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Abstract In “Counting central configurations at the bifurcation points,” we proposed an
algorithm to rigorously count central configurations in some cases that involve one parame-
ter. Here, we improve our algorithm to consider three harder cases: the planar (3 + 1)-body
problem with two equal masses; the planar 4-body problem with two pairs of equal masses
which have an axis of symmetry containing one pair of them; the spatial 5-body problem
with three equal masses at the vertices of an equilateral triangle and two equal masses on
the line passing through the center of the triangle and being perpendicular to the plane con-
taining it.

While all three problems have been studied in two parameter cases, numerical observa-
tions suggest new results at some points on the bifurcation curves. Applying the improved
version of our algorithm, we count at those bifurcation points. As a result, for the (3 + 1)-
body problem, we identify three points on the bifurcation curve where there are 8 central
configurations, which adds to the known results of 8,9,10 ones. For our 4-body case, at
the bifurcation points, there are 3 concave central configurations, which adds to the known
results of 2,4 ones. For our 5-body case, at the bifurcation point, there is 1 concave central
configuration, which adds to the known results of 0,2 ones.

Keywords N -body problems · Central configurations · Bifurcation points · Symbolic
computation · Solving parametric polynomial systems

1 Introduction

The Newtonian n-body problem studies the dynamics of n particles with masses mi > 0 and
positions qi ∈R

d , moving according to the Newton’s laws of motion:

q̈j =
∑

i �=j

mi(qi − qj )

‖qi − qj‖3
, 1 ≤ j ≤ n. (1)
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Definition 1 A configuration (q1, . . . , qn) ∈R
dn \ � is central if ∃λ < 0 with

λ(qj − c) =
∑

i �=j

mi(qi − qj )

‖qi − qj‖3
, 1 ≤ j ≤ n, (2)

where c = 1
M

(m1q1 + · · · + mnqn), M = m1 + · · · + mn, and � = {qi = qj , i �= j}.

Given a central configuration in R
2 as the initial position and proper initial velocity, the

n particles rotate around the center of mass c with a fixed angular speed. For this reason,
a central configuration in R

2 is also called a relative equilibrium. Given any central config-
uration in R

3 and zero initial velocity, the n particles accelerate toward c in such a way that
the configuration collapses homothetically.

One of the famous problems about central configurations is Smale’s 6-th problem for the
21-st century [23]: “Is the number of relative equilibria finite for all n?” The problem is
open for n > 6. For n = 2, there is one class of relative equilibrium up to rotations, transla-
tions, and dilations (with different λ). For n = 3, there are five classes found by Euler and
Lagrange. For n = 4, the number is between 32 and 8472, found by Hampton and Moeckel
[14]. For n = 5, the problem is solved for almost all masses by Albouy and Kaloshin [1].

Enumeration problems for n > 3 are far from complete. Solving such problems means
to find complete classifications of the masses according to the numbers of classes of central
configurations. Usually, restricted cases where some of the masses are zero or cases where
symmetries are imposed are considered.

In this paper, we consider central configurations from two different sets of problems.
The first one is the planar (3 + 1)-body problem. Some studies of central configurations on
this problem can be found in [3–5, 11, 15, 17, 19, 22]. The bifurcation curve is rigorously
characterised in [4, 5] and the enumeration problem of central configurations on such curve
is also studied in [5]. We revisit this problem and obtain new findings on the bifurcation
curve where two positive masses are equal.

The second set consists of two cases that are considered in [16]. One is the planar 4-
body problem with two equal masses which have an axis of symmetry containing two other
masses. The other is the spatial 5-body problem with three equal masses at the vertices of
an equilateral triangle and two other masses on the line passing through the center of the
triangle and being perpendicular to the plane containing it. Other related studies can be
found in [2, 10, 20]. The bifurcation curves are rigorously studied in [16]. They all contain
an unique singular point. Bifurcations at the singular points on a bifurcation curve can be
interesting. We provide rigorous counts at those two bifurcation points.

As in [25], our approach is to reduce the problems to solving parametric polynomial
systems with one parameter. In [25], we purposed an algorithm using Groebner basis and
Hermite’s root counting method to count the numbers of real zeros for all parameter, includ-
ing the bifurcation points. However, the algorithm in [25] becomes infeasible by directly
applying to all three problems mentioned above.

While Groebner bases provide powerful tools in studying polynomial systems, whether
one can obtain them or not plays the critical role in this approach. In using Hermite’s root
counting method, the key computation comes from computing many determinants of ma-
trices with symbolic entries. Whether such computation can terminate in a reasonable pe-
riod of time also determines the feasibility of our algorithm. In this paper, we provide an
improved version of our algorithm in the sense that an alternative way of computing the re-
quired Groebner basis is provided when the old method does not apply, and that much time
is saved in computing all the required determinants.
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Our paper is arranged as follow. In Sect. 2, we present the counting algorithm. Main
results on central configurations are in the next two sections. In Sect. 3, our studies about
the planar (3 + 1)-body problem will be presented. In Sect. 4, we focus on a symmetrical
4-body problem and a symmetrical 5-body problem. In Sect. 5, some of the detailed com-
putations will be given. Our symbolic computations are performed in the Computer Algebra
System, Mathematica 10. The Mathematica notebook containing all the implementations of
our algorithm and computations can be found in [26].

