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Abstract When a measure Ψ (x) on the real line is subjected to the modification dΨ (t)(x) =
e−txdΨ (x), then the coefficients of the recurrence relation of the orthogonal polynomials in
x with respect to the measure Ψ (t)(x) are known to satisfy the so-called Toda lattice formulas
as functions of t . In this paper we consider a modification of the form e−t (px+q/x) of mea-
sures or, more generally, of moment functionals, associated with orthogonal L-polynomials
and show that the coefficients of the recurrence relation of these L-orthogonal polynomials
satisfy what we call an extended relativistic Toda lattice. Most importantly, we also establish
the so called Lax pair representation associated with this extended relativistic Toda lattice.
These results also cover the (ordinary) relativistic Toda lattice formulations considered in
the literature by assuming either p = 0 or q = 0. However, as far as Lax pair representation
is concern, no complete Lax pair representations were established before for the respective
relativistic Toda lattice formulations. Some explicit examples of extended relativistic Toda
lattice and Langmuir lattice are also presented. As further results, the lattice formulas that
follow from the three term recurrence relations associated with kernel polynomials on the
unit circle are also established.

Keywords Relativistic Toda lattice · Lax pairs · L-orthogonal polynomials · Kernel
polynomials on the unit circle

The first and third authors are supported by funds from FAPESP (2016/09906-0, 2017/12324-6) and
CNPq (305073/2014-1, 305208/2015-2, 402939/2016-6) of Brazil. The second author was supported by
grant from CAPES of Brazil.

B C.F. Bracciali
cleonice.bracciali@unesp.br

J.S. Silva
jairo.santos@ufma.br

A. Sri Ranga
sri.ranga@unesp.br

1 Departamento de Matemática Aplicada, UNESP–Univ Estadual Paulista, 15054-000 São José
do Rio Preto, SP, Brazil

2 Departamento de Matemática, Universidade Federal do Maranhão, 65080-805, São Luís, MA,
Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s10440-018-00229-x&domain=pdf
http://orcid.org/0000-0002-6823-4204
mailto:cleonice.bracciali@unesp.br
mailto:jairo.santos@ufma.br
mailto:sri.ranga@unesp.br


138 C.F. Bracciali et al.

Mathematics Subject Classification (2000) 34A33 · 42C05 · 33C47 · 47E05

1 Introduction

Let Ψ be a positive measure defined on the real line, and let {Pn}∞
n=0 be the sequence of

monic orthogonal polynomials with respect to Ψ , in the sense that
∫
R

xsPn(x)dΨ (x) = 0, 0 ≤ s ≤ n − 1, n ≥ 1,

where Pn is a polynomial of exact degree n. It is known (see, for example, [5, 14, 34]) that
these polynomials satisfy the following three term recurrence relation

Pn+1(x) = (x − bn+1)Pn(x) − an+1Pn−1(x), n ≥ 1, (1.1)

with P0(x) = 1 and P1(x) = x − b1. Moreover, for any n ≥ 1, the coefficients bn are real
and an+1 are positive.

Consider the modified measure Ψ (t), in one time variable t , given by dΨ (t)(x) =
e−txdΨ (x), and the associated monic orthogonal polynomials Pn(x; t). As given in [14]
(see also [21]) the recursion coefficients an+1(t) and bn(t) which appear in the three term
recurrence relation (1.1) for {Pn(x; t)}n≥0 satisfy the semi-infinite Toda lattice equations of
motion

ȧn(t) = an(t)[bn−1(t) − bn(t)],
ḃn(t) = an(t) − an+1(t),

n ≥ 1, (1.2)

with the initial conditions b0(t) = 1, a1(t) = 0, an(0) = an and bn(0) = bn. Here, we use the
usual notation ḟ = d

dt
f .

Toda lattice is a system of particles on the line with exponential interaction of nearest
neighbours [33]. Toda was the first to consider such a system for infinitely many particles
on the line [35]. The Toda lattice equations (1.2) are obtained from the Newtonian equations
of motion (see, for example, [33])

ẍn = exn−1−xn − exn−xn+1 , n ≥ 1, (1.3)

when one takes bn = ẋn and an = exn−1−xn for n ≥ 1.
The present work considers a similar study in the case of the so-called L-orthogonal

polynomials. In this respect, let L be a moment functional defined on the linear space
Span{1, x−1, x, x−2, . . .} of Laurent polynomials.

Given p,q ∈ C, we also assume that the moment functional L is such that
L[e−t (px+q/x)xk] exists for all k ∈ Z and for all t ≥ 0, and that

d

dt
L

[
e−t (px+q

x )f (x)
] = L

[
∂

∂t

(
e−t (px+q

x )f (x)
)]

, (1.4)

for any f (x) which is a Laurent polynomial.
Starting with the above L, we consider the parametric family of moment functionals L(t),

t ≥ 0, such that

L(t)
[
xk

] = L
[
e−t (px+q

x )xk
] = ν

(t)
k , k = 0,±1,±2, . . . , t ≥ 0, (1.5)
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and assume also that

(a) H (−n)
n (t) �= 0 and (b) H

(−n)

n+1 (t) �= 0, (1.6)

for n ≥ 0 and t ≥ 0, where the associated Hankel determinants H(m)
n (t) are given by

H
(m)

0 (t) = 1 and

H(m)
n (t) =

∣∣∣∣∣∣∣∣∣

ν(t)
m ν

(t)

m+1 · · · ν
(t)

m+n−1

ν
(t)

m+1 ν
(t)

m+2 · · · ν
(t)
m+n

...
...

...

ν
(t)

m+n−1 ν
(t)
m+n · · · ν

(t)

m+2n−2

∣∣∣∣∣∣∣∣∣
, n,m ∈ Z, n ≥ 1.

