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Abstract When addressing ordinary differential equations in infinite dimensional Banach
spaces, an interesting question that arises concerns the existence (or non existence) of blow-
ing up solutions in finite time. In this manuscript we discuss this question for the fractional
differential equation cDα

t u = f (t, u) proving that when f is locally Lipschitz in the second
variable, uniformly with respect to the first variable, however does not maps bounded sets
into bounded sets, we can construct a maximal local solution that does not “blow up” in
finite time.

Keywords Caputo derivative · Fractional differential equations · Blow up solutions

1 Introduction

To introduce the main aspects of this discussion, consider the following differential equation{
u′(t) = f (t, u(t)), t > t0,

u(t0) = u0 ∈ X,
(1)

where X denotes a Banach space and t0 ∈R.
Conditions for the existence of solutions to problem (1) were firstly obtained by Peano

in [16]. Following his work, several mathematicians proposed improvements to this result.
Nonetheless, to our objectives in this manuscript it is worth to present the following version
(see [4, 9] for details of the proof).
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Theorem 1 Let X be a Banach space, t0 ∈ R and f : [t0,∞) × X → X a continuous func-
tion which is locally Lipschitz in the second variable, uniformly with respect to the first
variable (see Theorem 2 for details), and bounded. Then problem (1) has a global solution
in the interval [t0,∞) or there exists a value ω ∈ (t0,∞) such that u : [t0,ω) → X is a
maximal local solution that satisfies

lim sup
t→ω−

∥∥u(t)
∥∥

X
= ∞.

Clearly the above result establishes conditions such that the solutions of (1) have a di-
chotomy property concerning its “longtime behavior”. Since the need of the Lipschitz con-
dition is classical, it is natural that questions regarding the necessity of the boundedness
property of f were raised.

If we focus on finite dimensional spaces, it seems obviously that this hypothesis is dis-
pensable, however in infinite dimensional spaces it plays a fundamental role. Dieudonné
in [6] was most likely the first mathematician to address this question. He considered the
Banach space

X :=
{
{xn}∞

n=1 : xn ∈R and lim
n→∞xn = 0

}
,

with norm ‖{xn}∞
n=1‖X := supn∈N |xn| and construct a non-bounded and Lipschitz function

f : [0,1] × X → X such that (1) posses a local solution that does not admit a continuation
and is also bounded.

Following Dieudonné’s inspiration, many mathematicians discussed this kind of prob-
lem, which in certain sense, is related with the failure of Peano’s existence theorem in in-
finite dimensions. For instance, Deimling improved Dieudonné construction considering
more general Banach spaces, as can be seen in [4, 5]; Komornik et al. in [11] addressed
the autonomous version of (1), proving that for any infinite dimensional Banach space X

and bounded interval (s, t) ⊂ R, there exists a locally Lipschitz function f : X → X and
u0 ∈ X such that the maximal solution of (1) is exactly defined on (s, t) although it remains
bounded on (s, t).

On the other hand, it is worth recalling that fractional differential equations are gain-
ing considerable emphasis in the mathematical society and the equivalent question in this
context, besides being a very interesting problem, was still unanswered.

Even if this question seems to have an adaptable proof from the standard case of ordi-
nary differential equations, it does not happen. The non-local characteristic carried by the
fractional differential operator is very hard to manipulate and new arguments are necessary
to obtain such result.

In order to fill this gap, we initially recall some results of the fractional differential equa-
tions theory and then we exhibit an example of a locally Lipschitz in the second variable,
uniformly with respect to the first variable, function f that does not map bounded sets onto
bounded sets and induces (FCP), Fractional Cauchy Problem in Sect. 2, to possess a maxi-
mal local solution that is also bounded.

Finally we present the structure of this paper. In Sect. 2 we discuss several important tools
concerning the fractional calculus and the respective fractional Cauchy problem, proving
the result concerning “blowing up” solutions. In Sect. 3 we construct the aforementioned
counter example, discussing also every functional analysis tools used in the process. We left
Sect. 4 to address an example where we compute explicitly the result obtained in Theorem 6,
which completes the discussion we intend to promote in this paper.
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2 A Study of Differential Equations with Fractional Caputo Derivative

Let us recall firstly the study of the locally Bochner integrable functions for the Dunford-
Schwartz integral with respect to a Banach space (see details in [7]). Hereafter assume that
S ⊂ R and X is a Banach space.