2 Counting Algorithm

Given a polynomial system F = {f1, . . . , fn} in variables x1, . . . , xm with coefficients
in Z[s], and a bifurcation polynomial g ∈ Z[s] with a irrational zero β , our goal
is to find the number of common real zeros of Fβ in an open set X = {x ∈ R

m |
p1(x) > 0, . . . , p�(x) > 0}, where pj ∈ Z[x1, . . . , xm] and Fβ denotes the real polynomial
system obtained from substituting s with β in all fi ’s. Here is the outline of the algorithm.

(1) Compute G = {g1, . . . , gt } ∈ Z[s][x1, . . . , xm] from F such that Gs is a Groebner basis
of F s for almost all s, including β .

(2) Compute the Hermite matrices Hj := H(F,Pj ) for all Pj , where Pj is any product of
a subset from {p1, . . . , p�}, including P1 := 1, using G.

(3) Compute r leading principal minors of Hj for all j = 1, . . . ,2�, where r is the dimen-
sion of the matrix Hj in Q(s) using Gaussian elimination.

(4) Compute ranks and signatures of H
β

j for all j by nearby points using principal minors
and the Jacobian theorem, respectively.

(5) Compute the solution of a linear system obtained from signatures to find the number of
common real zeros by Hermite’s root counting theorem.

Buchberger’s algorithm [6] produces, from a given polynomial system, another system
with the same set of common zeros that has many good properties [9]. Such algorithm has
been implemented in Mathematica as the command GroebnerBasis. In [25], we compute
the required generic Groebner basis using a method that is based on [12]. Here, we use an
alternative method provided in [9] for the systems in Sect. 4.

Hermite’s root counting theorem uses the Hermite matrices to obtain information on
numbers of common roots of a polynomial system [7]. The Hermite matrices are symmetric
matrices that come from the quotient algebra over the ideal generated by the polynomials.
They are symmetric matrices over the underground field and the signatures of real Hermite
matrices count the numbers of real roots. It is a collaborated work from Moeckel and the au-
thor in [24] that implementing an algorithm using a Groebner basis to compute the Hermite
matrices.

The Jacobian theorem is used in computing the signatures of the Hermite matrices. It uses
the ranks and the numbers of sign variations in the list of leading principal minors. There are
r2� leading principal minors. Computing them costs the most part of the time required in all
of the computations, since we compute determinants of matrices with symbolic matrices. In
[25], we simply use the Det commend from Mathematica and it totally costs three months in
computing all the leading principal minors for a system with r = 104, � = 3. In this paper,
with the algorithm using the idea from Gaussian elimination (see Sect. 5.1.3 for details), it
costs only three days for a system with r = 140, � = 3.

The rank of a matrix can be defined as the largest among the orders of the non-zero
minors generated by the matrix. At the bifurcation point β , suppose the rank of the Hermite



102 Y.-L. Tsai

matrix is r − w for some w > 0. As in [25], we use only principal minors to find w in the
cases of w < 3, which also saves some time for not going through all the required minors
from the definition. As in [25], all problems in this paper are the cases of w < 3.

At the bifurcation point β , sign variations in the list of the leading principal minors
are determined by its nearby rational points. In doing so, we find an interval with rational
endpoints containing β such that all the leading principal minors of orders smaller r − w

contain no zeros in such interval. This can be done using methods of isolating zeros for uni-
variate polynomials. In our computations, we use the implemented command CountRoots
of Mathematica. This command is based on [8]. In the introduction of this paper, the au-
thors commented that “Unlike numerical methods the algorithm will always terminate with
correct results.”

Since computing the Groebner basis in the first step is critical and the r2� leading princi-
pal minors are required, the preprocessing of applying our algorithm is to find a polynomial
system from which one can compute such Groebner basis so that the computed Hermite
matrices (with parameter) have as small dimension as possible. As a result of applying our
algorithm, we not only count the common zeros of Fβ in X , but also obtain the numbers of
zeros in any of the region {±p1 > 0, . . . ,±p� > 0} among all the 2� “quadrants”.

3 The Planar (3 + 1)-Body Problem

Let four particles have masses m1,m2,m3 > 0 and m4 = 0. The three particles with positive
masses form a central configuration by themselves according to Eqs. (2). Considering the
central configuration in R

2 for three bodies, we obtain an equilateral triangle [21]. Fixing
q1, q3, q3 in R

2 such that the length of the sides of the equilateral triangle is 1 and assuming
the total mass M = 1, without loss of generality, we obtain λ = −1 in Eqs. (2). The equations
in (2) for the zero mass q4 = (x, y) become ∂xG = ∂yG = 0, where

G = 1

2
‖q4 − c‖2 + m1

‖q4 − q1‖ + m2

‖q4 − q2‖ + m3

‖q4 − q3‖ .

