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Abstract In this paper, an age-structured heroin epidemic model, where the susceptibility of
individuals and the relapse of heroin users in treatment are described by two age-dependent
variables, is formulated and analyzed. The basic reproduction ratio of the model is derived
and proved to be a threshold condition, which completely determines the global behaviors of
the model. The asymptotic smoothness of the semiflow generated by the family of solutions,
uniform persistence and existence of an interior global attractor have been presented for
establishing and defining a Lyapunov functional on this attractor. Some control strategies of
heroin and two special cases of the model formulation are addressed.

Keywords Lyapunov functional · Global stability · Age-structure · Heroin model

Mathematics Subject Classification 34D23 · 34K20 · 92D30

1 Introduction

Heroin, as an opiate drug, has been used widely and become prevalent all over the world,
such as in Europe, Ireland and China [4, 10, 12]. Due to the dependence and abuse, heroin
users are more susceptible to become addicted. According to the survey in [7], the most fre-
quent routes of drug administration were intravenous injection and inhalation. The dramatic
increase in illicit drug abuse severely affects the development of society and economy. At
the same time, treatment of heroin users also produces a major burden on the health sys-
tem of any country. Thus, more progress needs to be made towards reducing the number of
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heroin users and its impacts on society, understanding heroin addition problems and aiding
specialist teams in devising treatment strategies. The spread of heroin habituation and addic-
tion exhibits many features of epidemics, such as infectiousness, rapid diffusion and clear
geographic boundaries. Thus, mathematical modeling methods can be applied to describe
such problems. Based on the theory of compartmental epidemics models [11], these models
can be referred as heroin epidemic models.

During recent years, mathematical modeling of heroin epidemic dynamics has becoming
an important subject of research. These models are governed by systems of ordinary dif-
ferential equations (ODEs), delay differential equations (DDEs) or hybrid systems of both.
In these models, the total population is divided into three disjoint subpopulations, namely,
susceptible, heroin drug users not in treatment, and heroin drug users undergoing treatment,
where the density of each subpopulation at time t is denoted as S(t), U1(t) and U2(t),
respectively. These models are very important and useful in providing insights for establish-
ing heroin epidemic parameters. In the aspect of ODEs models, White et al. [25] presented
a heroin epidemic model with standard incidence rate. Furthermore, Mulone et al. [19] re-
visited this ODEs model and showed that the steady state of the model in [25] is globally
asymptotically stable by using eigenvalue equations and Poincare-Bendixson theory. In the
aspect of DDEs models, Samanta [22] obtained sufficient conditions for permanence and
global asymptotic stability for a delayed nonautonomous heroin epidemic model. Liu et al.
[14] established a heroin epidemic model with distributed delays and analyzed the local sta-
bility of endemic equilibrium, while its global stability was solved by Huang et al. [8] by
means of constructing a suitable Lyapunov functional in a subsequent work.

However, all these models do not include many relevant factors, for example, the level of
susceptibility and relapse. Liu and Wang [13] studied a multi-group heroin epidemic model
with nonlinear incidence rate and relapse delays for the drug users undergoing treatment. In
fact, the susceptibility of individuals varies significantly during their life time, which firstly
was accused by the development of the immune system. Moreover, the changes in the life
style can also influence the number of contacts, and hence influence susceptibility of indi-
viduals, which may depend on age. To emphasize this point, Melnik and Korobeinikov [18]
proposed two models with age-dependent susceptibility, which were described by systems
of ODEs and partial differential equations (PDEs), and established the global stability of the
systems by using the direct Lyapunov method with Volterra type Lyapunov functionals. On
the other hand, relapse, as an important factor in the spread of heroin, is more closely with
the relapse age (the time of heroin users in treatment). We are interested to study whether
the relapse age affects the global stability of heroin epidemic model or not.

Motivated by recent work [18] and considering relapse age, we propose a heroin epi-
demic model with age-dependent susceptibility and relapse. The aim of this paper is to
obtain the global stability of the system incorporated with ODEs and PDEs, which is the
most important feature of mathematical models. It is increasingly important that a heroin
epidemic model has a threshold parameter that determines whether the heroin users will re-
main endemic or get extinct. From the application point of view, it is particularly relevant to
study the stability and attractivity of equilibrium of the system, if it exists. Questions such as
the existence of equilibrium, asymptotic smoothness of solutions, uniform persistence, local
stability and global stability of the model will be addressed. It is shown that the basic repro-
duction ratio is a threshold condition, which completely determines the global behaviors of
the model by constructing suitable Lyapunov functionals.

This paper proceeds as follows. In Sect. 2, we formulate an age-structured heroin epi-
demic model, establish the basic reproduction ratio and then state the main results of this
paper. We present some preliminary results and uniform persistence of the system in Sect. 3.
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In Sect. 4, we prove the main results by means of LaSalle’s invariance principle and con-
structing suitable Lyapunov functionals. Finally, we present brief conclusions and discus-
sions in Sect. 5. And the proofs of our preliminary theorems are given in the Appendices.

2 Model Formulation and Main Results

In this section, we formulate an age-structured heroin epidemic model, and present the basic
reproduction ratio and the existence of equilibria, and state the main results of this paper.

The total population is divided into three subpopulations. The individuals who are healthy
but can contact the heroin users, form the susceptible subpopulation. The influx of this sub-
population is Λ. The susceptible age a denotes the duration time spent in this subpopulation.
Thus, the distribution of the susceptible individuals with respect to the susceptible age a at
time t is denoted by S(t, a), and the total density of individuals in susceptible subpopula-
tion at time t is S(t) = ∫ ∞

0 S(t, a)da. The susceptible individuals become heroin users at
a rate β(a) and remove this subpopulation at a rate μ, where β(a) is the age-dependent
transmission rate. Then, the change rate of S(t, a) at time t and age a is

{
S(t,0) = Λ,

( ∂
∂t

+ ∂
∂a

)S(t, a) = −[β(a)U1(t) + μ]S(t, a),
(1)

where U1(t) denotes the density of individuals who are heroin users but not in treatment, and
is called the heroin users not in treatment subpopulation. The total rate of individuals moving
from the susceptible subpopulation to the heroin users not in treatment subpopulation at time
t is

U1(t)

∫ ∞

0
β(a)S(t, a)da.

The heroin users remove this subpopulation at rates μ + δ1 + p, where μ is the per capita
natural death rate, δ1 is a removal rate for heroin users that includes heroin-related death of
users not in treatment and a spontaneous recovery rate, and p is the treatment rate. Note that
the heroin users in treatment may relapse into heroin users not in treatment subpopulation.
This phenomenon of relapsing is related to the duration time undergone treatment. We call
this time as relapse age, denoted by θ . The distribution of drug users in treatment subpop-
ulation with respect to the relapse age θ at time t is denoted by U2(t, θ). The total density
of individuals in this subpopulation at time t is U2(t) = ∫ ∞

0 U2(t, θ)dθ . The heroin users in
treatment remove this subpopulation at rates δ2(θ) + μ, where δ2(θ) is age-dependent death
rate due to treatment failure. The relapse rate from this subpopulation is given by γ (θ). The
total density of individuals moving from the treatment subpopulation to the heroin users not
in treatment subpopulation at time t is

∫ ∞

0
γ (θ)U2(t, θ)dθ.

Thus, the change rate of U1(t) with time t is

dU1(t)

dt
= U1(t)

∫ ∞

0
β(a)S(t, a)da − (μ + δ1 + p)U1(t) +

∫ ∞

0
γ (θ)U2(t, θ)dθ. (2)
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Fig. 1 The schematic flow diagram of system (4). Here, the terms [βS] and [γU2] stand for∫ ∞
0 β(a)S(t, a)da and

∫ ∞
0 γ (θ)r(t, θ)dθ

Furthermore, the change rate of U2(t, θ) with time t and age θ is
{

U2(t,0) = pU1(t),

( ∂
∂t

+ ∂
∂θ

)U2(t, θ) = −[γ (θ) + δ2(θ) + μ]U2(t, θ).
(3)

Equations (1)–(3) formulate an age-structured heroin epidemic model as the following
form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

( ∂
∂t

+ ∂
∂a

)S(t, a) = −[β(a)U1(t) + μ]S(t, a),

dU1(t)

dt
= U1(t)

∫ ∞
0 β(a)S(t, a)da − (μ + δ1 + p)U1(t) + ∫ ∞

0 γ (θ)U2(t, θ)dθ,

( ∂
∂t

+ ∂
∂θ

)U2(t, θ) = −[γ (θ) + δ2(θ) + μ]U2(t, θ),

S(t,0) = Λ, U2(t,0) = pU1(t),

S(0, a) = S0(a), U1(0) = U 0
1 , U2(0, θ) = U 0

2 (θ).