(i) Denote by L1(S,X) the set of all measurable functions x : S → X such that ‖x(t)‖X is
integrable. Furthermore, this set equipped with norm

∥∥x(t)
∥∥

L1(S,X)
:=

∫
S

∥∥x(t)
∥∥

X
dt,

is a Banach space.
(ii) Represent by W 1,1(S,X) the set of all elements of L1(S,X) which have weak deriva-

tive of order one being in L1(S,X). This set equipped with norm∥∥x(t)
∥∥

W1,1(S,X)
:= (∥∥x(t)

∥∥2

L1(S,X)
+ ∥∥x ′(t)

∥∥2

L1(S,X)

)1/2
,

is also a Banach space.
(iii) Finally, C(S,X) denotes the space of the continuous functions x : S → X. When S is

a compact set we define the norm∥∥x(t)
∥∥

C(S,X)
:= sup

t∈S

∥∥x(t)
∥∥

X
,

which makes C(S,X) a Banach space.

Definition 1 Let α ∈ (0,1), τ ∈ (0,∞) and h ∈ L1(0, τ ;X).

(i) The Riemann-Liouville fractional integral of order α, is denoted by J α
t h(t), and is given

by

J α
t h(t) := (h ∗ gα)(t) =

∫ t

0
gα(t − r)h(r) dr, a.e. in [0, τ ],

where function gα :R→ R is given by

gα(t) =
{

tα−1/Γ (α), t > 0,

0, t ≤ 0.

(ii) If h ∗ g1−α ∈ W 1,1(0, τ ;X), the Riemann-Liouville fractional derivative of order α is
given by

Dα
t h(t) := D1

t J
1−α
t h(t) = D1

t (h ∗ g1−α)(t), a.e. in [0, τ ],
where D1

t = (d/dt).

The above definitions were extensively used in the study of fractional calculus (see for
instance [12, 13, 15, 19]) however in this manuscript we discuss only Caputo fractional
derivative, which is defined bellow (see for instance [2, 3, 18] for more details).

Definition 2 Consider real numbers α ∈ (0,1), τ ∈ (0,∞) and function h ∈ C([0, τ ],X)

satisfying h ∗ g1−α ∈ W 1,1(0, τ ;X). We define the Caputo fractional derivative of order α,
which is denoted by cDα

t h(t), by

cDα
t h(t) := Dα

t

(
h(t) − h(0)

)
, a.e. in [0, τ ].
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Remark 1 It is important to emphasize some facts at this moment.

(i) In [1] the author reproduces the classical proof that ensures, for an integrable function
h ∈ L1(0, τ ;X), that Dα

t J α
t h(t) = h(t). Moreover, if it holds that h ∗ g1−α also belongs

to W 1,1(0, τ ;X), then

J α
t Dα

t h(t) = h(t) − 1

Γ (α)
tα−1

{
J 1−α

s h(s)
}∣∣

s=0
, a.e. in [0, τ ].

It is important to notice that {J 1−α
s h(s)}|s=0 can not even be computable; choose for

instance h(t) = t−1/2.
(ii) For h ∈ C([0, τ ],X), it holds that

cDα
t J α

t h(t) = h(t).

Furthermore, if h ∗ g1−α ∈ W 1,1(0, τ ;X) we conclude

J α
t cDα

t h(t) = h(t) − h(0) − 1

Γ (α)
tα−1

{
J 1−α

s

[
h(s) − h(0)

]}∣∣
s=0

,

a.e. in [0, τ ]. Since {J 1−α
s [h(s) − h(0)]}|s=0 = 0, we achieve the equality

J α
t cDα

t h(t) = h(t) − h(0).

(iii) Finally, if u ∈ C([0, τ ],X) is a function that satisfies u′ ∈ C([0, τ ],X) we obtain
cDα

t u(t) = J 1−α
t u′(t) for any t ∈ (0, τ ]. This was the first formal definition of the Ca-

puto fractional derivative.

Once the main tools concerning fractional calculus are introduced, we now formalize
the fractional differential equation that we study in this manuscript. The fractional Cauchy
problem (FCP) is given by {

cDα
t u(t) = f (t, u(t)), t > 0,

u(0) = u0 ∈ X,
(FCP)

where α is a real number in (0,1), cDα
t is the Caputo fractional derivative of order α and

f : [0,∞) × X → X is a continuous function.
Now it is necessary to define the notion of solution to problem (FCP), which indeed is

given by an adaptation of the classical ideas that are applied to ordinary differential equa-
tions.

