t+T ) = 1
∫ s+T

s
mτ,s+T (0) dτ

∫ s+T

s

mτ,t+T (0) dτ

≥ 1
∫ s+T

s
e2b(s+T −τ) dτ

∫ s+T

s

mτ,t (0) dτ ≥ 2be−2bT

∫ s+T

s

mτ,t (0) dτ,
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which gives

ms,t (a) ≤
(

1

2bT
+ A

T
+ 3 + 1

1 − e−bT

)
e2bT νs(ms,t )

and ends the proof. �

Theorem 3.18 Assume that b(t, a) = b(t) is a continuous T -periodic function, which is
not identically zero. Then there exists a unique Floquet family (λF , γs,t , hs,t )0≤s≤t for the
semigroup (Ms,t )0≤s≤t and a constant C > 0 such that for all t ≥ s ≥ 0 and all μ ∈ M(R+)

∥
∥e−λF (t−s)μMs,t − μ(hs,s)γs,t

∥
∥

TV
≤ C ‖μ‖TV e−2

∫ t
s b(τ ) dτ .

Proof Since b does not depend on a we have the explicit formula

ms,t (a) = e
∫ t
s b(τ ) dτ . (3.27)

In particular it ensures that the function (s, t) �→ ‖ms,t‖∞ is locally bounded.
Now we prove (A1). Let t ≥ s + T , k ∈ N, n = � t−s

T
� ≥ 1, and N = (n − 1)k + 1. For all

0 ≤ i ≤ N − 1 we set ti = s + i T
k

, and tN = s + nT . From the Duhamel formula (3.26) we
have for any 1 ≤ i ≤ N − 1 and f ≥ 0

Mti−1,ti f (a) ≥ 2
∫ ti

ti−1

e
− ∫ τti−1

b(τ ′) dτ ′
b(τ)f (ti − τ) dτ ≥ 2e−‖b‖∞ T

k

(
min[ti−1,ti ]

b
)∫ T

k

0
f (τ) dτ.

For i = N we write

MtN−1,tN f (a) ≥ 2
∫ s+nT

s+(n−1)T

e− ∫ τs+(n−1)T b(τ ′) dτ ′
b(τ)f

(
s + (n − 1)T − τ

)
dτ

≥ 2e−‖b‖∞T

∫ T

0
b(T − τ)f (τ ) dτ.

So (A1) is verified for 0 ≤ i ≤ N − 1 with νi(f ) = n
T

∫ T
n

0 f (τ) dτ and

ci = 2T

k
e−‖b‖∞ T

k min[ti−1,ti ]
b

and for i = N with νN(f ) =
∫ T

0 b(T −τ)f (τ ) dτ
∫ T

0 b(τ) dτ
and

cN = 2e−‖b‖∞T

∫ T

0
b(τ) dτ.

From (3.27) we deduce that Assumptions (A2)–(A4) are trivially verified with

di = 1, α = 1

cN

, β = 1.

Thus the coupling capacity satisfies, for all k ∈N,

Cα,β,ν(s, t) ≥ −
N−1∑

i=1

log

(
1 − 2T

k
e−‖b‖∞ T

k min[ti−1,ti ]
b

)
.
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Letting k → ∞ we get

Cα,β,ν(s, t) ≥ 2
∫ s+(n−1)T

s

b(τ ) dτ ≥ 2
∫ t

s

b(τ ) dτ − 2
∫ T

0
b(τ) dτ. �

Remark 3.19 (About optimality) In the constant case b = const > 0, we recover the spectral
gap 2b. Indeed, we know that the spectral gap of the operator

Af (a) = f ′(a) − bf (a) + 2bf (0)

cannot be larger than 2b because the dominant Perron eigenvalue is b, and −b belongs to
the spectrum of A (the operator A+ b is not surjective on Cb(R+) since all the solutions to
the equation f ′(a) = −2bf (0) + 1

1+a
for instance are unbounded).

Remark 3.20 (Eigenvalue) From the periodicity of (γs,t )t≥s≥0 and (3.27), we easily get that

λF = 1

T

∫ T

0
b(τ) dτ.
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Appendix A: Branching Models, Absorbed Markov Process and
Semigroups

The techniques by coupling used in this paper have been extensively developed in probabil-
ity, in particular for the study of branching processes and killed process, see the introduction
for references. Let us present here informally the probabilistic objects and the interpretation
of the auxiliary semigroup.