By the identity,

‖q4 − c‖2 −
3∑

i=1

mi‖q4 − qi‖2 = ‖c‖2 −
3∑

i=1

mi‖qi‖2,

we change the coordinates of q4 to ri = ‖q4 − qi‖ for i = 1,2,3. So, we obtain

G = 1

2

(
m1r

2
1 + m2r

2
2 + m3r

2
3

) + m1

r1
+ m2

r2
+ m3

r3
+ C,

for some constant C. With the new coordinates, we impose a restriction for the mutual
distances of four points in R

2 given by the Cayley-Menger determinant [18]. Therefore, we
have the following equation for r1, r2, r3.

F =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 1 1 r2

1
1 1 0 1 r2

2
1 1 1 0 r2

3
1 r2

1 r2
2 r2

3 0

∣∣∣∣∣∣∣∣∣∣

= 0.
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Fig. 1 Pitchfork bifurcation of the (3 + 1)-body problem: s = 0.5,0.29,0.2

Now, we find the critical points of G restricted to F = 0. By the Lagrange multiplier
technique, we obtain the following equations for a multiplier ω.

∂ri G = ω∂ri F, ∀i = 1,2,3,

F = 0.
(3)

Eliminating ω and clearing the denominators, we obtain a polynomial system from (3).
Note that the system is homogeneous of degree one in the masses m1,m2,m3. Normalizing
the total mass gives us a system with two parameters. From Eqs. (3), Barros and Leandro
obtained the following results in [4, 5].

Theorem 1 The bifurcation set is a simple, closed, analytic curve. There are 8 and 10 cen-
tral configurations outside and inside the curve, respectively. Moreover, there are 9 central
configurations on the curve when 0.37 < ri ≤ 0.58.

When testing the parameters (m1,m2,m3) = (1,1, s) for some s with nearby points of
0.27168 . . . , we obtain 8 positive zeros, including the one with (r1, r2)≈(0.70269,0.70269),
at s = 0.2716 and 10 positive zeros, including the three with (r1, r2) ≈ (0.70266,0.70266),
(0.70351,0.70181), (0.70181,0.70351), at s = 0.2717. This suggests that, at the point
s = 0.27168 . . . , the system experiences a pitchfork bifurcation instead of a saddle-note
bifurcation. Figure 1 demonstrates such bifurcation from s = 0.5 to 0.2. Therefore, it sug-
gests there are 8 central configurations at that bifurcation point. In fact, this is the first main
result in this paper.

Theorem 2 There are three points on the bifurcation curve obtained in [5], where there are
exactly 8 central configurations. Each one corresponds to one of the intersection points of
the bifurcation curve with the line mi = mj .

After eliminating ω and clearing the denominators from systems (3), we substi-
tute (m1,m2,m3, r3) with (1,1, s, 1

r3
) and clear the denominators. We obtain the system

{dh1, dh2, (r1 − r2)dh3, dh4}. After substituting r3 with 1
r3

again and clearing the de-
nominators, we obtain the system {h1, h2, (r1 − r2)h3, h4} which splits into system one
{h1, h2, r1 − r2, h4} and system two {h1, h2, h3, h4}. (See Appendix.)

System one becomes {k1, k2} after letting r1 = r2 = x, r3 = y, where k1 = (1 + y2)sx3 −
sx5 − (1 + 2x2)y3 + (1 − s)x3y3 + (2 + s)x5y3 + 2y5 − (2 + s)x3y5 coming from h1 and
h2, and k2 = −1 + 2x2 − x4 + y2 + 2x2y2 − y4 coming from h4.
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Let r1 = r2 = x, r3 = y in h3. We obtain 3x2k3, where k3 = 1 − 3x2 + 2x5 + y2.
Therefore, when r1 = r2 > 0, system two becomes {k1, k2, k3}. Note that k2, k3 do not
involve the parameter s. It is easy to see that k2 = k3 = 0 has an unique positive zero
(x, y) ≈ (0.702665,0.3723266). Form k1, we obtain an unique positive s ≈ 0.27168 where
system two has that unique positive zero. Computing a Groebner basis from k1, k2, k3 in the
variables x, y, s, we obtain g1 ∈ Z[s] of degree 18 that contains 0.27168 . . . as a zero.

In conclusion, only when s = 0.27168 . . . does system two {h1, h2, h3, h4} contain posi-
tive zeros of r1 = r2 = x, r3 = y and such zero is unique as (x, y) ≈ (0.702665,0.372326).
Obviously, all common zeros of k1, k2, k3 are common zeros of k1, k2. Therefore, at such
parameter, the unique zero (x, y) ≈ (0.702665,0.372326) is also a zero of system one.

