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Abstract This paper concerns global existence and finite time blow-up behavior of positive
solutions for a nonlinear reaction-diffusion system with different diffusion coefficients. By
use of algebraic matrix theory and modern analytical theory, we extend results of Wang
(Z. Angew. Math. Phys. 51:160–167, 2000) to a more general system. Furthermore, we give
a complete answer to the open problem which was brought forward in Wang (Z. Angew.
Math. Phys. 51:160–167, 2000).

Keywords Global existence · Finite time blow-up · Structure of the matrix ·
Reaction-diffusion system · Three components · Different diffusion coefficients

Mathematics Subject Classification (2000) 35B40 · 35K55 · 35K61

1 Introduction and Main Results

In this paper, global existence and finite time blow-up behaviors of positive solutions for a
nonlinear reaction-diffusion system are to be discussed:

⎧
⎨

⎩

uit = di�ui + u
pi1
1 u

pi2
2 u

pi3
3 , x ∈ Ω, t > 0,

ui(x, t) = 0, x ∈ ∂Ω, t > 0,

ui(x,0) = ui0(x), x ∈ Ω, i = 1,2,3,

(1.1)

where Ω is a bounded domain in R
n with smooth boundary ∂Ω , initial values ui0(x) (1 ≤

i ≤ 3) are non-negative and continuous functions which satisfy compatibility conditions.
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The exponents pij (i, j = 1,2,3) are non-negative constants, and diffusion coefficients di

are positive constants for all 1 ≤ i ≤ 3.
System (1.1) is usually used as a model to describe heat propagation in a three-component

combustible mixture (cf. [2]). In this case, u1, u2 and u3 represent temperatures of the in-
teracting components, and corresponding di (1 ≤ i ≤ 3) are thermal conductivity, which are
supposed constant.

Written system (1.1) as integral equations, by constructing bounded monotone iterative
sequences it can be proved that system (1.1) has a local non-negative solution (cf. [15]).
However, uniqueness does not hold (cf. [12]). The comparison principle holds, see Sect. 1
of this paper.

For system of two components in a bounded domain Ω of the form
⎧
⎨

⎩

uit = �ui + u
pi1
1 u

pi2
2 , x ∈ Ω, t > 0,

ui(x, t) = 0, x ∈ ∂Ω, t > 0,

ui(x,0) = ui0(x) ≥ 0, x ∈ Ω, i = 1,2,

(1.2)

Chen [4] in 1997 investigated special case: p12, p21 > 0, p12 > p22 − 1 and p21 > p11 − 1,
and critical exponents were proved. Later, Wang [22] considered a general case, and ob-
tained significant results which cover that of [4].

Let λ be the first eigenvalue and ϕ(x) the corresponding eigenfunction of the problem

−�ϕ(x) = λϕ(x), x ∈ Ω; ϕ(x) = 0, x ∈ ∂Ω. (1.3)

It is well known that λ > 0, ϕ(x) > 0 in Ω and ∂ϕ/∂η < 0 on ∂Ω , here η is the unit outward
normal vector on ∂Ω . Then main results of [22] are read as follows:

(i) If

p11 ≤ 1,p22 ≤ 1 and p12p21 ≤ (1 − p11)(1 − p22), (1.4)

then all solutions of (1.2) exist globally.
(ii) If

p11 > 1, p12 > 0, p21 = 0, p22 = 1, λ < 1, p11 ≤ 1 + p12(1 − λ)/λ, (1.5)

or

p22 > 1, p21 > 0, p12 = 0, p11 = 1, λ < 1, p22 ≤ 1 + p21(1 − λ)/λ. (1.6)

Furthermore, if p11 = 1 + p12(1 − λ)/λ in (1.5) or p22 = 1 + p21(1 − λ)/λ in (1.6), we also
assume λ < 2/3. Then, for any initial data ui0(x) ≥ 0, �≡ 0 (i = 1,2), solutions of (1.2) blow
up in finite time.

(iii) If (1.4), (1.5) and (1.6) do not hold, then solutions of (1.2) exist globally for small
initial data, and blow up in finite time for large initial data.

There are many other related works on global existence and blow-up in finite time of
solutions to reaction-diffusion equations or systems with two components, see for example
[1, 6–19, 23–26] and references therein.