For that purpose we consider a population of individuals with a trait belonging to the
space X . This population can die or give birth to some offsprings with a rate which depends
on their trait and independently one from each other (branching property). Moreover the
trait may vary in an homogeneous way and without memory (Markov property). Let us also
assume that some subspace S of X is absorbing, meaning that each individual whose trait
reaches this set stop dividing and keeps a constant trait. Writing Vt the set of individuals at
time t and (Xi

t : i ∈ Vt) the set of their traits, the branching and Markov properties and the
absorbing property of S ensure that

δxMs,t (f ) = E

(∑

i∈Vt

f (Xi
t )1Xi

t /∈S
∣
∣∣Xs = δx

)

is a semigroup. In general, it is not conservative, since its mass

ms,t (x) = δxMs,t1 = E
(
#
{
i ∈ Vt : Xi

t /∈ S
∣
∣Xs = δx

})
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can decrease by absorption in S or death of individual or created by births. The trait of a
typical non-absorbed individual is then given by the auxiliary conservative inhomogeneous
semigroup

δxP
(t)
u,vf = δxMu,v(f mv,t )

mu,t (x)
= E(
∑

i∈Vt
f (Xi

v)1Xi
v /∈S | Xu = δx)

E(#{i ∈ Vt : Xi
t /∈ S} | Xu = δx)

= E
(
f
(
Y (t)

v

) ∣∣ Y (t)
u = x

)
,

where Xi
v is the trait of the ancestor of i at time v and Y (t) is the inhomogenous Markov

process associated to P (t). Thus, Y (t) is the process describing the dynamics of the trait of
a typical individual, which is alive at time t and non-absorbed. Proving that it is ergodic
ensures the ergodicity of δxMs,t1/ms,t (x) as t goes to infinity. In this paper, we make a
coupling for that, with Doeblin conditions which ensure exponential uniform ergodicity.
Thanks to [12], this Doeblin condition can be rewritten in terms of coupling constants on
the original semigroup M .

In homogeneous-time setting, two particular classes of processes have attracted lots of
attention. First, if we make S = ∅, then X is a branching process and

δxMs,t (f ) = E

(∑

i∈Vt

f (Xi
t )

∣
∣∣Xs = δx

)

is its first moment semigroup which provides the mean number of individuals with a given
trait. The auxiliary process describes the dynamical of the trait along the ancestral lineage
of an individual chosen uniformly at random, when the population is becoming large. More
generally, the genealogical tree of the population can be constructed from this typical lin-
eage, which is called spine construction.

Second, if the individuals neither die nor give birth, we get a Markov process in the space
trait X and

δxMs,t (f ) = E
(
f (Xt)1Xt /∈S

∣∣Xs = x
)

Assume that Xt is eventually absorbed as t goes to infinity a.s. and consider the distribution
of the process conditioned on non-absorption:

Px(Xt ∈ . | Xt /∈ S) = δxM0,t

m0,t (x)
= δxP

(t)

0,t .

The ergodic behavior of P (t) and its convergence to a distribution ν yields the convergence
of the conditioned distribution (Yaglom limit) to the quasistationary distribution. At fixed
time t , P (t) describes the dynamic of the trait for trajectories non-absorbed at time t .

Appendix B: Measure Solutions to the Renewal Equation

We give here the details about the construction of the homogeneous renewal semigroup. It
is based on the dual renewal equation

∂tft (a) − ∂aft (a) + b(a)ft (a) = 2b(a)ft (0), t, a ≥ 0. (B.1)

Integrating this equation along the characteristics, we obtain the mild formulation (also
called Duhamel formula)
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ft (a) = f0(a + t)e− ∫ t0 b(a+τ) dτ + 2
∫ t

0
e− ∫ τ0 b(a+τ ′) dτ ′

b(a + τ)ft−τ (0) dτ. (B.2)

The first result is about the well-posedness of this equation in Bb(R+).

Lemma B.1 For all f0 ∈ Bb(R+) there exists a unique family (ft )t≥0 ⊂ Bb(R+) solution
to (B.2). Additionally if f0 ≥ 0 then ft ≥ 0 for all t ≥ 0.

