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Abstract The paper is concerned with a predator-prey diffusive system subject to homoge-
neous Neumann boundary conditions, where the growth rate ( α

1+βv
) of the predator popula-

tion is nonlinear. We study the existence of equilibrium solutions and the long-term behavior
of the solutions. The main tools used here include the super-sub solution method, the bifur-
cation theory and linearization method.
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1 Introduction

We consider existence, nonexistence and stability of steady-state solutions of the following
reaction-diffusion system,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− d1�u = u(a − u) − buv

1 + mu
, x ∈ Ω, t > 0,

∂v

∂t
− d2�v = v

(
α

1 + βv
− d

)

+ cuv

1 + mu
, x ∈ Ω, t > 0,

∂u

∂n
= ∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x,0) = u0(x) ≥, �≡ 0, v(x,0) = v0(x) ≥, �≡ 0, x ∈ Ω,

(1.1)
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where Ω is a bounded domain in RN with a smooth boundary ∂Ω , � is the Laplacian
operator in RN and a, d denote the intrinsic growth rate of prey population and the constant
predator population mortality, respectively. a, b,m,α, d, c and d1, d2 are positive constants.
One can refer to [14] and the references therein for the corresponding biological meaning
about the model. In addition, n is the outward unit normal vector of the boundary ∂Ω , the
homogeneous Neumann boundary conditions mean that (1.1) is self-contained and has no
population flux across the boundary ∂Ω , which implies that the system is an insular system.

The corresponding steady-state system to (1.1) is

⎧
⎪⎪⎨

⎪⎪⎩

d1�u + u(a − u) − buv

1 + mu
= 0, x ∈ Ω,

∂u

∂n

∣
∣
∣
∣
∂Ω

= 0,

d2�v + v

(
α

1 + βv
− d

)

+ cuv

1 + mu
= 0, x ∈ Ω,

∂v

∂n

∣
∣
∣
∣
∂Ω

= 0.

(1.2)

Equation (1.2) with homogeneous Dirichlet boundary conditions was studied by Yang et al.
[14], where the existence, stability and exact number of positive solution were given when
m is large. In particular, we note that a,α/(1 + βv) are the growth rate of the prey and
predator population respectively, where β can be understood as the strength of intraspe-
cific interference. Reference [14] also charactered the effect of the parameter β on the
population density, which presents that the population density of u is decreasing as β de-
creases, but the population density of v is in the opposite direction. It is worth stressing
that, α/(1 + βv) is a Beverton-Holt-like function and can be founded in [1, 3, 4, 13],
however, the growth rate function only appeared in discrete models up to now, such as
Xn+1 = AXn

1+BXn
, n = 0,1,2, . . . . (See [13]), where X is population size at time n and A,B

are constants. The previous considered growth function is linear, such as the well-known Lo-
gistic model. However, the growth rate is related to the density of the population in numerous
biological phenomena, i.e., the nonlinear growth rate is of great ecological significance.

This paper is organized as follows. Section 2 is devoted to studying the existence and
nonexistence of positive steady states. In Sect. 3, we investigate local and global stability of
various steady states. We illustrate some results with numerical simulations in Sect. 4.

2 Existence and Nonexistence of Positive Steady States

In this section, we mainly consider the existence and nonexistence of positive steady states
of (1.1), i.e., the positive solution of (1.2).

Lemma 2.1 (See [8, Proposition 2.2]) Assume that g ∈ C(Ω × R1).

(1) Assume that w ∈ C2(Ω) ∩ C1(Ω) and satisfies: �w(x) + g(x,w(x)) ≥ 0 in Ω , ∂w
∂n

≤ 0
on ∂Ω . If w(x0) = maxΩ w, then g(x0,w(x0)) ≥ 0.

(2) Assume that w ∈ C2(Ω) ∩ C1(Ω) and satisfies: �w(x) + g(x,w(x)) ≤ 0 in Ω , ∂w
∂n

≥ 0
on ∂Ω . If w(x0) = minΩ w, then g(x0,w(x0)) ≤ 0.

Lemma 2.2 Assume that 0 < d − ac
1+ma

< α. If (u, v) is a nonnegative solution of (1.2), then

u ≤ a, v ≤ α − d + ac
1+ma

β(d − ac
1+ma

)
≡ M0.

In addition, if α > d , then v ≥ α−d
βd

.
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Proof Let (u, v) be the a nonnegative solution of (1.2). We denote u(x0) = maxΩ u and
v(y0) = maxΩ v for some x0, y0 ∈ Ω . By virtue of Lemma 2.1, we have

a − u(x0) − bv(x0)

1 + mu(x0)
≥ 0, (2.1)

α

1 + βv(y0)
− d + cu(y0)

1 + mu(y0)
≥ 0. (2.2)

It follows from inequality (2.1) that u(x) ≤ a, x ∈ Ω . Since 0 < d − ac
1+ma

< α and u ≤ a, it

follows form inequality (2.2) that v(y0) ≤ α−d+ ac
1+ma

β(d− ac
1+ma

)
≡ M0. Therefore, v(x) ≤ M0, x ∈ Ω .