Definition 3 Assume that α ∈ (0,1).

(i) We say that a function u : [0,∞) → X is a global solution of (FCP) if

u ∈ Cα
([0, τ ],X) := {

u ∈ C
([0, τ ],X) : cDα

t u ∈ C
([0, τ ],X)}

for every τ > 0 and satisfies the equations of (FCP).
(ii) If there exists 0 < τ < ∞ such that a continuous function u : [0, τ ] → X belongs to

Cα([0, τ ],X) and satisfies (FCP) for t ∈ [0, τ ], we say that u is a local solution to
problem (FCP) on the interval [0, τ ].
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Remark 2 Observe that Cα([0, τ ],X) imbued with norm

∥∥x(t)
∥∥

Cα([0,τ ],X)
:= sup

t∈[0,τ ]

∥∥x(t)
∥∥

X

is a Banach space.

Bearing these definitions in mind, we present the classical result that discuss the local
existence and uniqueness of a solution to the fractional differential equation (a proof of this
theorem can be found in [1, 10]).

Theorem 2 Assume that α ∈ (0,1), f : [0,∞) × X → X is a continuous function and
u0 ∈ X. If f is also a locally Lipschitz in the second variable, uniformly with respect to
the first variable, i.e., given (t0, x0) ∈ [0,∞) × X there exist L, r > 0 (depending on f , t0
and x0) such that for any (t, x), (t, y) ∈ Br(t0, x0) it holds that

∥∥f (t, x) − f (t, y)
∥∥

X
≤ L‖x − y‖X,

then there exists τ > 0 such that problem (FCP) posses a unique local solution u in [0, τ ].

The remainder of this section will be devoted to discuss the continuation of local solu-
tions and global solutions of (FCP). First, it is necessary to introduce some concepts.

Definition 4 Let u : [0, τ ] → X be a local solution to (FCP).

(i) If τ ∗ > τ and u∗ : [0, τ ∗] → X is a local solution to (FCP) in [0, τ ∗] such that u(t) =
u∗(t) in [0, τ ], then we call u∗ a continuation of u over [0, τ ∗].

(ii) Furthermore, if u : [0, τ ∗) → X is the unique local solution to (FCP) in [0, τ ] for every
τ ∈ (0, τ ∗) and does not have a continuation, then we call it maximal local solution of
(FCP) in [0, τ ∗) (see [17] for more details on maximal solutions).

Now we are able to establish the existence of continuation to a given solution of (FCP).

Theorem 3 Let α ∈ (0,1), τ ∈ (0,∞) and f : [0,∞) × X → X be as in Theorem 2. If
u : [0, τ ] → X is the unique local solution to (FCP) in [0, τ ], then there exists a unique
continuation u∗ of u in [0, τ ∗] for some value τ ∗ > τ .

Finally, inspired by De Andrade et al. in [3] and based on the results discussed above, for
the sake of completeness we state and prove the main theorem of this section.

Theorem 4 Let α ∈ (0,1), X be a Banach space and f : [0,∞) × X → X a continuous
function which is locally Lipschitz in the second variable, uniformly with respect to the
first variable and maps bounded sets onto bounded sets. Then problem (FCP) has a global
solution in the interval [0,∞) or there exists a value ω ∈ (0,∞) such that the local solution
u : [0,ω) → X does not admit a continuation and yet satisfies

lim sup
t→ω−

∥∥u(t)
∥∥

X
= ∞.
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Proof Consider H ⊂ R, which is given by

H := {
τ ∈ (0,∞) : there exists uτ : [0, τ ] → X

unique local solution to (FCP) in [0, τ ]}. (2)

Define ω = supH and consider function u : [0,ω) → X which is given by u(t) = uτ (t),
if t ∈ [0, τ ]. It is not difficult to verify that this function is well defined and is the maximal
local solution of (FCP) in [0,ω).

If ω = ∞, u is a global solution of (FCP). Otherwise, if ω < ∞ we need to prove that

lim sup
t→ω−

∥∥u(t)
∥∥

X
= ∞.