(4)

Figure 1 shows the schematic flow diagram of system (4). Note that U 0
1 ∈ R

+ and
S0(a),U 0

2 (θ) ∈ L1+(0,∞), where L1+(0,∞) is the space of functions on [0,∞) that are non-
negative and Lebesgue integrable. For two given ages a1 and a2 satisfying 0 ≤ a1 ≤ a2 ≤ ∞,
denote [a1, a2] be the age-interval of heroin users, i.e., an individual with the age outside
that interval can not use heroin. Thus, the density of the susceptible subpopulation with age
a ∈ [a1, a2] at time t is

∫ a2

a1

S(t, a)da.

Similarly, let [θ1, θ2] be the age-interval of heroin users in treatment. The density of heroin
users in treatment subpopulation with age θ ∈ [θ1, θ2] at time t is

∫ θ2

θ1

U2(t, θ)dθ.

We will assume that
∫ ∞

0 β(a)da = ∞ and
∫ ∞

0 γ (θ)dθ = ∞, so that for all time t ,

lim
a→∞S(t, a) = 0, lim

θ→∞U2(t, θ) = 0.

We make the following assumption on the age-dependent variables. To be specific, we have
the following assumption.

Assumption 1 Consider system (4), the parameters satisfy that β(a), γ (θ), δ2(θ) ∈
L1+(0,∞) with respective essential upper bounds β̄, γ̄ , δ̄2, i.e.,

β̄ = ess. sup
a∈[0,∞)

β(a) < +∞, γ̄ = ess. sup
θ∈[0,∞)

γ (θ) < +∞, δ̄2 = ess. sup
θ∈[0,∞)

δ2(θ) < +∞.
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To simplify the notations and without loss of generality, in what follows, we denote that

σ(t, a) = β(a)U1(t) + μ, κ = μ + δ1 + p, α(θ) = γ (θ) + δ2(θ) + μ,

ρ(t, a) = e− ∫ a
0 σ(t−a+s,s)ds , �(θ) = e− ∫ θ

0 α(s)ds , φ =
∫ ∞

0
γ (θ)�(θ)dθ.

Consequently, we have for U1(t) ≥ 0, then

σ(t, a) ≥ μ, 0 ≤ ρ(t, a) ≤ e−μa,
∂

∂a
ρ(t, a) = −σ(t, a)ρ(t, a),

α(θ) ≥ μ, 0 ≤ �(θ) ≤ e−μθ ,
d�(θ)

dθ
= −α(θ)�(θ).

(5)

Following [24], we can solve the first equation of system (4) and obtain (by integration along
the characteristic line t − a = const.) that

S(t, a) = S(t − a,0)e− ∫ a
0 σ(t−a+s,s)ds = S(t − a,0)ρ(t, a)

for almost all t > a ≥ 0 and

S(t, a) = S0(a − t)e− ∫ t
0 σ(s,a−t+s)ds = S0(a − t)e− ∫ a

a−t σ (t−a+s,s)ds

for almost all a ≥ t ≥ 0. Then we have

S(t, a) =
{

Λρ(t, a), t > a ≥ 0;
S0(a − t)

ρ(t,a)

ρ(t,a−t)
, a ≥ t ≥ 0.

(6)

Similarly,

U2(t, θ) =
{

pU1(t − θ)�(θ), t > θ ≥ 0;
U 0

2 (θ − t)
�(θ)

�(θ−t)
, θ ≥ t ≥ 0.

(7)

Note that the average time in the heroin users not in treatment subpopulation on the
first pass is 1/κ and the probability of entering treatment subpopulation is p/κ . Since φ is
the probability of relapsing into the heroin users not in treatment subpopulation, the total
average time in heroin users not in treatment subpopulation (on multiple passes) is

1

κ

[

1 + pφ

κ
+

(
pφ

κ

)2

+ · · ·
]

= 1

κ − pφ
. (8)

Multiplying (8) by Λ
∫ ∞

0 β(a)e−μada gives

�0 = Λ

κ − pφ

∫ ∞

0
β(a)e−μada, (9)

or the equivalent form (36). �0 has a clearly biological interpretation and denotes the average
density of new heroin users produced by one drug user not in treatment introduced into a
susceptible subpopulation.

Now, we are able to state the result on the existence of equilibria for system (4).
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Theorem 1 Let �0 be defined as in (9). For system (4), the following results hold true.

(i) System (4) always has a heroin-free equilibrium E0 = (S∗
0 (·),0,0);

(ii) System (4) has a unique heroin-spread equilibrium E∗ = (S∗(·),U ∗
1 ,U ∗

2 (·)) when
�0 > 1.

For the proof of Theorem 1, please see Appendix A. In order to state the main results of
the paper, we set

ā = inf

{

a :
∫ ∞

a

β(s)ds = 0

}

, θ̄ = inf

{

θ :
∫ ∞

θ

γ (s)ds = 0

}

.

Since the functions β(a), γ (θ) ∈ L1+(0,∞), we have ā, θ̄ > 0. Furthermore, we let

Y = L1(0,∞) ×R× L1(0,∞), Y+ = L1
+(0,∞) ×R

+ × L1
+(0,∞).

We need to partition Y+ as Y+ = Y 0+ ∪ ∂Y 0+, where

Y 0
+ =

{

(S,U1,U2)
T ∈ Y+ :

∫ ā

0
S(t, a)da + U1(t) +

∫ θ̄

0
U2(t, θ)dθ > 0

}

.

Now, we are in the position to state the main results of this paper.

Theorem 2 If �0 < 1, then the heroin-free equilibrium E0 is the unique equilibrium of
system (4), and it is globally asymptotically stable.

Theorem 3 Assume that �0 > 1, then the heroin-free equilibrium E0 is globally asymptot-
ically stable in ∂Y 0+, and the unique heroin-spread equilibrium E∗ of system (4) is globally
asymptotically stable in Y 0+.

3 Preliminary Results and Uniform Persistence

In this section, we first show the asymptotic smoothness of the semi-flow generated by
system (4), and then present some results about uniform persistence and the existence of
global attractors by using the persistence theory for continuous dynamical system.

Now, the space of functions Y+ is equipped with the norm

‖(y1, y2, y3)‖Y+ =
∫ ∞

0
|y1(a)|da + |y2| +

∫ ∞

0
|y3(θ)|dθ.

The initial conditions that belong to the positive cone Y+ can be rewritten as

y0 = (
S0(·),U 0

1 ,U 0
2 (·)) ∈ Y+. (10)

By the standard theory of functional differential equations [5], it can be verified that system
(4) with the initial condition (10) has a unique nonnegative solution. Thus, we can obtain a
continuous semi-flow π :R+ × Y+ → Y+ defined by system (4) such that

π(t, y0) = πt(y0) = (
S(t, ·),U1(t),U2(t, ·)

)
, t ∈R

+, y0 ∈ Y+
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with the norm

‖πt (y0)‖Y+ = ∥
∥(

S(t, ·),U1(t),U2(t, ·)
)∥∥

Y+ =
∫ ∞

0
|S(t, a)|da +|U1(t)|+

∫ ∞

0
|U2(t, θ)|dθ.

Therefore, the following theorem holds true.

Theorem 4 Consider system (4), we define

Ω =
{

(S,U1,U2) ∈ Y+ :
∫ ∞

0
S(t, a)da + U1(t) +

∫ ∞

0
U2(t, θ)dθ ≤ Λ

μ

}

.