We now define, for any fixed t ≥ 0, the sequence {Qn(x; t)}n≥0 of polynomials in x by

Qn(x; t) is a monic polynomial of degree n in x

L(t)[x−n+sQn(x; t)] = 0, s = 0,1, . . . , n − 1,
(1.7)

for n ≥ 1. It is known (see, for example, [15, 16, 29]) that the existence of these polyno-
mials is assured by the conditions in (1.6). Also when the conditions in (1.6) hold these
polynomials are known to satisfy the following three term recurrence relation

Qn+1(x; t) = [
x − βn+1(t)

]
Qn(x; t) − αn+1(t) xQn−1(x; t), n ≥ 1, (1.8)

with Q0(x; t) = 1, Q1(x; t) = x − β1(t). The known expressions for the coefficients βn(t)

and αn(t) in terms of the moment functional L(t) are presented in Sect. 2 of this manuscript.
The polynomials Qn(x;0) (to be more general, the polynomials Qn(x; t) for any fixed

t ) have been referred to as L-orthogonal polynomials in some previous papers in the subject
(see [12] and references therein). Hence, throughout in this manuscript we will refer to the
polynomials Qn(x; t) as L-orthogonal polynomials with respect to the moment functional
L(t) or simply L-orthogonal polynomials. However, it is important to mention that Zhedanov
in his many contributions (see, for example, [36]) refers to such polynomials as Laurent
biorthogonal polynomials.

The polynomials Qn(x;0), when the determinants in (1.6) (for t = 0) are positive, have
played an important role in the study of the so-called strong Stieltjes moment problem which
was introduced in [16].

With respect to the present objective, it is known that the recursion coefficients βn(t) and
αn(t) (see, for example, [9, 17]) satisfy the equations of motion

β̇n = βn

(
αn+1

βn+1βn

− αn

βnβn−1

)
, α̇n = αn

(
1

βn−1
− 1

βn

)
, (1.9)

for the case where p= 0 and q = 1, and

β̇n = βn(αn − αn+1), α̇n = αn(αn−1 + βn−1 − αn+1 − βn), (1.10)

for the case where p = 1 and q = 0, both with βn(t) �= 0, αn+1(t) �= 0 for n ≥ 1 and α1(t) = 0
(further, αN+1(t) = 0 in the finite case, i.e., n = 1,2, . . . ,N ). The system of equations (1.10)
has also been considered in [6, 7], where the authors have showed its connection to Laurent
polynomials and T-fractions (or the equivalent M-fractions). Observe that the recurrence
formula (1.8) is the three term recurrence relation satisfied by the denominator polynomials
of M-fractions.
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The above system of equations known nowadays as the relativistic Toda lattice was in-
troduced by Ruijsenaars [22] (and studied, for example, in [2, 3, 17, 31–33]). In [17] this
system is also considered in the form of the following Newtonian equation of motion

ẍn = (1 + εẋn+1)(1 + εẋn)
exn+1−xn

1 + ε2exn+1−xn
− (1 + εẋn)(1 + εẋn−1)

exn−xn−1

1 + ε2exn−xn−1
, (1.11)

where ε is a (small) parameter of the model having physical meaning as the inverse speed
of light. Notice that the Newtonian equation of motion (1.11) for the relativistic Toda lattice
is, actually, a one-parameter perturbation of the Newtonian equation of motion (1.3) for the
usual Toda lattice.

In the present manuscript, different from what is considered in [9, 17], we consider the
Toda lattice equations that follow from the two directional modification px + q/x in (1.5).

The main purpose of the present manuscript is to show that the recursion coefficients
βn(t) and αn(t) satisfy the lattice equations that we call the extended relativistic Toda lattice
equations. We also establish the Lax pair formulations for this extended relativistic Toda
lattice. The main results of this paper are stated in the following two theorems.

Theorem 1 Consider a moment functional L(t), defined as in (1.5), and the L-orthogonal
polynomials Qn(x; t), n ≥ 1, defined in (1.7). The recursion coefficients βn(t) and αn(t) in
the recurrence relation (1.8) satisfy the extended relativistic Toda lattice equations

β̇n = pβn(αn − αn+1) + qβn

(
αn+1

βn+1βn

− αn

βnβn−1

)
(1.12)

and

α̇n = pαn(αn−1 + βn−1 − αn+1 − βn) + qαn

(
1

βn−1
− 1

βn

)
, (1.13)

for n ≥ 1, with the initial conditions β0(t) = 1, α0(t) = −1 and α1(t) = 0. Moreover,

γ̇n = p (αnγn − αn+1γn+1) + q

(
αn+1

βn

− αn

βn−1

)
, n ≥ 1, (1.14)

with γn = αn+1 + βn, n ≥ 1. Here, we have omitted the time variable t for simplification.

The proof of this theorem is given in Sect. 2.
The following interesting result holds with respect to the extended relativistic Toda lattice

equations given by Theorem 1.

Theorem 2 Let the infinite Hessenberg matrix H = H(t) and the infinite tridiagonal matrix
F = F(t) be given by

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 γ2 γ3 · · · γn · · ·
α2 γ2 γ3 · · · γn · · ·
0 α3 γ3 · · · γn · · ·
...

. . .
. . .

. . .
...

0 · · · 0 αn γn · · ·
...

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1 h1 0 · · · 0 · · ·
e2 f2 h2

. . .
...

0 e3 f3
. . . 0 · · ·

...
. . .

. . .
. . . hn−1

. . .

0 · · · 0 en fn
. . .

...
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(1.15)
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where γk = αk+1 + βk ,

ek = −pαk, fk = pαk + q

γk − αk+1
, hk = − q

γk − αk+1
,

for k ≥ 1. Then the pair {H,F} is a Lax pair for the extended relativistic Toda lattice
equations (1.13) and (1.14) given by Theorem 1. Precisely, Ḣ = [H,F], where [H,F] =
HF −FH.