In this paper, we are going to try to generalize results of Wang [22] to system with
three components and different diffusion coefficients, and we mainly focus on conditions
of global existence and finite time blow-up for positive solutions of system (1.1). Our main
conclusions will be introduced and proved in Sect. 3, and from these it is not difficult to
see that fine structure of the matrix P , which is a nonlinear function of the exponents pij
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(i, j = 1,2,3), is crucially important. This is one of very interesting features for our results.
The tools we adopt are a combination of algebraic matrix and modern analytical theory.
Here, it is noteworthy that we give a complete and final resolution to the open problem
which was presented in [22], please see Remark 4 below.

Here we point out that Li and his collaborators [16, 17] have applied properties of M-
matrix and a comparison principle to investigate global existence conditions for quasilinear
parabolic systems. There are different properties between M-matrix and the matrix in this
paper. Problem in this paper can be considered as a general version of [16] somewhat in the
aspect of different diffusion coefficients. Problem and results of this paper differ from that
of [17], and two of the most obvious differences are: the first is that for irreducible matrix,
our blow-up condition is independent of the value of the first eigenvalue of −� on Ω with
null Dirichlet boundary condition, and results of [17] do depend on it; the second is that
results of [17] do not cover our results. All of these will be discussed in Sect. 4. The rest of
the paper is organized as follows: in Sect. 2, we establish a comparison principle and some
preliminaries on properties with respect to matrix. We then discuss the global existence and
finite blow-up of solution in Sect. 3.

2 Preliminaries

In this section, we first prove a comparison principle and then some results related to matrix,
all of which will play an important role in the proof of our main theorems.

Proposition 1 (Comparison principle) Assume that fi is a continuous, non-decreasing and
non-negative function, and assume that continuous functions ui and vi satisfy ui, vi > 0 in
Ω × (0, T ) and

⎧
⎪⎪⎨

⎪⎪⎩

uit − di�ui − fi(u1, u2, u3) ≥ 0, (x, t) ∈ Ω × (0, T ),

vit − di�vi − fi(v1, v2, v3) ≤ 0, (x, t) ∈ Ω × (0, T ),

ui(x, t) > vi(x, t) ≥ 0, (x, t) ∈ ∂Ω × (0, T ),

ui(x,0) = ui0(x) > vi(x,0) = vi0(x) ≥ 0, x ∈ Ω̄, i = 1,2,3.

Then ui(x, t) > vi(x, t) for any (x, t) ∈ Ω̄ × [0, T ) (i = 1,2,3).

Proof Let wi = ui − vi , then wi satisfies
⎧
⎨

⎩

wit − di�wi ≥ fi(u1, u2, u3) − fi(v1, v2, v3), (x, t) ∈ Ω × (0, T ),

wi(x, t) > 0, (x, t) ∈ ∂Ω × (0, T ),

wi(x,0) > 0, x ∈ Ω̄, i = 1,2,3.

(2.1)

Set

ti = sup
{

t ≤ T | wi(x, s) > 0 for all (x, s) ∈ Ω̄ × (0, t)
}
, i = 1,2,3.

On the contrary we assume that the conclusion would be not true, and which joined with
initial conditions of (2.1) and continuity of ui and vi implies

ti > 0, i = 1,2,3.

Put t∗ = min1≤i≤3 ti , and without loss of generality we may think t∗ = t1. Note that w1 is
continuous. By the definition of t∗ and initial-boundary conditions of (2.1), the existence of
x1 ∈ Ω can be obtained such that w1(x1, t1) = 0.
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On the other hand, monotonicity of f1 and the definition of t∗ = t1 show that wi ≥ 0
(i = 1,2,3) for all (x, t) ∈ Ω̄ × [0, t1] and w1 satisfies

⎧
⎨

⎩

w1t − d1�w1 ≥ f1(u1, u2, u3) − f1(v1, v2, v3) ≥ 0, (x, t) ∈ Ω × (0, t1),

w1(x, t) > 0, (x, t) ∈ ∂Ω × (0, t1),

w1(x,0) > 0, x ∈ Ω̄.