Then, Ω is positively invariant for π , that is, πt (y0) ∈ Ω , for all t ∈ R
+ and y0 ∈ Ω . Fur-

thermore, π is point dissipative and Ω attracts all points in Y+.

For the proof of Theorem 4, please see Appendix B. Combining Assumption 1 and The-
orem 4, the following proposition holds true.

Proposition 1 If y0 ∈ Y+ and ‖y0‖Y+ ≤ L for some constant L ≥ Λ/μ, then the following
statement holds true for t ≥ 0:

0 ≤
∫ ∞

0
S(t, a)da,U1(t),

∫ ∞

0
U2(t, θ)dθ ≤ L.

In order to obtain global behaviors of system (4), it is important to prove that the semi-
flow {π(t)}t∈R+ is asymptotically smooth. Now, we give some definitions and lemmas which
are useful for proving asymptotic smoothness.

Definition 1 ([6]) A semi-flow πt (y0) : Y+ → Y+ is said to be asymptotically smooth, if,
for any nonempty, closed bounded set B ⊂ Y+ for which πt (B) ⊂ B , there is a compact set
B0 ⊂ B such that B0 attracts B .

The following lemma will be used to prove the asymptotic smoothness of {π(t)}t∈R+ .

Lemma 1 ([6]) If the following two conditions hold, then the semi-flow πt(y0) = π̂t (y0) +
π̌t (y0) :R+ × Y+ → Y+ is asymptotically smooth in Y+.

(i) There exists a continuous function ϕ :R+ ×R
+ → R

+ such that ϕ(t, r) → 0 as t → ∞
and ‖π̂t (y0)‖Y+ ≤ ϕ(t, r) if ‖y0‖Y+ ≤ r .

(ii) For t ≥ 0, π̌t (y0) is completely continuous.

Since Y+ is the infinite dimensional Banach space and L1+(0,∞) is a component of Y+,
then a notion of compactness in L1+(0,∞) is needed. Note that being an infinite dimen-
sional space, boundedness does not imply precompactness. Thus, the following definition
and lemma are required.

Definition 2 A semi-flow π̌t (y0) :R+ ×Y+ → Y+ is said to be completely continuous if for
each t > 0 and each bounded set B ⊂ Y+, we have {π̌r (B)}0≤r≤t is bounded and {π̌t (B)}t∈R+
is precompact.
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Lemma 2 ([1]) Let K ⊂ Lp(0,∞) be closed and bounded where p ≥ 1. Then K is compact
if the following conditions hold:

(i) limh→0

∫ ∞
0 |u(z + h) − u(z)|pdz = 0 uniformly for u ∈ K . (u(z + h) = 0 if z + h < 0).

(ii) limh→∞
∫ ∞

h
|u(z)|pdz = 0 uniformly for u ∈ K .

Based on Lemmas 1–2, the semi-flow {π(t)}t∈R+ satisfies the following theorem.

Theorem 5 The semi-flow {π(t)}t∈R+ , generated by (4), is asymptotically smooth. Further-
more, the semi-flow {π(t)}t∈R+ has a global attractor T contained in Y+, which attracts the
bound sets of Y+.

For the proof of Theorem 5, please see Appendix C. Following [16], the following lemma
and theorem are necessary for the proof of the uniform persistence.

Lemma 3 ([2]) Consider the following scalar Volterra integro-differential equations:

dy(t)

dt
=

∫ ∞

0
h(a)y(t − a)da − cy(t), y(0) > 0,

where h(·) ∈ L1+(0,∞), c > 0 and
∫ ∞

0 h(a)da > c. There is a unique solution y(t) which is
unbounded.

Theorem 6 The subsets Y 0+ and ∂Y 0+ are both positively invariant under the semi-flow
{π(t)}t∈R+ . Furthermore, the heroin-free equilibrium E0 is globally asymptotically stable
for the semi-flow {π(t)}t∈R+ restricted to ∂Y 0+.

For the proof of Theorem 6, please see Appendix D. Now, we are able to show the
uniform persistence.

Theorem 7 Assume that �0 > 1. The semi-flow {π(t)}t∈R+ is uniformly persistent with re-
spect to (Y 0+, ∂Y 0+), i.e., there exists ε > 0 which is independent of initial values such that
limt→∞ ‖πt(y)‖Y+ ≥ ε for y ∈ Y 0+. Moreover, there exists a compact subset T0 of Y 0+ which
is a global attractor for {π(t)}t∈R+ in Y 0+.

For the proof of Theorem 7, please see Appendix E.

4 Proofs of the Main Results

In this section, Theorems 2–3 are proved via analyzing the corresponding characteristic
equations and constructing suitable Lyapunov functionals. Before proving our main results,
we define the following functions which will be important in our proofs.

We define a Volterra type Lyapunov function with the form

g(y) = y − 1 − lny (11)

and a positive function with the form

ω(θ) =
∫ ∞

θ

γ (s) exp

{

−
∫ s

θ

α(τ )dτ

}

ds. (12)
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Clearly, g(y) is positive-definite for all y > 0 and g(y) has its unique global minimum at
y = 1 with g(1) = 0. Furthermore, g′(y) = 1 − 1/y. This type function is widely used in
the proofs of global stability, see [8, 9, 18]. It can be easily checked that ω(θ) > 0 for
θ ∈ [0,+∞) and ω(0) = φ. The derivative of ω(θ) satisfies that

dω(θ)

dθ
= ω(θ)α(θ) − γ (θ). (13)

Now, we give proofs of the main results in this paper.

4.1 Proof of Theorem 2

Firstly, we show the local stability of the heroin-free equilibrium E0. Introducing the pertur-
bation variables

x1(t, a) = S(t, a) − S∗
0 (a), x2(t) = U1(t), x3(t, θ) = U2(t, θ),

and linearizing system (4) at the equilibrium E0 takes the following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

( ∂
∂t

+ ∂
∂a

)x1(t, a) = −μx1(t, a) − β(a)σ ∗(a)x2(t),

dx2(t)

dt
= x2(t)

∫ ∞
0 β(a)S∗

0 (a)da − κx2(t) + ∫ ∞
0 γ (θ)x3(t, θ)dθ,

( ∂
∂t

+ ∂
∂θ

)x3(t, θ) = −α(θ)x3(t, θ),

x1(t,0) = 0, x3(t,0) = px2(t),

x1(0, a) = S0(a), x2(0) = U 0
1 , x3(0, θ) = U 0

2 (θ).

(14)

In order to get the characteristic equation of E0, we set the following kind of solution of
system (14)

x1(t, a) = x0
1 (a)eλt , x2(t) = x0

2e
λt , x3(t, θ) = x0

3 (θ)eλt , (15)

where x0
1 (a), x0

2 , x
0
3 (θ) will be determined later. Inserting (15) into (14), we get

{
λx0

1 (a) + dx0
1 (a)

da
= −μx0

1 (a) − β(a)σ ∗(a)x0
2 ,

x0
1 (0) = 0,

(16)

λx0
2 = x0

2

∫ ∞

0
β(a)S∗

0 (a)da − κx0
2 +

∫ ∞

0
γ (θ)x0

3 (θ)dθ, (17)

{
λx0

3 (θ) + dx0
3 (θ)

dθ
= −α(θ)x0

3 (θ),

x0
3 (0) = px0

2 .
(18)

Integrating the first equation of (18) from 0 to θ yields

x0
3 (θ) = px0

2e
− ∫ θ

0 (λ+α(s))ds . (19)

Substituting (19) into (17) and solving (17), we obtain the following characteristic equation
corresponding to the equilibrium E0

0 =
∫ ∞

0
β(a)S∗

0 (a)da − κ + p

∫ ∞

0
γ (θ)e− ∫ θ

0 (λ+α(s))dsdθ − λ. (20)
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Denoting the right hand side of (20) as L0(λ). Obviously, L0(λ) is a continuously differ-
ential function with limλ→+∞ L0(λ) = −∞, limλ→−∞ L0(λ) = +∞, and L′

0(λ) < 0. Thus,
Eq. (20) has a unique real root λ∗. Note that

L0(0) = (κ − pφ)(�0 − 1).