Proof First we use the Banach fixed point theorem on a truncated problem. For T > 0 and
f0 ∈ Bb(R+) we define the operator Γ : Bb([0, T ]) → Bb([0, T ]) by

Γ g(t) = f0(t)e
− ∫ t0 b(τ) dτ + 2

∫ t

0
Φ(τ)g(t − τ) dτ.

We easily have

‖Γ g1 − Γ g2‖∞ ≤ 2
∫ T

0
Φ(τ)dτ ‖g1 − g2‖∞,

so Γ is a contraction if 2
∫ T

0 Φ < 1 and there is a unique fixed point in Bb([0, T ]). Ad-
ditionally since Γ preserves non-negativity when f0 ≥ 0, we get that the fixed point g is
non-negative when f0 is non-negative. Since the contraction constant 2

∫ T

0 Φ is independent
of f0, we can iterate to obtain a unique function g ∈ Bb(R+) which satisfies

g(t) = f0(t)e
− ∫ t0 b(τ) dτ + 2

∫ t

0
Φ(τ)g(t − τ) dτ

for all t ≥ 0. Now we set for all t, a ≥ 0

ft (a) = f0(a + t)e− ∫ t0 b(a+τ) dτ + 2
∫ t

0
e− ∫ τ0 b(a+τ ′) dτ ′

b(a + τ)g(t − τ) dτ,

which is a solution to (3.11) since by definition ft (0) = Γ g(t) = g(t). The uniqueness is
a direct consequence of the uniqueness of g. The non-negativity follows from the non-
negativity of g when f0 ≥ 0, and the boundedness is given by the inequality

‖ft‖∞ ≤ ‖f0‖∞ + 2 sup
0≤s≤t

∣∣g(s)
∣∣. �

Lemma B.1 allows to define for all t ≥ 0 the operator Mt on Bb(R+) by setting Mtf0 :=
ft for all f0 ∈ Bb(R+). Then for μ ∈ M+(R+) we define the positive measure μMt by
setting for all Borel set A ⊂ R+

(μMt)(A) := μ(Mt1A).

The axioms of a positive measure are satisfied. First it is clear that (μMt)(∅) = 0 and that
(μMt)(A ∪ B) = (μMt)(A) + (μMt)(B) when A and B are two disjoint Borel sets. The
last axiom deserves a bit more attention. Let (An)n≥0 be an increasing sequence of Borel
sets and A =⋃n≥0 An. We want to check that (μMt)(A) = limn→∞(μMt)(An). The se-
quence (1An)n≥0 is an increasing sequence of Borel functions which converges pointwise
to 1A. By positivity of the semigroup, (Mt1An)n≥0 is an increasing sequence of Borel func-
tions bounded by Mt1. Thus this sequence admits a pointwise limit ft ∈ Bb(R+) which
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clearly satisfies the Duhamel formula (3.11) with f0 = 1A. By uniqueness of the solu-
tion to the Duhamel formula we get that Mt1An → Mt1A pointwise. Then by dominated
or monotone convergence we deduce that (μMt)(A) = μ(Mt1A) = limn→∞ μ(Mt1An) =
limn→∞(μMt)(An). Finally for a signed measure μ ∈ M(R+) we set obviously μMt :=
μ+Mt − μ−Mt .

The family (Mt)t≥0 such defined is a semigroup which satisfies Assumption 2.1. The
semigroup property is a consequence of the uniqueness of the solution to the Duhamel for-
mula (3.11). The positivity has been proved in Lemma B.1. For the strong positivity it fol-
lows from the Duhamel formula (3.11) that for all t, a ≥ 0

mt(a) ≥ e− ∫ t0 b(a+τ) dτ > 0.

The compatibility (μMt)(f ) = μ(Mtf ) follows directly from the definition of μMt and the
definition of Borel functions.

