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Abstract We study a class of elliptic competition-diffusion systems of long range segrega-
tion models for two and more competing species. We prove the uniqueness result for positive
solution of those elliptic and related parabolic systems when the coupling in the right hand
side involves a non-local term of integral form.

Moreover, alternate proofs of some known results, such as existence of solutions in the
elliptic case and the limiting configuration are given. The free boundary condition in a par-
ticular setting is given.

Keywords Spatial segregation · Reaction-diffusion systems · Free boundary problems
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1 Introduction and Problem Setting

One of the important problems in population ecology is modeling of competition and in-
teractions between biological components. To achieve this aim, different models based on
reaction-diffusion equations are studied. For spatial segregation, two following models have
been studied:

• adjacent segregation: in this model particles interact on contact, and there is a common
curve or hyper-surface of separation; free boundary;

• segregation at distance: species interact at a distance from each other. In this model, the
annihilation of the coefficient for one component at the point x involves the values of the
rest of components in a full neighborhood of the point x.
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The adjacent segregation model and strongly competing systems have been extensively
studied from different point of views, we will explain briefly these perspective in the coming
section, see [3, 4, 6, 8–10, 12, 14, 15] and references therein. The model describes the steady
state of m competing species coexisting in the same area Ω . Let ui(x) denote the popula-
tion density of the ith component with the internal dynamic prescribed by fi(x,ui). Then,
the interaction between components is described by the following system of m differential
equations

⎧
⎪⎪⎨

⎪⎪⎩

−�uε
i = fi(x,uε

i ) − 1

ε
uε

i

∑

j �=i

(uε
j )

β(x) in Ω,

ui(x) = φi(x) on ∂Ω,

i = 1, . . . ,m.

(1.1)

Here φi are non-negative C1,α functions with disjoint supports that is, φi · φj = 0, on the
boundary. In the system (1.1), the parameter β can be chosen β = 1 or 2 which for the case
β = 2, the system is in variational form.

To explain the second model, first we indicate some of the notations that we are dealing
with in this paper.

• Ω ⊂ R
d , is bounded domain with C1,α boundary;

• d(x, ∂Ω) denotes the distance of the point x to ∂Ω ;
• for a given D ⊂ R

d , we define (D)1 := {x ∈R
d : d(x,D) ≤ 1};

• (∂Ω)1 := {x ∈ Ωc : d(x, ∂Ω) ≤ 1};
• suppf : the support of function f ;
• Br(x) = {y ∈R

n : |x − y| < r};
• W+ = max(W,0) and W− = max(−W,0).

In this work, we consider the following elliptic system studied in [5]:
⎧
⎪⎨

⎪⎩

�uε
i = 1

ε
uε

i

∑

j �=i

H (uε
j )(x) in Ω,

uε
i (x) = φi(x) on (∂Ω)1,

(1.2)

where

H
(
uε

j

)
(x) =

∫

B1(x)

uε
j (y)dy, (1.3)

or

H
(
uε

j

)
(x) = sup

y∈B1(x)

u(y). (1.4)

Here, the boundary data φi for i = 1, . . . ,m are non-negative, C1,α functions defined on
(∂Ω)1 with supports at distance, at least one from each other, i.e.,

(suppφi)1 ∩ (suppφj )
◦ = ∅, for i �= j.

System (1.2) can also be viewed as steady state of the following parabolic system

⎧
⎪⎪⎨

⎪⎪⎩

∂uε
i

∂t
− �uε

i = −1

ε
uε

i

∑

j �=i

H (uε
j )(x) in Q := Ω × (0,+∞),

uε
i (x, t) = φi(x, t) on (∂Ω)1,

uε
i (x,0) = ui,0 in Ω × {t = 0}.

