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Abstract When a measure ¥ (x) on the real line is subjected to the modification d¥ ® (x) =
e "dW (x), then the coefficients of the recurrence relation of the orthogonal polynomials in
x with respect to the measure ¥ (x) are known to satisfy the so-called Toda lattice formulas
as functions of z. In this paper we consider a modification of the form e~ ®*+9/%) of mea-
sures or, more generally, of moment functionals, associated with orthogonal L-polynomials
and show that the coefficients of the recurrence relation of these L-orthogonal polynomials
satisfy what we call an extended relativistic Toda lattice. Most importantly, we also establish
the so called Lax pair representation associated with this extended relativistic Toda lattice.
These results also cover the (ordinary) relativistic Toda lattice formulations considered in
the literature by assuming either p = 0 or q = 0. However, as far as Lax pair representation
is concern, no complete Lax pair representations were established before for the respective
relativistic Toda lattice formulations. Some explicit examples of extended relativistic Toda
lattice and Langmuir lattice are also presented. As further results, the lattice formulas that
follow from the three term recurrence relations associated with kernel polynomials on the
unit circle are also established.
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1 Introduction

Let ¥ be a positive measure defined on the real line, and let {P,}3°, be the sequence of
monic orthogonal polynomials with respect to ¥, in the sense that

/stn(x)dlI/(x)zo, O0<s<n-—-1, n>1,
R

where P, is a polynomial of exact degree n. It is known (see, for example, [5, 14, 34]) that
these polynomials satisfy the following three term recurrence relation

Pust(0) = (x = by D Pa(¥) — @i Py (), n= 1, (1.1)

with Py(x) =1 and P;(x) = x — by. Moreover, for any n > 1, the coefficients b, are real
and a, are positive.

Consider the modified measure ¥, in one time variable ¢, given by d¥®(x) =
e "dW¥(x), and the associated monic orthogonal polynomials P,(x; ). As given in [14]
(see also [21]) the recursion coefficients a,,(¢) and b, (¢) which appear in the three term
recurrence relation (1.1) for { P, (x; 1)},>0 satisfy the semi-infinite Toda lattice equations of
motion

(1) = @, (D) [by_ () — by (D],
ba(t) = @, (1) — @y (1),

with the initial conditions by(t) = 1, a;(¢) =0, a,(0) = a,, and b,(0) = b,,. Here, we use the
usual notation f = %

Toda lattice is a system of particles on the line with exponential interaction of nearest
neighbours [33]. Toda was the first to consider such a system for infinitely many particles
on the line [35]. The Toda lattice equations (1.2) are obtained from the Newtonian equations
of motion (see, for example, [33])

n>1, (1.2)

X‘n = =17 _ p¥n—Xntl , n> 1, (13)

when one takes b, = x,, and a,, = ¢™-17 forn > 1.

The present work considers a similar study in the case of the so-called L-orthogonal
polynomials. In this respect, let £ be a moment functional defined on the linear space
Span{1, x~', x,x72,...} of Laurent polynomials.

Given p,q € C, we also assume that the moment functional £ is such that
L[e~"P*+a/9 x*] exists for all k € Z and for all + > 0, and that

%ﬁ[e—t(p)w%)f(x)] — E[%(e*t(px"'%)f(x))]’ (1.4)

for any f(x) which is a Laurent polynomial.
Starting with the above £, we consider the parametric family of moment functionals £®,
t > 0, such that

LO[HF] = £le"® Dk = v, k=0,%1,%2,..., 10, (1.5)
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Extended Relativistic Toda Lattice and Lax Pair 139

and assume also that

(@) H™ (1) #0 and (b)) H ' (1) #0, (1.6)

for n > 0 and ¢ > 0, where the associated Hankel determinants H,f’")(t) are given by
H" (1) =1and

pO O 0

m m+ m+n—1
@) BTN
m+1 m+2 m+n
H"™()=| " ) i , nmeZ, n>1.
(1) 0] 0]
vm+n—l m+n " ° vm+2n—2

We now define, for any fixed ¢ > 0, the sequence {Q,,(x; t)},>0 of polynomials in x by

0, (x; t) is a monic polynomial of degree » in x
(1.7)
LOX50Q,(x;1)]=0, s=0,1,...,n—1,

for n > 1. It is known (see, for example, [15, 16, 29]) that the existence of these polyno-
mials is assured by the conditions in (1.6). Also when the conditions in (1.6) hold these
polynomials are known to satisfy the following three term recurrence relation

Q1 (6 0) =[x = By (D] Qn(x3 1) = 1 (D X Qi (x5 1), n>1, (1.8)

with Qo(x;1) =1, Q1(x;t) =x — B1(¢). The known expressions for the coefficients S, (¢)
and a,, (¢) in terms of the moment functional £ are presented in Sect. 2 of this manuscript.

The polynomials Q,(x; 0) (to be more general, the polynomials Q, (x; t) for any fixed
t) have been referred to as L-orthogonal polynomials in some previous papers in the subject
(see [12] and references therein). Hence, throughout in this manuscript we will refer to the
polynomials Q, (x; t) as L-orthogonal polynomials with respect to the moment functional
L® or simply L-orthogonal polynomials. However, it is important to mention that Zhedanov
in his many contributions (see, for example, [36]) refers to such polynomials as Laurent
biorthogonal polynomials.

The polynomials Q, (x; 0), when the determinants in (1.6) (for = 0) are positive, have
played an important role in the study of the so-called strong Stieltjes moment problem which
was introduced in [16].