Similarly, if α > d and set v(y1) = minΩ v for some y1 ∈ Ω , then by virtue of Lemma 2.1
again, we have α

1+βv(y1)
− d + cu(y1)

1+mu(y1)
≤ 0. One can see that v ≥ α−d

βd
. This completes the

proof. �

Remark 1 In fact, if d > ac
1+ma

and (u, v) is a positive solution of (1.2), then

α > d − ac

1 + ma
, max{0, b − M0} < u < a, max

{

0,
α − d

βd

}

< v < M0.

Let λ1(μ,q), where μ > 0 and q ∈ C(Ω), be the principal eigenvalue of the opera-
tor −μ� + q(x) in Ω subject to the homogeneous Neumann boundary condition. Denote
λ1(μ,0) by λ1(μ) and note that λ1(μ) = 0. Consider the eigenvalue problem

{−�ψ = λψ, x ∈ Ω,
∂ψ

∂n
= 0, x ∈ ∂Ω,

(2.3)

whose eigenvalues can be listed as 0 = λ1 < λ2 < λ3 · · · with the associated eigenfunction
ψi, i = 1,2,3 · · · .

Theorem 2.1 Assume that d − ac
1+ma

> 0. If α ≤ d − ac
1+ma

and (u, v) is a nonnegative
solution of (1.2), then v(x) ≡ 0, i.e., (a,0) is the unique nontrivial solution of (1.2).

Proof Let (u, v) be a nonnegative solution of (1.2). If v(x) �≡ 0, then v(x) > 0 by the maxi-
mum principle. Define q(x) = d − α

1+βv
− cu

1+mu
. It follows from (1.2) that λ1(d2, q) = 0. If

α ≤ d − ac
1+ma

, then

q(x) = d − α

1 + βv
− cu

1 + mu
> d − α − ac

1 + ma
≥ 0.

By a comparison, λ1(d2, q) > λ1(d2) = 0, which is a contradiction with the fact that
λ1(d2, q) = 0. We have thus proved the theorem. �

Theorem 2.2 Assume that d > ac
1+ma

, then (1.2) has no non-constant positive solution if

d1 > (a + cM0
2 )/λ2 and d2 > (

cM0
2 + α − d + ac

1+ma
)/λ2, where M0 is defined in Lemma 2.2

and λ2 is the first positive eigenvalue of problem (2.3).

Proof Assume (u, v) is a positive solution of (1.2) and let φ = 1
|Ω|
∫

Ω
φdx, it is necessary

that α > d − ac
1+ma

. Multiplying the first equation of (1.2) by (u − u) and the second by
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(v − v) and evaluating integrals on Ω , we have

∫

Ω

d1|∇u|2 +
∫

Ω

d2|∇v|2 =
∫

Ω

[

a − (u + u) − bv

(1 + mu)(1 + mu)

]

(u − u)2

+
∫

Ω

[
cv

(1 + mu)(1 + mu)
− bu

1 + mu

]

(u − u)(v − v)

+
∫

Ω

[
α

(1 + βv)(1 + βv)
− d + cu

1 + mu

]

(u − u)2.

By Lemma 2.2, the mean inequality and Poincaré inequality,

∫

Ω

d1|∇u|2 +
∫

Ω

d2|∇v|2 ≤
∫

Ω

(

a + cM0

2

)/

λ2|∇u|2

+
∫

Ω

(
cM0

2
+ α − d + ac

1 + ma

)/

λ2|∇v|2.

Obviously, if d1 > (a + cM0
2 )/λ2 and d2 > (

cM0
2 +α − d + ac

1+ma
)/λ2, then (u, v) = (u, v). �

In order to analyze the existence of positive constant solutions to (1.2), i.e., the positive
solution of the following algebraic equation (2.4),

⎧
⎪⎪⎨

⎪⎪⎩

a − u − bv

1 + mu
= 0,

α

1 + βv
− d + cu

1 + mu
= 0,

(2.4)

we assume that the following condition holds:

(H) ma = 1 and d(b + βa) = αb.

Under the condition (H), the equation in terms of u can be obtained by eliminating v:

au3 + bu2 + cu = 0, (2.5)

where v = (a − u)(1 + mu)/b, a = βm(dm + c), b = βdm and c = −(b + βa)c. Let A =
b

2 − ac, B = bc, C = c2 and Λ = B2 − 4AC. It is easy to check that A = β2d2m2 +
3βcm(dm + c)(b + βa) > 0, B = −βcdm(b + βa) < 0, C = (b + βa)2c2 and

Λ = βcm(b + βa)
{
βd2m

[
(b + βa)c − 4

]− 12(dm + c)(b + βa)c
}
.

Observation 1 If Λ > 0, i.e., βd2m[(b + βa)c − 4] > 12(dm + c)(b + βa)c, then (2.5) has
no positive real solutions, i.e., (1.2) has no positive constant solution.