From [17], we see that system one has 4 positive common zeros at 0.27168 . . . . If we can
show that system two has 5 positive zeros, we obtain that the system {h1, h2, (r1 − r2)h3, h4}
has totally 3 + 1 + 4 = 8 zeros. The summand 3 + 1 comes from system one, 1 + 4 comes
from system two, and the common summand 1 comes from the shared unique zero with
r1 = r2.

Lemma 1 The system {h1, h2, h3, h4} has exactly 5 zeros with r1, r2, r3 > 0 at s1 =
0.27168 . . . , that is a zero of g1 ∈ Z[s] of degree 18.

4 The Symmetrical 4-Body and 5-Body Problems

In this section, we consider the symmetrical central configurations, (2, d)-cc’s, defined in
[16]. They consist of point masses in R

d such that m1,m2 are on a fixed line passing through
and being perpendicular to a (d − 1)-dimensional hyperplane at the center of a regular sim-
plex of dimension d − 1 contained in it where all remaining equal masses (all assuming 1)
are at the vertices of the simplex. It is shown in [16] that there are finitely many (2, d)-cc’s
for all d > 1. In particular, for d = 2,3, there are more refined results.

Theorem 3 For both the (2,2)-cc and (2,3)-cc’s problems, the bifurcation sets in the
(m1,m2) plane contain two curves in the first quadrant. They are symmetric to each other
with respect to the line m1 = m2 and intersect at an unique point on such line (say at
s2, s3 > 1 for d = 2,3, respectively). They divide the first quadrant into four open con-
nected components containing (0,0), (0,∞), (∞,∞), or (∞,0) as one of their boundary
points, where there are 5,3,1,3 central configurations, respectively. Among them in each
case, precisely one is convex.

When considering the special cases of m1 = m2, we obtain two corollaries.

Corollary 1 For the planar 4-body problem with two pairs of equal masses which have an
axis of symmetry containing one pair of them, there are generically 2,4 concave central
configurations.

Proof Let two pairs of equal masses be 1 and s. We call masses on the axis of symmetry
m1,m2. If 0 < s < 1

s2
, we have 4 concave central configurations with m1 = m2 = s. Since

m1 = m2, the number 4 is reduced to 2 by symmetry. If s2 < s, we have no concave central
configurations with m1 = m2 = s but again 2 concave central configurations with m1 =
m2 = 1. For 1

s2
< s < s2 and s �= 1, we have 2 concave central configurations with m1 =

m2 = s and 2 concave central configurations with m1 = m2 = 1. At s = 1, the number is
reduced to 2 by symmetry. �
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Corollary 2 For the spatial 5-body problem with three equal masses at the vertices of an
equilateral triangle and two equal masses on the line passing through the center of the tri-
angle and being perpendicular to the plane containing it, there are generically 0,2 concave
central configurations.

Proof Let three equal masses at the vertices of an equilateral triangle be 1 and two equal
masses on the line be s. For 0 < s < s3, we have 4 concave central configurations. Since two
masses on the line are equal, the number 4 is reduced to 2 by symmetry. For s3 < s, there
are no concave central configurations. �

In the first corollary, there are two bifurcation points, s2 and 1
s2

. In the second corollary,
there is only one, s3. All of them come from the singular points on the bifurcation sets that
are on the line of m1 = m2 described in Theorem 3. We will identify s2, s3 (find polynomials
g2 and g3 containing each as one of the zeros, respectively) using a different method than that
in [16] and count the numbers of concave central configurations at them with our algorithm.

Here, in stead of using Eqs. (2) directly, we use the Laura-Andoyer equations [13] that
are equivalent to Eqs. (2).

4.1 The Symmetrical 4-Body Case

For i = 1, . . . ,4, let qi = (xi, yi) ∈R
2 and rij = ‖qi − qj‖ be the distance between particles

i and j . Let �i,j,k = (qi − qj ) ∧ (qi − qk), twice the oriented area defined by the triangle
with vertices at qi, qj , and qk . We have the following six equations for non-collinear central
configurations formed by q1, . . . , q4.

Proposition 1 For non-collinear 4 bodies in R
2, Eqs. (2) are satisfied if and only if

4∑

k=1,k �=i,j

mk�i,j,k

(
1

r3
ik

− 1

r3
jk

)
= 0, 1 ≤ i < j ≤ 4.

In our case, let (m1,m2,m3,m4) = (1,1, s, s) and q1 = (− 1
2 ,0), q2 = ( 1

2 ,0), q3 =
(0, a), q4 = (0, b). Since we consider concave configurations, we assume a > b > 0. Then
the six equations are reduced to the following two.

{
a(1 − ( 1

4 + a2)− 3
2 ) + ( a

2 − b
2 )(−(a − b)−3 + ( 1

4 + b2)− 3
2 )s = 0,

b(1 − ( 1
4 + b2)− 3

2 ) + ( b
2 − a

2 )(−(a − b)−3 + ( 1
4 + a2)− 3

2 )s = 0.
(4)

Let r1 = a, r2 = b, r−2
3 = 1

4 + a2, r−2
4 = 1

4 + b2. We obtain the system {f1, f2, f3 =
−4 + r2

3 + 4r2
1 r2

3 , f4 = −4 + r2
4 + 4r2

2 r2
4 }, where f1, f2 come from (4). (See Appendix.)