As w1(x1, t1) = 0 and x1 ∈ Ω , in view of the strong maximum principle for single equation it
follows that w1(x, t) ≡ 0 for every (x, t) ∈ Ω̄ × [0, t1), which is a contradiction. Therefore,
we arrive at conclusions of Proposition 1. �

We next establish some results on matrix, and we begin with notation and definition of
matrix.

Notation 1 |F | = detF is the determinant of matrix F .

Definition 1 Let A = (aij )n×n with n ≥ 2. If there exists an array matrix F , such that

FT AF =

⎡

⎢
⎢
⎣

A1

... ∗
· · · · · · · · ·
0

... A2

⎤

⎥
⎥
⎦ ,

where A1 is a r-th sub-matrix and A2 is (n − r)-th sub-matrix with 1 ≤ r ≤ n − 1, then A is
called to be reducible. Otherwise, A is irreducible.

We write M = (mij )n×n with mij ≥ 0 (i, j = 1, . . . , n) and A = (aij )n×n = I − M . It is
obvious that A is reducible if and only if M is reducible.

Lemma 1 (cf. [20]) Suppose that M is a non-negative matrix. If M is irreducible, then M

has a positive eigenvalue λ0 which is the largest, i.e. |μ| ≤ λ0 for any eigenvalue μ of M ,
and the corresponding eigenvector α = (α1, . . . , αn)

T is positive, i.e. αi > 0 (1 ≤ i ≤ n).

Proposition 2 (cf. [25]) Suppose that M is a non-negative matrix, and all the principal
minor determinants of A = I −M are non-negative. If A is irreducible, then there exists α =
(α1, . . . , αn)

T with αi > 0 for all i = 1, . . . , n, such that Aα ≥ 0, i.e. αi − ∑n

j=1 mijαj ≥ 0.

Proposition 3 (cf. [25]) Let M be a non-negative matrix. Assume that all the lower-order
principal minor determinants of A = I − M are non-negative and |A| < 0. Then A is irre-
ducible and there exists

α = (α1, . . . , αn)
T

with αi > 0 (1 ≤ i ≤ n), such that Aα < 0, i.e. αi − ∑n

j=1 mijαj < 0.

From the above results we have

Lemma 2 Let M be a non-negative 3-th matrix. Suppose that all the lower-order principle
minor determinants of A = I − M are non-negative and |A| < 0. Then A is irreducible and
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for any positive constant σ there exists positive constants 
i (1 ≤ i ≤ 3), such that

−σ = 
i −
3∑

j=1

mij
j , 1 ≤ i ≤ 3. (2.2)

Proof From Proposition 3 we know that M is irreducible. Direct computation gives


1 = 1

|A|

∣
∣
∣
∣
∣
∣

−σ −m12 −m13

−σ 1 − m22 −m23

−σ −m32 1 − m33

∣
∣
∣
∣
∣
∣

= − σ

|A|
(∣

∣
∣
∣
1 − m22 −m23

−m32 1 − m33

∣
∣
∣
∣ +

∣
∣
∣
∣
m12 −m13

m32 1 − m33

∣
∣
∣
∣ +

∣
∣
∣
∣

−m12 −m13

1 − m22 −m23

∣
∣
∣
∣

)

≥ 0,

here we use the fact that |A| < 0 and

∣
∣
∣
∣
1 − m22 −m23

−m32 1 − m33

∣
∣
∣
∣ ≥ 0,

∣
∣
∣
∣
m12 −m13

m32 1 − m33

∣
∣
∣
∣ = m12(1 − m33) + m13m23 ≥ 0,

∣
∣
∣
∣

−m12 −m13

1 − m22 −m23

∣
∣
∣
∣ = m12m23 + m13(1 − m22) ≥ 0.

Hence, if 
1 = 0, then by the fact that mij ≥ 0 and 1 − mii ≥ 0 (i, j = 1,2,3) we find that

m13m23 = 0.

Since we have proved that A is irreducible which guarantees that m13m23 �= 0. It is a con-
traction. Therefore, 
1 > 0.

Similarly, we can obtain that 
i > 0 for i = 2,3, and the desired conclusion holds. �

Lemma 3 Let M be a non-negative 3-th matrix. Suppose that M is irreducible and λ0 is the
largest eigenvalue of M . If λ0 = 1, then all the principal minor determinants of A = I − M

are non-negative.

