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Abstract In this paper, we consider a weak viscoelastic equation with internal time-varying
delay

utt (x, t) − �u(x, t) + α(t)

∫ t

0
g(t − s)�u(x, s)ds + μut

(
x, t − τ(t)

) = 0

in a bounded domain. By introducing suitable energy and Lyapunov functionals, under suit-
able assumptions, we establish a general decay result for the energy. This work generalizes
and improves earlier results in the literature.

Keywords Time-varying delay · Energy decay · Viscoelastic equation

Mathematics Subject Classification (2010) 35B40 · 35L05 · 74Dxx · 93D20

1 Introduction

In this paper, we investigate the following weak viscoelastic equation with a time-varying
delay term in the feedback

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

utt (x, t) − �u(x, t) + α(t)
∫ t

0 g(t − s)�u(x, s)ds + μut(x, t − τ(t)) = 0,

x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ Ω,

ut (x, t) = f0(x, t), x ∈ Ω, t ∈ [−τ(0),0),

(1.1)
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where Ω is a bounded domain of Rn (n ≥ 2) with a sufficiently smooth boundary ∂Ω , α and
g are positive non-increasing functions defined on R

+, τ(t) > 0 represents the time-varying
delay, u0, u1, f0 are given functions belongs to some suitable spaces.

When μ = 0 in the first equation of (1.1), that is in the absence of the delay, problem
(1.1) was studied by many authors during the past decades. This type of problem arises in
viscoelasticity, especially for the case α(t) = 1. We start by mentioning the pioneer works
of Dafermos [5, 6], where he discussed a one-dimensional viscoelastic problem, established
several existence and asymptotic stability results. For other related works, we refer the read-
ers to [1, 3, 4, 13, 14, 23] and references therein. On the other hand, Messaoudi [17] consid-
ered the viscoelastic equation without the delay of the form

utt (x, t) − �u(x, t) + α(t)

∫ t

0
g(t − s)�u(x, s)ds = 0

under suitable conditions on α and g. He obtained general stability by making use of the
perturbed energy method.

Introducing the delay term makes the problem different from those considered in the
literatures. Time delay arises in many applications depending not only on the present state
but also on some past occurrences. The presence of delay may be a source of instability.
For example, when g = 0, it was shown in [8–10, 18, 19, 27] that an arbitrarily small delay
may destabilize a system that is uniformly asymptotically stable in the absence of delay
unless additional control terms have been used. Kirane and Said-Houari [11] considered
the problem (1.1) with α(t) ≡ 1, an additional linear damping term, μ > 0 and τ(t) be a
constant delay, and established general decay results under some condition.

The case of the time-varying delay in wave equation has also been studied by several
authors, see for example [15, 16, 20–22] and the references therein. See also [12, 26] for the
case of the transmission problem with delay.

In the works mentioned above, the authors must used the damping term μ1ut (x, t) to con-
trol the delay term in the priori estimate of the solution and the decay estimate of the energy.
By the way, in [7, 28], the authors improve earlier results in the literature by making using
of the viscoelastic term to control the time constant delay term. Similar results have also
been obtained for the problem with infinite memory by Guesmia [10]. Alabau-Boussouira
et al. [2] considered the following wave delay equation with past history

utt − �u +
∫ +∞

0
μ(s)�u(t − s)ds + kut (t − τ) = 0

and established the exponential stability if the coefficient k is sufficiently small by using a
perturbation approach for delay problems first introduced in [24]; the result also holds for
the anti-damping, i.e. τ = 0 and k < 0. In this aspect, it is worth mentioning the work of
Pignotti [25]. In this work, the author considered the problem

utt + Au −
∫ +∞

0
μ(s)Au(t − s)ds + b(t)ut (t − τ) = 0

and obtained that asymptotic stability is guaranteed if the delay feedback coefficient belongs
to L1(0,+∞) and the time intervals where the delay feedback is off are sufficiently large.

But, to the best of our knowledge, there is no research on the weak viscoelastic equation
(a coefficient α(t) multiplying the memory term) with time-varying delay. Motivated by
there results, we investigate the problem (1.1) under suitable assumptions. Our main con-
tribution is an extension of the previous results from [7, 11, 15, 28] to weak viscoelastic
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equation without the linear damping term. The plan of this paper is as follows. In Sect. 2,
we present some notations and assumptions needed for our work. In Sect. 3, we derive a
general decay estimate of the energy.