Lemma 2 The system {f1, f2, f3, f4} has 1 zero with r1 > r2 > 0 at s = 1.002713329 . . . ,
a zero of g2 ∈ Z[s] of degree 136. It has 2 such zeros for all 1.00271332 ≤ s <

1.002713329 . . . and 0 such zeros for all 1.002713329 · · · < s ≤ 1.00271333.

Since the system {f1, f2, f3, f4} experiences a bifurcation at the parameter s =
1.002713329 . . . according to the lemma above, we identify s2 = 1.002713329 . . . in Theo-
rem 3 for d = 2 due to the uniqueness of bifurcation point. The unique zero with r1 > r2 > 0
for the system {f1, f2, f3, f4} at s2 gives a 4-body concave central configuration as shown
on the left side of Fig. 2. Together with Corollary 1, we obtain the following.
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Fig. 2 Concave 4-body and 5-body central configurations at the bifurcation points

Theorem 4 For the planar 4-body problem with two pairs of equal masses which have an
axis of symmetry containing one pair of them, there are 2,3,4 concave central configura-
tions.

4.2 The Symmetrical 5-Body Case

For i = 1, . . . ,5, let qi = (xi, yi, zi) ∈ R
3 and rij = ‖qi − qj‖ be the distance between par-

ticles i and j . Let �i,j,�,k = (qi − qj ) ∧ (qi − q�) · (qi − qk), six times the oriented volume
defined by the tetrahedron with vertices at qi, qj , q� and qk . We have the following thirty
equations for non-planar central configurations formed by q1, . . . , q5.

Proposition 2 For non-planar 5 bodies in R
3, Eqs. (2) are satisfied if and only if

5∑

k=1,k �=i,j,�

mk�i,j,�,k

(
1

r3
ik

− 1

r3
jk

)
= 0, 1 ≤ i, j, � ≤ 5, i < j, � �= i, j.

In our case, let (m1,m2,m3,m4,m5) = (1,1,1, s, s) and q1 = ( 1√
3
,0,0), q2 =

(− 1
2
√

3
, 1

2 ,0), q3 = (− 1
2
√

3
,− 1

2 ,0), q4 = (0,0, a), q5 = (0,0, b). Since we consider con-
cave configurations, we assume a > b > 0. Then the thirty equations are reduced to the
following two.

{
3
2a(1 − ( 1

3 + a2)− 3
2 ) + ( a

2 − b
2 )(−(a − b)−3 + ( 1

3 + b2)− 3
2 )s = 0,

3
2b(1 − ( 1

3 + b2)− 3
2 ) + ( b

2 − a
2 )(−(a − b)−3 + ( 1

3 + a2)− 3
2 )s = 0.

(5)

Let r1 = a, r2 = b, r−2
3 = 1

3 + a2, r−2
4 = 1

3 + b2. We obtain the system {f5, f6, f7 =
−3 + r2

3 + 3r2
1 r2

3 , f8 = −3 + r2
4 + 3r2

2 r2
4 }, where f5, f6 come from (5). (See Appendix.)

Lemma 3 The system {f5, f6, f7, f8} has 1 zero with r1 > r2 > 0 at s = 1.068821203 . . . ,
a zero of g3 ∈ Z[s] of degree 136. It has 2 such zeros for all 1.0688212 ≤ s <

1.068821203 . . . and 0 such zeros for all 1.068821203 · · · < s ≤ 1.0688213.
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Since the system {f5, f6, f7, f8} experiences a bifurcation at the parameter s =
1.068821203 . . . according to the lemma above, we identify s3 = 1.068821203 . . . in Theo-
rem 3 for d = 3 due to the uniqueness of bifurcation point. The unique zero with r1 > r2 > 0
for the system {f5, f6, f7, f8} at s3 gives a 5-body concave central configuration as shown
on the right side of Fig. 2. Together with Corollary 2, we obtain the following.

Theorem 5 For the spatial 5-body problem with three equal masses at the vertices of an
equilateral triangle and two equal masses on the line passing through the center of the
triangle and being perpendicular to the plane containing it, there are 0,1,2 concave central
configurations.

5 Proofs of the Lemmas

In this section, we present some details in proving Lemmas 1 and 2. Situations for Lemma 3
are very similar to that in Lemma 2. Therefore, we skip the details for Lemma 3 here. All
the computations can be found in [26].

5.1 Proof of Lemma 1

Since the system {h1, h2, h3, h4} ∈ Z[s][r1, r2, r3] contains zeros (r1, r2, r3) = (0,±1,±1),

(±1,0,±1), (1,1,0), (−1,1,0), and (1,−1,0), for all s, we remove them by introducing
three more variables r4, r5, r6 and adding three equations h5 = r1r4 − 1, h6 = r2r5 − 1,
h7 = r3r6 − 1 to the system.