Then, we have λ∗ < 0 if �0 < 1, and λ∗ > 0 if �0 > 1. Let λ = x0 + y0i be an arbitrary
complex root to Eq. (20) with x0 ≥ 0. Then

Re
(
L0

(
x0 + y0i

)) =
∫ ∞

0
β(a)S∗

0 (a)da − κ + p

∫ ∞

0
γ (θ)e−x0θ cos

(
y0θ

)
e− ∫ θ

0 α(s)dsdθ − x0

≤
∫ ∞

0
β(a)S∗

0 (a)da − κ + p

∫ ∞

0
γ (θ)e−x0θ e− ∫ θ

0 α(s)dsdθ − x0

= L0

(
x0

)
.

Thus,

0 = |L0(λ)| = Re
(
L0

(
x0 + y0i

)) ≤ L0

(
x0

)
,

which implies that x0 ≤ λ∗ < 0. Thus, all the roots of Eq. (20) have negative real parts if and
only if �0 < 1. Therefore, the heroin-free equilibrium E0 is locally asymptotically stable if
�0 < 1.

Now, we consider the global stability of E0. Set the Lyapunov functional as

V0(t) =
∫ ∞

0
S∗

0 (a)g

(
S(t, a)

S∗
0 (a)

)

da + U1(t) +
∫ ∞

0
ω(θ)U2(t, θ)dθ.

The derivative of V0(t) along with the solutions of system (4) is

dV0(t)

dt
=

∫ ∞

0
S∗

0 (a)

(
1

S∗
0 (a)

− 1

S(t, a)

)
∂

∂t
S(t, a)da + dU1(t)

dt
+

∫ ∞

0
ω(θ)

∂

∂t
U2(t, θ)dθ

= −
∫ ∞

0
S∗

0 (a)

(
S(t, a)

S∗
0 (a)

− 1

)(
Sa(t, a)

S(t, a)
+ σ(t, a)

)

da

+ U1(t)

∫ ∞

0
β(a)S(t, a)da − κU1(t) +

∫ ∞

0
γ (θ)U2(t, θ)dθ

−
∫ ∞

0
ω(θ)

∂

∂t
U2(t, θ)dθ,

where Sa(t, a) denotes ∂
∂a

S(t, a). Note that

∂

∂a
g

(
S(t, a)

S∗
0 (a)

)

=
(

S(t, a)

S∗
0 (a)

− 1

)(
Sa(t, a)

S(t, a)
+ μ

)

and

dS∗
0 (a)

da
= −μS∗

0 (a).
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Hence, using integration by parts, we have

dV0(t)

dt
= − S∗

0 (a)g

(
S(t, a)

S∗
0 (a)

)∣
∣
∣
∣

a=∞

a=0

+
∫ ∞

0
g

(
S(t, a)

S∗
0 (a)

)
dS∗

0 (a)

da
da

+ U1(t)

∫ ∞

0
β(a)S∗

0 (a)da − κU1(t) − ω(θ)U2(t, θ)|θ=∞
θ=0

= S∗
0 (0)g

(
S(t,0)

S∗
0 (0)

)

−
∫ ∞

0
μS∗

0 (a)g

(
S(t, a)

S∗
0 (a)

)

da + U1(t)

∫ ∞

0
β(a)S∗

0 (a)da

− κU1(t) + ω(0)U2(t,0).

Recalling that S∗
0 (0) = S(t,0) = Λ, ω(0) = φ and U2(t,0) = pU1(t). Then, one has

g( S(t,0)

S∗
0 (0)

) = 0. Thus, we obtain that

dV0(t)

dt
= −

∫ ∞

0
μS∗

0 (a)g

(
S(t, a)

S∗
0 (a)

)

da + U1(t)(κ − pφ)(�0 − 1) (21)

holds since �0 < 1 and g(y) ≥ 0 for all y > 0. Moreover, dV0(t)/dt = 0 if and only if
S(t, a) = S∗

0 (a) and U1(t) = 0. When S(t, a) = S∗
0 (a) and U1(t) = 0, system (4) has the

unique solution E0. Thus, M0 = {E0} ⊂ Ω is the largest invariant subset of {(S,U1,U2) :
dV0(t)/dt = 0}. By the Lyapunov-LaSalle invariance principle [15], the heroin-free equilib-
rium E0 is globally asymptotically stable provided �0 < 1. The proof is completed.

4.2 Proof of Theorem 3

Firstly, let us consider that the unique heroin-spread equilibrium E∗ is locally asymptotically
stable. Introducing the perturbation variables

x̆1(t, a) = S(t, a) − S∗(a), x̆2(t) = U1(t) − U ∗
1 , x̆3(t, θ) = U2(t, θ) − U ∗

2 (θ),

and linearizing system (4) at E∗ yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ∂
∂t

+ ∂
∂a

)x̆1(t, a) = −σ ∗(a)x̆1(t, a) − β(a)S∗(a)x̆2(t),

dx̆2(t)

dt
= x̆2(t)

∫ ∞
0 β(a)S∗(a)da + U ∗

1

∫ ∞
0 β(a)x̆1(t, a)da − κx̆2(t)

+ ∫ ∞
0 γ (θ)x̆3(t, θ)dθ,

( ∂
∂t

+ ∂
∂θ

)x̆3(t, θ) = −α(θ)x̆3(t, θ),

x̆1(t,0) = 0, x̆3(t,0) = px̆2(t),

x̆1(0, a) = S0(a), x̆2(0) = U 0
1 , x̆3(0, θ) = U 0

2 (θ).

(22)

Let

x̆1(t, a) = x̆0
1 (a)eλt , x̆2(t) = x̆0

2e
λt , x̆3(t, θ) = x̆0

3 (θ)eλt , (23)

where x̆0
1 (a), x̆0

2 , x̆
0
3 (θ) will be determined later. Substituting (23) into (22), we have

{
λx̆0

1 (a) + dx̆0
1 (a)

da
= −σ ∗(a)x̆0

1 (a) − β(a)S∗(a)x̆0
2 ,

x̆0
1 (0) = 0,

(24)
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λx̆0
2 = x̆0

2

∫ ∞

0
β(a)S∗(a)da + U ∗

1

∫ ∞

0
β(a)x̆0

1(a)da − κx̆0
2 +

∫ ∞

0
γ (θ)x̆0

3 (θ)dθ, (25)

{
λx̆0

3 (θ) + dx̆0
3 (θ)

dθ
= −α(θ)x̆0

3 (θ),

x̆0
3 (0) = px̆0

2 .
(26)

Integrating the first equation of (24) and (26) from 0 to a and from 0 to θ , together with the
boundary conditions, yields

x̆0
1 (a) = −x̆0

2e
− ∫ a

0 (λ+σ∗(s))ds

∫ a

0
β(τ)S∗(τ )e

∫ τ
0 (λ+σ∗(s))dsdτ, (27)

x̆0
3 (θ) = px̆0

2e
− ∫ θ

0 (λ+α(s))ds . (28)

Substituting the above two equations into (25) and solving (25), we obtain the following
characteristic equation

λ + κ + U ∗
1

∫ ∞

0
β(a)e− ∫ a

0 (λ+σ∗(s))ds

∫ a

0
β(τ)S∗(τ )e

∫ τ
0 (λ+σ∗(s))dsdτda

=
∫ ∞

0
β(a)S∗(a)da + p

∫ ∞

0
γ (θ)e− ∫ θ

0 (λ+α(s))dsdθ. (29)

Suppose that (29) has a root λ with Re(λ) ≥ 0. Since
∫ ∞

0 β(a)S∗(a)da = κ − pφ and φ =
∫ ∞

0 γ (θ)e− ∫ θ
0 α(s)dsdθ , we have

∣
∣
∣
∣

∫ ∞

0
β(a)S∗(a)da + p

∫ ∞

0
γ (θ)e− ∫ θ

0 (λ+α(s))dsdθ

∣
∣
∣
∣

≤
∫ ∞

0
β(a)S∗(a)da + p

∫ ∞

0
γ (θ)e− ∫ θ

0 α(s)dsdθ

= κ

On the other hand, obviously

∣
∣
∣
∣λ + κ + U ∗

1

∫ ∞

0
β(a)e− ∫ a

0 (λ+σ∗(s))ds

∫ a

0
β(τ)S∗(τ )e

∫ τ
0 (λ+σ∗(s))dsdτda

∣
∣
∣
∣ > κ,

which contradicts to (29). This means that all the roots of Eq. (29) have negative real parts.
Consequently, the heroin-spread equilibrium E∗ of system (4) is locally asymptotically sta-
ble if �0 > 1.