Further information about Lax pairs and the proof of Theorem 2 are given in Sect. 3.
In Sect. 4 we consider the case in which L[f ] = ∫ b

a
f (x)dψ(x), where 0 ≤ a < b ≤ ∞

and ψ is a strong positive measure defined on [a, b]. The word strong, adopted from the
work of Jones, Thron and Waadeland [16] on the strong moment problem, is to indicate that
the measure has moments of non-negative and negative order. In Sect. 4 we have also given
two examples with pq �= 0, where the solutions have very nice representations.

The two parameter extension px + q/x also permits us to extend the results to the unit
circle. If μ is a positive measure on the unit circle T = {x = eiθ : 0 ≤ θ ≤ 2π}, then with
p = q, the measures μ(t) given by

dμ(t)(x) = e−t (px+q/x)dμ(x),

is also positive in T for any t real. Hence, respectively in Sects. 5 and 6, we have been able
to proceed with the study of looking at the recurrence coefficients βn(t) and αn+1(t) that
follow from the moment functionals

L(t)[f ] =
∫
T

f (x) e−t (qx+q/x)(x − w)dμ(x), (1.16)

where |w| = 1 fixed and from the moment functionals

L(t)[f ] =
∫
T

f (x) e−t (qx+q/x)xdμ(x). (1.17)

In the case of (1.17) the polynomials Qn(x; t) are the monic orthogonal polynomials on the
unit circle with respect to μ(t) (also known as Szegő polynomials), and in the case of (1.16)
the polynomials Qn(x; t) are the monic kernel polynomials, say const K(t)

n (x,w), on the
unit circle with respect to μ(t). For a comprehensive collection of information concerning
orthogonal polynomials on the unit circle and associated kernel polynomials we refer to [24].

2 The Proof of Theorem 1

Let Qn(x; t) = ∑n

j=0 an,j (t)x
j , where an,n(t) = 1. From the linear system (1.7) in the coef-

ficients an,j (t) of Qn(x; t), one easily finds

Qn(x; t) = 1

H
(−n)
n (t)

∣∣∣∣∣∣∣∣∣

ν
(t)
−n ν

(t)

−n+1 · · · ν
(t)

0
...

...
...

ν
(t)

−1 ν
(t)

0 · · · ν
(t)

n−1
1 x · · · xn

∣∣∣∣∣∣∣∣∣
, n ≥ 1,
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and if σn,−1(t) = L(t)[x−n−1Qn(x; t)] and σn,n(t) = L(t)[Qn(x; t)] then

σn,−1(t) = (−1)n
H

(−n−1)

n+1 (t)

H
(−n)
n (t)

, σn,n(t) = H
(−n)

n+1 (t)

H
(−n)
n (t)

, n ≥ 1.

Also observe that σ0,0(t) = ν
(t)

0 and σ0,−1(t) = ν
(t)

−1.
Clearly, the sequence of polynomials {Qn(x; t)}n≥0 exists for all t ≥ 0 because

H(−n)
n (t) �= 0 for all t ≥ 0, which follows from condition (a) of (1.6). Observe that the

condition (b) in (1.6) also means that Qn(0; t) �= 0 for all n ≥ 1 and for all t ≥ 0.
With both conditions (a) and (b) in (1.6) the recurrence relation (1.8) holds for any t ≥ 0,

with β1(t) = σ0,0(t)/σ0,−1(t),

βn+1(t) = −αn+1(t)
σn−1,−1(t)

σn,−1(t)
and αn+1(t) = σn,n(t)

σn−1,n−1(t)
, n ≥ 1. (2.1)

From the recurrence relation (1.8), we directly obtain

an,0(t) = Qn(0; t) = (−1)nβn(t)βn−1(t) · · ·β2(t)β1(t), n ≥ 1 (2.2)

and

αn+1(t) + βn+1(t) = an,n−1(t) − an+1,n(t), n ≥ 1. (2.3)

Notice that using (2.1), we also obtain for n ≥ 0,

σn,n(t) = αn+1(t)αn(t) · · ·α2(t)σ0,0(t) (2.4)

and

σn,−1(t) = (−1)n αn+1(t)αn(t) · · ·α2(t)σ0,0(t)

βn+1(t)βn(t) · · ·β2(t)β1(t)
= σn,n(t)

βn+1(t)an,0(t)
. (2.5)

Lemma 1 Let us denote τn(t) = L(t)[xQn(x; t)], n ≥ 0. Then,

τn(t) = σn,n(t)

n+1∑
k=1

[
αk+1(t) + βk(t)

] = σn,n(t)

n+1∑
k=1

γk(t),

for n ≥ 0, where γk(t) = αk+1(t) + βk(t), k = 1,2, . . . , n + 1.

Proof The validity of the Lemma for n = 0 is easily verified.
From the recurrence relation (1.8), we have

xQn(x; t) = Qn+1(x; t) + βn+1(t)Qn(x; t) + αn+1(t)xQn−1(x; t), n ≥ 1.

Applying the moment function L(t) in the above equality gives

τn(t) = σn+1,n+1(t) + βn+1(t)σn,n(t) + αn+1(t)τn−1(t), n ≥ 1.