5.1.1 Step 1: Generic Groebner Basis

In this case, we still can use the method provided in [25] for computing a generic Groebner
basis. Consider F = {h1, . . . , h7} ∈ Z[r1, . . . , r6, s] and use the monomial order specified by
the following matrix to compute a Groebner basis in Z[r1, . . . , r6, s],

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 0
1 1 1 1 1 0 0
1 1 1 1 0 0 0
1 1 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We obtain G that contains 68 polynomials. Collecting the leading coefficients of G when
polynomials in it are viewed as in Z[s][r1, . . . , r6] with the restriction of the order to
r1, . . . , r6, called the Graded Reverse Lex Order [9], we obtain 68 polynomials in Z[s].
None of them vanish for s > 0. Therefore, Gs is a Groebner basis of F s ∈ C[r1, . . . , r6] for
all s > 0 [25].

5.1.2 Step 2: Hermite Matrices

Now, consider G ∈ Q(s)[r1, . . . , r6]. It is also a Groebner basis of F viewed as a system
Q(s)[r1, . . . , r6] with respect to the Graded Reverse Lex Order of r1, . . . , r6 [24]. Therefore,
we compute eight Hermite matrices H(F,1), H(F, r1), H(F, r2), H(F, r3), H(F, r1r2),
H(F, r1r3), H(F, r2r3), and H(F, r1r2r3). All are 140 × 140 symmetric matrices with en-
tries in Q(s).
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5.1.3 Step 3: Leading Principal Minors

For each 140 × 140 Hermite matrix, denoted by H 140, we need to compute 140 leading
principal minors. They are the determinants, denoted by Mi , of the square matrix obtained
from taking the first i rows and columns from H 140 for i = 1, . . . ,140.

Initialize a140 = b140 = H 140
1,1 . For j decreasing from 140 to 2, recursively define aj−1 =

H
j−1
1,1 , bj−1 = bjaj−1, where Hj−1 is defined as the (j − 1)× (j − 1) matrix through taking

the second to j -th rows and columns from Ĥ j , the j × j matrix obtained from Hj by
clearing H

j

i,1 for all i = 2, . . . , j with aj . If aj �= 0 for all j , the algorithm will not stop until
the last bj (that is b1) is defined. Since adding any multiple of the first row to others does
not change the determinants, we obtain Mi = b141−i for i = 1, . . . ,140.

Remark 1 For H(F, r1) and H(F, r2), we add the 4-th row to the first row and do the same
for columns and then switch rows 2,3 and do the same for columns to obtain new H 140 in
order to satisfy aj �= 0 for all j . For H(F, r1r3) and H(F, r2r3), we add the 5-th row to
the first row and do the same for columns and then switch rows 2,4 and do the same for
columns to obtain new H 140 for the same reason.

It turns out that, for all eight H 140’s, M140 contains the polynomial g1 of degree 18 that
has s1 = 0.27168 . . . as a zero, while no other Mi ’s have g1 as a factor. These implies that
ranks of H 140 is 139 at s = s1 (and 140 for s nearby s1).

5.1.4 Step 4: Signatures

Let a� = 0.271686396 and ar = 0.271686397. We verify that the numerator of M140

contains an unique zero and the numerators of Mi contain no real zeros on [a�, ar ] for
i < 140. At s = a�, the numbers of sign variations in the lists of {1,M1, . . . ,M140} are
63,67,67,69,71,69,69,69 for H(F,1), . . . ,H(F, r1r2r3), respectively. At s = ar , the
numbers of sign variations are 62,66,66,68,70,68,68,68. Therefore, at s = s1, the num-
bers of sign variations are 62,66,66,68,70,68,68,68 (in the lists of {1,M1, . . . ,M139}).
Then, the signatures are computed from the formula r − 2v, where r is the rank and v is
the number of sign variations in the list of {1,M1, . . . ,Mr}. At s = s1, the signatures are
15,7,7,3,−1,3,3,3.

5.1.5 Step 5: Linear System

Let x1, . . . , x8 denote the numbers of real roots of F s1 such that (r1, r2, r3) has the signs
(+,+,+), . . . , (−,−,−), respectively. We solve the following linear system and get x1 = 5.

15 = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8,

7 = x1 + x2 + x3 + x4 − x5 − x6 − x7 − x8,

7 = x1 + x2 − x3 − x4 + x5 + x6 − x7 − x8,

3 = x1 − x2 + x3 − x4 + x5 − x6 + x7 − x8,

−1 = x1 + x2 − x3 − x4 − x5 − x6 + x7 + x8,

3 = x1 − x2 + x3 − x4 − x5 + x6 − x7 + x8,

3 = x1 − x2 − x3 + x4 + x5 − x6 − x7 + x8,

3 = x1 − x2 − x3 + x4 − x5 + x6 + x7 − x8.
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Therefore, there are 5 zeros of {h1, h2, h3, h4, r1r4 −1, r2r5 −1, r3r6−1} with r1, r2, r3>0.
So, for the system {h1, h2, h3, h4}, there are 5 positive zeros.