Observation 2 If Λ = 0, i.e., βd2m[(b + βa)c − 4] = 12(dm + c)(b + βa)c, then (2.5) has
two same positive real solutions u1,2 = u∗ = − B

2A
= (b+βa)cd

2[βd2m+3c(dm+c)(b+βa)] . One see that
(1.2) has a unique positive constant solution (u∗, v∗), where v∗ = (a −u∗)(1+mu∗)/b > 0
by the condition (H).

Theorem 2.3 Assume that α > d − ac
1+ma

> 0 and M1 = α−d+ac/(1+ma)

β(d−ac/(1+ma))
. If a > bM1 and

α > d − c(a−bM1)

1+m(a−bM1)
, then (1.2) has at least one positive solution.
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Proof First, we rewrite (1.2) in the form as follows:
⎧
⎪⎪⎨

⎪⎪⎩

−d1�u = f (u, v), x ∈ Ω,

−d2�v = g(u, v), x ∈ Ω,

∂u

∂n
= ∂u

∂n
= 0, x ∈ ∂Ω,

(2.6)

where f (u, v) = u(a−u)− buv
1+mu

and g(u, v) = v( α
1+βv

−d)+ cuv
1+mu

. For all u ≥ 0 and v ≥ 0,

we have ∂f

∂v
= − bu

1+mu
≤ 0 and ∂g

∂u
= − cv

(1+mu)2 ≥ 0, that is to say, (2.6) is a so-called mixed
quasi-monotonic system (See [9]). Now we want to construct a pair of upper and lower
solutions U = (u(x), v(x)) and U = (u(x), v(x)). By the definitions of upper and lower
solutions (See [9]), it suffices to find U = (u(x), v(x)) and U = (u(x), v(x)) satisfying
U ≤ U and

∂u

∂n
≥ 0 ≥ ∂u

∂n
,

∂v

∂n
≥ 0 ≥ ∂v

∂n
, on ∂Ω, (2.7a)

− d1�u − u

(

a − u − bv

1 + mu

)

≥ 0 ≥ −d1�u − u

(

a − u − bv

1 + mu

)

, (2.7b)

− d2�v − v

(
α

1 + βv
− d + cu

1 + mu

)

≥ 0 ≥ −d2�v − v

(
α

1 + βv
− d + cu

1 + mu

)

, on Ω. (2.7c)

Let u(x) = a. Then the left side of (2.7b) holds for any v(x) ≥ 0. By the hypotheses, we can
take v(x) = M1 = α−d+ac/(1+ma)

β(d−ac/(1+ma))
(> 0), then the left side of (2.7c) holds.

Now, the right side of (2.7b) becomes −d1�u − u(a − u − bM1
1+mu

) ≤ 0. We claim that the
boundary value problem

⎧
⎪⎨

⎪⎩

−d1�w − w

(

a − w − bM1

1 + mw

)

= 0, x ∈ Ω,

∂w

∂n
= 0, x ∈ ∂Ω.

(2.8)

has a positive solution. In fact, since a > bM1, it is easy to verify that a and a − bM1 are a
pair of upper and lower solutions of (2.8) and thus (2.8) has a positive solution w(x) satis-
fying a − bM1 ≤ w(x) ≤ a. Take u = w(x)(≤ a). Since u(x) has a lower bound a − bM1,
the right side of (2.7c) is satisfied if we take v(x) to be a small positive constant. So we have
constructed a pair of upper and lower solutions U = (u(x), v(x)) and U = (u(x), v(x)) sat-
isfying U(x) ≥ U(x), which yields the existence of positive solution (u(x), v(x)) to (1.2)
and

U(x) ≤ (u(x), v(x)
)≤ U(x).

The theorem is proved. �

Assume that d − ac
1+ma

> 0 and we consider the bifurcation at (̃α;a,0), where α̃ = d −
ac

1+ma
.

Theorem 2.4 Assume that d − ac
1+ma

> 0. Then for a > 0 fixed and δ > 0 small, there exists
a continuum Γ1 of solution of (1.2), where Γ1 = {(α(s);a − w(s), v(s)) : s ∈ [0, δ)} with
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α(0) = d − ac
1+ma

,w(s) = b
1+ma

s + o(|s|) and v(s) = s + o(|s|). Moreover, the bifurcation
Γ1 is supercritical.

Proof For p > 1, let X = {u ∈ W 2,p(Ω) : ∂u
∂n

= 0, x ∈ ∂Ω}2, Y = Lp(Ω)2. We take the
variables w = a − u and define G(α;w,v) : R× X → Y by

G(α;w,v) =
(

d1�w + w2 − aw + bh(a − w,v)

d2�v + αv
1+βv

− dv + ch(a − w,v)

)

,

where h(u, v) = uv
1+mu

. By using a simple calculation,

G(w,v)(α;w,v)[φ,ψ] =
( [d1� + 2w − a − bhu(a − w,v)]φ + bhv(a − w,v)ψ

−chu(a − w,v)φ + [d2� + α

(1+βv)2 − d + chv(a − w,v)]ψ
)

,

Gα(w,v)(α;w,v)[φ,ψ] =
(

0
ψ

(1+βv)2

)

,

G(w,v)(w,v)(α;w,v)[φ,ψ]2 =
(

(2 + bhuu(a − w,v))φ2 − 2bhuv(a − w,v)φψ

chuu(a − w,v)φ2 − 2chuv(a − w,v)φψ − 2αβ

(1+βv)3 ψ2

)

,

where hu(u, v) = v

(1+mu)2 , hv(u, v) = u
1+mu

, huu(u, v) = − 2mv

(1+mu)3 and huv(u, v) = 1
(1+mu)2 .