With respect to the present objective, it is known that the recursion coefficients S, (¢) and
a, (1) (see, for example, [9, 17]) satisfy the equations of motion

. Uy oy . 1 1
n = Pn - 5 n =0y e B 1.9
ﬂ ﬂ (,Bn+1/3n ﬁllﬂﬂ—l) * * (/311—1 ﬁn) ( )

for the case where p =0 and q =1, and

ﬂn = ,Bn(an - aVH—l)a dn = an(an—l + ,Bn—l — Oyl — ﬂn)s (110)

for the case where p = 1 and q = 0, both with 8,(t) # 0, o, 11 (#) #0forn > 1 and oty () =0
(further, oy 41 () = 0 in the finite case, i.e.,n = 1,2, ..., N). The system of equations (1.10)
has also been considered in [6, 7], where the authors have showed its connection to Laurent
polynomials and T-fractions (or the equivalent M-fractions). Observe that the recurrence
formula (1.8) is the three term recurrence relation satisfied by the denominator polynomials
of M-fractions.

@ Springer



140 C.F. Bracciali et al.

The above system of equations known nowadays as the relativistic Toda lattice was in-
troduced by Ruijsenaars [22] (and studied, for example, in [2, 3, 17, 31-33]). In [17] this
system is also considered in the form of the following Newtonian equation of motion

Xn+1—Xn Xn—Xp—1

Xy = (14 €xyq1)(1 + €X,) — (I +€x,)(1 + €x,1) » (11D

1+ €2e¥nt1—%n 1 4+ €ZeXn—Xn-1

where € is a (small) parameter of the model having physical meaning as the inverse speed
of light. Notice that the Newtonian equation of motion (1.11) for the relativistic Toda lattice
is, actually, a one-parameter perturbation of the Newtonian equation of motion (1.3) for the
usual Toda lattice.

In the present manuscript, different from what is considered in [9, 17], we consider the
Toda lattice equations that follow from the two directional modification px + q/x in (1.5).

The main purpose of the present manuscript is to show that the recursion coefficients
B, (1) and o, (¢) satisty the lattice equations that we call the extended relativistic Toda lattice
equations. We also establish the Lax pair formulations for this extended relativistic Toda
lattice. The main results of this paper are stated in the following two theorems.

Theorem 1 Consider a moment functional LV, defined as in (1.5), and the L-orthogonal
polynomials Q,(x;t), n > 1, defined in (1.7). The recursion coefficients B,(t) and o, (t) in
the recurrence relation (1.8) satisfy the extended relativistic Toda lattice equations

B =1 Bul )+aB ( Il O ) (1.12)
n — n Oy — Oy q Pn - .
* :Bn+1/3n ﬁnﬁnfl
and
. 1 1
Ay =pay(y_1+ Bt — g1 — Bu) +qa,| — — — |, (1.13)
ﬂn—l ﬁn
for n > 1, with the initial conditions By(t) =1, ap(t) = —1 and a1 (¢t) = 0. Moreover,
. oy oy
Vn=P(0€nVn—06n+1Vn+1)+CI< IBJrl _,3 )7 n>1, (1.14)
n n—1

with y, = a1 + B, n > 1. Here, we have omitted the time variable t for simplification.

The proof of this theorem is given in Sect. 2.
The following interesting result holds with respect to the extended relativistic Toda lattice
equations given by Theorem 1.

Theorem 2 Let the infinite Hessenberg matrix H = H(t) and the infinite tridiagonal matrix
F = F(t) be given by

o --- 0
i V2 V3 o Wa b .
o V2 V3 e Y Ce €2 fZ hZ
0 o3 V3 - Vu - 0 e 3 - 0
H=]| . . . , F=1 . . )
. bnfl
0 0 o v 0 0 e f

(1.15)

@ Springer



Extended Relativistic Toda Lattice and Lax Pair 141

where yi = a1 + Pr,

q
77
Vi — Ok+1

q
77
Vi — Ok+1

e = —Ppay, o = pay + b =—

for k > 1. Then the pair {H, F} is a Lax pair for the extended relativistic Toda lattice

equations (1.13) and (1.14) given by Theorem 1. Precisely, H = [H, F], where [H, F] =
HF — FH.

Further information about Lax pairs and the proof of Theorem 2 are given in Sect. 3.

In Sect. 4 we consider the case in which L[ f] = fab f(x)dy(x), where 0 <a < b < oo
and v is a strong positive measure defined on [a, b]. The word strong, adopted from the
work of Jones, Thron and Waadeland [16] on the strong moment problem, is to indicate that
the measure has moments of non-negative and negative order. In Sect. 4 we have also given
two examples with pq # 0, where the solutions have very nice representations.

The two parameter extension px + q/x also permits us to extend the results to the unit
circle. If p is a positive measure on the unit circle T = {x = e’ 10 <0 <2m}, then with
p =, the measures u) given by

dp® (x) = e P d (),
is also positive in T for any ¢ real. Hence, respectively in Sects. 5 and 6, we have been able

to proceed with the study of looking at the recurrence coefficients §,(¢) and «,4(¢) that
follow from the moment functionals

£O11= [ F00e T = wdpo, (1.16)
T

where |w| = 1 fixed and from the moment functionals

£0171= [ £ e xduc) (117
T

In the case of (1.17) the polynomials Q, (x; ¢) are the monic orthogonal polynomials on the
unit circle with respect to u (also known as Szeg6 polynomials), and in the case of (1.16)
the polynomials Q,(x;?) are the monic kernel polynomials, say const K (x, w), on the

unit circle with respect to 1. For a comprehensive collection of information concerning
orthogonal polynomials on the unit circle and associated kernel polynomials we refer to [24].