2 Preliminaries and Main Result

We first introduce some notations that will be used in the proof of our results. We use the
standard Lebesgue space L2(Ω) and the Sobolev space H 1

0 (Ω) with their usual scalar prod-
ucts and norms. Throughout this paper, C and Ci are used to denote the generic positive
constant. From now on, we shall omit x and t in all functions of x and t if there is no
ambiguity.

For the relaxation function g and the potential α, we assumption the following (see
[17, 22]):

(G1) g,α :R+ → R+ are nonincreasing differentiable functions satisfying

g(0) > 0,

∫ +∞

0
g(s)ds < ∞, α(t) > 0, 1 − α(t)

∫ t

0
g(s)ds ≥ l > 0. (2.1)

In addition, we assume that there exists a positive constant α0 such that α(t) ≥ α0.
(G2) There exists a nonincreasing differentiable function ζ(t) :R+ → R+ satisfying

ζ(t) > 0, g′(t) ≤ −ζ(t)g(t) for t ≥ 0, lim
t→+∞

−α′(t)
ζ(t)α(t)

= 0. (2.2)

For the time-varying delay τ , we assume as in [15, 21, 22] that τ ∈ W 2,∞([0, T ]) for any
T > 0, and there exist positive constants τ0, τ1 and d such that

0 < τ0 ≤ τ(t) ≤ τ1 and τ ′(t) ≤ d < 1, for all t > 0. (2.3)

The following lemma is concerned with the global well-posedness of the problem (1.1).
By using the classical Faedo-Galerkin method, see, e.g. [15, 17, 28], we can prove the
Lemma, and we omit the proof here.

Lemma 2.1 Let (2.1)–(2.3) be satisfied. If the initial data u0 ∈ H 1
0 (Ω),u1 ∈ L2(Ω),f0 ∈

L2(Ω × (0,1)) and any T > 0, then the problem (1.1) has a unique weak solution (u,ut ) ∈
C(0, T ;H 1

0 (Ω) × L2(Ω)) such that

u ∈ L∞(
0, T ;H 1

0 (Ω)
)
, ut ∈ L∞(

0, T ;L2(Ω)
)
.

Now, inspired by [15, 17, 21], we define the modified energy functional to the problem
(1.1) by

E(t) = 1

2
‖ut‖2

2 +
(

1 − α(t)

∫ t

0
g(s)ds

)
‖∇u‖2

2 + 1

2
α(t)(g ◦ ∇u)(t)

+ ξ

2

∫ t

t−τ(t)

∫
Ω

eλ(s−t)u2
t (s)ds, (2.4)
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where ξ,λ are suitable positive constants to be determined later, and

(g ◦ ∇u)(t) =
∫

Ω

∫ t

0
g(t − s)

∣∣v(t) − v(s)
∣∣2

dsdx.

First, we fix λ such that

λ < min

{
1

τ1

∣∣∣∣log
|μ|

ξ
√

1 − d

∣∣∣∣, 1

τ1
log

α0(1 − d)2k1

2k2

}
, (2.5)

with k1 and k2 being defined in (3.16).
In order give our main theorem, we give the restriction condition on ζ(t)

ζ(t) > b (2.6)

where b is a positive constant to be chosen in (3.23).
Our main result reads as follows:

Theorem 2.1 Let (G1), (G2) and (2.5) hold. If the coefficient of the time-varying delay
satisfies |μ| < a, then there exist positive constants K and κ such that the energy of the
problem (1.1) satisfies

E(t) ≤ Ke−κt , ∀t ≥ t∗, (2.7)

where a is positive constant defined by (3.21), which is only dependent on g0, l, d .

3 Energy Decay

In this section, we will prove the energy decay result Theorem 2.1 by constructing an ap-
propriate Lyapunov function. First, we have the following lemmas.