(1.5)
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The main contribution of this work is to provide uniqueness results for system (1.2)
(Lemma 3.2) and system (1.5) when H is given by (1.3). Moreover, we provide alternate
proof of known results, such as existence of solutions in the elliptic case with right hand
side given by (1.3). Also we show that as the competition rate goes to infinity the solu-
tion converges, along with suitable sequences, to a spatially long range segregated state
(Lemma 4.5), more deep results about properties of limiting configuration can be found
in [5].

The outline of this paper is as follows. In Sect. 2 we provide mathematical background
and known results about the systems (1.1) and (1.2). Section 3 deals with existence and
uniqueness for systems (1.2) and (1.5) where H is given by (1.3). Section 4 consists analysis
of the system (1.2) in the limiting case as ε tends to zero when m = 2.

2 Basic Facts

In this section we review some of known results and mathematical background for two
systems (1.1) and (1.2). The analysis of the system (1.2) is much more difficult compare
with system (1.1). Understanding the properties of the system (1.1) gives some insights in
the study of system (1.2). Roughly speaking, the system (1.2) can be reduced to the system
(1.1) if in the term

H
(
uε

j

)
(x) = sup

y∈B1(x)

u(y),

instead of unit ball, we consider the ball with radius r where r tends to zero, then

H
(
uε

j

)
(x) = uε

j (x)

so it is possible to see some general behavior in the system (1.2).

2.1 Known Results for the First Model

As we already mentioned, the system (1.1) has been studied well. First, the existence of
solution for each ε is shown in [6, 14, 15] i.e., for each ε the system (1.1) admits a solution
(uε

1, . . . , u
ε
m) ∈ (H 1(Ω))m. Moreover, it is also shown that for each ε the normal derivative

of uε
i is bounded independent of ε which implies that there exists (u1, . . . , um) ∈ (H 1(Ω))m

such that up to subsequences, we have the strong convergence of uε
i to ui in H 1(Ω), and

ui · uj = 0 for i �= j . For fixed ε uniqueness of elliptic system (1.1) for fi ≡ 0, β = 1 and
parabolic system have been shown in [15]. In [7] for a class of segregation state governed by
a variational principle, existence of solutions is shown and also the conditions that provide
the uniqueness are given. To see uniqueness result for limiting case when ε tends to zero, see
[1, 15]. We refer to [2] to see numerical approximation of the system (1.1) for the limiting
case as ε tends to zero.

Another observed result in [6], is that for regular points on the interface separating the
support of ui and uj the following holds

lim
y→x

ui (y)>0

∇ui(y) = − lim
y→x

uj (y)>0

∇uj (y). (2.1)
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The limiting solutions of (1.1) share the following properties and belong to class S in be-
low, [6]

S =
{

U = (u1, . . . , um) ∈ H 1(Ω) : ui ≥ 0, ui · uj = 0 if i �= j,

ui = φi on ∂Ω, −�ui ≤ 0, −�

(

ui −
∑

j �=i

uj

)

≥ 0

}

.

Remark 1 In system (1.1) when ε → 0 the system in variational form, i.e., α = 2 has same
solution as the system with α = 1.

In the case of two components i.e., m = 2 the explicit solution can be obtained as follow-
ing. Note that in this case the difference of two functions, uε

1 − uε
2, is harmonic for each ε.

Let W be the harmonic extension on Ω of the boundary data φ1 − φ2. If we set u1 = W+,
u2 = W−, then the pair (u1, u2) is the limit configuration of any sequences of pairs (uε

1, u
ε
2),

and there exists C ≥ 0 such that (see [6])

(
1

ε

)1/6

.‖uε
i − ui‖H 1

0 (Ω) ≤ C as ε → 0. (2.2)

Recently in [13], the regularity issues for system of strongly competing Schroödinger
equation with nontrivial grouping has been studied. The C0,α estimate that are uniform in
competition parameter, also the regularity of free boundary as competition rate tends to
infinity, are obtained, we refer to [11] for more related work.

2.2 Long Range Segregated Model

Now, we turn our attention to the second system given by (1.2). System (1.2) is in variational
form if

H
(
uε

j

)
(x) =

∫

B1(x)

(
uε

j (y)
)2

dy.