Consequently, with the observation that α2(t) + β1(t) = L(t)[x]/L(t)[1], we find
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τn(t)

σn,n(t)
= αn+2(t) + βn+1(t) + τn−1(t)

σn−1,n−1(t)
=

n+1∑
k=1

[
αk+1(t) + βk(t)

] =
n+1∑
k=1

γk(t),

for n ≥ 1, this concludes the proof of the Lemma. �

Since Qn(x; t) is a polynomial of degree n in the variable x, from (1.7) we have
L(t)[x−nQn−1(x; t)Qn(x; t)] = 0, n ≥ 1. Differentiating this with respect to the variable t

and denoting ∂
∂t

Qn(x; t) = Q̇n(x; t), we obtain from (1.5),

L(t)
[
x−nQ̇n−1(x; t)Qn(x; t)] +L(t)

[
x−nQn−1(x; t)Q̇n(x; t)]

−L(t)

[
x−n

(
px + q

x

)
Qn−1(x; t)Qn(x; t)

]
= 0, n ≥ 1. (2.6)

However, since Q̇n(x; t) = ∑n−1
j=0 ȧn,j (t)x

j is a polynomial of degree at most n − 1 in

the variable x, again from (1.7), we can see that L(t)[x−n Q̇n−1(x; t)Qn(x; t)] = 0 and
L(t)[x−n Qn−1(x; t)Q̇n(x; t)] = ȧn,0(t)σn−1,−1(t), for n ≥ 1. Furthermore,

L(t)
[
x−n+1Qn−1(x; t)Qn(x; t)] = an−1,n−1(t)σn,n(t) = σn,n(t)

and L(t)[x−n−1Qn−1(x; t)Qn(x; t)] = an−1,0(t)σn,−1(t), for n ≥ 1. By substituting these in
(2.6), we then conclude that

ȧn,0(t)σn−1,−1(t) = pσn,n(t) + qan−1,0(t)σn,−1(t), n ≥ 1.

Using (2.1), (2.2) and (2.5), we get

n∑
k=1

β̇k(t)

βk(t)
= −pαn+1(t) + q

αn+1(t)

βn+1(t)βn(t)
, n ≥ 1. (2.7)

From this and setting the initial conditions β0(t) = 1 and α1(t) = 0, the relation (1.12) of
Theorem 1 holds.

Now from (1.7), we observe that L(t)[x−nQ2
n(x; t)] = σn,n(t), for n ≥ 0. Differentiating

σn,n(t) with respect to t and observing that L(t)[x−nQ̇n(x; t) Qn(x; t)] = 0, it yields

σ̇n,n(t) = −L(t)

[
x−n

(
px + q

x

)
Q2

n(x; t)
]
, n ≥ 0. (2.8)

Observe from (1.7), that L(t)[x−n−1Q2
n(x; t)] = an,0(t)σn,−1(t) for n ≥ 0 and, from

Lemma 1,

L(t)
[
x−n+1Q2

n(x; t)] = an,n−1(t)σn,n(t) + σn,n(t)

n+1∑
k=1

[
αk+1(t) + βk(t)

]
,

for n ≥ 0, where we have taken a0,−1(t) = 0. One can verify also from (2.3) that

an,n−1(t) +
n+1∑
k=1

[
αk+1(t) + βk(t)

] = αn+2(t) + βn+1(t) + αn+1(t), n ≥ 0.
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Hence, using the above results, the equation (2.8) can be given as

−pσn,n(t)
[
αn+2(t) + βn+1(t) + αn+1(t)

] − qan,0(t)σn,−1(t) = σ̇n,n(t),

for n ≥ 0. Thus, from (2.4) and (2.5), we have

−p
[
α2(t) + β1(t) + α1(t)

] − q
1

β1(t)
= σ̇0,0(t)

σ0,0(t)
,

and, for n ≥ 1,

−p
[
αn+2(t) + βn+1(t) + αn+1(t)

] − q
1

βn+1(t)
= σ̇0,0(t)

σ0,0(t)
+

n+1∑
k=2

α̇k(t)

αk(t)
.

Consequently the relation (1.13) of Theorem 1 holds for n ≥ 2. On the other hand, since
β0(t) = 1, α1(t) = 0 and α0(t) is arbitrary (but, we set α0(t) = −1) the relation (1.13) clearly
holds for n = 1.

Finally, since γn(t) = αn+1(t) + βn(t), for n ≥ 1 from (1.12) and (1.13), we easily obtain
equation (1.14) of Theorem 1.

3 Lax Pairs and the Proof of Theorem 2

As in Nakamura [19], by considering the infinite matrices

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 1 0 · · · 0 · · ·
a2 b2 1

. . .
...

0 a3 b3
. . . 0 · · ·

...
. . .

. . .
. . . 1

. . .

0 · · · 0 an bn

. . .

...
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · 0 · · ·
−a2 0 0

...

0 −a3 0
. . .

...
...

. . .
. . .

. . . 0 · · ·
0 · · · 0 −an 0

. . .

...
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

the Toda lattice equations (1.2) can also be represented in the matrix form

Ṡ = [S,T ] = S T − T S. (3.1)

The pair {S,T } is called a Lax pair and (3.1) is called a Lax representation for the Toda
lattice (1.2). Another Lax pair for the Toda lattice (1.2) can also be found in [11, 35].

For the case of the finite relativistic Toda lattice equations (1.9) and (1.10) (i.e., n =
1,2, . . . ,N ), in Suris [31, 32] (see also Coussement et al. [9] for a generalized form of the
finite relativistic Toda lattice), by considering the bidiagonal matrices MN and PN given by

MN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β1 1 0 · · · 0

0 β2 1
...

...
. . .

. . .
. . .

...
...

. . . βN−1 1
0 · · · · · · 0 βN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, PN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

−α2 1 0
...

...
. . .

. . .
. . .

...
...

. . . 1 0
0 · · · · · · −αN 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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it was shown that (1.9) can be written in the Lax form{
ṀN = MNAN − BNMN,

ṖN = PNAN − BNPN,
(3.2)

with AN = −(M−1
N PN)− and BN = −(PNM−1

N )−, where Z− denotes the strictly lower tri-
angular part of Z. Moreover, by considering AN = −(P−1

N MN)− and BN = −(MNP−1
N )−,

it was also shown that the system (1.10) can also be written in the form (3.2). Notice that
in neither case we have a Lax pair of the form (3.1) for the finite relativistic Toda lattice
equations (1.9) and (1.10).

The aim of this section is to present a Lax pair of the form (3.1) for the extended rela-
tivistic Toda lattice equations (1.13) and (1.14).