2 The Proof of Theorem 1

Let Q,(x;t) = Zl}:o Q| (t)x/, where ay (t) = 1. From the linear system (1.7) in the coef-
ficients a, ;(t) of Q,(x;t), one easily finds

(t) t) (1)
Vo Vopn Yo
0,(x;t)=———1| : : n>1
’ —n) k] - 1,
HOO [0 W,
1 x .. xn
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142 C.F. Bracciali et al.

and if 0, 1 (1) = LO[x "' Q, (x; ] and 0, ,, (1) = L[ Q, (x; 1)] then

H H V(e
an.fl(n:(—l)""tli)(), (1) = ’;t‘)( Lz
H,™" (1) H,™" (1)

Also observe that 09 o(1) = v(()t) and oy (¢) = v(fi

Clearly, the sequence of polynomials {Q,(x;?)},>0 exists for all + > 0 because
H™(t) # 0 for all ¢+ > 0, which follows from condition (a) of (1.6). Observe that the
condition (b) in (1.6) also means that Q,,(0; r) # 0 for all n > 1 and for all # > 0.

With both conditions (a) and () in (1.6) the recurrence relation (1.8) holds for any ¢ > 0,

with B () = 09,0(¢)/00,-1(1),

n—1,—1( n.n (£
Buii (D) = —a,m(r)‘;n";—léf)) and a4 (1) = 0017:)0) n=l. (@21
From the recurrence relation (1.8), we directly obtain
ano(t) = 0, (0;8) = (=1)" B (D) Br1 (D) --- 2B (1), n=1 (2.2)
and
A1) + B () = ann1(t) —ayp10(t), n=1. (2.3)
Notice that using (2.1), we also obtain for n > 0,
Un,n([) = Oln+1(t)(xn(t) o '(XZ(I)UO.O(I) (24)
and
601 (1) = (=1)" 1 () (1) - a2 (t)ooo(t)  0ya(l) 2.5)

Bust )Ba(1) -+~ B2 ()1 (1) Bur1 (D o(t)

Lemma 1 Let us denote t,(t) = LO[x Q,(x; )], n > 0. Then,

n+1 n+1
(1) =000 () Y_[rs1 (1) + BeD)] =000 () D 7iD),
k=1 k=1

forn >0, where yi(t) = o1 (1) + B (t), k=1,2,...,n+ 1.

Proof The validity of the Lemma for n = 0 is easily verified.
From the recurrence relation (1.8), we have

x0,0058) = Qnp1 (3 8) + Bup1 () Qn (X3 1) + 1 (DX Qi (x38), n>1

Applying the moment function £ in the above equality gives
T (t) = Opn+1.n+1 (t) + .3n+l (t)an.Il (t) + Oyt (t)rn—l (l), n= 1.

Consequently, with the observation that a, (£) 4+ B1(t) = L [x]/£?[1], we find
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Extended Relativistic Toda Lattice and Lax Pair 143

n+l1 n+l

() 71 (1)
=y t n t —_— = ! t — t ,
onn®) 2 (1) + But1 (1) + @ ;[akﬂ( )+ B ()] kzzl 0
for n > 1, this concludes the proof of the Lemma. 0O

Since Q,(x;t) is a polynomial of degree n in the variable x, from (1.7) we have
LOXx™Q,_1(x;1)Q,(x;1)] =0, n > 1. Differentiating this with respect to the variable ¢
and denoting % 0, (x;t) = Q,(x;t), we obtain from (1.5),

LO[x™ Q1 (630 Qn (6 D] 4+ LO[x ™ Qi (65 1) O (x5 1)]
—L® [x‘” <px + %) Q1 (x; 1) Q (x5 t)] =0, nz1l (2.6)

However, since Q,, (x;1) = Z;’;(l) Qn, j (t)x/ is a polynomial of degree at most n — 1 in

the variable x, agair} from (1.7), we can see that £LO[x™" Qn_l(x; 1)Q,(x;1)] =0 and
LOX™" Qo1 ()0, (x; )] = ano(t)o,—1,-1(t), for n > 1. Furthermore,

‘c(r) [x—iH-l anl (.X; t) Qn (.X; t)] =dap—1,n—-1 (t)an,n (t) =Onn (t)

and LO[x™"71Q, 1 (x; 1) 0, (x; )] = a,_1.0(t)0,._1(t), for n > 1. By substituting these in
(2.6), we then conclude that

(:ln,O(t)o'nfl,fl(t) = po'n,n(t) + qanfl,O(t)Un,fl(t)a n= 1.

Using (2.1), (2.2) and (2.5), we get

Z B ny1(7) 2.7)
k=1

=—pa, _ > 1.
ST @ty g n "

From this and setting the initial conditions By(¢) = 1 and «,(¢) = 0, the relation (1.12) of
Theorem 1 holds.

Now from (1.7), we observe that LO[x ™" Q2 (x; t)] = 0,.,(t), for n > 0. Differentiating
0. (1) with respect to 7 and observing that £LO[x ™" 0, (x; 1) Q,(x; )] =0, it yields

Gun(t) = =LY [x‘” (px + i) 0n(x; t)} n>0. (2.8)
X
Observe from (1.7), that £O[x""'Q%(x;1)] = @no(t)o,—1(t) for n > 0 and, from

Lemma 1,

n+1

ﬁ(t) [x_n-H Qi (X; t)] =dapn—1 (t)gn,n (t) + On.n (t) Z[ak+l (t) + IBk (t)]s

k=1
for n > 0, where we have taken ay _;(#) = 0. One can verify also from (2.3) that

n+1

an,n—l(t) + Z[ak+l(t) + /Sk(t)] = Otn+2(l) + ﬁil+1(t) + arH—l(t)a n>0.
k=1
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144 C.F. Bracciali et al.

Hence, using the above results, the equation (2.8) can be given as
_p Onn (t) [an+2(t) + IBV!+1 (t) + Oyt (t)] —q arL,O(t)O‘n,fl (t) = én,n (t),
for n > 0. Thus, from (2.4) and (2.5), we have

1 6o0()
—p [e2(t) + B1(t) + a1 (1)] — q B0~ o00)’

and, forn > 1,

n+1

I 600 oy (1)
1 Bur1(t)  000(t) Z o (1)

—p [ens2 (1) + Bus1 (1) + ctyi1 ()] —
k=2

Consequently the relation (1.13) of Theorem 1 holds for n > 2. On the other hand, since
Bo(t) =1, a;(t) = 0and «(¢) is arbitrary (but, we set op(¢) = —1) the relation (1.13) clearly
holds forn = 1.