5.2 Proof of Lemma 2

Here, we study {f1, f2, f3, f4} ∈ Z[s][r1, r2, r3, r4] and find s2 > 1, where there is a bifurca-
tion.

5.2.1 Step 1: Generic Groebner Basis

Unfortunately, the method used in [25] as shown in Sect. 5.1.1 does not work. We cannot
compute the desired generic Groebner basis with that method. Instead, we apply the follow-
ing method that is provided in [9] of Sect. 6.3 as exercises. It can be proved through the
definition of a Groebner basis. We omit the proof here.

Proposition 3 Let F = {p1, . . . , pn} ⊂ Q(s)[x1, . . . , xm] consisting of monic polynomials
in some order, G = {g1, . . . , gt } be the reduced Groebner basis of F in Q(s)[x1, . . . , xm]
in that order, and d ∈ Z[s] be the least common multiple of all denominators in pi ’s and
gj ’s. Let p̃i and g̃j be polynomials in Z[x1, . . . , xm, s] obtained from pi and gj by clearing
denominators, respectively, and 〈F̃〉 be the ideal in Q[x1, . . . , xm, s] generated by p̃i ’s. If
dg̃j ∈ 〈F̃〉 for all j = 1, . . . , t , then Ga is a Groebner basis of Fa in C[x1, . . . , xm] for all
a ∈ C with d �= 0. (Recall that Ga and Fa are the systems in C[x1, . . . , xm] obtained from
substituting s with a ∈C in all polynomials in G and F , respectively.)

Now, fixing the Graded Reverse Lex Order in r1, r2, r3, r4, we have our monic system
{p1 = f1

(−2)
, p2 = f2

(−s)
, p3 = f3

4 ,p4 = f4
4 } in Q(s)[r1, r2, r3, r4]. So, p̃i = fi . Applying the

option RationalFunctions in assigning the domain of coefficients in Mathematica, we com-
pute the Groebner basis of the monic system in Q(s)[r1, r2, r3, r4]. (In fact, we compute
from {f1, f2, f3, f4}.)

By default, the output is a semi reduced Groebner basis obtained from the reduced Groeb-
ner basis after clearing denominators [9]. Therefore, we indeed obtain g̃j ’s. (There are 42 of
them.) The reduced Groebner basis G is the set { g̃1

Li
, . . . ,

˜g42
L42

}, where Lj is the leading coef-
ficient of g̃j in Z[s] with respect to the Graded Reverse Lex Order in r1, r2, r3, r4. Therefore,
d is the least common multiple of Li ’s and −2,−s,4,4.

Then, we compute GB , the Groebner basis of {f1, f2, f3, f4} in Q[r1, r2, r3, r4, s] with
Graded Reverse Lex Order in r1, r2, r3, r4, s. We verify dg̃j ∈ 〈F̃〉 by finding the remainders
to be zeros after applying PolynomialReduce in dividing dg̃j with GB . For s > 0, it is easy
to see d �= 0 except at s = 0.25,1,1.2939 . . . ,1.5436 . . . ,2. Therefore, Gs is a Groebner
basis of F s in C[r1, r2, r3, r4] for almost all s > 0.

5.2.2 Step 2: Hermite Matrices

Since G is computed as the Groebner basis in Q(s)[r1, r2, r3, r4], we again can com-
pute Hermite matrices in Q(s). (In fact, we compute Hermite matrices using {g̃1, . . . , ˜g42}
which is also a Groebner basis in Q(s)[r1, r2, r3, r4].) In order to find zeros with r1 >

r2 > 0, we need to compute four Hermite matrices, H(F,1),H(F, r1 − r2),H(F, r2), and
H(F, r2(r1 − r2)). All are 102 × 102 symmetric matrices with entries in Q(s).
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5.2.3 Step 3: Leading Principal Minors

As in Sect. 5.1.3, we compute 408 leading principal minors using the idea that is similar to
the Gaussian elimination. For the matrix H(F, r1 − r2), we add the 4-th row to the first row
and do the same for columns and then switch rows 2,3 and do the same for columns in order
to satisfy aj �= 0 for all j (See Sect. 5.1.3 for the definition of aj .) For H(F, r2), we switch
rows 1,2 and do the same for columns.

Numerical observations suggest the bifurcation point is at s = 1.002713329 . . . , a zero
of g2 ∈ Z(s) of degree 136. Here, g2

2 is a factor of four M102 (see section 5.1.3 for similar
definitions for Mi ), g2 is a factor of four M101, and g2 is not a factor for all Mi with i < 101.

To determine the ranks at s = 1.002713329 . . . , we need to consider principal minors,
denoted by M101, of order 101 obtained from deleting the 101-th row and column. All four
of them contain g2 as a factor. Together with information on Mi ’s, we conclude that the
ranks at s = 1.002713329 . . . of four Hermite matrices are 100 [25]. For nearby s, the ranks
are 102.