The proof is by contradiction. Suppose that there exists d < ∞ such that ‖u(t)‖X ≤ d

for all t ∈ [0,ω). Then, since f maps bounded sets onto bounded sets, define

M := sup
s∈[0,ω)

∥∥f
(
s, u(s)

)∥∥
X

< ∞

and consider {tn}n ⊂ [0,ω) a sequence that converges to ω. Thus, making some computa-
tions, we obtain the estimate

∥∥u(tn) − u(tm)
∥∥

X
≤ M∗

Γ (α + 1)

[∣∣tnα + |tm − tn|α − tαm

∣∣ + |tm − tn|α
]
,

for some positive value M∗. This ensures that {u(tn)}∞
n=0 is a Cauchy sequence and therefore

it has a limit, let us say, uω ∈ X. By extending u over [0,ω], we conclude that the equality

u(t) = u0 +
∫ t

0
(t − s)α−1f

(
s, u(s)

)
ds,

should hold for all t ∈ [0,ω]. With this, by Theorem 3, we can extend the solution to some
bigger interval, which is a contradiction by the definition of ω. Therefore, if ω < ∞ it holds
that lim supt→ω− ‖u(t)‖X = ∞. This concludes the proof. �

3 Fundamental Structures and the Bounded Maximal Solution

The aim of this section is to recall some fundamental concepts of functional analysis and
discuss the existence of a maximal local solution to problem (FCP) which does not “blows
up” in finite time, under suitable hypotheses.

For the discussion suggested above to be successfully addressed, we first recall some
concepts and notations related to infinite dimensional Banach spaces.

Definition 5 Let X be a Banach space. A sequence {vn}∞
n=1 ⊂ X is called a Schauder basis

of X, if for every x ∈ X, there exists a unique sequence {xn}∞
n=1 ⊂ R such that

lim
k→∞

∥∥∥∥∥x −
k∑

n=1

xnvn

∥∥∥∥∥
X

= 0. (3)

We write x = ∑∞
n=1 xnvn to denote the above limit.
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It is worth to emphasize that existence of Schauder basis to general Banach spaces is not
a trivial matter. Indeed, as can be found in the literature, it is not true that every Banach
space has a Schauder basis (see [8] for details).

Therefore, it is essential to introduce the following result to better adjust our forward
computations.

Theorem 5 For any infinite dimensional Banach space X, there exists an infinite dimen-
sional closed subspace X0 of X with a Schauder Basis {vn}∞

n=0. Moreover, we can suppose
that {vn}∞

n=1 is such that ‖vn‖X = 1, for all n ∈ N, and that there exists a sequence of linear
functionals {v∗

n}∞
n=1 ⊂ X∗

0 which satisfies ‖v∗
n‖X∗

0
= 1 and also, for any x ∈ X0,

x =
∞∑

n=1

v∗
n(x)vn. (4)

Proof It is a classical result. For more details see [14, Theorem I.1.2]. �

At this point we are already prepared to discuss the main ideas proposed by this
manuscript. Thus, the remainder of this section is dedicated to prove the following:
Statement: There exists an element u0 ∈ X and also a continuous and locally Lipschitz
function f :R+ × X → X, which does not maps bounded sets into bounded sets, such that{

cDα
t u(t) = f (t, u(t)), t > 0

u(0) = u0 ∈ X,
(FCP)

has a maximal bounded local solution in [0,1).
A positive answer to the problem above closes any question concerning the adopted

hypotheses in Theorem 4. It is worth to stress that the ideas which inspired the proof of this
question were given by Dieudonné in [6], Deimling in [4, 5] and Komornik in [11].

To begin this discussion we consider a suitable sequence of functions, which develops
a fundamental role forward in the manuscript. More explicitly, for any increasing sequence
of positive real numbers {tn}∞

n=1 that converges to 1 we consider a sequence of continuously
differentiable functions {zn(t)}∞

n=1, which satisfies the following properties:

(i) The length of the intervals [tn, tn+1] decreases when n increases. More specifically,

tn − tn−1 > tn+1 − tn,

for n ≥ 2;
(ii) z1 ≡ 1 in R and for n ≥ 2

zn(t) :=

⎧⎪⎪⎨
⎪⎪⎩

1, t ∈ [tn, tn+1],
∈ (0,1), t ∈ (

tn−1+tn
2 , tn) ∪ (tn+1,

tn+1+tn+2
2 ),

0, otherwise.

Now consider X an infinite dimensional Banach space. As stated in Theorem 5, we as-
sume that X0 denotes an infinite dimensional closed subspace of X (with the topology in-
duced by the topology of X) with a Schauder Basis {vn}∞

n=1, which satisfies

‖vn‖X = 1, ∀n ∈ N.
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We also recall that there exists a sequence of linear functionals {v∗
n}∞

n=1 ⊂ X∗
0 which satisfies∥∥v∗

n

∥∥
X∗

0
= sup

x∈X0‖x‖X≤1

∣∣v∗
n(x)

∣∣ = 1, ∀n ∈N,

and allows us to write every x ∈ X0 as the sum

x =
∞∑

n=1

v∗
n(x)vn.