In the following, we show that E∗ is globally asymptotically stable by constructing a
Lyapunov functional as follows

V∗(t) =
∫ ∞

0
S∗(a)g

(
S(t, a)

S∗(a)

)

da + U ∗
1 g

(
U1(t)

U ∗
1

)

+
∫ ∞

0
ω(θ)U ∗

2 (θ)g

(
U2(t, θ)

U ∗
2 (θ)

)

dθ.
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The derivative of V∗(t) along with the solutions of system (4) satisfies that

dV∗(t)
dt

=
∫ ∞

0
S∗(a)

(
1

S∗(a)
− 1

S(t, a)

)
∂

∂t
S(t, a)da +

(

1 − U ∗
1

U1(t)

)
dU1(t)

dt

+
∫ ∞

0
ω(θ)U ∗

2 (θ)
∂

∂t
g

(
U2(t, θ)

U ∗
2 (θ)

)

dθ

= −
∫ ∞

0
S∗(a)

(
S(t, a)

S∗(a)
− 1

)(
Sa(t, a)

S(t, a)
+ σ(t, a)

)

da

+
(

1 − U ∗
1

U1(t)

)(

U1(t)

∫ ∞

0
β(a)S(t, a)da − κU1(t) +

∫ ∞

0
γ (θ)U2(t, θ)dθ

)

−
∫ ∞

0
ω(θ)U ∗

2 (θ)

(
U2(t, θ)

U ∗
2 (θ)

− 1

)(
U2θ (t, θ)

U2(t, θ)
+ α(θ)

)

dθ,

where U2θ (t, θ) denotes ∂
∂θ

U2(t, θ). Note that

∂

∂a
g

(
S(t, a)

S∗(a)

)

=
(

S(t, a)

S∗(a)
− 1

)(
Sa(t, a)

S(t, a)
+ μ

)

,

∂

∂a
g

(
U2(t, θ)

U ∗
2 (θ)

)

=
(

U2(t, θ)

U ∗
2 (θ)

− 1

)(
U2θ (t, θ)

U2(t, θ)
+ α(θ)

)

and

dS∗(a)

da
= −σ ∗(a)S∗(a),

dU ∗
2 (θ)

dθ
= −α(θ)U ∗

2 (θ).

Hence, using integration by parts, we have

dV∗(t)
dt

= − S∗(a)g

(
S(t, a)

S∗(a)

)∣
∣
∣
∣

a=∞

a=0

−
∫ ∞

0
σ ∗(a)S∗(a)g

(
S(t, a)

S∗(a)

)

da

+
∫ ∞

0
γ (θ)U ∗

2 (θ)

(
U2(t, θ)

U ∗
2 (θ)

− U1(t)

U ∗
1

− U ∗
1 U2(t, θ)

U1(t)U
∗
2 (θ)

+ 1

)

dθ

− ω(θ)U ∗
2 (θ)g

(
U2(t, θ)

U ∗
2 (θ)

)∣
∣
∣
∣

θ=∞

θ=0

−
∫ ∞

0
γ (θ)U ∗

2 (θ)g

(
U2(t, θ)

U ∗
2 (θ)

)

dθ

= S∗(0)g

(
S(t,0)

S∗(0)

)

−
∫ ∞

0
σ ∗(a)S∗(a)g

(
S(t, a)

S∗(a)

)

da + ω(0)U ∗
2 (0)g

(
U2(t,0)

U ∗
2 (0)

)

+
∫ ∞

0
γ (θ)U ∗

2 (θ)

(

−U1(t)

U ∗
1

− U ∗
1 U2(t, θ)

U1(t)U
∗
2 (θ)

+ 1 + 1 + ln
U2(t, θ)

U ∗
2 (θ)

)

dθ.

Note that S∗(0) = S(t,0) = Λ, ω(0) = φ, U ∗
2 (0) = pU ∗

1 and U2(t,0) = pU1(t). Then
g( S(t,0)

S∗(0)
) = 0 and g(

U2(t,0)

U∗
2 (0)

) = g(
U1(t)

U∗
1

). Furthermore, since

ln
U2(t, θ)

U ∗
2 (θ)

= ln
U ∗

1 U2(t, θ)

U1(t)U
∗
2 (θ)

+ ln
U1(t)

U ∗
1
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and pφU ∗
1 = ∫ ∞

0 γ (θ)�(θ)pU ∗
1 dθ = ∫ ∞

0 γ (θ)U ∗
2 (θ)dθ hold, we obtain that

dV∗(t)
dt

= −
∫ ∞

0
σ ∗(a)S∗(a)g

(
S(t, a)

S∗(a)

)

da + pφU ∗
1 g

(
U1(t)

U ∗
1

)

−
∫ ∞

0
γ (θ)U ∗

2 (θ)g

(
U1(t)

U ∗
1

)

dθ −
∫ ∞

0
γ (θ)U ∗

2 (θ)g

(
U ∗

1 U2(t, θ)

U1(t)U
∗
2 (θ)

)

dθ

= −
∫ ∞

0
σ ∗(a)S∗(a)g

(
S(t, a)

S∗(a)

)

da −
∫ ∞

0
γ (θ)U ∗

2 (θ)g

(
U ∗

1 U2(t, θ)

U1(t)U
∗
2 (θ)

)

dθ,

which implies that dV∗(t)/dt ≤ 0 holds due to g(y) ≥ 0 for all y > 0. What’s more,
dV∗(t)/dt = 0 if and only if S(t, a) = S∗(a), U2(t, θ) = U ∗

2 (θ) and U ∗
1 U2(t, θ) =

U1(t)U
∗
2 (θ), thus, U1(t) = U ∗

1 holds. When S(t, a) = S∗(a) and U1(t) = U ∗
1 , system (4)

has the unique solution E∗. Hence, M∗ = {E∗} ⊂ Ω is the largest invariant subset of
{(S,U1,U2) : dV∗(t)/dt = 0}. By the Lyapunov-LaSalle invariance principle [15], E∗ is
globally asymptotically stable when �0 > 1. This finishes the proof.

5 Conclusions and Discussions

This paper investigates the global behaviors of an age-structured heroin epidemic model
which includes two age-dependent variables describing the susceptibility of individuals and
the relapse of heroin users in treatment. We establish that the global behaviors are completely
determined by the basic reproduction ratio �0. If �0 < 1, then the heroin users eventually
are under control in the sense that the heroin-free equilibrium is globally asymptotically
stable (see Fig. 2); while if �0 > 1, then there exists a unique heroin-spread equilibrium and
it is globally asymptotically stable (see Fig. 3). Clearly, the age-dependent susceptibility and
relapse always influence the basic reproduction ratio, thus, influence the global behaviors of

Fig. 2 The global asymptotically stability of the heroin-free equilibrium. Take Λ = 1 and �0 = 0.28 < 1

Fig. 3 The global asymptotically stability of the heroin-present equilibrium. Take Λ = 13 and �0 = 3.59 > 1
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Table 1 The biological
meanings for parameter values of
system (4)

Parameters Biological meanings Values Resources

β(a) Transmission rate Varies Estimated

μ Natural death rate 0.02 [3, 20]

δ1 Death rate due to heroin use 0.02 [3, 20]

δ2(θ) Death rate due to treatment failure Varies Estimated

p Treatment rate 0.01 [20, 21]

γ (θ) Relapsing rate Varies Estimated

heroin epidemic model. Here, it should be noted that it is necessary to show the asymptotic
smoothness of the family of solutions and uniform persistence of the system which are
two major aspects in applying the means of Lyapunov functionals and LaSalle’s invariance
principle. To illustrate the main theoretical results, we take the constant parameter values in
Table 1 and the remaining age-dependent functions as

β(a) = 3

100

(

1 + sin
(a − 30)π

60

)

, δ2(θ) = 1

10

(

1 + sin
(θ − 20)π

40

)

,

γ (θ) = 1

65

(

1 + sin
(θ − 1)π

2

)

.