At (α;w,v) = (̃α;0,0), it is easy to check that the kernel N (G(w,v)(̃α;0,0)) =
span{( b

1+ma
,1)}, the range R(G(w,v)(̃α;0,0)) = {(f, g)T ∈ Y : ∫

Ω
g(x)dx = 0}, and

Gα(w,v)(̃α;0,0)[ b
1+ma

,1] = (0,1)T /∈ R(G(w,v)(̃α;0,0)) since
∫

Ω
1dx = |Ω| > 0. By ap-

plying the results of [2] or [12, Theorem 13.4], the set of solutions to (1.2) near (̃α;0,0) is
a smooth carve

Γ1 = {(α(s);a − w(s), v(s)
) : s ∈ [0, δ)

}
,

with δ > 0 small, α(0) = d − ac
1+ma

,w(s) = b
1+ma

s + o(|s|), v(s) = s + o(|s|). By [7, Corol-
lary 2.3],

α′(0) = −〈l,G(w,v)(w,v)(̃α;0,0)[ b
1+ma

,1]2〉
〈l,Gα(w,v)(̃α;0,0)[ b

1+ma
,1]〉 = bc

(1 + ma)3
+ β

(

d − ac

1 + ma

)

> 0,

where l is a linear functional on Y 2 defined as 〈l, [f,g]〉 = ∫
Ω

g(x)dx. This yields that the
bifurcation Γ1 at (̃α;0,0) is supercritical. �

By the unilateral global bifurcation theorem developed by López-Gómez, one can see
[5, Theorem 6.4.3] or [6, Theorem 2.2] for the details, we study the global bifurcation at
(̃α;0,0). Let P = {u ∈ W 2,p(Ω) : u > 0, x ∈ Ω}, which is the nature positive cone in X,
and then P 2 is the nature positive cone in X2.

Theorem 2.5 Suppose that d − ac
1+ma

> 0 and α̃ = d − ac
1+ma

.

(1) For a > 0 fixed and α ∈ (0, d], there exists a component C+(⊃ Γ1) of solution to (1.2)
bifurcating from (α;u,v) at (̃α;a,0), and the curve C+ joints from (̃α;a,0) to (α;0,0),
where α = d .

(2) For a ∈ [0,∞) and α ∈ [d,∞), there exists a component Γ2(∩C+ = ∅) of positive
solution to (1.2) bifurcating from (a, d;u,v) at (0, α;0,0).



Existence and Asymptotic Behavior of Solutions for a Predator-prey System 63

Proof From the proof of Theorem 2.4, it follows that all the conditions in [5, Theorem 6.4.3]
hold. This yields that there exists a component C+ ⊃ Γ1 of solution to (1.2) bifurcating at
(̃α;a,0) and C+ satisfies one of the following alternatives:

(i) C+ is unbounded in R× X.
(ii) There exists α̂ such that (̂α;a,0) ∈ C+, where α̃ �= α̂ ∈ {α : dimN (G(w,v)(α;0,0)) ≥ 1}.

(iii) C+ contains a point (α;u,v) ∈ (0, d] × (Z \ {(a,0)}), where Z is the complement
of N (G(w,v)(̃α;0,0)) in X2 and can be taken as R(G(w,v)(̃α;0,0)) in the proof of
Theorem 2.4.

(1) Case a > 0 fixed and α ∈ (0, d]. Assume that C+ \ (̃α;a,0) ⊂ P 2. By Lemma 2.2,
(i) is impossible. Recall that R(G(w,v)(̃α;0,0)) = {(f, g) ∈ Y : ∫

Ω
g(x)dx = 0}, so (iii) is

also impossible. It is easy to verity that positive solutions of (1.2) bifurcate from the semi-
trivial solution curve {(α;a,0)} if and only if α = α̃, i.e., (ii) is impossible. Therefore,
C+ \ (̃α;a,0) �⊂ P 2 and there exists (α;u,v) ∈ {C+ − (̃α;a,0)} ∩ ∂P 2 with 0 ≤ α ≤ d ,
which is the limit of a sequence {(αi;ui, vi)} ⊂ C+ ∩P 2 with ui > 0, vi > 0 on Ω . From the
maximum principle, it follows that (α;u,v) must be one of the three cases: u ≡ 0, v ≡ 0 or
u > 0, v ≡ 0 or u ≡ 0, v > 0.

Suppose that u ≡ 0, v > 0. It is easy to check that v = α−d
βd

> 0, i.e., α > d , which is a
contradiction with α ≤ d .