Finally, since y,, () = &, 11(¢) + B, (2), for n > 1 from (1.12) and (1.13), we easily obtain
equation (1.14) of Theorem 1.

3 Lax Pairs and the Proof of Theorem 2

As in Nakamura [19], by considering the infinite matrices

a b 1 . —a, 0 0
0 as bs 0 0 —aj 0
SZ , T: s
1 0
0 0 a, bn 0 0 —ay 0

the Toda lattice equations (1.2) can also be represented in the matrix form
S=[S.T1=8ST-TS. 3.1)

The pair {S, T} is called a Lax pair and (3.1) is called a Lax representation for the Toda
lattice (1.2). Another Lax pair for the Toda lattice (1.2) can also be found in [11, 35].

For the case of the finite relativistic Toda lattice equations (1.9) and (1.10) (i.e., n =
1,2,...,N), in Suris [31, 32] (see also Coussement et al. [9] for a generalized form of the
finite relativistic Toda lattice), by considering the bidiagonal matrices My and Py given by

B 1 0 - 0 I 0 0 . 0
0 B 1 —a, 1 0 :
My=|: - - : , Pyv=| o ,
. - Bnoi 1 . . 1
0 o ... 0 B 0 oo oo —ay 1
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Extended Relativistic Toda Lattice and Lax Pair 145

it was shown that (1.9) can be written in the Lax form

: My = My Ay = ByMu, 32)
Py =PnAy — ByPn, '
with Ay = —(M;,'PN), and By = —(PNMQI),, where Z_ denotes the strictly lower tri-
angular part of Z. Moreover, by considering Ay = —(Py' My)_ and By = —(MyPy")_,
it was also shown that the system (1.10) can also be written in the form (3.2). Notice that
in neither case we have a Lax pair of the form (3.1) for the finite relativistic Toda lattice
equations (1.9) and (1.10).

The aim of this section is to present a Lax pair of the form (3.1) for the extended rela-
tivistic Toda lattice equations (1.13) and (1.14).

Let us first consider the extended relativistic Toda lattice equations of the finite order

. Ayt (o
Y = P(tnVn _an+an+l)+q( - - >7 (3.3)
Vn — Opytl Yn—1 — 0y
and
. 1 1
o, = poy, (an—l + Yn—1 — 0y — yn) + qo, - B (34)
Vn—1—0n Vn — Ont1

forn=1,2,..., N, where y,(t) = a,11(t) + B, (1), Bo(t) =1, ap(t) = —1 and o (t) =0,
with the additional assumption oy (#) = 0. Observe that with ay;(f) = O the product
an+1(t)yn+1(2) that appears in (3.3) is also zero.

For N > 1, letthe N x N matrices Hy = Hy(t), Xy = Xy (¢) and Yy = YV (¢) be given
by

Yyi Y2 ¥ YN-1 VN
o Y2 V3 YN-1 VN
0 a3 » YN-1 VN
Hy = ) ) . N
o - 0 av-1 vvo1 wN
0 s 0 0 N VYN
o 0 0 0 0
—0) [0%) 0 s 0 0
XN _ 0 —03 O3
0 0
0 ce 0 —O0N—_1 ON_] 0
0 s 0 0 —oyN OnN
and
L EE— 0 0 0
Yi—a Y1i—a
1 1
y2—a3 Y2—a3
0 0 0 0
In=
1 _ 1 0
YN-2—ON—1 YN-2—ON-1
0 0 0 L ——L
YN—1—CN YN—-1—ON
0 0 0 0 !

YN —AN+1
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146 C.F. Bracciali et al.

The matrix Hy has already been shown to be interesting in the studies related to L-
orthogonal polynomials. From results first appeared in [27] (see also [23, 30] on further
studies), the zeros of Qy(x;t) are exactly the eigenvalues of the Hessenberg matrix Hy ().

Now with the above matrices by performing the respective matrix multiplications one
easily finds that

Hy =pHnXy — XvHy) + q(Hy Yy — YvHn),

for any N > 1. Hence, we can state the following theorem.

Theorem 3 A Lax representation for the extended relativistic Toda lattice equations of finite
order N (N > 1) given by (3.3) and (3.4) is

Hy = [Hy, Fnl=HyFn — FyHu,
where Fy = pXy + qVn.

To prove Theorem 2 one only needs to let N — oo in Theorem 3.

4 Applications to L-Orthogonal Polynomials on the Positive Real Axis

In this section we consider the case in which the moment functional £ is given by

b
Cif]= / FOdY (),

where 0 <a < b < oo and ¢ is a strong positive measure defined on [a, b]. By the term
“strong” we mean that the moments £[x"] = v{? exists for all n € Z. The existence of the
moments £ [x"] = v, for all n € Z, depends on the choice of p and g, especially if a =0
and/or b = co.

Clearly, the choice p > 0 and q > 0, that we will assume throughout in this section,
guarantees the existence of all the moments since it is easily verified that

b b
i(prtd 21 BT 21 BT
v,i’):/;(’)[x”]:/ x"e TPy (x) < e pq/ x'dy () =PI,
a

a

for n =0, £1,£2,.... With the existence of the moments, the determinant conditions in
(1.6) also hold since e~"®P¥+9/") 44, (x) leads to a positive measure in [a, b]. To be precise,

we have 0 < H™™ () < o0 and 0 < H,ffr'f)(t) < 00, for n > 0. Moreover, since v is a

bounded and absolutely function of ¢, also follows that

d

b b
a
& [l relve = [ Z e reojavw

b
=—/ [67’(””%)[PX+%]f(X)}dlﬁ(X),

for any Laurent polynomial f. Thus, the requirement (1.4) for L.
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Extended Relativistic Toda Lattice and Lax Pair 147

We can also, without any loss of generality, consider £ in the form

LOf0)] = L[ f e e+, @.1)

with q > 0, by absorbing the positive p into the parameter ¢.