Let us first consider the extended relativistic Toda lattice equations of the finite order

γ̇n = p(αnγn − αn+1γn+1) + q

(
αn+1

γn − αn+1
− αn

γn−1 − αn

)
, (3.3)

and

α̇n = pαn(αn−1 + γn−1 − αn − γn) + qαn

(
1

γn−1 − αn

− 1

γn − αn+1

)
, (3.4)

for n = 1,2, . . . ,N , where γn(t) = αn+1(t) + βn(t), β0(t) = 1, α0(t) = −1 and α1(t) = 0,
with the additional assumption αN+1(t) = 0. Observe that with αN+1(t) = 0 the product
αN+1(t)γN+1(t) that appears in (3.3) is also zero.

For N ≥ 1, let the N × N matrices HN = HN(t), XN = XN(t) and YN = YN(t) be given
by

HN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ1 γ2 γ3 · · · γN−1 γN

α2 γ2 γ3 · · · γN−1 γN

0 α3 γ3 · · · γN−1 γN

...
. . .

. . .
. . .

...
...

0 · · · 0 αN−1 γN−1 γN

0 · · · 0 0 αN γN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

XN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 0 0 · · · 0 0
−α2 α2 0 · · · 0 0

0 −α3 α3
. . .

...
...

...
. . .

. . .
. . . 0 0

0 · · · 0 −αN−1 αN−1 0
0 · · · 0 0 −αN αN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

YN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
γ1−α2

− 1
γ1−α2

0 · · · 0 0

0 1
γ2−α3

− 1
γ2−α3

. . .
...

...

0 0
. . .

. . . 0 0
...

. . .
. . . 1

γN−2−αN−1
− 1

γN−2−αN−1
0

0 · · · 0 0 1
γN−1−αN

− 1
γN−1−αN

0 · · · 0 0 0 1
γN −αN+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The matrix HN has already been shown to be interesting in the studies related to L-
orthogonal polynomials. From results first appeared in [27] (see also [23, 30] on further
studies), the zeros of QN(x; t) are exactly the eigenvalues of the Hessenberg matrix HN(t).

Now with the above matrices by performing the respective matrix multiplications one
easily finds that

ḢN = p(HNXN −XNHN) + q(HNYN −YNHN),

for any N ≥ 1. Hence, we can state the following theorem.

Theorem 3 A Lax representation for the extended relativistic Toda lattice equations of finite
order N (N ≥ 1) given by (3.3) and (3.4) is

ḢN = [HN,FN ] = HNFN −FNHN,

where FN = pXN + qYN .

To prove Theorem 2 one only needs to let N → ∞ in Theorem 3.

4 Applications to L-Orthogonal Polynomials on the Positive Real Axis

In this section we consider the case in which the moment functional L is given by

L[f ] =
∫ b

a

f (x)dψ(x),

where 0 ≤ a < b ≤ ∞ and ψ is a strong positive measure defined on [a, b]. By the term
“strong” we mean that the moments L[xn] = ν(0)

n exists for all n ∈ Z. The existence of the
moments L(t)[xn] = ν(t)

n , for all n ∈ Z, depends on the choice of p and q, especially if a = 0
and/or b = ∞.

Clearly, the choice p > 0 and q > 0, that we will assume throughout in this section,
guarantees the existence of all the moments since it is easily verified that

ν(t)
n = L(t)

[
xn

] =
∫ b

a

xne−t (px+q
x )dψ(x) ≤ e−2t

√
pq

∫ b

a

xndψ(x) = e−2t
√
pq ν(0)

n ,

for n = 0,±1,±2, . . . . With the existence of the moments, the determinant conditions in
(1.6) also hold since e−t (px+q/x)dψ(x) leads to a positive measure in [a, b]. To be precise,
we have 0 < H(−n)

n (t) < ∞ and 0 < H
(−n)

n+1 (t) < ∞, for n ≥ 0. Moreover, since ν(t)
n is a

bounded and absolutely function of t , also follows that

d

dt

∫ b

a

[
e−t (px+q

x )f (x)
]
dψ(x) =

∫ b

a

∂

∂t

[
e−t (px+q

x )f (x)
]
dψ(x)

= −
∫ b

a

[
e−t (px+q

x )

[
px + q

x

]
f (x)

]
dψ(x),

for any Laurent polynomial f . Thus, the requirement (1.4) for L.
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We can also, without any loss of generality, consider L(t) in the form

L(t)
[
f (x)

] = L
[
f (x)e−t (x+q

x )
]
, (4.1)

with q > 0, by absorbing the positive p into the parameter t .
If we consider the L-orthogonal polynomials Qn(x; t) with respect to this moment func-

tional then from the positiveness of e−t (x+q/x)dψ(x) one can state that (see [16]) the coeffi-
cients in the associated recurrence relation (1.8) satisfy βn(t) > 0 and αn+1(t) > 0, n ≥ 1.

On the other hand, by Theorem 1 these coefficients satisfy the extended relativistic Toda
lattice equations

β̇n = βn(αn − αn+1) + qβn

(
αn+1

βn+1βn

− αn

βnβn−1

)
(4.2)

and

α̇n = αn(αn−1 + βn−1 − αn+1 − βn) + qαn

(
1

βn−1
− 1

βn

)
, (4.3)

for n ≥ 1, with the initial conditions β0(t) = 1, α0(t) = −1 and α1(t) = 0.
We now analyse results corresponding to such L(t) with two particular examples.

Example 1 For δ > 0, let the moment functional L be given by L[f (x)] = ∫ ∞
0 f (x)dψ(x),

where dψ(x) = x− 1
2 e−δ(x+q/x)dx. Then, the moment functional L(t) defined as in (4.1) sat-

isfies

L(t)
[
f (x)

] =
∫ ∞

0
f (x)dψ(t)(x),

where dψ(t)(x) = x− 1
2 e−(t+δ)(x+q/x)dx.