Suppose that u > 0, v ≡ 0. It is easy to check that u ≡ a. Let ṽi = vi/‖vi‖∞ and assume
ṽi → ṽ > 0. Then ṽ satisfies

d2�ṽ + ṽ

(

α − d + ac

1 + ma

)

= 0, x ∈ Ω,
∂ṽ

∂n

∣
∣
∣
∣
∂Ω

= 0.

From the above equation, we have ṽ = 1 and α = d − ac
1+ma

= α̂, which is a contradiction
with (ii).

Therefore, we must have u ≡ 0, v ≡ 0. Similarly, let ṽi = vi/‖vi‖∞ and assume ṽi →
ṽ > 0. Then ṽ satisfies

d2�ṽ + ṽ(α − d) = 0, x ∈ Ω,
∂ṽ

∂n

∣
∣
∣
∣
∂Ω

= 0,

then ṽ = 1 and α = d , i.e., the component C+ joints from (̃α;a,0) to (α;0,0), where α̃ =
d − ac

1+ma
and α = d .

(2) Case a ∈ [0,∞) and α ∈ [d,∞). Recall the proof of Theorem 2.4 and define
H(a,α;u,v) :R2 × X → Y by

H(a,α;u,v) =
(

d1�u + au − u2 − bh(u, v)

d2�v + αv
1+βv

− dv + ch(u, v)

)

.

By using a simple calculation, N (H(u,v)(0, d;0,0)) = span{(1,0)T , (0,1)T } and

R
(
H(u,v)(0, d;0,0)

)=
{

(f, g)T ∈ Y 2 :
∫

Ω

f (x)dx = 0,

∫

Ω

g(x)dx = 0

}

.

Decompose X as X = X1 + X2 and Y = Y1 + Y2, where X1 = Y1 = N (H(u,v)(0, d;0,0)),
Y2 = R(H(u,v)(0, d;0,0)) and X2 = R(H(u,v)(0, d;0,0)) ∩ Y . Assume that (u, v)T =
s
( cosω+w1

sinω+w2

)
with (w1,w2) ∈ X2, ω ∈ (0,π/2) fixed. Let a = γ,α = d + τ , and define
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Fig. 1 The possible bifurcation
diagram for Theorem 2.5. Left:
C+(⊃ Γ1) jointing from (̃α;a,0)

to (α;0,0), Right (green part):
Γ2 bifurcating from (a, d;u,v) at
(0, α;0,0) (Color figure online)

K(w1,w2, γ, τ ; s) : X2 ×R
3 → Y by

K(w1,w2, γ, τ ; s) = s−1H
(
γ, d + τ ; s(cosω + w1), s(cosω + w2)

)

=
(

d1�w1 + γ (cosω + w1) − s(cosω + w1)
2 − bh(u, v)

d2�w2 + (d+τ)(sinω+w2)

1+βs(sinω+w2)
− d(sinω + w2) + ch(u, v)

)

,

where u = s(cosω + w1), v = s(sinω + w2). By a simple calculation, K(0,0,0,0;0) = 0
and

K(w1,w2,γ,τ )(0,0,0,0;0) =
(

d1� 0 cosω 0
0 d2� 0 sinω

)

,

which is an isomorphism from X2 ×R
2 to Y . By the implicit function theorem, there exists

a continuous curve (w1(s),w2(s), γ (s), τ (s)) defined in a neighborhood of 0, such that

(
w1(0),w2(0), γ (0), τ (0)

)= (0,0,0,0), K
(
w1(s),w2(s), γ (s), τ (s)

)= 0.

Now, set u(s) = s(cosω + w1), v(s) = s(sinω + w2), a(s) = γ (s) and α(s) = d + τ(s).
Substituting u(s), v(s), a(s) and α(s) in H(a,α;u,v) = 0, dividing H by s and then taking
derivative at s = 0, we have

γ ′(0) = b sinω + cosω > 0, τ ′(0) = βd sinω − cosω.

In fact, if we chose ω ∈ (0,π/2) such that tanω > c
βd

, then τ ′(0) > 0. Therefore, for s > 0
small and ω ∈ (0,π/2) satisfying tanω > c

βd
, Γ2 = {(a(s),α(s);u(s), v(s)) : s > 0 small}

is a curve of positive solution to H(a,α;u,v) = 0. �

Remark 2 The results in Theorem 2.5 can be shown by Fig. 1. In other words, we construct a
component from (̃α;a,0) to (α;0,0) (taking α as bifurcation parameter), and there occurs a
new bifurcation Γ2 bifurcating from (a, d;u,v) at (0, α;0,0) (taking a and α as bifurcation
parameters simultaneously). See the right sub-figure, the whole curve, for details.

Remark 3

(1) Theorems 2.3–2.5 all show the existence of positive solution to (1.2), however, we do
not know the existed positive solutions are constant or functions of x.