Here, we assume that the maximum life times of susceptible and relapsing individuals are 60
and 40 years, respectively. In general, the treatment time is 2 years and the average treatment
time is 1 year. The average values of β(a), δ2(θ) and γ (θ) are 3/100, 1/10 and 1/65, which
are the same with those values given in [26].

Furthermore, we can provide a special case of model (4) when the age-dependent vari-
ables γ (θ) and δ2(θ) are taken as positive constants, i.e., γ (θ) = γ0 and δ2(θ) = δ2. Then,
model (4) is equivalent to the following model

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

( ∂
∂t

+ ∂
∂a

)S(t, a) = −[β(a)U1(t) + μ]S(t, a),

dU1(t)

dt
= U1(t)

∫ ∞
0 β(a)S(t, a)da − (μ + δ1 + p)U1(t) + γ0U2(t),

dU2(t)

dt
= pU1(t) − (μ + δ2)U2(t) − γ0U2(t),

S(t,0) = Λ,

S(0, a) = S0(a), U1(0) = U 0
1 , U2(0) = U 0

2 .

(30)

Model (30) describes a heroin epidemic model with age-dependent susceptibility. In fact, if
we relabel U1(t),U2(t) as I (t),R(t) and don’t consider the relapse of disease (γ0 = 0), then
model (30) is just that investigated in [18]. Moreover, if the age-dependent variable β(a) is
taken as positive constant, i.e., β(a) = β0. Then, the specific model of model (4) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

S(t) = Λ − β0U1(t)S(t) − μS(t),

dU1(t)

dt
= β0U1(t)S(t) − (μ + δ1 + p)U1(t) + ∫ ∞

0 γ (θ)U2(t, θ)dθ,

( ∂
∂t

+ ∂
∂a

)U2(t, a) = −(γ (θ) + δ2(θ) + μ)U2(t, a),

U2(t,0) = pU1(t),

S(0) = S0, U1(0) = U 0
1 , U2(0, a) = U 0

2 (a),

(31)
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Fig. 4 The effects of treatment
rate and birth rate on the basic
reproduction ratio

which is just that investigated in [26]. According to Theorems 2–3, the global behaviors of
models (30)–(31) are completely determined by the basic reproduction ratio.

Finally, to control the spread of heroin, several related strategies should be made to reduce
the reproduction number to below unity. Note that the basic reproduction ratio has the form

�0 = Λ

(μ + δ1 + p) − pφ

∫ ∞

0
β(a)e−μada.

Directly computing shows that

∂�0

∂Λ
= 1

(μ + δ1 + p) − pφ

∫ ∞

0
β(a)e−μada > 0,

∂�0

∂δ1
= − 1

((μ + δ1 + p) − pφ)2

∫ ∞

0
β(a)e−μada < 0,

∂�0

∂p
= − 1 − φ

((μ + δ1 + p) − pφ)2

∫ ∞

0
β(a)e−μada < 0.

Hence, the efficient methods of controlling the spread of heroin include reducing the input
rate and improving the treatment rate. Besides, the numerical simulation shows the influ-
ences of Λ and p on �0 (see Fig. 4). It follows from the form of the basic reproduction ratio
that it is affected by the age-dependent susceptibility and relapse. Specifically,

∂�0

∂φ
= pΛ

((μ + δ1 + p) − pφ)2

∫ ∞

0
β(a)e−μada > 0,

which implies that �0 is an increasing function of φ. Furthermore, φ is an increasing func-
tion of relapse rate γ (θ). Thus, reducing the relapse of heroin users in treatment is benefit for
controlling the spread of heroin. Moreover, decreasing the number of contacts, and hence
the susceptibility of individuals, is also helpful for the reduction of the value of the basic
reproduction ratio. Those may provide the theoretical basis for the health workers to design
feasible control strategies.
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Appendix A: Proof of Theorem 1

Proof The steady state (S∗(·),U ∗
1 ,U ∗

2 (·)) of system (4) satisfies the equalities

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS∗(a)

da
= −σ ∗(a)S∗(a),

∫ ∞
0 β(a)S∗(a)U ∗

1 da − κU ∗
1 + ∫ ∞

0 γ (θ)U ∗
2 (θ)dθ = 0,

dU∗
2 (θ)

dθ
= −α(θ)U ∗

2 (θ),

S∗(0) = Λ,

U ∗
2 (0) = pU ∗

1 ,

(32)

where σ ∗(a) = β(a)U ∗
1 + μ. From the first equation of system (32), we obtain that

∫ a

0

dS∗(τ )

S∗(τ )
= −

∫ a

0
σ ∗(s)ds.

Combining the fourth equation of system (32), one has

S∗(a) = S∗(0)e− ∫ a
0 σ∗(s)ds = Λe− ∫ a

0 σ∗(s)ds . (33)

Similarly, it follows from the third and the fifth equations of system (32) that

U ∗
2 (θ) = U ∗

2 (0)e− ∫ θ
0 α(s)ds = pU ∗

1 �(θ). (34)

If U ∗
1 = 0, then we have U ∗

2 (θ) = 0 from (34). From (33), we obtain that

S∗
0 (a) = Λe−μa. (35)

Then, system (4) always has a heroin-free equilibrium E0

E0 = (
S∗

0 (·),0,0
)
, where S∗

0 (a) = Λe−μa.

According to (9), �0 can be rewritten as

�0 =
∫ ∞

0 β(a)S∗
0 (a)da

κ − pφ
. (36)

If U ∗
1 
= 0, then from (33), we have

∫ ∞

0
β(a)S∗(a)da =

∫ ∞

0
β(a)S∗

0 (a)e− ∫ a
0 β(s)U∗

1 dsda. (37)
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Furthermore, following the second equation of system (32), one gets

∫ ∞

0
β(a)S∗(a)da + p

∫ ∞

0
γ (θ)�(θ)dθ = κ.

Clearly, it is equivalent to the following form

∫ ∞

0
β(a)S∗(a)da = κ − pφ, (38)

which together with (37), we have

∫ ∞

0
β(a)S∗

0 (a)e− ∫ a
0 β(s)U∗

1 dsda = κ − pφ. (39)

That is,

Q
(
U ∗

1

) := 1

κ − pφ

∫ ∞

0
β(a)S∗

0 (a)e− ∫ a
0 β(s)U∗

1 dsda = 1. (40)

Obviously, one yields

Q(0) = �0, Q′(U ∗
1

)
< 0, lim

U∗
1 →+∞

Q
(
U ∗

1

) = 0, lim
U∗

1 →−∞
Q

(
U ∗

1

) = +∞.

Thus, Eq. (40) has a unique positive solution U ∗
1 if �0 > 1. Therefore, system (4) has

a unique heroin-spread equilibrium (positive equilibrium) E∗ = (S∗(·),U ∗
1 ,U ∗

2 (·)) when
�0 > 1. �

Appendix B: Proof of Theorem 4

Proof From the definition of the semi-flow, we have

d

dt
‖πt (y0)‖Y+ = d

dt

∫ ∞

0
S(t, a)da + dU1(t)

dt
+ d

dt

∫ ∞

0
U2(t, θ)dθ. (41)

Adding all equations of system (4), and using the boundary conditions and (ii) of Assump-
tion 1 yield

d

dt

(∫ ∞

0
S(t, a)da + U1(t) +

∫ ∞

0
U2(t, θ)dθ

)

≤
∫ ∞

0
−

(
∂

∂a
S(t, a) + (

β(a)U1(t) + μ
)
S(t, a)

)

da + U1(t)

∫ ∞

0
β(a)S(t, a)da

− (μ + p)U1(t) +
∫ ∞

0
γ (θ)U2(t, θ)dθ

+
∫ ∞

0
−

(
∂

∂θ
U2(t, θ) + (

γ (θ) + μ
)
U2(t, θ)

)

dθ

= −S(t, a)|a=∞
a=0 − U2(t, θ)|θ=∞

θ=0 − pU1(t)
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− μ

(∫ ∞

0
S(t, a)da + U1(t) +

∫ ∞

0
U2(t, θ)dθ

)

≤ Λ − μ

(∫ ∞

0
S(t, a)da + U1(t) +

∫ ∞

0
U2(t, θ)dθ

)

.