Proof Let α = (α1, α2, α3)
T be the eigenvector of M corresponding with λ0, then by

Lemma 1 we see that αi > 0 for all 1 ≤ i ≤ 3, and

Aα = (1 − λ0)α = 0. (2.3)

It follows that

|A| = 0.

Eq. (2.3) can be changed into

αi =
3∑

j=1

mijαj , i = 1,2,3. (2.4)
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As m31m32 �= 0 follows by the fact that M is irreducible, due to mij ≥ 0 and αi > 0
(i, j = 1,2,3), from (2.4) we obtain 1 − m33 > 0. Similarly, we can prove that 1 − m11 > 0
and 1 − m22 > 0.

Up to now, we have concluded that both |A| itself and all the first order principal minor
determinants of A are non-negative. Therefore, to accomplish the proof we only need to infer
that all the second order principal minor determinants of A are non-negative. Conversely,
assume that at least one of the second order principal minors of A is negative, and let’s say
without loss of generality that

∣
∣
∣
∣
1 − m22 −m23

−m32 1 − m33

∣
∣
∣
∣ < 0 .

Note that 1 > mii ≥ 0 (1 ≤ i ≤ 3). It yields

|A| = (1 − m11)

∣
∣
∣
∣
1 − m22 −m23

−m32 1 − m33

∣
∣
∣
∣ + m12

∣
∣
∣
∣
−m21 −m23

−m31 1 − m33

∣
∣
∣
∣ − m13

∣
∣
∣
∣
−m21 1 − m22

−m31 −m32

∣
∣
∣
∣

< −m12m21(1 − m33) − m12m23m31 − m13m21m32 − m13m31(1 − m22)

≤ 0,

which contradicts to |A| = 0. Therefore, all the assertions of Lemma 3 have concluded. �

Lemma 4 Let M be a non-negative 3-th matrix. Suppose that M is irreducible and λ0 is
the largest eigenvalue of M . If λ0 �= 1, then for any constant L > 0, there exists positive
constants 
i such that


i ≥ 

mi1
1 


mi2
2 


mi3
3 (1 + L)mi1+mi2+mi3 , 1 ≤ i ≤ 3. (2.5)

Proof (2.5) can be rewritten as

ln
i −
3∑

j=1

mij ln
j ≥ (mi1 + mi2 + mi3) ln(1 + L), i = 1,2,3. (2.6)

Put

L∗ = max
1≤i≤3

(mi1 + mi2 + mi3),

then (2.6) holds provided that

ln
i −
3∑

j=1

mij ln
j ≥ L∗ ln(1 + L). (2.7)

From Lemma 1, we know that λ0 > 0 and its corresponding eigenvector α =
(α1, α2, α3)

T > 0, such that

(I − M)α = (1 − λ0)α. (2.8)

When 0 < λ0 < 1, it follows from (2.8) that

αi −
3∑

j=1

mijαj >
(1 − λ0)αi

2
> 0, i = 1,2,3.
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Let

ln
i = Kαi, i = 1,2,3, (2.9)

where the positive constant K is to be determined later. Then the above results in

ln
i −
3∑

j=1

mij ln
j >
K(1 − λ0)αi

2
> 0, i = 1,2,3.

Consequently, if we choose positive constant K suitable large so that

K(1 − λ0) min
1≤i≤3

αi ≥ 2L∗ ln(1 + L),

then (2.7) follows.
When λ0 > 1, (2.8) implies

−αi −
3∑

j=1

mij (−αj ) >
(λ0 − 1)αi

2
> 0, i = 1,2,3. (2.10)

By letting

ln
i = −Kαi, i = 1,2,3 (2.11)

with

K(λ0 − 1) min
1≤i≤3

αi ≥ 2L∗ ln(1 + L),

then from (2.10) it can be found that (2.7) holds.
Therefore, existence of positive constants 
i (1 ≤ i ≤ 3) is ensured by (2.9) and (2.11),

which correspond to the case λ0 < 1 and the case λ0 > 1, respectively. �

Remark 1 Going through the proofs of Lemmas 2–4, we find that all results in these three
lemmas hold for any r-th matrix with r ≥ 1.