The characteristic function χI : R→R is the function given by

χI (t) =
{

1, t ∈ I,

0, t /∈ I.

Based on this last considerations, we prove the following result.

Lemma 1 The function u : [0,1) → X0 (⊂ X) given by

u(t) :=
∞∑

n=1

zn(t)vn

is continuous and bounded. Moreover, it cannot be extended to [0,1] and if α ∈ (0,1), it
satisfies

cDα
t u(t) =

∞∑
n=1

χ[tn,1)(t)cD
α
t zn+1(t)vn+1

with cDα
t u(t) a continuous function.

Proof The continuity and the boundedness of u(t) follows since ‖zn(t)vn‖X ≤ 1 for every
n ∈ N and

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1, for t ∈ [0, t1)

v1 + z2(t)v2, for t ∈ [t1, t2)
v1 + z2(t)v2 + z3(t)v3, for t ∈ [t2, t3)
v1 + z2(t)v2 + z3(t)v3 + z4(t)v4, for t ∈ [t3, t4)
v1 + zk−1(t)vk−1 + zk(t)vk + zk+1(t)vk+1, for t ∈ [tk, tk+1)

and k ≥ 4.

(5)

It is worth mentioning that for each t ∈ [0,1) at most four terms in the above sum, which
defines u(t), are different from zero.

To verify that u cannot be extended in [0,1] continuously, observe that for n ≥ 2

u

(
tn + tn+1

2

)
= v1 + vn.

Thus, define σn = (tn + tn+1)/2 and observe that∥∥u(σn) − u(σn+1)
∥∥

X
= ‖vn − vn+1‖X.
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Since {vn}∞
n=1 cannot be convergent, the sequence u(

tn+tn+1
2 ) cannot be a Cauchy sequence,

and therefore does not converges. In other words, there is no way to define a value at t = 1
such that function u becomes continuous in [0,1].

By recalling the already mentioned non-local property of the fractional derivative and
applying cDα

t in (5) we obtain

cDα
t u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for t ∈ [0, t1)

cDα
t z2(t)v2, for t ∈ [t1, t2)

cDα
t z2(t)v2 + cDα

t z3(t)v3, for t ∈ [t2, t3)
cDα

t z2(t)v2 + cDα
t z3(t)v3 + cDα

t z4(t)v4, for t ∈ [t3, t4)∑k+1
i=2 cDα

t zi(t)vi, for t ∈ [tk, tk+1)

and k ≥ 4.

The continuity of cDα
t u(t) follows from the fact that zk(t) has its first derivative contin-

uous and therefore Remark 1 allows us to conclude that cDα
t zk(t) = J 1−α

t z′
k(t). �

At this point, it remains for us to address the construction of the function fα :
R

+ × X → X. Thus, consider the following preliminary result.

Lemma 2 Let function H : [0,∞) × X →R be given by

H(t, x) = V ∗
1 (x)χ[0,t1)(t)

+
∞∑
i=1

[
i−2V ∗

i (x)χ[ti ,∞)(t) + (i + 1)−2V ∗
i+1(x)

(
t − ti

ti+1 − ti

)
χ[ti ,ti+1)(t)

]
,

where V ∗
i : X → R is an extension of v∗

i : X0 → R over X and satisfies ‖V ∗
i ‖X∗ ≤ 1. Then

H is a continuous and locally Lipschitz in the second variable, uniformly with respect to the
first variable.

Proof Recall that Hahn-Banach theorem allows us to extend our functionals v∗
i to V ∗

i de-
fined over X such that ‖V ∗

i ‖X∗ ≤ ‖v∗
i ‖X∗

0
= 1. Then, it is interesting to notice that

H(t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V ∗
1 (x), for t ∈ [0, t1),

V ∗
1 (x) + 1

22 V ∗
2 (x)(

t−t1
t2−t1

), for t ∈ [t1, t2),∑k

i=1
1
i2 V ∗

i (x) + 1
(k+1)2 V ∗

k+1(x)(
t−tk

tk+1−tk
), for t ∈ [tk, tk+1)

and k ≥ 2,∑∞
i=1

1
i2 V ∗

i (x), for t ∈ [1,∞).