Hence, using the variation of constants formula, we have for t ≥ 0

‖πt(y0)‖Y+ ≤ Λ

μ
+ e−μt

(

‖y0‖Y+ − Λ

μ

)

, (42)

which implies that πt (y0) ∈ Ω holds true for any solution of (4) satisfying y0 ∈ Ω and
t ∈ R

+. Hence, we show the positive invariance of Ω for semi-flow π .
Furthermore, taking the limitation of (42) with respect to time t , one has for any y0 ∈ Y+

lim sup
t→∞

‖πt(y0)‖Y+ ≤ Λ

μ
,

which exhibits that π is point dissipative and Ω attracts all points in Y+. This completes the
proof. �

Appendix C: Proof of Theorem 5

Proof Let us decompose πt (y0) into the following two operators π̂t (y0) and π̌t (y0):

π̂t (y0) := (
y(t, ·),0, y2(t, ·)

)
, π̌t (y0) := (

ỹ(t, ·),U1(t), ỹ2(t, ·)
)
,

where

y(t, a) :=
{

0, t > a ≥ 0;
S(t, a), a ≥ t ≥ 0.

and y2(t, θ) :=
{

0, t > θ ≥ 0;
U2(t, θ), θ ≥ t ≥ 0.

ỹ(t, a) =
{

S(t, a), t > a ≥ 0;
0, a ≥ t ≥ 0.

and ỹ2(t, θ) =
{

U2(t, θ), t > θ ≥ 0;
0, θ ≥ t ≥ 0.

Then we have πt (y0) = π̂t (y0) + π̌t (y0) :R+ × Y+ → Y+ for t ∈R
+.

To show that the conditions (i) and (ii) in Lemma 1 hold, we divide it into two steps.
Step 1. From (6) and (7), one has

y(t, a) =
{

0, t > a ≥ 0;
S0(a − t)

ρ(t,a)

ρ(t,a−t)
, a ≥ t ≥ 0.

and y2(t, θ) =
{

0, t > θ ≥ 0;
U 0

2 (θ − t)
�(θ)

�(θ−t)
, θ ≥ t ≥ 0.

Then, we have

‖π̂t (y0)‖Y+ =
∫ ∞

0
|y(t, a)|da + |0| +

∫ ∞

0
|y2(t, θ)|dθ

=
∫ ∞

t

∣
∣
∣
∣S0(a − t)

ρ(t, a)

ρ(t, a − t)

∣
∣
∣
∣da +

∫ ∞

t

∣
∣
∣
∣U

0
2 (θ − t)

�(θ)

�(θ − t)

∣
∣
∣
∣dθ
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=
∫ ∞

0

∣
∣
∣
∣S0(τ )

ρ(t, t + τ)

ρ(t, τ )

∣
∣
∣
∣dτ +

∫ ∞

0

∣
∣
∣
∣U

0
2 (τ )

�(t + τ)

�(τ )

∣
∣
∣
∣dτ

=
∫ ∞

0

∣
∣
∣
∣S0(τ ) exp

{

−
∫ t+τ

τ

σ (t, υ)dυ

}∣
∣
∣
∣dτ

+
∫ ∞

0

∣
∣
∣
∣U

0
2 (τ ) exp

{

−
∫ t+τ

τ

α(υ)dυ

}∣
∣
∣
∣dτ.

Note that σ(t, a) ≥ μ and α(θ) ≥ μ for a, θ ≥ 0. For y0 ∈ Ω and ‖y0‖Y+ ≤ r , one has

‖π̂t (y0)‖Y+ ≤ e−μt

(∫ ∞

0
|S0(τ )|dτ + |0| +

∫ ∞

0
|U 0

2 (τ )|dτ

)

= e−μt‖y0‖Y+ ≤ re−μt .= ϕ(t, r).

It is obvious that limt→∞ ϕ(t, r) = 0. This completes the verification for (i) in Lemma 1.
Step 2. It follows from Definition 2 that for any B ⊂ Y+ which is closed and bounded, it

only need to show that π̌t (B) is bounded and precompact. According to Proposition 1, U1(t)

remains in the compact set [0,Λ/μ] ⊂ [0,L], where L ≥ Λ/μ is a bound for B . Thus, we
only have to show that ỹ(t, a) and ỹ2(t, θ) remain in a precompact subset of L1+(0,∞),
which is independent of y0 ∈ Ω . It suffices to verify that (i) and (ii) in Lemma 2 hold.

Firstly, let us consider ỹ(t, a). From (6), observing that

ỹ(t, a) =
{

S(t − a,0)ρ(t, a) = Λρ(t, a), t > a ≥ 0,

0, a ≥ t ≥ 0,

one yields

lim
h→∞

∫ ∞

h

|ỹ(t, a)|da ≤ lim
h→∞

∫ ∞

h

Λe−μada = lim
h→∞

Λ

μ
e−μh = 0.

Therefore (ii) in Lemma 2 is satisfied. To check condition (i), for sufficiently small h ∈ (0, t),
we have
∫ ∞

0
|ỹ(t, a + h) − ỹ(t, a)|da =

∫ t

0
|S(t, a + h) − S(t, a)|da

=
∫ t−h

0
|S(t − a − h,0)ρ(t, a + h) − S(t − a,0)ρ(t, a)|da

+
∫ t

t−h

|S(t − a − h,0)ρ(t, a + h) − S(t − a,0)ρ(t, a)|da

=
∫ t−h

0
|S(t − a − h,0)ρ(t, a + h) − S(t − a,0)ρ(t, a)|da

+
∫ t

t−h

|S(t − a,0)ρ(t, a)|da

= Λ

∫ t−h

0
|ρ(t, a + h) − ρ(t, a)|da + Λ

∫ t

t−h

|ρ(t, a)|da.

(43)
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Recall that 0 ≤ ρ(t, a) ≤ e−μa ≤ 1 and ρ(t, a) is a non-increasing function with respect to a,
we have

∫ t−h

0
|ρ(t, a + h) − ρ(t, a)|da =

∫ t−h

0
ρ(t, a)da −

∫ t−h

0
ρ(t, a + h)da

=
∫ t−h

0
ρ(t, a)da −

∫ t

h

ρ(t, a)da

=
∫ t−h

0
ρ(t, a)da −

∫ t−h

h

ρ(t, a) −
∫ t

t−h

ρ(t, a)da

=
∫ h

0
ρ(t, a)da −

∫ t

t−h

ρ(t, a)da ≤ h. (44)

Hence, we have

∫ ∞

0
|ỹ(t, a + h) − ỹ(t, a)|da ≤ 2Λh, (45)

which converges uniformly to 0 as h → 0 and condition (i) in Lemma 2 is satisfied for
ỹ(t, a). Note that (45) holds for any y0 ∈ B , thus, ỹ(t, a) remains in a precompact subset Bỹ

of L1+(0,∞).
Let us now consider ỹ2(t, θ). From (7), observe that

ỹ2(t, θ) =
{

U2(t − θ,0)�(θ) = pU1(t − θ)�(θ), t > θ ≥ 0,

0, θ ≥ t ≥ 0.