(2) Under the condition (H), assume that a > 0, α > d and |a|, |α − d| � 1. It follows
from Observation 1 and Theorem 2.5 that Γ2 \ {(0, α;0,0)} consists of non-constant
positive solutions to (1.2), if βd2m[(b + βa)c − 4] > 12(dm + c)(b + βa)c. According
to the condition (H) and the conditions “a > 0, α > d and |a|, |α − d| � 1”, we need to
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guarantee the inequation βd2m[(b+βa)c−4] > 12(dm+c)(b+βa)c holds if m → ∞
and β is bounded. In fact, we only need to guarantee the inequation βd(bc − 4) > 12bc

holds if β is bounded. Hence, if we chose “d and b” (or “d and c”) sufficiently large,
there exists non-constant positive solution to (1.2). The analysis procedure is as follows:
1. (H) ma = 1 and d(b + βa) = αb.
2. a > 0, α > d and |a|, |α − d| � 1.
3. βd2m[(b + βa)c − 4] > 12(dm + c)(b + βa)c.

Comparing conditions 1 and 2, we need to guarantee condition 3 holds if m → ∞ and β is
bounded. Note that

A: βd2m[(b + βa)c − 4] > 12(dm + c)(b + βa)c, if m → ∞ and β is bounded;

B: βd2(bc − 4) + β2d2c

m
> 12dbc + 12c(db+dβ+cβa)

m
, if m → ∞ and β is bounded;

C: βd(bc − 4) > 12bc, if β is bounded;
D: d, b sufficiently large or d, c sufficiently large.

One can see that if ma = 1, then A ⇔ B . In fact, if m → ∞, then B ⇐ C, and C ⇐ D

is obvious.

3 Stability of the Steady State Solutions

In this section, we talk about the stability of the nonnegative solution of (1.2).
Now, we consider the steady state solution of (1.1), i.e., the constant solution of (1.2). It

is easy to see that (1.2) may have the following nonnegative solutions: S1 = (u, v) = (0,0),
S2 = (u, v) = (a,0), S3 = (u, v) = (0, α−d

βd
) if α > d , S4 = (u, v) = (ρ,σ ), where (ρ,σ ) is

the positive algebraic solution to (2.4) and S5 = (u, v) = (u(x), v(x)), where u(x), v(x) are
two positive functions.

Remark 4 It is possible for the existence of positive constant solution to (1.2) in the form of
S4 and S5. One can see Observation 2 for the former and see Remark 3 2) for the latter.

It is well-known (see [11]) that the stability question for Si = (ui, vi) is answered by
considering the spectrum of the linearized operator around each Si .

Theorem 3.1

(1) S1 = (0,0) is unstable;
(2) S2 = (a,0) is unstable if α − d + ac

1+ma
> 0 and stable if α − d + ac

1+ma
< 0;

(3) Assume that α > d . If a < b(α−d)

βd
, then S3 = (0, α−d

βd
) is stable.

Proof Here, we will prove only 2), the other cases can be studied in a similar manner.
From the linearization principle, the stability of S2 = (a,0) is determined by studying the
following spectral problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d1�w1 − aw1 − ab

1 + ma
w2 = λw1, x ∈ Ω,

d2�w2 +
(

α − d + ac

1 + ma

)

w2 = λw2, x ∈ Ω,

∂w1

∂n
= ∂w2

∂n
= 0, x ∈ ∂Ω.

(3.1)
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Since (3.1) is not completely coupled, we only need to consider the following two eigenvalue
problems (the eigenvalue of (3.1) is real)

⎧
⎪⎪⎨

⎪⎪⎩

d2�w2 +
(

α − d + ac

1 + ma

)

w2 = λw2, x ∈ Ω,

∂w1

∂n
= 0, x ∈ ∂Ω,

(3.2)

and
⎧
⎪⎨

⎪⎩

d1�w1 − aw1 − ab

1 + ma
w2 = λw1, x ∈ Ω,

∂w1

∂n
= 0, x ∈ ∂Ω.

Assume that α − d + ac
1+ma

> 0. The principal eigenvalue λ̃1 of (3.2) is positive (̃λ1 =
α − d + ac

1+ma
> 0) and the associated eigenfunction w̃2 > 0. Let w̃1 be the unique solution

of
⎧
⎪⎨

⎪⎩

d1�w1 − (a + λ̃1)w1 = ab

1 + ma
w̃2, x ∈ Ω,

∂w1

∂n
= 0, x ∈ ∂Ω.

Then λ̃1 = α − d + ac
1+ma

> 0 is a eigenvalue of (3.1) with the associated eigenfunction
(w̃1, w̃2), i.e., (3.1) has a eigenvalue whose real part is greater than 0. Therefore, S2 = (a,0)

is unstable.
Assume that α−d+ ac

1+ma
< 0. Let λ1 be the largest eigenvalue of (3.1) and the associated

eigenfunction (w1,w2). If w2 �≡ 0, then λ1 is also the eigenvalue of (3.2). One see that the
largest eigenvalue of (3.2) is α − d + ac

1+ma
(< 0), hence, λ1 < 0. If w2 ≡ 0, then w1 �≡ 0 and

(λ1,w1) are the eigenvalue and the associated eigenfunction of

⎧
⎨

⎩

d1�w1 − aw1 = λw1, x ∈ Ω,

∂w1

∂n
= ∂w2

∂n
= 0, x ∈ ∂Ω.