Lemma 3.1 Let (2.1)–(2.3) be satisfied. Then for all regular solution of problem (1.1), the
energy function defined by (2.4) satisfies

E′(t) ≤
( |μ|

2
√

1 − d
+ ξ

2

)
‖ut‖2

2 +
( |μ|√1 − d

2
− ξ

2
(1 − d)e−λτ1

)∥∥ut

(
t − τ(t)

)∥∥2

2

+ 1

2
α(t)

(
g′ ◦ ∇u

)
(t) − 1

2
α′(t)

∫ t

0
g(s)ds‖∇u‖2

2

− λξ

2

∫ t

t−τ(t)

∫
Ω

e−λ(t−s)u2
t (s)dxds. (3.1)

Proof Differentiating (2.4) and using the first equation of (1.1) and then integrating by parts,
the assumptions (2.1)–(2.3) and some manipulations as in [16, 21], we obtain

E′(t) = −μ

∫
Ω

ut (t)ut

(
t − τ(t)

)
dx − 1

2
α(t)g(t)‖∇u‖2

2 + 1

2
α(t)

(
g′ ◦ ∇u

)
(t)

+ 1

2
α′(t)(g ◦ ∇u)(t) − 1

2
α′(t)

(∫ t

0
g(s)ds

)
‖∇u‖2

2 + ξ

2
‖ut‖2

2
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− ξ

2

(
1 − τ ′(t)

)
e−λτ(t)

∫
Ω

u2
t

(
t − τ(t)

)
dx − λξ

2

∫ t

t−τ(t)

∫
Ω

e−λ(t−s)u2
t (s)dxds

≤ 1

2
α(t)

(
g′ ◦ ∇u

)
(t) − 1

2
α(t)g(t)‖∇u‖2

2 +
( |μ|

2
√

1 − d
+ ξ

2

)
‖ut‖2

2

−
(

ξ

2
(1 − d)e−λτ1 − |μ|√1 − d

2

)∥∥ut

(
t − τ(t)

)∥∥2

2

− λξ

2

∫ t

t−τ(t)

∫
Ω

e−λ(t−s)u2
t (s)dxds

+ 1

2
α′(t)(g ◦ ∇u)(t) − 1

2
α′(t)

(∫ t

0
g(s)ds

)
‖∇u‖2

2.

Noticing (2.5) and the assumption (G1), (3.1) is established. �

Remark 3.1 Since (
|μ|

2
√

1−d
+ ξ

2 )‖ut‖2
2 ≥ 0, − 1

2α′(t)(
∫ t

0 g(s)ds)‖∇u‖2
2 ≥ 0, E′(t) may not be

non-increasing.

Now, we define the Lyapunov function

L(t) = E(t) + ε1α(t)I (t) + ε2α(t)K(t), (3.2)

where εi , i = 1,2 are two positive real numbers which will be chosen later, and

I (t) :=
∫

Ω

uutdx, (3.3)

K(t) := −
∫

Ω

ut

∫ t

0
g(t − s)

(
u(t) − u(s)

)
dsdx. (3.4)

We can prove that, for sufficiently small ε1, ε2, for any t ≥ 0, the exist two positive
constant β1, β2 such that

β1E(t) ≤ L(t) ≤ β2E(t). (3.5)

The following estimates hold true.

Lemma 3.2 Under the assumption (G1), there exist two positive constants C1 and C2 sat-
isfying

I ′(t) ≤ − l

2
‖∇u‖2

2 + ‖ut‖2
2 + C1

∥∥ut

(
t − τ(t)

)∥∥2

2
+ C2α(t)(g ◦ ∇u)(t). (3.6)

Proof Differentiating and integrating by parts

I ′(t) = ‖ut‖2
2 +

∫
Ω

u

(
�u − α(t)

∫ t

0
g(t − s)�u(s)ds − μut

(
t − τ(t)

))
dx

≤ ‖ut‖2
2 − l‖∇u‖2

2 + α(t)

∫
Ω

∇u ·
∫ t

0
g(t − s)

(∇u(s) − ∇u(t)
)
dsdx

− μ

∫
Ω

uut

(
t − τ(t)

)
dx.
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Now, Young’s and Poincaré’s inequalities yields (see [16])

α(t)

∫
Ω

∇u ·
∫ t

0
g(t − s)

(∇u(s) − ∇u(t)
)
dsdx

≤ δ‖∇u‖2
2 + α2(t)

4δ

∫
Ω

(
∇u ·

∫ t

0
g(t − s)

∣∣∇u(s) − ∇u(t)
∣∣ds

)2

dx

≤ δ‖∇u‖2
2 + + (1 − l)α(t)

4δ
(g ◦ ∇u)(t),

and

−μ

∫
Ω

uut

(
t − τ(t)

)
dx ≤ δ‖∇u‖2

2 + C(δ)
∥∥ut

(
t − τ(t)

)∥∥2

2
.