If we consider the L-orthogonal polynomials Q, (x; t) with respect to this moment func-
tional then from the positiveness of e’“*9/% dy (x) one can state that (see [16]) the coeffi-
cients in the associated recurrence relation (1.8) satisfy g,(¢) > 0 and ¢, (¢) > 0, n > 1.

On the other hand, by Theorem 1 these coefficients satisfy the extended relativistic Toda
lattice equations

B =B (o, — 1) +98 ( Gl O ) “4.2)
neom fa AP ﬂn+l,3n /311:3:171 '
and
ay = oy (1 + Bn1 — 1 — Bn) + a(L—i) (4.3)
n — UpGp—] n—1 n+l n CI n /3"7] ﬂn 5 .

for n > 1, with the initial conditions By(t) = 1, ag(¢t) = —1 and «; (t) = 0.
We now analyse results corresponding to such £ with two particular examples.

Example 1 For § > 0, let the moment functional £ be given by L[ f (x)] = fooo fx)dy(x),

where d(x) = x~2e-90+9/9dx_Then, the moment functional £ defined as in (4.1) sat-
isfies

LO[F0)] = f ) dy® (x),
0

where dy® (x) = x~ 2~ (+OC+a/0) gy

Considering the L-orthogonal polynomials Q,(x;¢) with respect to this moment func-
tional we find that the coefficients of the associated three term recurrence relation (1.8)
satisfy

Bu()=+0a and a1 ()= 4.4)

n
— n>1
2(r+6)

This follows from results given in [25] (p. 3139). '
Substituting the values (4.4) in the right hand sides of (4.2) and (4.3) we find 8, = 0, for
n>1,and

1 1 n—1
0"n=05n A1+ Pt — 1 —P)+qo| —— — | =———, n>2
(otn—1+ Bu-1 +1—Bu) + 4 <ﬂ”_1 ﬂn> 20 +0)

The values obtained here for Bn and &, are what we obtain by direct differentiation in (4.4).
It turns out that the measure v in Example 1 is such that

dy(x) _ _dy(/x)
VX a/x
Consequently, the measure ¥’ in Example 1 also satisfies the symmetric property (4.5).

Itis known (see, for example, [25, 28]) that under this symmetric property the coefficients
By in the three term recurrence (1.8) must satisfy 8,(t) = /q,n > 1.

4.5)
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In general, if we start with any strong measure ¥ that satisfies the symmetry (4.5) and
then proceed to create the linear functional £ and to build the moment functionals £ as
in (4.1), then B,(t) = ,/q, n > 1. Moreover, for o, (¢) we obtain c, (t) > 0, n > 2 and from
(4.3)

O.571(l)=()[rt(t)|:o‘n—l(t) _(x11+1(t)]s nx2,

with o« (t) = 0, which is known as Langmuir or Volterra lattice (see [21]).

Example 2 For § > 0, let the moment functional £ be given by L[ f (x)] = fooo fx)d @(x),

where di/(x) = (x + \/ﬁ)x’%e“s(”%)dx. Then the moment functional £ defined as in
(4.1) satisfies

LO[F ()] = /0 £ T (), 4.6)

where d @ (x) = (x + ﬁ)x‘% e +OC+D gy,

Let us denote the coefficients in the three term recurrence relation (1.8) with respect to
the moment functional £? in (4.6) as &,(r) and B, (7). The measures ¥ ® can be verified to
satisfy the symmetry

dy O (x) = —dy " (q/x),

and further dy® (x) = X“Lx—*/ad ¥ (x), where ¥ are the measures given in Example 1.
Consequently, using results found in [26], we obtain

lnfl(t)
1y ()

n/12/q(t+9)]
In—1(0)+1

Bn(t) =

. G (O=B0[L0 —1], n=1,

where [, (1) =1+ ,n>1and/[y(t) = 1. These values for ,3~,1 and &,, together with

the values for ,3~,1 and 51,, obtained from these, can be successively substituted in

Bu = Bul@, — @ >+q3(&”“ S )

! I ! Bn+l,8~n ,gn,gn—l ’

. 1 1 n=l
~n = ~n(~n— + an - ~n - ~n) + ~n<~— - T)v

A = (Ut + Bu1 — Anr1 — Bo) +q& R

to verify the validity of these extended relativistic Toda lattice equations.

)

5 Applications to Kernel Polynomials on the Unit Circle

Let 1 be a positive measure defined on the unit circle T = {z = ¢ : 0 <6 <27} and let

LIf1= fT f(@@z—w)ydp(z) and LO[f]= /T f(@)@—wydp®(2),

where
dli(t) (Z) — eft(ﬁz+q/z)du(z) — e*Zt[Re(q) cos6+Im(q) sinH]dM (eiG) .

For convention and also for convenience we have replaced x by z.
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Clearly, u® is a well defined positive measure on the unit circle for any ¢ real. Thus,
from now on consider ¢ € (—o0, 00). We denote the n'" degree monic orthogonal polyno-
mial and orthonormal polynomial associated with the measure 1) by @, (z; t) and ¢, (z; t),
respectively (see [24]). We also denote the associated Verblunsky coefficients by a,, (¢). That
is, a,(t) = —@,.1(0; ), n > 1.