(3.3)

Similarly as above, we also have λ1 < 0. Therefore, S2 = (a,0) is stable. �

Theorem 3.2 Assume that 0 < d − ac
1+ma

< α and S4 = (ρ,σ ) > 0 exists (see Observa-
tion 2). If a > bM0 and 1 + m(a − 2bM0) ≥ 0, then S4 is stable. Here, M0 is defined in
Lemma 2.2.

Proof The linearized operator of (1.1) at S4 = (ρ,σ ) can be expressed by D�W + LW

with the domain {(φ,ψ) ∈ H 2(Ω) × H 2(Ω) : ∂φ

∂n
= ∂ψ

∂n
= 0}, where

D = diag(d1, d2) and

L =
(

A B

E F

)

=

⎛

⎜
⎜
⎝

a − 2ρ − bσ

(1 + mρ)2
− bρ

1 + mρ
cσ

(1 + mρ)2

α

(1 + βσ)2
− d + cρ

1 + mρ

⎞

⎟
⎟
⎠ .
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Let Ci = L − λiD. Note that S4 is stable if and only if each Ci has two eigenvalues with
negative real parts. The eigenvalues μ1,2 of Ci are determined by

μ2 − μ
[
A + F − λi(d1 + d2)

]+ λ2
i d1d2 − λi(d1F + d2A) + AF − BE = 0.

It suffices to prove that

A + F − λi(d1 + d2) < 0, (3.4)

λ2
i d1d2 − λi(d1F + d2A) + AF − BE > 0. (3.5)

One see that

F = α

(1 + βσ)2
− d + cρ

1 + mρ
<

α

1 + βσ
− d + cρ

1 + mρ
= 0.

Recall that B < 0,E > 0. Now, we claim that A ≤ 0, i.e., a − 2ρ − bσ

(1+mρ)2 ≤ 0. By the
definition of (ρ,σ ), we have (a − ρ)(1 + mρ) = bσ . Equation (1.2) has a positive solution
(ρ,σ ), it is necessary that a − bM0 < ρ < a, where M0 is defined in Lemma 2.2. We obtain
that

2ρ + bσ

(1 + mρ)2
= 2ρ + a − ρ

1 + mρ
= ρ + a + 2mρ2

1 + mρ
.

We need only to prove that ρ+a+2mρ2

1+mρ
≥ a, i.e., 1 + 2mρ ≥ ma, which is satisfied since

ρ > a − bM0 and 1 + m(a − 2bM0) ≥ 0. This proves the theorem. �

Theorem 3.3 Assume that c/m < d < α and a < b(α−d)

βd
< 1

m
. Then for any nonnegative ini-

tial functions u0(x) and v0(x) such that for some σ ≥ 0, v(x, σ ) ≥ α−d
βd

, the corresponding

solution (u(x, t), v(x, t)) of (1.2) satisfies (u(x, t), v(x, t)) → (0, α−d
βd

) as t → ∞.

Proof We construct a pair of upper and lower solutions of (1.2) in the form of (u, v), (u, v),
where u > 0, v > v are positive constants to be determined and u = 0. So, we should have

a − u − bv

1 + mu
≤ 0,

α

1 + βv
− d + cu

1 + mu
≤ 0,

α

1 + βv
− d ≥ 0.

Since c/m < d < α, these inequalities are satisfied if v = α−d
βd

, u ≥ a, v ≥ α−d+ cu
1+mu

β(d− cu
1+mu

)
. Now

we take U
(0) = (u, v) and U(0) = (u, v) as the initial iterations and construct two sequences

{U(k)} ≡ {(u(k), v(k))} and {U(k)} ≡ {(u(k), v(k))}. Then these sequences possess the mono-

tone property (u, v) ≤ U(k) ≤ U(k+1) ≤ U
(k+1) ≤ U

(k) ≤ (u, v), and converge to their re-

spective limits limk→∞ U
(k) = (̃u, ṽ) and limk→∞ U(k) = (0, v̂), which satisfy the relations

− d1�ũ − ũ

(

a − ũ − bv̂

1 + mũ

)

= 0, x ∈ Ω,
∂ũ

∂n

∣
∣
∣
∣
∂Ω

= 0, (3.6)
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− d2�ṽ − ṽ

(
α

1 + βṽ
− d + cũ

1 + mũ

)

= 0, x ∈ Ω,
∂ṽ

∂n

∣
∣
∣
∣
∂Ω

= 0, (3.7)

− d2�v̂ − v̂

(
α

1 + βv̂
− d

)

= 0, x ∈ Ω,
∂v̂

∂n

∣
∣
∣
∣
∂Ω

= 0. (3.8)

Now we show that ũ ≡ 0. If not, by the maximum principle, we have ũ(x) > 0. Then λ̃1 = 0
is the principal eigenvalue of the problem