Remark 2 In system (1.1), the interaction between components is given by the term
ui(x)uj (x); while in (1.2) components interacting by the nonlocal term uε

i H(uε
j )(x). The

analysis and asymptotic behavior of the system (1.1) are more straightforward than sys-
tem (1.2). For instance, if the number of components m = 2, then in system (1.1) with
fi = 0, β = 1, the difference uε

1 − uε
2 is harmonic for each ε while this is not true for sys-

tem (1.2).

In [5] rigorous analysis is done to show the following:

• There exist continuous functions uε
1, . . . , u

ε
m depending on the parameter ε which solve

the system (1.2) in viscosity sense.
• As ε tends to zero, there exists a subsequence u

εk

i converging locally uniformly, to a
function ui , satisfying the properties that the ui ’s are locally Lipschitz continuous in Ω

and have supports at distance at least one from each other.
• Each function ui is harmonic on its support. The authors show the semi convexity of the

free boundary. For the points belonging to free boundary, there is an exterior tangent ball
of radius one at x0.
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• The free boundary set has finite (n − 1)-dimensional Hausdorff measure and free bound-
ary set is a set of finite perimeter.

• They obtained sharp characterization of the interfaces, i.e., the supports of the limit func-
tions are at distance exactly one from each other.

• Free boundary condition in any dimension for two components is given when H is defined
by (1.3).

3 Existence and Uniqueness of the Nonlocal Segregation Model

Consider the following elliptic system

⎧
⎪⎨

⎪⎩

�uε
i = 1

ε
uε

i

∑

j �=i

∫

B1(x)

uε
j (y) dy in Ω,

ui(x) = φi(x) on (∂Ω)1.

(3.1)

Existence of the solution for system (3.1) has been shown in [5] by Schauder fixed point
argument. The aim of this work is to cover the lack of uniqueness for solution of (3.1).
We show uniqueness of solution for system (3.1) inspired by the proof of uniqueness for
system (1.1) in [15]. Since the proof is constructive it can be used for numerical simulation
to approximate the solution of ε problem in (3.1).

Lemma 3.1 For each ε > 0, there exists a positive solution (uε
1, . . . , u

ε
m) of System (3.1).

Proof To start, consider the harmonic extension u0
i given by

{
�u0

i = 0 in Ω,

u0
i = φi on (Ω)1 \ Ω.

(3.2)

Now, given uk
i consider the solution of the following linear system

⎧
⎪⎨

⎪⎩

�uk+1
i = 1

ε
uk+1

i

∑

j �=i

H (uk
j )(x) in Ω,

uk+1
i (x) = φi(x) on (Ω)1 \ Ω.

(3.3)

We show that the following inequalities hold:

u0
i ≥ u2

i · · · ≥ u2k
i ≥ · · · ≥ u2k+1

i ≥ · · · ≥ u3
i ≥ u1

i , in Ω.

Note that since u0
i ≥ 0 then

∑

j �=i

∫

B1(x)

u0
j (y)dy ≥ 0, x ∈ Ω.

The boundary conditions φi(x) are non negative so the weak maximum principle implies
that u1

i ≥ 0 and consequently

uk
i ≥ 0, for k ≥ 1, i = 1, . . . ,m.
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Now we have
{

�u1
i ≥ 0 in Ω,

u1
i (x) = u0

i (x) = φi(x) on ∂Ω.
(3.4)

Thus the comparison principle implies that u1
i ≤ u0

i . To proceed more with induction, assume
that

u0
i ≥ u2

i ≥ · · · ≥ u2k
i ≥ u2k+1

i ≥ · · · ≥ u3
i ≥ u1

i . (3.5)

We show that

u2k+2
i ≥ u2k+1

i . (3.6)

By (3.3) and the assumption in (3.5) we have

�u2k+2
i ≤ 1

ε
u2k+2

i

∑

j �=i

H
(
u2k

j

)
(x),

�u2k+1
i = 1

ε
u2k+1

i

∑

j �=i

H
(
u2k

j

)
(x).