Observe that for (t, x) ∈ [0,∞) × X, with t �= 1, the continuity of H follows directly
from the above characterization. We verify the continuity of H at (1, x) by definition. Thus,
given ε > 0, choose k0 ∈N such that

( ∞∑
i=k+2

‖x‖X

i2

)
+ 1 + ‖x‖X

(k + 1)2
<

ε

2
,
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for any k ≥ k0, and let δ0 ∈ (0,1) be such that 1 − δ0 > tk0 . Then, define

δ := min

{
δ0,

ε

2

( ∞∑
i=1

1

i2

)−1}
.

If ‖(s, y) − (1, x)‖[0,∞)×X < δ, we conclude that s > 1 − δ0 > tk0 and therefore that s

lies in an interval of the form [tk−1, tk), for some k ≥ k0 or s ≥ 1. In the first situation, we
compute

∣∣H(1, x) − H(s, y)
∣∣ =

∣∣∣∣∣
∞∑
i=1

1

i2
V ∗

i (x) −
[

k∑
i=1

1

i2
V ∗

i (y)

+ 1

(k + 1)2
V ∗

k+1(y)

(
s − tk

tk+1 − tk

)]∣∣∣∣∣
≤

( ∞∑
i=k+2

1

i2

)
‖x‖X +

(
k∑

i=1

1

i2

)
‖x − y‖X

+ 1

(k + 1)2

∥∥∥∥x − y
s − tk

tk+1 − tk

∥∥∥∥
X

≤
( ∞∑

i=k+2

1

i2

)
‖x‖X +

(
k+1∑
i=1

1

i2

)
‖x − y‖X

+ 1

(k + 1)2
‖y‖X

< ε,

since ‖y‖X ≤ ‖y − x‖X + ‖x‖X ≤ 1 + ‖x‖X and

∣∣∣∣
(

x − y
s − tk

tk+1 − tk

)∣∣∣∣ ≤ ‖x − y‖ + ‖y‖,

while in the second situation we compute

∣∣H(1, x) − H(s, y)
∣∣ =

∣∣∣∣∣
∞∑
i=1

1

i2
V ∗

i (x) −
∞∑
i=1

1

i2
V ∗

i (y)

∣∣∣∣∣ < ε,

proving the continuity.
To conclude that H is locally Lipschitz in the second variable, uniformly with respect to

the first variable, choose any point (̃t , x̃) belonging to [0,∞) × X.
1st Case: If t̃ ∈ (0, t1), then consider 2̃r := min {̃t, t1 − t̃} and observe that given pairs

(t, x), (t, y) ∈ Br̃ (̃t, x̃) we obtain that t ∈ (0, t1) and therefore

∣∣H(t, x) − H(t, y)
∣∣ ≤ ∥∥V ∗

1

∥∥
X∗‖x − y‖X.

When t̃ = 0, the same inequality holds for any (t, x), (t, y) ∈ Bt1 (̃t , x̃) with t ≥ 0.
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2nd Case: If t̃ ∈ (tk, tk+1) for some k ≥ 1, define 2̃r := min {̃t − tk, tk+1 − t̃} and notice
that for (t, x), (t, y) ∈ Br̃ (̃t, x̃) we obtain that t ∈ (tk, tk+1) what ensures

H(t, x) − H(t, y) =
[

k∑
i=1

1

i2
V ∗

i (x − y)

]
+ 1

(k + 1)2
V ∗

k+1(x − y)

(
t − tk

tk+1 − tk

)

therefore,

∣∣H(t, x) − H(t, y)
∣∣ ≤

[
k+1∑
i=1

1

i2

∥∥V ∗
i

∥∥
X∗

]
‖x − y‖X.

3rd Case: If t̃ = tk for k ≥ 1, by setting 2̃r := min {̃t − tk−1, tk+1 − t̃} and following the
above computations, we achieve the same conclusion.

4th Case: If t̃ ∈ (1,∞) choose 2̃r ∈ (0, t̃ − 1) and observe that for any (t, x), (t, y) ∈
Br̃ (̃t, x̃) it holds

∣∣H(t, x) − H(t, y)
∣∣ ≤

[ ∞∑
i=1

1

i2

∥∥V ∗
i

∥∥
X∗

]
‖x − y‖X ≤

[ ∞∑
i=1

1

i2

]
‖x − y‖X.