Now, with a fixed w such that |w| = 1 and fixed ¢, we consider the L-orthogonal polyno-
mials Q,(z; t) defined by (1.7) with z in the place of x. The existence of these polynomials
and that they satisfy the three term recurrence (1.8), i.e.,

0ni1 (@D =[2= Bt (0] 0@ ) — i1 (02001 (1), n =1, 5.1)

with Qo(z;t) =1and Q;(z;t) =z — B1(¢), follow from results given in [8].
These polynomials are actually the monic kernel polynomials (or monic CD kernel as in
Simon [24]) with respect to the measure . Precisely, we have

Kn@n (WD) Qn(z 1) = K (z,w) =D " 9; i g(z:0), n=1,
j=0

where K,:z = Mg) ]_['};(1)(1 —|a; ()% and /L((f) = fT du (z). Moreover, for the coefficients
B.(t) =B, (w,t) and o, () = o, (w, t) we also have (see [8] (Thm. 2.1)),

() -
Bult) = — /f(;) (“;)), 1 (1) = [1+ 0 W)a, 1 (0)][1 = wpl (w)an (1) Jw,
n—1

for n > 1, where o (w) = &, (w; 1)/®*(w; t), n >0, and &} (w; 1) = w"P,(1/w; 1) de-
notes the reciprocal polynomial of @, (w; t).

The monic polynomials Q,(z; t) can also be considered as the special para-orthogonal
polynomials

0,z 1) = 2@, 1(z:1) — o (W) D) (z31), n=>1.

It is well known that quadrature rules on the unit circle are based on the zeros of para-
orthogonal polynomials. Para-orthogonal polynomials have also been useful tools in linear
prediction and frequency analysis problems (see [10]).

Clearly, by Theorem 1 the coefficients 8,(¢) and «,(¢) satisfy the extended relativistic
Toda lattice equations (1.12) and (1.13), with p =1.

Observe that, in contrast to the results presented in Sect. 4, the coefficients 8, (¢) and
a,(t) now are complex valued. However, by taking w = 1 we can write the three term
recurrence (5.1) in a different form which involves only real coefficients.

Let

1 1=p2 0P
21 —Re[p” ;a1 (DN

gn(1) = (5.2)

where py) = ,oj(-t> (1). It is easy to check that all g, () € (0, 1), hence the terms of the follow-
ing sequence are all positive

N =60]]1-g®). n=1.  &©:= fT A ().

j=1
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With this notation we introduce the normalized CD kernels by R,(z; ) := &,(t) K (z, 1),
n=>0.

It turns out (see [8]) that these kernel polynomials, R, (z; 1), satisfy the following three
term recurrence relation

Rz 0) = [(1 4 icus1 )z + (1 = icus1 ()] Ru(z: 1) = ddyir ()2 R1 (z:1), (5.3)

for n > 1, with Ry(z;¢) =1 and Ri(z;t) = (1 + ici(#))z + (1 — icy(t)), where both
{c,(#)}n>1 and {d, 41 (¢)},>1 are real sequences. In fact,

Im(p\” 0,1 (1))
Re(p,” a,-1(1) — 1

NOE €R and dyy (1) =[1—gu()]gns1(1), n=1,

with g,(¢) given by (5.2). In the standard terminology, this means that {d,,(t)},> is a
positive chain sequence for any ¢, and {g,+1(?)},>0 is a parameter sequence for {d,+1(t)},>1
(for more details on chain sequences see, for example, [5]).

Now, by using Theorem 1, we can state the following.

Theorem 4 The coefficients c,(t) and d,(t) of the three term recurrence relation (5.3) sat-

isfy
do(c d(1—cie
& = —4Re(q)|: 2(161'—4;§C2):| —4Im(q)[ 2(1+zécz)i|

and, forn > 2,

dn n n— dn n n
c',l:4Re(q)[ < +2C ) Ghetle tcﬂ)}
l+c,_, I+c,y,
d,(1 —cpc—y)  dyr1(1 —cpcng)
+4Im(q)[ - ;
I+ L+c,
and
. dyd,_ d,d, dy(1 —dy) (¢ —cn
dn=4Re(Cl)[ e ( )(C'Hz C")]
1+, 1+c, (A+e)(1+2 )

dndnflc'an d}ldn+lcn+1 dn(l - dn)(cn - Cnfl)(l - Cncnfl)
— 4Im(q) - ,

14+c2, 1+c2,, (I+cH(U+c )

with co(t) = 1 and d,(t) = 0. Here, we have also omitted the time variable t.

Proof Since, Q,(z;1t) ]_[Z:l (I4ici(t)) = R, (z; 1), n > 1, the coefficients B, (¢), o, (t), c,(t)
and d, (t) which appear in the three term recurrence relations (5.1) and (5.3) are such that

,S(t)——M and o, () = 4, (1)
T 4 i, ) T (U tic, M) —icu_1 (1)

6.4

for n > 1, with ¢o(t) = 1 and d, () = 0. Notice that differentiating 8, () given by (5.4) with
respect to ¢, we obtain
But) . 26,(1)

0~ Tren "= (5:3)
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Consequently since the coefficients §,(¢) and o, (¢) satisfy (1.12), using (5.4) and (5.5),
we conclude that, forn > 1,

én(t) = 2p + q){ dy (), (1) + e ()] . App1 (O], () + chp1 ()] ]

Ltc () T e ()
. ([ = ¢, (D1 (D] dyt O = cu (D (1]
—|—12(P_q){ 1+c,3_1(t) - 1+ci+1(t) }

Hence, the expression for ¢, (¢) in Theorem 4 is a consequence of p = q. In a similar manner,
using the value of ¢, () given by (5.4), one can also prove the expression for d,, (). O

To obtain a special case of the results presented in Theorem 4, we assume that the
measure p satisfies the symmetry du(e’?) = —du(e!®*=?) and that q is real. Hence, the
measure u” also satisfies the same symmetry and, as a consequence, a,_;(¢) is real and
pO(1) =1, n > 1. This leads to the following corollary of Theorem 4.