Considering the L-orthogonal polynomials Qn(x; t) with respect to this moment func-
tional we find that the coefficients of the associated three term recurrence relation (1.8)
satisfy

βn(t) = √
q and αn+1(t) = n

2(t + δ)
, n ≥ 1. (4.4)

This follows from results given in [25] (p. 3139).
Substituting the values (4.4) in the right hand sides of (4.2) and (4.3) we find β̇n = 0, for

n ≥ 1, and

α̇n = αn(αn−1 + βn−1 − αn+1 − βn) + qαn

(
1

βn−1
− 1

βn

)
= − n − 1

2(t + δ)2
, n ≥ 2.

The values obtained here for β̇n and α̇n are what we obtain by direct differentiation in (4.4).
It turns out that the measure ψ in Example 1 is such that

dψ(x)√
x

= −dψ(q/x)√
q/x

. (4.5)

Consequently, the measure ψ(t) in Example 1 also satisfies the symmetric property (4.5).
It is known (see, for example, [25, 28]) that under this symmetric property the coefficients

βn in the three term recurrence (1.8) must satisfy βn(t) = √
q, n ≥ 1.
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In general, if we start with any strong measure ψ that satisfies the symmetry (4.5) and
then proceed to create the linear functional L and to build the moment functionals L(t) as
in (4.1), then βn(t) = √

q, n ≥ 1. Moreover, for αn(t) we obtain αn(t) > 0, n ≥ 2 and from
(4.3)

α̇n(t) = αn(t)
[
αn−1(t) − αn+1(t)

]
, n ≥ 2,

with α1(t) = 0, which is known as Langmuir or Volterra lattice (see [21]).

Example 2 For δ > 0, let the moment functional L be given by L[f (x)] = ∫ ∞
0 f (x)dψ̃(x),

where dψ̃(x) = (x + √
q)x− 3

2 e−δ(x+q
x )dx. Then the moment functional L(t) defined as in

(4.1) satisfies

L(t)
[
f (x)

] =
∫ ∞

0
f (x)dψ̃(t)(x), (4.6)

where dψ̃(t)(x) = (x + √
q)x− 3

2 e−(t+δ)(x+q
x )dx.

Let us denote the coefficients in the three term recurrence relation (1.8) with respect to
the moment functional L(t) in (4.6) as α̃n(t) and β̃n(t). The measures ψ̃(t) can be verified to
satisfy the symmetry

dψ̃(t)(x) = −dψ̃(t)(q/x),

and further dψ̃(t)(x) = x+√
q

x
dψ(t)(x), where ψ(t) are the measures given in Example 1.

Consequently, using results found in [26], we obtain

β̃n(t) = ln−1(t)

ln(t)
, α̃n+1(t) = β̃n(t)

[
l2
n(t) − 1

]
, n ≥ 1,

where ln(t) = 1 + n/[2√
q(t+δ)]

ln−1(t)+1 , n ≥ 1 and l0(t) = 1. These values for β̃n and α̃n, together with

the values for ˙̃
βn and ˙̃αn obtained from these, can be successively substituted in

˙̃
βn = β̃n(α̃n − α̃n+1) + q β̃n

(
α̃n+1

β̃n+1β̃n

− α̃n

β̃nβ̃n−1

)
,

˙̃αn = α̃n(α̃n−1 + β̃n−1 − α̃n+1 − β̃n) + q α̃n

(
1

β̃n−1

− 1

β̃n

)
,

n ≥ 1,

to verify the validity of these extended relativistic Toda lattice equations.

5 Applications to Kernel Polynomials on the Unit Circle

Let μ be a positive measure defined on the unit circle T = {z = eiθ : 0 ≤ θ ≤ 2π} and let

L[f ] =
∫
T

f (z)(z − w)dμ(z) and L(t)[f ] =
∫
T

f (z)(z − w)dμ(t)(z),

where

dμ(t)(z) = e−t (qz+q/z)dμ(z) = e−2t[Re(q) cos θ+Im(q) sin θ]dμ
(
eiθ

)
.

For convention and also for convenience we have replaced x by z.
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Clearly, μ(t) is a well defined positive measure on the unit circle for any t real. Thus,
from now on consider t ∈ (−∞,∞). We denote the nth degree monic orthogonal polyno-
mial and orthonormal polynomial associated with the measure μ(t) by Φn(z; t) and ϕn(z; t),
respectively (see [24]). We also denote the associated Verblunsky coefficients by an(t). That
is, an(t) = −Φn+1(0; t), n ≥ 1.

Now, with a fixed w such that |w| = 1 and fixed t , we consider the L-orthogonal polyno-
mials Qn(z; t) defined by (1.7) with z in the place of x. The existence of these polynomials
and that they satisfy the three term recurrence (1.8), i.e.,

Qn+1(z; t) = [
z − βn+1(t)

]
Qn(z; t) − αn+1(t)zQn−1(z; t), n ≥ 1, (5.1)

with Q0(z; t) = 1 and Q1(z; t) = z − β1(t), follow from results given in [8].
These polynomials are actually the monic kernel polynomials (or monic CD kernel as in

Simon [24]) with respect to the measure μ(t). Precisely, we have

κnϕn(w; t)Qn(z; t) = K(t)
n (z,w) =

n∑
j=0

ϕj (w; t) ϕj (z; t), n ≥ 1,

where κ−2
n = μ

(t)

0

∏n−1
j=0(1 − |aj (t)|2) and μ

(t)

0 = ∫
T
dμ(t)(z). Moreover, for the coefficients

βn(t) = βn(w, t) and αn(t) = αn(w, t) we also have (see [8] (Thm. 2.1)),

βn(t) = − ρ(t)
n (w)

ρ
(t)

n−1(w)
, αn+1(t) = [

1 + ρ(t)
n (w)an−1(t)

][
1 − wρ

(t)
n (w)an(t)

]
w,

for n ≥ 1, where ρ(t)
n (w) = Φn(w; t)/Φ∗

n(w; t), n ≥ 0, and Φ∗
n(w; t) = wnΦn(1/w̄; t) de-

notes the reciprocal polynomial of Φn(w; t).
The monic polynomials Qn(z; t) can also be considered as the special para-orthogonal

polynomials

Qn(z; t) = zΦn−1(z; t) − ρ
(t)

n−1(w)Φ∗
n−1(z; t), n ≥ 1.