3 Main Theorems and Their Proofs

In this section, we will state our main results. Let constants pij ≥ 0 (i, j = 1,2,3) and be
defined by (1.1). Denote

P =
⎡

⎣
p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤

⎦ , P1 =
⎡

⎣
p11 p12 p13

0 p22 p23

0 p32 p33

⎤

⎦ , P2 =
⎡

⎣
p11 p12 p13

p21 p22 p23

0 0 p33

⎤

⎦ ,

(3.1)

and let A = I − P .
We will illustrate our results on the basis of properties of the matrix P .
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3.1 P Is Irreducible

When P is irreducible, conditions on global existence and blow-up in a finite time of solu-
tions to problem (1.1) will be established as follows.

Theorem 1 Assume P is irreducible. If all the principal minor determinants of A are non-
negative, then solutions of (1.1) exist globally.

Proof With the help of Proposition 2, there exists α = (α1, α2, α3)
T > 0, such that Aα ≥ 0.

For 1 ≤ i ≤ 3, write


i = αi

‖ α ‖ , d = max
1≤i≤3

di, i = 1,2,3.

It is easy to see that 0 < 
i < 1 (1 ≤ i ≤ 3).
Let k(t) ∈ C1([0,+∞)) be a positive function satisfying k′(t) ≥ 0. It is well known

that for positive constant θ = 1 +∑
1≤i≤3(maxx∈Ω̄ ui0(x))1/
i , the unique nonnegative to the

linear problem
⎧
⎨

⎩

wt = d�w + k(t)w, x ∈ Ω, t > 0,

w(x, t) = θ, x ∈ ∂Ω, t > 0,

w(x,0) = θ, x ∈ Ω

(G)

exists globally. Furthermore, w(x, t) ≥ θ > 1 directly from the maximum principal. As θ is
a sub-solution of the above problem, results of [19] (refer to Lemma 4.1, p. 199) assert that
wt ≥ 0 for all x ∈ Ω and t > 0.

Let w(x, t) be the unique nonnegative solution to problem (G) with k(t) = k =
max1≤i≤3 d/(di
i), and let

ūi = w
i , x ∈ Ω̄, t > 0, i = 1,2,3,

it can be inferred that for 1 ≤ i ≤ 3 and wt ≥ 0,

di�ūi + ū
pi1
1 ū

pi2
2 ū

pi3
3 = di
iw


i−1�w + di
i(
i − 1)w
i−2|∇w|2 + wpi1
1+pi2
2+pi3
3

≤ di
iw

i−1�w + w
i = di
i

d
w
i−1

(

d�w + d

di
i

w

)

≤ di
i

d
w
i−1(d�w + kw) = di
i

d
w
i−1wt

≤ 
iw

i−1wt = ūit , x ∈ Ω, t > 0,

ūi(x, t) ≥ 1 > 0 = ui(x, t), x ∈ ∂Ω, t > 0,

ūi(x,0) > ui0(x) ≥ 0, x ∈ Ω̄.

Therefore, the comparison principle (cf. Proposition 1) asserts that ūi (x, t) > ui(x, t) (1 ≤
i ≤ 3) for all x ∈ Ω̄ and t ≥ 0. As (ū1, ū2, ū3) exists globally, (u1, u2, u3) exists globally.
We have completed the proof. �

Theorem 2 Let P be irreducible. If assumptions of Theorem 1 do not hold, then all solutions
of (1.1) are globally bounded for small initial data, and blow up in a finite time for large
initial data.
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Proof of Theorem 2 (Global existence) In this part, we are going to deduce conditions to
ensure global existence of solutions for problem (1.1). Let ψ(x) be the uniqueness solution
of

⎧
⎨

⎩

−�ψ = d = max1≤i≤3
1

di

, x ∈ Ω,

ψ = 0, x ∈ ∂Ω.

(3.2)

Then for some constant L > 0,

0 ≤ ψ(x) ≤ L, ∀x ∈ Ω̄. (3.3)

Since P is irreducible, it follows from Lemma 1 that P has an eigenvalue λ0 > 0 which
is the largest, and the corresponding eigenvector α = (α1, α2, α3)

T > 0. In addition, Lemma
3 and assumptions of Theorem 2 assert λ0 �= 1. Then by Lemma 4 we know the existence of
positive constants 
i (1 ≤ i ≤ 3), such that estimates (2.5) hold. For such fixed 
i , take

ūi (x, t) = 
i

(
1 + ψ(x)

)
, x ∈ Ω̄, t > 0.