5th Case: If t̃ = 1, choose 2̃r ∈ (0,1), and the result follows from the above computa-
tions, since the image of points (t, x) and (t, y) would be given by an infinite series or a
truncated series. This completes the proof. �

Lemma 3 Consider α ∈ (0,1) and the function fα :R+ × X → X given by

fα(t, x) = φ
(
H(t, x)

)
cDα

t u(t),

where H(t, x) is described in Lemma 2 and φ :R→ R is given by

φ(t) = min {t + 1,1}.

Then fα is a continuous and locally Lipschitz in the second variable, uniformly with respect
to the first variable.

Proof The function fα is continuous since φ(t), cDα
t u(t) and H(t, x) are continuous. As

φ(t) is Lipschitz and H(t, x) is locally Lipschitz in the second variable, uniformly with
respect to the first variable, by Lemma 2, it follows from description (limited number of
members in the sum) of cDα

t u(t) in Lemma 1 that fα is locally Lipschitz in the second
variable, uniformly with respect to the first variable. �

Remark 3 Let us highlight the importance of function φ(t) on the definition of fα(t, x)

in the above lemma. Observe that the values assumed by H(t, x) can be negative, once it
depends on the linear functionals V ∗

i (x). Moreover, we can just deduce that H(t,u(t)) ≥ 0,
for t ∈ [0,1). It is for this reason that we consider a new function φ(t) to ensure in the
end that φ(H(t, u(t))) = 1 and therefore that u is a solution of (FCP) (see Theorem 6 for
details).

Next theorem is the main result of this section, which completely answer the Affirmation.
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Theorem 6 (Sharpness of “blow up” conditions) Consider α ∈ (0,1). Then there exists
fα : R+ × X → X continuous and locally Lipschitz in the second variable, uniformly with
respect to the first variable, which does not map every bounded set into bounded set, such
that problem {

cDα
t u(t) = fα(t, u(t)), t > 0

u(0) = v1 ∈ X,
(FCP)

where cDα
t is the Caputo’s fractional derivative and v1 is the first element of the Schauder

basis defined before in this section, posses a bounded maximal solution u : [0,1) → X.

Proof If we define fα as in Lemma 3, then it is continuous and locally Lipschitz in the
second variable, uniformly with respect to the first variable. Now, it is not difficult to notice
that if u : [0,1) → X is given as in Lemma 1, we deduce

H
(
t, u(t)

) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V ∗
1 (u(t)), for t ∈ [0, t1),

V ∗
1 (u(t)) + 1

22 V ∗
2 (u(t))(

t−t1
t2−t1

), for t ∈ [t1, t2),∑k

i=1
1
i2 V ∗

i (u(t)) + 1
(k+1)2 V ∗

k+1(u(t))(
t−tk

tk+1−tk
), for t ∈ [tk, tk+1)

and k ≥ 2,

which by the linearity of the linear functionals V ∗
i (x) and the fact that

V ∗
i (vj ) =

{
1, i = j,

0, i �= j,

allows us to conclude that

H
(
t, u(t)

) =

⎧⎪⎪⎨
⎪⎪⎩

z1(t), for t ∈ [0, t1),

z1(t) + 2−2z2(t)(
t−t1
t2−t1

), for t ∈ [t1, t2),∑k

i=1 i−2zi(t) + (k + 1)−2zk+1(t)(
t−tk

tk+1−tk
), for t ∈ [tk, tk+1).

Now since zk(t) ≥ 0 we obtain φ(H(t, u(t))) = 1.
Thus we achieve that fα(t, u(t)) = cDα

t u(t), which means that u is a solution to problem
(FCP). Finally fα does not map bounded sets into bounded sets, since it would contradict
Theorem 4 once u is a bounded maximal solution of (FCP). �

4 Final Remarks on Theorem 6

In the proof of Theorem 6, to conclude that fα(t, x) did not map every bounded set into a
bounded set, we used an argument based on the conclusions of Theorem 4. In this section,
for the completeness of the subject discussed in this paper, we consider a more specific
situation where we are able to exhibit the bounded set which is mapped by fα(t, x) into an
unbounded set.

To begin this approach, consider {τn}∞
n=1, with τn ∈ [(tn−1 + tn)/2, tn), the maximum

value of z′
n(t) (which is strictly positive), for each n ≥ 2.
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Fix α ∈ (0,1) and now consider the following hypothesis:

(P)

{
There exists {τnl

}∞
l=1 ⊂ {τn}∞

n=1 such that

liml→∞ ‖cDα
t u(t)|t=τnl

‖X = ∞.