It is well known that quadrature rules on the unit circle are based on the zeros of para-
orthogonal polynomials. Para-orthogonal polynomials have also been useful tools in linear
prediction and frequency analysis problems (see [10]).

Clearly, by Theorem 1 the coefficients βn(t) and αn(t) satisfy the extended relativistic
Toda lattice equations (1.12) and (1.13), with p = q.

Observe that, in contrast to the results presented in Sect. 4, the coefficients βn(t) and
αn(t) now are complex valued. However, by taking w = 1 we can write the three term
recurrence (5.1) in a different form which involves only real coefficients.

Let

gn(t) = 1

2

|1 − ρ
(t)

n−1an−1(t)|2
[1 − Re[ρ(t)

n−1an−1(t)]]
, n ≥ 1, (5.2)

where ρ
(t)
j = ρ

(t)
j (1). It is easy to check that all gn(t) ∈ (0,1), hence the terms of the follow-

ing sequence are all positive

ξn(t) = ξ0(t)

n∏
j=1

(
1 − gj (t)

)
, n ≥ 1, ξ0(t) :=

∫
T

dμ(t)(z).
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With this notation we introduce the normalized CD kernels by Rn(z; t) := ξn(t) K(t)
n (z,1),

n ≥ 0.
It turns out (see [8]) that these kernel polynomials, Rn(z; t), satisfy the following three

term recurrence relation

Rn+1(z; t) = [(
1 + icn+1(t)

)
z + (

1 − icn+1(t)
)]

Rn(z; t) − 4dn+1(t)zRn−1(z; t), (5.3)

for n ≥ 1, with R0(z; t) = 1 and R1(z; t) = (1 + ic1(t))z + (1 − ic1(t)), where both
{cn(t)}n≥1 and {dn+1(t)}n≥1 are real sequences. In fact,

cn(t) = Im(ρ
(t)

n−1an−1(t))

Re(ρ(t)

n−1an−1(t)) − 1
∈R and dn+1(t) = [

1 − gn(t)
]
gn+1(t), n ≥ 1,

with gn(t) given by (5.2). In the standard terminology, this means that {dn+1(t)}n≥1 is a
positive chain sequence for any t , and {gn+1(t)}n≥0 is a parameter sequence for {dn+1(t)}n≥1

(for more details on chain sequences see, for example, [5]).
Now, by using Theorem 1, we can state the following.

Theorem 4 The coefficients cn(t) and dn(t) of the three term recurrence relation (5.3) sat-
isfy

ċ1 = −4 Re(q)

[
d2(c1 + c2)

1 + c2
2

]
− 4 Im(q)

[
d2(1 − c1c2)

1 + c2
2

]

and, for n ≥ 2,

ċn = 4 Re(q)

[
dn(cn + cn−1)

1 + c2
n−1

− dn+1(cn + cn+1)

1 + c2
n+1

]

+ 4 Im(q)

[
dn(1 − cncn−1)

1 + c2
n−1

− dn+1(1 − cncn+1)

1 + c2
n+1

]
,

and

ḋn = 4 Re(q)

[
dndn−1

1 + c2
n−2

− dndn+1

1 + c2
n+1

+ dn(1 − dn)(c
2
n−1 − c2

n)

(1 + c2
n)(1 + c2

n−1)

]

− 4 Im(q)

[
dndn−1cn−2

1 + c2
n−2

− dndn+1cn+1

1 + c2
n+1

+ dn(1 − dn)(cn − cn−1)(1 − cncn−1)

(1 + c2
n)(1 + c2

n−1)

]
,

with c0(t) = 1 and d1(t) = 0. Here, we have also omitted the time variable t .

Proof Since, Qn(z; t)∏n

k=1(1+ ick(t)) = Rn(z; t), n ≥ 1, the coefficients βn(t), αn(t), cn(t)

and dn(t) which appear in the three term recurrence relations (5.1) and (5.3) are such that

βn(t) = −1 − icn(t)

1 + icn(t)
and αn(t) = 4dn(t)

(1 + icn(t))(1 − icn−1(t))
, (5.4)

for n ≥ 1, with c0(t) = 1 and d1(t) = 0. Notice that differentiating βn(t) given by (5.4) with
respect to t , we obtain

β̇n(t)

βn(t)
= −i

2ċn(t)

1 + c2
n(t)

, n ≥ 1. (5.5)
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Consequently since the coefficients βn(t) and αn(t) satisfy (1.12), using (5.4) and (5.5),
we conclude that, for n ≥ 1,

ċn(t) = 2(p+ q)

{
dn(t)[cn(t) + cn−1(t)]

1 + c2
n−1(t)

− dn+1(t)[cn(t) + cn+1(t)]
1 + c2

n+1(t)

}

+ i 2(p− q)

{
dn(t)[1 − cn(t)cn−1(t)]

1 + c2
n−1(t)

− dn+1(t)[1 − cn(t)cn+1(t)]
1 + c2

n+1(t)

}
.

Hence, the expression for ċn(t) in Theorem 4 is a consequence of p = q. In a similar manner,
using the value of αn(t) given by (5.4), one can also prove the expression for ḋn(t). �

To obtain a special case of the results presented in Theorem 4, we assume that the
measure μ satisfies the symmetry dμ(eiθ ) = −dμ(ei(2π−θ)) and that q is real. Hence, the
measure μ(t) also satisfies the same symmetry and, as a consequence, an−1(t) is real and
ρ(t)

n (1) = 1, n ≥ 1. This leads to the following corollary of Theorem 4.