Note that u2k+1
i and u2k+2

i have the same boundary value so (3.6) follows from the compari-
son principle. The same argument using the assumption u2k+1

i ≥ u2k−1
i shows that

u2k+2
i ≤ u2k

i .

For the next step, we note that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u2k+3
i = 1

ε
u2k+3

i

∑

j �=i

H (u2k+2
j )(x) in Ω,

�u2k+1
i = 1

ε
u2k+1

i

∑

j �=i

H (u2k
j )(x) in Ω.

(3.7)

From previous step we have u2k+2
i ≤ u2k

i which implies

u2k+3
i ≥ u2k+1

i .

Now let ui and ui be two families of functions such that

u2k
i → ui uniformly in Ω,

u2k+1
i → ui uniformly in Ω.

Taking the limit in (3.3) yields
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�ui = 1

ε
ui

∑

j �=i

H (uj )(x) in Ω,

�ui = 1

ε
ui

∑

j �=i

H (uj )(x) in Ω.

(3.8)

The inequality u2k+1
i ≤ u2k

i implies that

ui ≥ ui in Ω. (3.9)
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We will show that, in fact, the equality holds. Since ui = ui on ∂Ω , by (3.9), we have

∂ui

∂n
≤ ∂ui

∂n
, (3.10)

where n is the outward normal vector of ∂Ω . Hence
∫

Ω

∑

i

�ui(x) dx =
∫

∂Ω

∑

i

∂ui

∂n
ds ≤

∫

∂Ω

∑

i

∂ui

∂n
ds =

∫

Ω

∑

i

�ui(x) dx. (3.11)

Substituting Eq. (3.8) into (3.11), we obtain
∫

Ω

∑

i,jj �=i

ui(x)

(∫

B1(x)

uj (y) dy

)

dx ≤
∫

Ω

∑

i,jj �=i

ui(x)

(∫

B1(x)

uj (y) dy

)

dx. (3.12)

Rewriting this, we get a symmetric kernel K(x,y); such that
∫

Ω

∫

Ω1

∑

i,jj �=i

ui(x)uj (y)K(x, y) dy dx ≤
∫

Ω

∫

Ω1

∑

i,jj �=i

uj (x)ui(y)K(x, y) dy dx, (3.13)

where K(x,y) is χB1(0)(x−y) with χB1(0) the characteristic function of the unit ball centered
at the origin. Since K is symmetric in x and y,

∫

Ω

∫

Ω

∑

i,jj �=i

ui(x)uj (y)K(x, y) dy dx =
∫

Ω

∫

Ω

∑

i,jj �=i

uj (x)ui(y)K(x, y) dy dx. (3.14)

The remaining part is
∫

Ω

∫

Ω1\Ω

∑

i,jj �=i

ui(x)uj (y)K(x, y) dy dx =
∫

Ω

∫

Ω1\Ω

∑

i,jj �=i

ui(x)φj (y)K(x, y) dy dx

≥
∫

Ω

∫

Ω1\Ω

∑

i,jj �=i

ui(x)φj (y)K(x, y) dy dx

=
∫

Ω

∫

Ω1\Ω

∑

i,jj �=i

uj (x)ui(y)K(x, y) dy dx.

(3.15)

Combining (3.13)–(3.15) we obtain
∫

Ω

∫

Ω1\Ω

∑

i,jj �=i

ui(x)φj (y)K(x, y)dydx =
∫

Ω

∫

Ω1\Ω

∑

i,jj �=i

ui(x)φj (y)K(x, y) dy dx.

(3.16)
Now from (3.16) we obtain

ui(x) = ui(x) in
{
x ∈ Ω : dist (x, ∂Ω) ≤ 1

}
.