It follows from Assumption 1 and Proposition 1 that

lim
h→∞

∫ ∞

h

|ỹ2(t, θ)|dθ ≤ lim
h→∞

pL

∫ ∞

h

e−μθdθ = lim
h→∞

pL

μ
e−μh = 0,

which verifies (ii) in Lemma 2. Similarly with (43), to check condition (i), for sufficiently
small h ∈ (0, t), we have

∫ ∞

0
|ỹ2(t, θ + h) − ỹ2(t, θ)|dθ =

∫ t

0
|U2(t, θ + h) − U2(t, θ)|dθ

= p

∫ t−h

0
|U1(t − θ − h)�(θ + h) − U1(t − θ)�(θ)|dθ

+ p

∫ t

t−h

|U1(t − θ)�(θ)|dθ

≤ p

∫ t−h

0
U1(t − θ − h)|�(θ + h) − �(θ)|dθ

+ p

∫ t−h

0
�(θ)|U1(t − θ − h) − U1(t − θ)|dθ

+ p

∫ t

t−h

|U1(t − θ)�(θ)|dθ
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Recall that U1(t) ≤ L, 0 ≤ �(θ) ≤ e−μθ ≤ 1 and �(θ) is non-increasing function with respect
to θ . Similarly with (44), we get

∫ t−h

0
|�(θ + h) − �(θ)|dθ =

∫ h

0
�(θ)dθ −

∫ t

t−h

�(θ)dθ ≤ h. (46)

Furthermore, it follows from Assumption 1 and Proposition 1 that we can make an estima-
tion for U1(t)

|U ′
1(t)| ≤ U1(t)

∫ ∞

0
|β(a)S(t, a)|da + κU1(t) +

∫ ∞

0
|γ (θ)U2(t, θ)|dθ

≤ β̄L2 + κL + γ̄ L2 = MU1 ,

which implies that U1(t) is Lipschitz on [0,∞) with coefficient MU1 . Therefore, we have

∫ t−h

0
�(θ)|U1(t − θ − h) − U1(t − θ)|dθ ≤ pMU1h

∫ t−h

0
e−μθdθ

= pMU1h

μ

(
1 − e−μ(t−h)

)

≤ pMU1h

μ
. (47)

Combining (46) and (47), we have

∫ ∞

0
|ỹ2(t, θ + h) − ỹ2(t, θ)|dθ ≤

(

2pL + pMU1

μ

)

h. (48)

Then, we have that (48) converges uniformly to 0 as h → 0. Condition (i) in Lemma 2 is
proved for ỹ2(t, θ). Note that MU1 depends on L, which depends on the set B , but not on y0.
Therefore, (48) holds for any y0 ∈ B . Thus, ỹ2(t, θ) remains in a precompact subset Bỹ2

of L1+(0,∞). Then, π̌t (B) ⊆ Bỹ × [0,L] × Bỹ2 , which is compact in Y+. Thus, π̌t (y0) is
completely continuous and (ii) in Lemma 1 is verified.

Combining steps 1 and 2, and applying Lemma 1 yield that the semi-flow {πt (y0)}t∈R+
is asymptotically smooth. Furthermore, as a consequence of the results on the existence of
global attractors in [6] and [23], the semi-flow {π(t)}t∈R+ has a global attractor T contained
in Y+, which attracts the bounded sets of Y+. The proof is completed. �

Appendix D: Proof of Theorem 6

Proof Let (S0(·),U 0
1 ,U 0

2 (·)) ∈ ∂Y 0+. Then we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ∂
∂t

+ ∂
∂a

)S(t, a) = −σ(t, a)S(t, a),

dU1(t)

dt
= U1(t)

∫ ∞
0 β(a)S(t, a)da − κU1(t) + ∫ ∞

0 γ (θ)U2(t, θ)dθ,

( ∂
∂t

+ ∂
∂θ

)U2(t, θ) = −α(θ)U2(t, θ),

S(t,0) = Λ, U2(t,0) = pU1(t),

S(0, a) = S0(a), U1(0) = 0, U2(0, θ) = U 0
2 (θ).

(49)
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Substituting (6) and (7) into the second equation of (49) yields

⎧
⎪⎪⎨

⎪⎪⎩

dU1(t)

dt
= ΛU1(t)

∫ t

0 β(a)ρ(t, a)da − κU1(t)

+ p
∫ t

0 γ (θ)�(θ)U1(t − θ)dθ + F(t),

U1(0) = 0,

(50)

where

F(t) =
∫ ∞

t

S0(a − t)
ρ(t, a)

ρ(t, a − t)
da +

∫ ∞

t

γ (θ)U 0
2 (θ − t)

�(θ)

�(θ − t)
dθ.

Since (S0(·),U1,U2(·)) ∈ ∂Y 0+, we can deduce that F(t) ≡ 0 for t ≥ 0. Then, system (50)
has a unique solution U1(t) = 0. Consequently, it follows from (7) that U2(t, θ) = 0 for
0 ≤ θ < t . For θ ≥ t , one gets

‖U2(t, θ)‖L1 =
∥
∥
∥
∥U 0

2 (θ − t)
�(θ)

�(θ − t)

∥
∥
∥
∥

L1
≤ e−μt‖U 0

2 ‖L1 .

Then limt→∞ U2(t, θ) = 0. Furthermore, it follows from the first equation of (49) that

{
( ∂

∂t
+ ∂

∂a
)S(t, a) = −μS(t, a),

S(t,0) = Λ.
(51)

Solving (51), one gets

S(t, a) =
{

Λe− ∫ a
0 μ(τ)dτ , t > a ≥ 0,

S0(a − t)e− ∫ t
0 μ(τ)dτ , a ≥ t ≥ 0,

which implies S(t, a) → S∗
0 (a) as t → ∞. Thus, E0 is globally asymptotically stable in

∂Y 0+. This completes the proof. �

Appendix E: Proof of Theorem 7

Proof We will use the results in [17] to prove the uniform persistence. From Theorem 6,
E0 is globally asymptotically stable in ∂Y 0+. Thus, it is only to show how the solution with
the initial conditions in Y 0+ in some neighborhood of E0 to behave. Now let us show that

Ws(E0) ∩ Y 0
+ = ∅,

where

Ws(E0) =
{
y ∈ Y 0

+ : lim
t→∞πt (y) = E0

}
.

Assume by contradiction that there exists a sequence {yn} ⊂ Y 0+ such that

‖πt (yn) − E0‖Y+ <
1

n
, t ≥ 0. (52)
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Denote πt(yn) = (Sn(t, ·),Un
1 (t),Un

2 (t, ·)) and yn = (Sn(0, ·),Un
1 (0),Un

2 (0, ·)). Then we
can choose large enough n > 0 such that

Sn(t, a) >

∫ ∞

0
S∗

0 (a)da − 1

n
> 0, 0 < Un

1 (t) <
1

n
. (53)

For the chosen n > 0 and (52), there exists T > 0 such that for t > T

∫ ∞

0
Sn(t, a)da >

∫ ∞

0
S∗

0 (a)da − 1

n
>

∫ ∞

0

(

S∗
0 (a) − 1

n

)

da.

Furthermore, one has
∫ ∞

0
β(a)

[

Sn(t, a) −
(

S∗
0 (a) − 1

n

)]

da > 0. (54)

From the integration solution (7), we obtain the following system of integral equations of
U2(t, θ):

U2(t, θ) = pU1(t − θ)�(θ) + U 0
2 (θ − t)

�(θ)

�(θ − t)
≥ pU1(t − θ)�(θ) (55)

By inserting Eqs. (52) and (55) into the second equation of (4) and applying a simple com-
parison principle, we deduce that

Un
1 (t) ≥ Ũ n

1 (t),

where Ũ n
1 (t) is a solution of the following system
⎧
⎨

⎩

dŨn
1 (t)

dt
= ∫ ∞

0 γ (θ)�(θ)Ũn
1 (t − θ)dθ − (κ − ∫ ∞

0 β(a)(S∗
0 (a) − 1

n
)da),

Ũn
1 (0) = Un

1 (0) ≥ 0.

Since �0 > 1, there exists N ∈N such that for n > N

∫ ∞

0
γ (θ)�(θ)dθ > κ −

∫ ∞

0
β(a)

(

S∗
0 (a) − 1

n

)

da.

Thus Ũ n
1 (t) is unbounded directly followed from Lemma 3. By the comparison principle,

we have Un
1 (t) is unbounded, i.e.,

lim
t→∞Un

1 (t) = ∞,

which contradicts to (53). Therefore, Ws(E0)∩Y 0+ = ∅. It follows from [17] that {π(t)}t∈R+
is uniformly persistent and there exists a compact set T0 ⊂ Y 0+ which is a global attractor for
{π(t)}t∈R+ in Y 0+. This completes the proof. �
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