Choosing δ > 0 sufficiently small and combining the above estimates, we obtain (3.6). �

Lemma 3.3 Under the assumption (G1), we have the following estimate

K ′(t) ≤ −
(∫ t

0
g(s)ds − δ

)
‖ut‖2

2 + δ
(
1 + 2(1 − l)2

)‖∇u‖2
2

+
(

2δα2(t) + 2 + μ2C2
p

4δ

)(∫ t

0
g(s)ds

)
(g ◦ ∇u)(t)

+ δ
∥∥ut

(
t − τ(t)

)∥∥2

2
dx − g(0)C2

p

4δ

(
g′ ◦ ∇u

)
(t), (3.7)

where Cp is the Poincaré constant.

Proof The proof of this lemma is similar as Lemma 3.4 in [16]. But we do not have the
damping term ut (t) in this paper. We give the sketch of it. Combining (1.1) and (3.4), we
obtain

K ′(t) =
∫

Ω

utt

∫ t

0
g(t − s)

(
u(t) − u(s)

)
dsdx

−
∫

Ω

ut

∫ t

0
g′(t − s)

(
u(t) − u(s)

)
dsdx −

(∫ t

0
g(s)ds

)
‖ut‖2

2

=
∫

Ω

∇u(t) ·
(∫ t

0
g(t − s)

(∇u(t) − ∇u(s)
)
ds

)
dx

− α(t)

∫
Ω

(∫ t

0
g(t − s)∇u(s)ds

)
·
(∫ t

0
g(t − s)

(∇u(t) − ∇u(s)
)
ds

)
dx

−
∫

Ω

ut

∫ t

0
g′(t − s)

(
u(t) − u(s)

)
dsdx −

(∫ t

0
g(s)

)
‖ut‖2

2

+
∫

Ω

(∫ t

0
g(t − s)

(
u(t) − u(s)

)
ds

)
μut

(
t − τ(t)

)
dx =

5∑
i=1

Ii . (3.8)
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The first to the third terms on the right hand-side of (3.8) can be estimate as in [17], for any
δ > 0, that

I1 ≤ δ‖∇u‖2
2 + 1

4δ

(∫ t

0
g(s)ds

)
(g ◦ ∇u)(t),

I2 ≤
(

2δα2(t) + 1

4δ

)(∫ t

0
g(s)ds

)
(g ◦ ∇u)(t) + 2δ(1 − l)2‖∇u‖2

2,

I3 ≤ δ‖ut‖2
2 − g(0)C2

p

4δ

(
g′ ◦ ∇u

)
(t).

Noticing the estimate

∫
Ω

(∫ t

0
g(t − s)

(
u(t) − u(s)

)
ds

)2

dx ≤ C2
p

(∫ t

0
g(s)ds

)
(g ◦ ∇u)(t),

where Cp is the Poincaré constant, we obtain

I5 ≤ δ
∥∥∇ut

(
t − τ(t)

)∥∥2

2
+ μ2C2

p

4δ

(∫ t

0
g(s)ds

)
(g ◦ ∇u)(t).

Combining the above estimates with (3.8), we get (3.7). �

Now, we are in the position to prove the general decay result.

Proof of Theorem 2.1 Combining (3.1), (3.6), (3.8) and (G1), after a series of computations,
for any t ≥ t0, we obtain

L′(t) ≤
{ |μ|

2
√

1 − d
+ ξ

2
− α(t)

(
ε2

∫ t

0
g(s)ds − ε2δ − ε1

)}
‖ut‖2

2

+
{ |μ|√1 − d

2
− ξ

2
(1 − d)e−λτ1 + ε1C1α(t) + ε2δα(t)

}∥∥ut

(
t − τ(t)

)∥∥2

2

+
{
−1

2
α′(t)

∫ t

0
g(s)ds + ε2α(t)δ

(
1 + 2(1 − l)2

) − ε1l

2
α(t)

}
‖∇u‖2

2

+
{
ε1C2α

2(t) + ε2α(t)

(
2δα2(t) + 2 + μ2C2

p

4δ

)(∫ t

0
g(s)ds

)}
(g ◦ ∇u)(t)

+ α(t)