This follows from facts that ui ≥ ui and non negativity of boundary data φj and definition
of kernel K(x,y). In view of (3.14) and the continuation argument we obtain

ui ≡ ui, in Ω,

which is a solution of (3.1). �
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Lemma 3.2 (Uniqueness) Assume there exists another positive solution (w1, . . . ,wm) of
(3.1), then

ui = wi.

Proof We will prove that the following hold:

u2k+1
i ≤ wi ≤ u2k

i , for k ≥ 0. (3.17)

To begin, we show that

wi ≤ u0
i . (3.18)

This is a consequence of the fact that wi satisfies

{
�wi ≥ 0 in Ω,

wi = u0
i on ∂Ω.

Next we compare wi with u1
i and we show wi ≥ u1

i . This inequality follows from (3.18) and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�wi = wi

ε

∑

j �=i

∫

B1(x)

wj in Ω,

�u1
i = u1

i

ε

∑

j �=i

∫

B1(x)

u0
j in Ω.

Now we proceed by induction and we assume that the claim is true until 2k + 1. This means
that we have

u2k+1
i ≤ wi ≤ u2k

i .

Then we show

u2k+3
i ≤ wi ≤ u2k+2

i .

Again we can compare the equations in below

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�wi = wi

ε

∑

j �=i

∫

B1(x)

wj in Ω,

�u2k+2
i = u2k+2

i

ε

∑

j �=i

∫

B1(x)

u2k+1
j in Ω.

Here we use that u2k+1
j ≤ wj which implies that wi ≤ u2k+2

i . Also we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�wi = wi

ε

∑

j �=i

∫

B1(x)

wj in Ω,

�u2k+3
i = u2k+2

i

ε

∑

j �=i

∫

B1(x)

u2k+2
j in Ω.

By the last step u2k+2
i ≥ wi , which implies

u2k+3
i ≤ wi.
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Now taking limit in (3.17) shows that

wi = ui. �

As a corollary of Lemmas 3.1 and 3.2 we have the following theorem.

Theorem 3.3 For each ε > 0, there exists a unique positive solution (uε
1, . . . , u

ε
m) of Sys-

tem (3.1).

The same method can be used to construct the unique solution to the parabolic prob-
lem (1.5). Indeed, we can proceed as before to construct functions ui ≥ ui , which satisfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�ui − ∂ui

∂t
= 1

ε
ui

∑

j �=i

H (uj )(x) in Ω,

�ui − ∂ui

∂t
= 1

ε
ui

∑

j �=i

H (uj )(x) in Ω.

Similarly, we still have

∂ui

∂n
≤ ∂ui

∂n
, on ∂Ω.

Hence for any T > 0,
∫ T

0

∫

∂Ω

∂ui

∂n
≤

∫ T

0

∫

∂Ω

∂ui

∂n
.

Substituting the equation into this, the left hand side equals

∫ T

0

∫

Ω

∂ui

∂t
+ 1

ε
ui

∑

j �=i

H (uj ) =
∫ T

0

∫

Ω

1

ε
ui

∑

j �=i

H (uj ) +
∫

Ω

ui(x, T )dx −
∫

Ω

ui,0(x)dx,

and a similar one holds for the right hand side. By noting that

∫

Ω

ui(x, T )dx ≥
∫

Ω

ui(x, T )dx,

we obtain
∫ T

0

∫

Ω

1

ε
ui

∑

j �=i

H (uj ) ≤
∫ T

0

∫

Ω

1

ε
ui

∑

j �=i

H (uj ).

The rest of the proof is exactly the same as before.

4 Basic Estimates and Asymptotic Behavior as ε Tends to Zero

In this part we study the elliptic systems with highly competitive interaction term. We pro-
vide the estimates for the case that competition rate tends to infinity which yields the long
range distance of positive components. Although the complete analysis and more results of
limiting case can be found in [5], here we simplify some proofs.
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For simplicity, we assume that the number of components is m = 2 and we consider the
following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�uε = uε

ε

∫

B1(x)

vε(y)dy in Ω,

�vε = vε

ε

∫

B1(x)

uε(y)dy in Ω,

uε(x) = φ(x) on (∂Ω)1,

vε(x) = ϕ(x) on (∂Ω)1.