⎧
⎨

⎩

−d1�ψ + q(x)ψ = λψ, x ∈ Ω,

∂ψ

∂n
= 0, x ∈ ∂Ω,

where q(x) = bv̂

1 + mũ
+ ũ − a. (3.9)

Since v̂ ≥ v = α−d
βd

, we have q(x) ≥ b(α−d)

βd
− a > 0 from the assumption. Therefore, a com-

parison with problem (3.9), we know that the following eigenvalue problem

⎧
⎪⎪⎨

⎪⎪⎩

−d1�ψ +
[

b(α − d)

βd
− a

]

ψ = λψ, x ∈ Ω,

∂ψ

∂n
= 0, x ∈ ∂Ω

(3.10)

has the principal eigenvalue λ̂1, which is non-positive. In fact, λ̂1 = b(α−d)

βd
− a > 0. This

is a contradiction. Therefore, we have ũ ≡ 0. From (3.7) and (3.8), one see that ṽ = v̂ =
α−d
βd

. Therefore from [15, Corollary 3.1] or [10, Corollary 2.2], we know that if for some

σ ≥ 0, v(x, σ ) ≥ α−d
βd

, then the corresponding solution (u(x, t), v(x, t)) of (1.2) satisfies

(u(x, t), v(x, t)) → (0, α−d
βd

) as t → ∞. �

Remark 5 From Theorem 3.3, one see that if the population of the native predators attains
certain level at some time, then the native preys will be extinct after a long time.

4 Numerical Simulation

The goal of this section is to present the results of numerical simulations which comple-
ment the analytic results in Sect. 3. We simulate the corresponding system (1.1) in the one-
dimensional space domain. Without loss of generality, we take Ω = (0,2π). We perform
the initial-boundary-value problem numerically based on the Crank-Nicholson scheme. In
each simulation, the figures are plotted at sufficiently final time (here, we take T = 50),
which allow us to regard the solutions as steady states. In the finite difference scheme, we
take the temporal axis with grid spacing �t = 50/99 and the spatial axis with grid spacing
�x = 2π/49.

Several parameters are common for all simulations: b = 0.05, c = 0.03, d = 0.5, d1 =
0.5, d2 = 0.3,m = 1. The other parameters are varied in order to illustrate different out-
comes. The simulations presented below illustrate the following two outcomes:

(1) In Fig. 2, the numerical simulation of the solution (u, v) to (1.1) are plotted. In (b),
(d) and (e) of Fig. 3 and in Fig. 4, the vertical axis is the L1 norm of u or v, which
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Fig. 2 Numerical simulation of solution to (1.1): In (a) and (b), a = 1.25, α = 0.45, β = 1 and
the corresponding constant equilibrium S2 = (1.25,0); In (c) and (d), a = 0.03, α = 0.85, β = 1 and
the corresponding constant equilibrium S3 = (0,0.7); In (e) and (f), a = 1.25, α = 0.85, β = 1 and
the corresponding positive constant equilibrium S4 = (1.2330,0.7583). Here, the initial conditions are
u0(x) = 1.25 + 0.1 cos(x), v0(x) = 0.1 cos(x/2), u0(x) = 0.1 cos(x), v0(x) = 0.7 + 0.1 cos(x/2) and
u0(x) = 1.2330 + 0.1 cos(x), v0(x) = 0.7583 + 0.1 cos(x/2), respectively in (a)–(b), (c)–(d) and (e)–(f)

could roughly reflect the stability of the constant equilibrium, which are proved in The-
orems 3.1 and 3.2.

(2) If we use L1 norm ‖u‖,‖v‖ to represent the density u,v, Fig. 4 show the effect of β on
the density of prey and predator population. Noting that β is the strength of intraspecific
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Fig. 3 Numerical simulation of the stability for the constant equilibrium to (1.1): In (a) and (b), all the
parameters are taken the same as those in Fig. 2(a) and (b); In (c) and (d), all the parameters are taken the
same as those in Fig. 2(c) and (d); In (e) and (f), all the parameters are taken the same as those in Fig. 2 (e)
and (f). Here, (a), (c) and (e) are the profiles of corresponding (a)–(b), (c)–(d) and (e)–(f) in Fig. 2 at time
T = 50, the vertical axis in (b), (d) and (e) is the L1 norm of u or v
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Fig. 4 Effect of β : The parameters a = 1.25, α = 0.85 and the same parameters as before except that
β = 0.1,0.5,1.0,1.5 for (a)–(d). The aim of plotting in the above domain is to explicitly show the change
tendency of u and v. Here, the initial conditions are u0(x) = 1 + cos(x), v0(x) = 1 + cos(x/2), the vertical
axis is the L1 norm of u or v

interference, we take the parameters a = 1.25, α = 0.85 and the same parameters as
before except that β = 0.1,0.5,1.0,1.5 for Figs. 4(a)–(d), Fig. 4 presents a phenomenon
that the population density of u is increasing as β increases, but the population density
of v is in the opposite direction.
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