5.2.4 Step 4: Signatures

Let a� = 1.00271332 and ar = 1.00271333. We verify that numerators of both M102 and
M101 contain an unique zero and numerators of Mi contain no real zeros on [a�, ar ] for
i < 101. At s = a�, the numbers of sign variations in the lists of {1,M1, . . . ,M102} are
46,50,52,52 for H(F,1),H(F, r1 − r2),H(F, r2),H(F, r2(r1 − r2)), respectively. At
s = ar , the numbers of sign variations are 46,50,51,51. Therefore, at s = 1.002713329 . . . ,
the numbers of sign variations are 46,50,51,51 (in the lists of {1,M1, . . . ,M100}).

Therefore, at s = a�, the signatures are 10,2,−2,−2; at s = ar , the signatures are
10,2,0,0; at s = 1.002713329 . . . , the signatures are 8,0,−2,−2. In fact, signatures for
a� < s < 1.002713329 . . . are the same as that at a� and signatures for 1.002713329 · · · <

s < ar are the same as that at ar .

5.2.5 Step 5: Linear System

Let x1, x2, x3, x4 denote the numbers of real roots with r1 > r2 > 0, Min{r1,0} > r2,
Max{r1,0} < r2, and r1 < r2 < 0, respectively. At s = 1.002713329 . . . , we solve the system
below and obtain x1 = 1.

8 = x1 + x2 + x3 + x4,

0 = x1 + x2 − x3 − x4,

−2 = x1 − x2 + x3 − x4,

−2 = x1 − x2 − x3 + x4.

Therefore, there is exactly 1 zero of {f1, f2, f3, f4} at s = 1.002713329 . . . with r1 >

r2 > 0. Similar, for all a� ≤ s < 1.002713329 . . . , we find there are 2 such zeros. For all
1.002713329 · · · < s ≤ ar , we find there are 0 such zeros.
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Appendix

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 = −r3
3 − r2

1 r3
3 − r2

2 r3
3 + r3

2 r3
3 + r2

1 r3
2 r3

3 + r5
2 r3

3 + 2r5
3 − 2r3

2 r5
3 + r3

2 s + r2
1 r3

2 s − 2r5
2 s

+ r3
2 r2

3 s − r3
2 r3

3 s − r2
1 r3

2 r3
3 s + 2r5

2 r3
3 s − r3

2 r5
3 s,

h2 = r3
3 + r2

1 r3
3 − r3

1 r3
3 − r5

1 r3
3 + r2

2 r3
3 − r3

1 r2
2 r3

3 − 2r5
3 + 2r3

1 r5
3 − r3

1 s + 2r5
1 s − r3

1 r2
2 s

− r3
1 r2

3 s + r3
1 r3

3 s − 2r5
1 r3

3 s + r3
1 r2

2 r3
3 s + r3

1 r5
3 s,

h3 = r2
1 − 2r4

1 + r1r2 − 2r3
1 r2 + r2

2 − r2
1 r2

2 − 2r1r
3
2 + 3r4

1 r3
2 − 2r4

2 + 3r3
1 r4

2 + r2
1 r2

3

+ r1r2r
2
3 + r2

2 r2
3 ,

h4 = −1 + r2
1 − r4

1 + r2
2 + r2

1 r2
2 − r4

2 + r2
3 + r2

1 r2
3 + r2

2 r2
3 − r4

3 .

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1 = 2r3
1 − 4r2

1 r2 + 2r1r
2
2 − 2r3

1 r3
3 + 4r2

1 r2r
3
3 − 2r1r

2
2 r3

3 − s + r3
1 r3

4 s − 3r2
1 r2r

3
4 s

+ 3r1r
2
2 r3

4 s − r3
2 r3

4 s,

f2 = 2r2
1 r2 − 4r1r

2
2 + 2r3

2 − 2r2
1 r2r

3
4 + 4r1r

2
2 r3

4 − 2r3
2 r3

4 + s − r3
1 r3

3 s + 3r2
1 r2r

3
3 s

− 3r1r
2
2 r3

3 s + r3
2 r3

3 s.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f5 = 3r3
1 − 6r2

1 r2 + 3r1r
2
2 − 3r3

1 r3
3 + 6r2

1 r2r
3
3 − 3r1r

2
2 r3

3 − s + r3
1 r3

4 s − 3r2
1 r2r

3
4 s

+ 3r1r
2
2 r3

4 s − r3
2 r3

4 s,

f6 = 3r2
1 r2 − 6r1r

2
2 + 3r3

2 − 3r2
1 r2r

3
4 + 6r1r

2
2 r3

4 − 3r3
2 r3

4 + s − r3
1 r3

3 s + 3r2
1 r2r

3
3 s

− 3r1r
2
2 r3

3 s + r3
2 r3

3 s.
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