(4.1)

We use the next Lemma in [5] which states in a strip of size one around the support of a
component on the boundary the other components decays to zero exponentially.

Lemma 4.1 For σ > 0, let

Γ
σ := {

φ(x) > σ
} ⊂ Ωc.

Then on the set {x ∈ Ω : d(x,Γ
σ
) ≤ 1 − r}, 0 < r < 1, we have

vε ≤ Ce
−cσαrβ√

ε .

Lemma 4.2 Assume that the boundary ∂Ω satisfies an uniform exterior ball condition. Let
(uε, vε) be the positive solution of (4.1). There exists a positive constant C independent of ε

such that

sup
x∈∂Ω

∣
∣
∣
∣
∂uε(x)

∂n

∣
∣
∣
∣ ≤ C,

sup
x∈∂Ω

∣
∣
∣
∣
∂vε(x)

∂n

∣
∣
∣
∣ ≤ C,

where n denotes exterior normal to ∂Ω .

Proof We construct barrier functions to control the bound of gradient of uε and vε as fol-
lows. Firstly, the following inequalities hold

−�uε ≤ 0, −�vε ≤ 0.

By the standard sup-sub solution method, we can construct solutions u and v to the problem

⎧
⎪⎪⎨

⎪⎪⎩

�u = 0 in Ω,

�v = 0 in Ω,

u = φ on ∂Ω,

v = ϕ on ∂Ω.

Moreover,

uε ≤ u, vε ≤ v.

Hence

∂uε

∂n
≥ ∂u

∂n
,

∂vε

∂n
≥ ∂v

∂n
. (4.2)
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Note that such u and v are independent of ε. At the part where φ = 0, because u ≥ 0 in Ω ,
we also have

∂uε

∂n
≤ 0.

Combined with (4.2), we get a uniform bound on ∂uε

∂n
. It remains to consider the case on

{φ > 0}. Take an x0 ∈ ∂Ω such that φ(x0) > 0. By the previous lemma,

vε(x) ≤ Ce
− 1

C
√

ε , in B 1
2
(x0),

where C depends on φ(x0). Then in Ω ∩ B 1
2
(x0), uε satisfies

�uε ≤ C

ε
e

− 1
C

√
ε uε.

From this we can construct a solution wε to the problem
⎧
⎨

⎩

�wε = C

ε
e

− 1
C

√
ε wε in Ω ∩ B 1

2
(x0),

wε = uε on ∂(Ω ∩ B 1
2
(x0)).

Moreover,

uε ≥ wε, in Ω ∩ B 1
2
(x0).

Hence

∂uε

∂n
≤ ∂wε

∂n
, on ∂Ω ∩ B 1

2
(x0).

Note that

0 <
C

ε
e

− 1
C

√
ε ≤ K,

where K is a constant independent of ε. By standard boundary gradient estimates, there
exists a constant C > 0 independent of ε, such that

∂wε

∂n
≤ C, on ∂Ω ∩ B 1

4
(x0).

Take a finite cover of ∂Ω ∩ {φ > 0} using balls B 1
4
(xi) with xi ∈ ∂Ω ∩ {φ > 0}, we see

∂uε

∂n
≤ C, in ∂Ω ∩ {φ > 0}.

Combining this with (4.2) we get a uniform bound on ∂uε

∂n
in the part ∂Ω ∩ {φ > 0}. �

Lemma 4.3 There exist a constant C independent of ε such that if (uε, vε) is a solution of
system (4.1) then

∫

Ω

uε

ε

(∫

B1(x)

vε(y) dy

)

dx ≤ C,

∫

Ω

vε

ε

(∫

B1(x)

uε(y) dy

)

dx ≤ C.
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Proof By integrating of the first equation in (4.1) over Ω , we have

∫

Ω

uε

ε

(∫

B1(x)

vε(y) dy

)

dx =
∫

Ω

�uε dx =
∫

∂Ω

∂uε

∂n
ds.