Observe that hypothesis (P) is not completely artificial as it seems. Recall initially that
the family of functions {

z′
n(t) : n ∈ N

}
should posses an increasing property concerning its maximum in the interval [(tn−1 +
tn)/2, tn), once for each higher value of n the length of the interval [tn−1, tn) should be
smaller what implies that the growth of function z′

n(t) should be each time bigger. However
proving this assertion to general Banach spaces is a hard task.

To prove the following result, we also need to suppose that t1 + t2 > 1.

Proposition 1 If X is a Hilbert space, then property (P ) holds.

Proof Let X be a Hilbert space. By definition of cDα
t u(t) we observe

∥∥cDα
t u(t)

∣∣
t=τn

∥∥2

X
=

n∑
k=2

[
cDα

t zk(t)
∣∣
t=τn

]2
,

for each n ≥ 2.
Now by assuming that property (P ) does not hold, there should exists M > 0 such that∥∥cDα

t u(t)
∣∣
t=τn

∥∥
X

≤ M, for each n ∈N. (6)

Thus, for n > 2 and by Remark 1, it holds that

cDα
t zk(t)

∣∣
t=τn

= 1

Γ (1 − α)

∫ τn

0
(τn − s)−αz′

k(s) ds

= 1

Γ (1 − α)

[∫ tk

tk−1+tk
2

(τn − s)−αz′
k(s) ds +

∫ tk+1+tk+2
2

tk+1

(τn − s)−αz′
k(s) ds

]
,

(7)

for each k ∈ [2, n− 1]. Now by recalling that z′
k(t) ≥ 0 in [(tk−1 + tk)/2, tk] and z′

k(t) ≤ 0 in
[tk+1, (tk+1 + tk+2)/2], we deduce∫ tk

tk−1+tk
2

(τn − s)−αz′
k(s) ds

≥
(

τn − tk−1 + tk

2

)−α ∫ tk

tk−1+tk
2

z′
k(s) ds =

(
τn − tk−1 + tk

2

)−α

(8)

and ∫ tk+1+tk+2
2

tk+1

(τn − s)−αz′
k(s) ds

≥
(

τn − τn

2

)−α ∫ tk+1+tk+2
2

tk+1

z′
k(s) ds = −

(
τn

2

)−α

. (9)
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Therefore, by (6), (7), (8) and (9), we achieve the inequality

1

Γ (1 − α)

[(
τn − tk−1 + tk

2

)−α

−
(

τn

2

)−α]
≤ ∥∥cDα

t u(t)
∣∣
t=τn

∥∥
X

≤ M,

since tk−1 + tk ≥ t1 + t2 > 1.
Finally by taking the limit when n → ∞ in both sides of the above inequality we obtain

1

Γ (1 − α)

[(
1 − (tk−1 + tk)

2

)−α

−
(

1

2

)−α]
≤ M,

for any k ≥ 2. However, since (tk−1 + tk)/2 → 1 when k → ∞, the value on the left side of
the above inequality would be greater than M for k sufficiently large, which is a contradic-
tion. This completes the proof of the proposition. �

Last result allow us to establish the following theorem.

Theorem 7 (Sharpness of “blow up” conditions revisited) Let α ∈ (0,1) and assume that
(P ) holds in X. Then there exists fα : R+ × X → X continuous and locally Lipschitz in
the second variable, uniformly with respect to the first variable, which does not map every
bounded set into bounded set, such that

{
cDα

t u(t) = fα(t, u(t)), t > 0

u(0) = v1 ∈ X,
(FCP)

where cDα
t is the Caputo’s fractional derivative of order α and v1 is the first element of the

Schauder basis defined in Sect. 3, posses a bounded maximal solution u : [0,1) → X.

Proof Here we discuss just the bounded set that is mapped by fα into an unbounded set.
Consider the sequence {(sl, yl)}∞

l=1 ⊂ [0,∞) × X such that

sl = τnl
and yl =

l+1∑
k=1

(
1/k2

)
vk, for l ≥ 1,

where τnl
is given in hypothesis (P).

It is not difficult to notice that {(sl, yl)}∞
l=1 is bounded, however

∥∥fα(sl, yl)
∥∥

X
= ∣∣φ(

H(sl, yl)
)∣∣ ∥∥cDα

t u(t)
∣∣
t=τnl

∥∥
X

and since ∣∣φ(
H(sl, yl)

)∣∣ = 1,

the sequence {fα(sl, yl)}∞
l=1 is unbounded. �
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