Corollary 1 If u is such that diu(e'?) = —du(e'®=?) and q is real then c,(t) =0 for
n > 1, and d,(t) satisfy

dy =4qd,(dy1 = dpi1), 122, (5.6)
with dy(t) = 0.

Notice that the relation obtained in (5.6) is a type of Langmuir lattice.
Comparing the coefficients in (5.1) when w = 1 with the coefficients in (5.3) we have

1 —ic,(1) 4d, 1 (1)

APO=1rae O T T aom rienor "

We then have with y,,(t) = o, 1 (¢) + B, (¢), n > 1, the associated Lax pair representation
given by Theorem 2. Observe that, in the case of Corollary 1, we only need to replace 8, (¢)
by 1, o, 4+1(¢) by 4d,,41 () in Theorem 2.

6 Applications to Orthogonal Polynomials on the Unit Circle

Let u be a positive measure defined on the unit circle T and let

Cif]= /T F(zdu(z) and LO[f]= fT F@2dn® (@),

where
d/'L(f) (Z) — eft(ﬁz+q/z)dﬂ(z) — 672t[Re(q)cos€)+Im(q) sinGIdM (eiB) .

Clearly, in this case the monic L-orthogonal polynomials Q,(z; t) defined by (1.7) (with z
in the place of x) for any 7 fixed are actually the orthogonal polynomials on the unit circle,
@, (z; 1), with respect to the measure u®. Again, we will set the Verblunsky coefficients
a,,(¢) and the reciprocal polynomials @;(z; t) to be, respectively,

a,(1) =—=P,11(0;1) and D,(z;1) =7"P,(1/z;1), n=0.
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It is known (see [24]) that the polynomials Q,(z; t) = @,(z; t) satisfy the relations

O0u(z;1) =20u1(z3 1) — a1 (1) Q51 (25 1),

- n>1, 6.1)
Qn(Z; t) = (1 - |an—1(t)|2)ZQn—l(Z; t) - an—l(t) Q:(Z; l),

with Qo(z;1) =1, Qf(z;t) =1and Q;(z;t) =7"Q,(1/z; t) forn > 0.
The existence of those polynomials are guaranteed by the positiveness of the mea-
sure ©®. That is, with the moments

v = L[], k=0,+1,%2,..., (6.2)

the associated Hankel determinants satisfy condition (a) of (1.6). However, in general one
can not assure condition (b) of (1.6).

It is well known that the sequence of the Verblunsky coefficients a, (¢) associated with
the measure du® (z) = '@/ du(z) satisfies the so-called Schur flow equation

dp = (1 =10, *) (@1 — au1),

see, for example, [1, 13, 18]. In [13] a Lax representation for the Schur flow equations was
obtained by using the CMV matrices (see [4] for more details about CMV matrices).

In [20] the connection between of the Verblunsky coefficients and the defocusing
Ablowitz-Ladik system

idn =0p41 — 2an + a1 — |an|2(an+l - c"nfl)
was established. Moreover, also in [20], by using the CMV matrices and by defining certain

Hamiltonians, a Lax representation for the defocusing Ablowitz-Ladik system was given,
with emphasis for the p-periodic Verblunsky coefficients, i.e., when a, , = a,.

Assumption Let the moments (6.2) be such that condition (b) of (1.6) also hold.

With this assumption we also have a,(¢) # 0, n > 0. In this case, using (6.1), we can see
that the polynomials Q, (z; t) satisfy the three term recurrence relation

Qn+l(z; t):[Z_ﬁrH»l(t)]Qn(Z;t)_an+l(t)Zanl(Z; t)7 n= 17 (63)
with Qo(z; 1) = 1 and Q) (z: 1) =z — B (1), where B () = a(1),

a, () a0
a,-1(1) an—l(t)

ﬂnJrl(t) =

Since a, (1) = (—1)"B1 (1) B2(t) - - - Bus1(), observe that

n+l 5

6 B0
a () > Bi(1)’

n=>0.

Jj=1

Thus, from (2.7), we find &, (1) = (1 — [a,(1))[q &,—1 (1) — G, (O], n = 1.
Hence, we can state the following result.
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Theorem 5 Let ju be a positive measure on the unit circle, and let {a, (t)},2, be the Verblun-
sky coefficients associated with the measure u* given by du®(z) = e_’(a”%)du(z). As-
suming that the Verblunsky coefficients are all different from zero we obtain the following

dn = (1 - |an|2)(ﬁanf] - Clﬂn+1), n Z 1 (64)

Remark 1 The original results associated with Theorem 5 (see [1, 13, 18]) correspond to
the case ¢ = 1. However, the case |¢| = 1 also amounts to considering the perturbation
di®(z) =du”(e7*z), where g = e'“.

Remark 2 Because of the approach used in this manuscript, we had to assume that the all
the Verblunsky coefficients a, (¢) are different from zero to obtain the results of Theorem 5.
But, this restriction is not necessary in (6.4).

The system of nonlinear difference differential equations (6.4) also satisfies the Schur
flow equation.