Now Lemma 4.2 give the result. �

Lemma 4.4 There exists a positive constant C2 independent of ε such that

∫

Ω

|∇uε|2 dx ≤ C2,

∫

Ω

|∇vε|2 dx ≤ C2.

Proof We multiply the differential inequality −�uε ≤ 0 by uε and integration over Ω gives

∫

Ω

|∇uε|2 dx −
∫

∂Ω

uε ∂uε

∂n
ds ≤ 0.

Now the bound in gradient in Lemma 4.2 give the result. �

Lemma 4.5 Let u and v be the limiting solution of (4.1). Assume that x0 is a point in Ω

such that u(x0) > 0. Then we have

v ≡ 0 in B1(x0).

Proof By Lemma 4.3 we have

∫

Ω

uε(x)

(∫

B1(x)

vε(y) dy

)

dx ≤ Cε.

Let ε tends to zero in the above inequality to get

0 ≤
∫

Ω

u(x)

(∫

B1(x)

v(y) dy

)

dx ≤ 0.

This implies
∫

Ω

u(x)

(∫

B1(x)

v(y) dy

)

dx = 0,

which shows

v ≡ 0 in B1(x0). �

Remark 3 Let u and v be the limiting solution of (4.1) as ε tends to zero. Lemma 4.5 shows
that the support of u and the support of v are disjoint at distance at least one. In fact in [5] it
is shown that u and v are exactly at distance one.

Definition 4.1 The boundaries ∂{x ∈ Ω : u(x) > 0}, ∂{x ∈ Ω : v(x) > 0} are called free
boundaries.
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4.1 Free Boundary Condition in Dimension One

In [5] for any dimension, the free boundary condition for limiting solution is given for

H
(
uε

j

)
(x) =

∫

B1(x)

uε
j (y)dy.

The following simple argument gives the free boundary condition in dimension one when
H is given by (1.4). Let d = 1, Ω = (−a, a), and a ≥ 1, consider the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(uε(x))′′ = uε(x)

ε
sup

y∈[x−1,x+1]
vε(y) in (−a, a),

(vε(x))′′ = vε(x)

ε
sup

y∈[x−1,x+1]
uε(y) in (−a, a),

uε, vε(y) ≥ 0 in (−a, a),

uε(x) = φ(x) on [−a − 1,−a],
vε(x) = ϕ(x) on [a, a + 1].

(4.3)

It is easy to see that

sup
y∈[x−1,x+1]

vε(y) = vε(x + 1).

Also we have that

(
vε(x + 1)

)′′ = vε(x + 1)

ε
sup

y∈[x,x+2]
uε(y) = vε(x + 1)

ε
uε(x).

This shows for every ε,
(
uε(x) − vε(x + 1)

)′′ = 0. (4.4)

Let u, v be the limiting points as ε tends to zero. Then u and v satisfy the following system
⎧
⎪⎪⎨

⎪⎪⎩

(u(x) − v(x + 1))′′ = 0 in (−a, a),

(v(x) − u(x − 1))′′ = 0 in (−a, a),

u, v ≥ 0 in (−a, a),

u(−a) = φ(−a) v(a) = ϕ(a).

(4.5)

This shows that in (4.5) if xf be a free boundary point then the following holds, compare
with (2.1).

u′(xf ) = −v′(xf + 1).

5 Conclusion and Further Works

The uniqueness of the solution for a class of elliptic competition-diffusion systems of long
range segregation models is shown. Also we show as the competition rate goes to infinity, the
solution converges to a spatially long range segregated state satisfying some free boundary
problems.

In a forthcoming paper the author will present numerical approximation for the class of
elliptic and parabolic competition-diffusion systems of long range segregation models for
two and more competing species.
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