{
1

2
− ε2g(0)C2

p

4δ

}(
g′ ◦ ∇u

)
(t) + ε1α

′(t)I (t) + ε2α
′(t)K(t)

− λξ

2

∫ t

t−τ(t)

∫
Ω

e−λ(t−s)ut (s)dsxds. (3.9)

By using (3.3), (3.4). Young’s and Poincaré’s inequalities, we obtain

ε1α
′(t)I (t) + ε2α

′(t)K(t)

≤ −ε1α
′(t)C2

p

2
‖∇u‖2

2 − (ε1 + ε2)α
′(t)

2
‖ut‖2

2 − α′(t)C2
p

2

(∫ t

0
g(s)ds

)
(g ◦ ∇u)(t).
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Noticing g is positive and non-increasing, we have, for any fixed t0 > 0, for any t ≥ t0, that

∫ t

0
g(s)ds ≥

∫ t0

0
g(s)ds = g0 > 0. (3.10)

Hence, (3.9) takes the form

L′(t)

≤ −α(t)

{
ε2g0 − ε2δ − ε1 +

− |μ|
2
√

1−d
− ξ

2 + (ε1 + ε2)α
′(t)

2α(t)

}
‖ut‖2

2

−
{

ξ

2
(1 − d)e−λτ1 − |μ|√1 − d

2
− ε1C1α(t) − ε2δα(t)

}∥∥ut

(
t − τ(t)

)∥∥2

2

− α(t)

{
ε1l

2
− ε2δ

(
1 + 2(1 − l)2

) + α′(t)
2α(t)

∫ t

0
g(s)ds + ε1α

′(t)C2
p

2α(t)

}
‖∇u‖2

2

+ α(t)

{
ε1C2α(0) + ε2

(
2δα2(0) + 2 + μ2C2

p

4δ
− α′(t)C2

p

2α(t)

)(∫ t

0
g(s)ds

)}
(g ◦ ∇u)(t)

+ α(t)

{
1

2
− ε2g(0)C2

p

4δ

}(
g′ ◦ ∇u

)
(t) − λξ

2

∫ t

t−τ(t)

∫
Ω

e−λ(t−s)ut (s)dsxds. (3.11)

Now, we should deduce the following system of the inequalities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε2g0 − ε2δ − ε1 + − |μ|
2
√

1−d
− ξ

2 +(ε1+ε2)α′(t)
2α(t)

> 0,
ξ

2 (1 − d)e−λτ1 − |μ|√1−d

2 − ε1C1α(t) − ε2δα(t) > 0,

ε1l

2 − ε2δ(1 + 2(1 − l)2) + α′(t)
2α(t)

∫ t

0 g(s)ds + ε1α′(t)C2
p

2α(t)
> 0,

1
2 − ε2g(0)C2

p

4δ
> 0

ξ, δ, ε1, ε2, λ > 0

(3.12)

is solvable only if we add some suitable conditions to μ.
Indeed, we can find solutions of (3.12) according to the following steps.
Step 1. We first take δ sufficiently small such that

δ < min

{
g0

4
,

g0l

16[1 + 2(1 − l)2] ,
g0l

2(1 + C1α(0))[1 + 2(1 − l)2] + 1 + α(0)
,

g0α0l(1 − d)2

2[1 + 2(1 − l)2][α0(1 − d)2 + 2C1α(0)]
}
, (3.13)

and

δ <
g0α0(1 − d)2

2[α0(1 − d)2 + 2α(0)] . (3.14)

Step 2. Once δ is fixed, we select ε2 sufficiently small such that

1

2
− ε2g(0)C2

p

4δ
> 0.
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Step 3. Then we choose ε1 satisfying the relation

2δ[1 + 2(1 − l)2]
l

<
g0

8
<

ε1

ε2
< min

{
g0 − δ − α(0)δ

1 + C1α(0)
,

g0α0(1 − d)2

α0(1 − d)2 + 2C1α(0)

}
. (3.15)

The choice of ε1 is possible by the choice of δ in (3.13) and (3.14).
From (3.13) and (3.15), we deduce that

ε2(g0 − δ) − ε1 > ε1C1α(0) + ε2δα(0) > 0. (3.16)