It is claimed in Sect. 3.2.2 that the family (μMt)t≥0 is a measure solution to the renewal
equation. Measure valued solutions to structured population models drew interest in the last
few years [9, 10, 24, 28, 29]. They are mainly motivated by biological applications which
often require to consider initial distributions which are not densities but measures (Dirac
masses for instance). For us it is additionally the suitable framework to apply our ergodic
result in Theorem 3.5. We refer to [24] for the proof that the family (μMt)t≥0 is a measure
valued solution to Eq. (3.10) for any μ ∈ M(R+). Here we only give a heuristic argument
which consists in differentiating the semigroup property μMtf = μMsMt−sf with respect
to s ∈ [0, t]. The chain rule gives

∂s(μMs)Mt−sf + μMs∂s(Mt−sf ) = 0

and since Mtf is a solution to the dual Eq. (B.1) this gives

∂s(μMs)Mt−sf − μMsA(Mt−sf ) = 0

where A is the unbounded operator defined on C1(R+) by Af (a) = f ′(a) − b(a)f (a) +
2b(a)f (0). Taking s = t we get that for all bounded and continuously differentiable func-
tion f

∂t (μMtf ) = μMt(Af ),

which is a weak formulation of Eq. (3.10).

Appendix C: The Max-Age Semigroup

As for the homogeneous renewal equation, to build a solution to Eq. (3.17) we use a duality
approach. We start with the (backward) dual equation

⎧
⎪⎨

⎪⎩

∂sfs,t (a) + ∂afs,t (a) + b(a)fs,t (0) = 0, s < t, 0 ≤ a < as,

fs,t (as) = 0, s < t,

ft,t (a) = ft (a), 0 ≤ a < at .

(C.1)

Integrating this equation along the characteristics we get the Duhamel formula

fs,t (a) = ft (a + t − s) +
∫ t

s

bτ (a + τ − s)fτ,t (0) dτ (C.2)



70 V. Bansaye et al.

where we have denoted bt (a) := b(a)1[0,at )(a) and ft has been extended by 0 beyond at .

Lemma C.1 For all t > 0, ft ∈ Bb([0, at )), and s ∈ [0, t], there exists a unique fs,t ∈
Bb([0, as)) which satisfies (C.2). Additionally if ft ≥ 0 then fs,t ≥ 0.

We do not repeat the proof of this result since it follows exactly the strategy of the proof of
Lemma B.1. As for the homogeneous renewal equation we define the semigroup (Ms,t )0≤s≤t

on (Xt )t≥0 = ([0, at ))t≥0, first on the right hand side by setting for all ft ∈ Bb([0, at ))

Ms,tft := fs,t

where fs,t is the unique solution to Eq. (C.2), and then on the left by setting for all μ ∈
M([0, as)) and all Borel set A ⊂ [0, at )

(μMs,t )(A) = μ+(Ms,t1A) − μ−(Ms,t1A).

For any μ ∈ M([0, as)) the family (μMs,t )s≤t is a measure solution to Eq. (3.17). As for the
homogeneous case a non rigorous justification is obtained by differentiating the semigroup
property μMs,tf = μMs,rMr,tf with respect to r ∈ [s, t] and using that Mr,tf is solution
to (C.1).

The semigroup property for the family (Ms,t )t≥s≥0 is a consequence of the uniqueness of
the solution to the Duhamel formula (C.2). We now verify Assumption 2.1. The positivity
has been proved in Lemma C.1. For the strong positivity it suffices to check that ms,t (0) > 0.
Indeed if ms,t (0) > 0 for all 0 ≤ s ≤ t the Duhamel formula ensures that for a < as

ms,t (a) = 1a+t−s<at +
∫ t

s

bτ (a + τ − s)mτ,t (0) dτ ≥ b

∫ t

s

1a+τ−s<aτ mτ,t (0) dτ > 0.

The positivity of ms,t (0) is clear if t − s < at since

ms,t (0) ≥ 1t−s<at .

Consider now the case t − s ≥ at . The function r �→ mr,t (0) is continuous on [s, t −at ] since
for r ≤ t − at we have

mr,t (0) =
∫ t

r

bτ (τ − r)mτ,t (0) dτ.

Assume by contradiction that there exists r0 ∈ [s, t − at ] such that mr0,t (0) = 0 and
mr,t (0) > 0 for all r ∈ (r0, t]. Then the equality above would give for r = r0

0 =
∫ t

r0

bτ (τ − r0)mτ,t (0) dτ,

which is not possible since the integrand on the right hand side is positive for τ close to r0.
Finally the compatibility condition readily follows from the definition of μMs,t .
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