Acknowledgements The authors are grateful to the anonymous referees for a careful reading of the
manuscript.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Ammar, G.S., Gragg, W.B.: Schur flows for orthogonal Hessenberg matrices. In: Hamiltonian and Gra-
dient Flows, Algorithms and Control. Fields Inst. Commun., vol. 3, pp. 27-34. American Mathematical
Society, Providence (1994)

2. Bruschi, M., Ragnisco, O.: Recursion operator and Bécklund transformations for the Ruijsenaars—Toda
lattice. Phys. Lett. A 129, 21-25 (1988)

3. Bruschi, M., Ragnisco, O.: Lax representation and complete integrability for the periodic relativistic
Toda lattice. Phys. Lett. A 134, 365-370 (1989)

4. Cantero, M.J., Moral, L., Veldzquez, L.: Five-diagonal matrices and zeros of orthogonal polynomials on
the unit circle. Linear Algebra Appl. 362, 29-56 (2003)

5. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Mathematics and Its Applications Series.
Gordon & Breach, New York (1978)

6. Common, A.K.: A solution of the initial value problem for half-infinite integrable lattice systems. Inverse
Probl. 8, 393-408 (1992)

7. Common, A.K., Hafez, S.T.: Linearization of the relativistic and discrete-time Toda lattices for particular
boundary conditions. Inverse Probl. 8, 59-69 (1992)

8. Costa, M.S., Felix, H.M., Sri Ranga, A.: Orthogonal polynomials on the unit circle and chain sequences.
J. Approx. Theory 173, 14-32 (2013)

9. Coussement, J., Kuijlaars, A., Van Assche, W.: Direct and inverse spectral transform for the relativistic
Toda lattice and the connection with Laurent orthogonal polynomials. Inverse Probl. 18, 923-942 (2002)

10. Daruis, L., Njastad, O., Van Assche, W.: Para-orthogonal polynomials in frequency analysis. Rocky Mt.
J. Math. 33, 629-645 (2003)

11. Deift, P.A.: Orthogonal Polynomials and Random Matrices: A Riemann—Hilbert Approach. Courant
Lecture Notes in Mathematics, vol. 3. New York University, Courant Institute of Mathematical Sciences.
AMS, Providence (1999)

12. Felix, H.M., Sri Ranga, A., Veronese, D.O.: Kernel polynomials from L-orthogonal polynomials. Appl.
Numer. Math. 61, 651-665 (2011)

13. Golinskii, L.: Schur flows and orthogonal polynomials on the unit circle. Sb. Math. 197, 1145-1165
(2006)

14. Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in one Variable. Encyclopedia of Math-
ematics and its Applications, vol. 98. Cambridge University Press, Cambridge (2005)

@ Springer



154 C.F. Bracciali et al.

15. Jones, W.B., Njastad, O., Thron, W.J.: Two point Padé expansions for a family of analytic functions.
J. Comput. Appl. Math. 9, 105-123 (1983)

16. Jones, W.B., Thron, W.J., Waadeland, H.: A strong Stieltjes moment problem. Trans. Am. Math. Soc.
206, 503-528 (1980)

17. Kharchev, S., Mironov, A., Zhedanov, A.: Faces of relativistic Toda chain. Int. J. Mod. Phys. A 12,
2675-2724 (1997)

18. Mukaihira, A., Nakamura, Y.: Schur flow for orthogonal polynomials on the unit circle and its integrable
discretization. J. Comput. Appl. Math. 139, 75-94 (2002)

19. Nakamura, Y.: A new approach to numerical algorithms in terms of integrable systems. In: Proceed-
ings of the International Conference on Informatics Research for Development of Knowledge Society
Infrastructure, ICKS, pp. 194-205 (2004)

20. Nenciu, L.: Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle. Int.
Math. Res. Not. 11, 647-686 (2005)

21. Peherstorfer, F.: On Toda lattices and orthogonal polynomials. J. Comput. Appl. Math. 133, 519-534
(2001)

22. Ruijsenaars, S.N.M.: Relativistic Toda systems. Commun. Math. Phys. 133, 217-247 (1990)

23. Silva, A.P., Sri Ranga, A.: Polynomials generated by a three term recurrence relation: bounds for complex
zeros. Linear Algebra Appl. 397, 299-324 (2005)

24. Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory. American Mathematical
Society Colloquium Publications, vol. 54. AMS, Providence (2005)

25. Sri Ranga, A.: Symmetric orthogonal polynomials and the associated orthogonal L-polynomials. Proc.
Am. Math. Soc. 123, 3135-3141 (1995)

26. Sri Ranga, A.: Companion orthogonal polynomials. J. Comput. Appl. Math. 75, 23-33 (1996)

27. Sri Ranga, A., Andrade, E.X.L.: Zeros of polynomials which satisfy a certain three term recurrence
relation. In: Comm. Anal. Theory Contin. Fractions, vol. 1, pp. 61-65 (1992)

28. SriRanga, A., Andrade, E.X.L., McCabe, J.H.: Some consequences of symmetry in strong distributions.
J. Math. Anal. Appl. 193, 158-168 (1995)

29. Sri Ranga, A., McCabe, J.H.: On pairwise related strong Stieltjes distributions. K. Nor. Vidensk. Selsk.
3, 3-12 (1996)

30. Sri Ranga, A., Van Assche, W.: Blumenthal’s theorem for Laurent orthogonal polynomials. J. Approx.
Theory 117, 255-278 (2002)

31. Suris, Y.B.: A discrete-time relativistic Toda lattice. J. Phys. A, Math. Gen. 29, 451-465 (1996)

32. Suris, Y.B.: New integrable systems related to the relativistic Toda lattice. J. Phys. A, Math. Gen. 30,
1745-1761 (1997)

33. Suris, Y.B.: The Problem of Integrable Discretization: Hamiltonian Approach. Progress in Mathematics,
vol. 219. Birkhiuser, Basel (2003)

34. Szegd, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium Publications,
vol. 23. AMS, Providence (1975)

35. Toda, M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22, 431-436 (1967)

36. Zhedanov, A.: The “classical” Laurent biorthogonal polynomials. J. Comput. Appl. Math. 98, 121-147
(1998)

@ Springer



	Extended Relativistic Toda Lattice, L-Orthogonal Polynomials and Associated Lax Pair
	Abstract
	Introduction
	The Proof of Theorem 1
	Lax Pairs and the Proof of Theorem 2
	Applications to L-Orthogonal Polynomials on the Positive Real Axis
	Applications to Kernel Polynomials on the Unit Circle
	Applications to Orthogonal Polynomials on the Unit Circle
	Acknowledgements
	References