Now, let k1 = ε2(g0 − δ) − ε1 and k2 = ε1C1α(0) + ε2δα(0). Thus, (3.16) implies that k1, k2

are two positive constants depending on g0, l.
Step 4. Now, we must ensure that the first to the third inequality in (3.12) hold. That is to

say, the following system of inequalities

⎧⎪⎪⎨
⎪⎪⎩

|μ|√
1−d

+ξ

2α0
− α′(t)(ε1+ε2)

2α(t)
< k1,

ξ

2 (1 − d)e−λτ1 − |μ|√1−d

2 > k2,

ε1l

2 − ε2δ(1 + 2(1 − l)2) + α′(t)
2α(t)

g0 + ε1α′(t)C2
p

2α(t)
> 0

(3.17)

must be solvable.
In fact, by (3.15), the inequality

ε1l

2
− ε2δ

(
1 + 2(1 − l)2

)
> 0

is obtained. Since limt→∞ α′(t)
α(t)

= 0 (which can be deduced from (G2)), we can choose t1 ≥ t0
so that the third term in (3.17) is obtained for all t ≥ t1, and the first term in (3.17) becomes

|μ|√
1 − d

+ ξ < k1α0. (3.18)

Step 5. Moreover, by the choice of δ in (3.14), we can obtain

k1

k2
>

2

α0(1 − d)2
, i.e. log

α0(1 − d)2k1

2k2
> 0. (3.19)

Since λ satisfies (2.5), there exists a positive constant ξ such that

2k2e
λτ1

(
√

1 − d)3
< ξ <

√
1 − dk1α0. (3.20)

Step 6. To ensure the solvability of the system (3.17), we just need to add a condition
given by

|μ| < min

{√
1 − dk1α0 − ξ,

2k2√
1 − d

− ξ(1 − d)e−λτ1

}
:= a > 0, (3.21)

here a is only dependent on g0, l, d . Moreover, the condition (3.21) is possible from (3.20).
Hence, the system (3.12) is solvable. Consequently, there exist two positive constants C3

and C4 such that

L′(t) ≤ −C3α(t)E(t) + C4α(t)(g ◦ ∇u)(t), ∀t ≥ t1. (3.22)
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Multiplying (3.22) by ζ(t) and using (G2), (3.1) and (3.18), for t ≥ t1, we obtain

ζ(t)L′(t) ≤ −C3ζ(t)α(t)E(t) + C4α(t)ζ(t)(g ◦ ∇u)(t)

≤ −C3ζ(t)α(t)E(t) − C4α(t)
(
g′ ◦ ∇u

)
(t)

≤ −C3ζ(t)α(t)E(t) + C4

[
−2E′(t) − α′(t)

(∫ t

0
g(s)ds

)
‖∇u‖2

2 + k1α0‖ut‖2
2

]

Since ζ(t) is nonincreasing, we have

(
ζ(t)L(t) + 2C4E(t)

)′

≤ −C3ζ(t)α(t)E(t) − C4α
′(t)

(∫ t

0
g(s)ds

)
‖∇u‖2

2 + k1α0‖ut‖2
2.

Observing from the definition of E(t) and assumption (2.1) that

l‖∇u‖2
2 ≤ 2E(t),

we get

(
ζ(t)L(t) + 2C4E(t)

)′ ≤ −ζ(t)α(t)

(
C3 + 2C4(1 − l)α′(t)

α(t)ζ(t)l

)
E(t) + 2k1α0E(t).

Since limt→∞ −α′(t)
ζ(t)α(t)

= 0, we can choose t∗ ≥ t1 such that

C5 := C3 + 2C4(1 − l)α′(t)
α(t)ζ(t)l

> 0, ∀t ≥ t∗.

Hence, if we let

b = 2k1

C5
, (3.23)

that is ζ(t) > b = 2k1
C5

≥ 2k1α0
C5α(t)

, we arrive at

(
ζ(t)L(t) + 2C4E(t)

)′ ≤ −C5ζ(t)α(t)E(t) + 2k1α0E(t) ≤ −C6E(t), t ≥ t∗.

Finally, let L(t) = ζ(t)L(t) + 2C4(t)E(t), then we can see that L(t) is equivalent to E(t).
Hence, we arrive at

L′(t) ≤ −C7L(t), ∀t ≥ t∗.

Integrating this over (t∗, t), we can deduce that

L(t) ≤ L(t∗)e−C7t , ∀t ≥ t∗.

Consequently, the equivalent relations of E(t), L(t) and L(t) give the desired result
(2.7). �
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