Corollary 1 If μ is such that dμ(eiθ ) = −dμ(ei(2π−θ)) and q is real then cn(t) = 0 for
n ≥ 1, and dn(t) satisfy

ḋn = 4qdn(dn−1 − dn+1), n ≥ 2, (5.6)

with d1(t) = 0.

Notice that the relation obtained in (5.6) is a type of Langmuir lattice.
Comparing the coefficients in (5.1) when w = 1 with the coefficients in (5.3) we have

βn(t) = 1 − icn(t)

1 + icn(t)
, αn+1(t) = 4dn+1(t)

[1 + icn(t)][1 + icn+1(t)] , n ≥ 1.

We then have with γn(t) = αn+1(t) + βn(t), n ≥ 1, the associated Lax pair representation
given by Theorem 2. Observe that, in the case of Corollary 1, we only need to replace βn(t)

by 1, αn+1(t) by 4dn+1(t) in Theorem 2.

6 Applications to Orthogonal Polynomials on the Unit Circle

Let μ be a positive measure defined on the unit circle T and let

L[f ] =
∫
T

f (z)zdμ(z) and L(t)[f ] =
∫
T

f (z)zdμ(t)(z),

where

dμ(t)(z) = e−t (qz+q/z)dμ(z) = e−2t[Re(q) cos θ+Im(q) sin θ]dμ
(
eiθ

)
.

Clearly, in this case the monic L-orthogonal polynomials Qn(z; t) defined by (1.7) (with z

in the place of x) for any t fixed are actually the orthogonal polynomials on the unit circle,
Φn(z; t), with respect to the measure μ(t). Again, we will set the Verblunsky coefficients
an(t) and the reciprocal polynomials Φ∗

n(z; t) to be, respectively,

an(t) = −Φn+1(0; t) and Φ∗
n(z; t) = znΦn(1/z; t), n ≥ 0.
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It is known (see [24]) that the polynomials Qn(z; t) = Φn(z; t) satisfy the relations

Qn(z; t) = zQn−1(z; t) − an−1(t)Q∗
n−1(z; t),

Qn(z; t) = (
1 − |an−1(t)|2

)
zQn−1(z; t) − an−1(t)Q

∗
n(z; t),

n ≥ 1, (6.1)

with Q0(z; t) = 1, Q∗
0(z; t) = 1 and Q∗

n(z; t) = znQn(1/z; t) for n ≥ 0.
The existence of those polynomials are guaranteed by the positiveness of the mea-

sure μ(t). That is, with the moments

ν
(t)
k = L(t)

[
zk

]
, k = 0,±1,±2, . . . , (6.2)

the associated Hankel determinants satisfy condition (a) of (1.6). However, in general one
can not assure condition (b) of (1.6).

It is well known that the sequence of the Verblunsky coefficients an(t) associated with
the measure dμ(t)(z) = et(z+1/z)dμ(z) satisfies the so-called Schur flow equation

ȧn = (
1 − |an|2

)
(an+1 − an−1),

see, for example, [1, 13, 18]. In [13] a Lax representation for the Schur flow equations was
obtained by using the CMV matrices (see [4] for more details about CMV matrices).

In [20] the connection between of the Verblunsky coefficients and the defocusing
Ablowitz-Ladik system

iȧn = an+1 − 2an + an−1 − |an|2(an+1 − an−1)

was established. Moreover, also in [20], by using the CMV matrices and by defining certain
Hamiltonians, a Lax representation for the defocusing Ablowitz-Ladik system was given,
with emphasis for the p-periodic Verblunsky coefficients, i.e., when an+p = ap .

Assumption Let the moments (6.2) be such that condition (b) of (1.6) also hold.

With this assumption we also have an(t) �= 0, n ≥ 0. In this case, using (6.1), we can see
that the polynomials Qn(z; t) satisfy the three term recurrence relation

Qn+1(z; t) = [
z − βn+1(t)

]
Qn(z; t) − αn+1(t) zQn−1(z; t), n ≥ 1, (6.3)

with Q0(z; t) = 1 and Q1(z; t) = z − β1(t), where β1(t) = a0(t),

βn+1(t) = − an(t)

an−1(t)
and αn+1(t) = an(t)

an−1(t)

(
1 − ∣∣an−1(t)

∣∣2)
, n ≥ 1.

Since an(t) = (−1)nβ1(t)β2(t) · · ·βn+1(t), observe that

ȧn(t)

an(t)
=

n+1∑
j=1

β̇j (t)

βj (t)
, n ≥ 0.

Thus, from (2.7), we find ȧn(t) = (1 − |an(t)|2)[qan−1(t) − qan+1(t)], n ≥ 1.
Hence, we can state the following result.
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Theorem 5 Let μ be a positive measure on the unit circle, and let {an(t)}∞
n=0 be the Verblun-

sky coefficients associated with the measure μ(t) given by dμ(t)(z) = e−t (qz+q
z )dμ(z). As-

suming that the Verblunsky coefficients are all different from zero we obtain the following

ȧn = (
1 − |an|2

)
(qan−1 − qan+1), n ≥ 1. (6.4)

Remark 1 The original results associated with Theorem 5 (see [1, 13, 18]) correspond to
the case q = 1. However, the case |q| = 1 also amounts to considering the perturbation
dμ̃(t)(z) = dμ(t)(e−iαz), where q = eiα .

Remark 2 Because of the approach used in this manuscript, we had to assume that the all
the Verblunsky coefficients an(t) are different from zero to obtain the results of Theorem 5.
But, this restriction is not necessary in (6.4).

The system of nonlinear difference differential equations (6.4) also satisfies the Schur
flow equation.
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