A series of computations and (2.5) give

ūit − di�ūi − ū
pi1
i ū

pi2
2 ū

pi3
3 = ddi
i − 


pi1
1 


pi2
2 


pi3
3

(
1 + ψ(x)

)pi1+pi2+pi3

≥ 
i − 

pi1
1 


pi2
2 


pi3
3 (1 + L)pi1+pi2+pi3 ≥ 0, x ∈ Ω, t > 0,

ūi(x, t) = 
i > 0 = ui(x, t), x ∈ ∂Ω, t > 0, i = 1,2,3.

Therefore, if we choose initial data such that

ui0(x) < 
i

(
1 + ψ(x)

) = ūi (x,0), ∀x ∈ Ω̄, i = 1,2,3,

then by Proposition 1, it can be deduced that for 1 ≤ i ≤ 3,

ui(x, t) < ūi(x, t), x ∈ Ω̄, t ≥ 0.

Consequently, all solutions (u1, u2, u3) of (1.1) exist globally for small ui0(x) (1 ≤ i ≤ 3). �

Before demonstrating blow-up results of Theorem 2, we introduce two lemmas, which
will not just once be used in the coming discussion.

Lemma 5 Assume that D ⊂ R
n is a bounded domain with smooth boundary ∂D. Let λD be

the first eigenvalue of −� in D with homogeneous Dirichlet boundary condition and ϕD(x)

the corresponding eigenfunction satisfying maxD̄ ϕD(x) = 1. Let k and σ be any positive
constants. Suppose w(x, t) is the unique non-negative solution to the problem

⎧
⎨

⎩

wt − d�w = keβtϕb
D(x)w1+σ , x ∈ D, t > 0,

w(x, t) = 0, x ∈ ∂D, t > 0,

w(x,0) = w0(x) ≥ 0, �≡ 0 x ∈ D,

(3.4)

where β is a constant and constants b ≥ 0 and d > 0. Then we have
(i) If β/(σdλD) > 1 or β/(σdλD) = 1 > −1 + b/σ , then w(x, t) blows up in a finite

time T for any initial datum w0(x), and meanwhile, if β/(σdλD) < 1 or β/(σdλD) = 1 ≤
−1 + b/σ , such phenomenon appears only for w(x, t) with w0(x) satisfying (3.6).
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(ii) Assume the initial function w0(x) satisfies

w0(x) = 0 on ∂D and d�w0(x) + kϕb
D(x)w1+σ

0 (x) ≥ 0 for all x ∈ D, (3.5)

then wt(x, t) ≥ 0 for every (x, t) ∈ D × (0, T ), where T is the maximal existence time of
w(x, t).

Remark 2 (1) To complete the upcoming proof of Lemma 6, just as stated in Remark 3, the
assumption in above assertion (ii) is needed only for the case d1 �= d2.

(2) It should be emphasized here that there exist nontrivial nonnegative functions such
that assumptions in above assertion (i) and assertion (ii) hold simultaneously. Indeed, by
upper and sub-solution method, it can be deduced that for any given positive constant M ,
boundary problem

{−d�v = kϕb
D(x)v1+σ (x), x ∈ D,

v(x) = 0, x ∈ ∂D

has a nontrivial nonnegative solution v(x) between 0 and εϕD(x) with positive constant
ε ≤ (λD/k)1/σ . Therefore, when β/(σdλD) > 1 or when β/(σdλD) = 1 > −1 + b/σ , take
w0(x) = v(x), then (3.5) holds, and when β/(σdλD) < 1 or when β/(σdλD) = 1 ≤ −1 +
b/σ , take w0(x) = 
v(x) with 
 ≥ 1 sufficiently large such that (3.6) holds, then

d�w0(x) + kϕb
D(x)w1+σ

0 (x) ≥ 

(
d�v(x) + kϕb

D(x)v1+σ (x)
) = 0, x ∈ Ω,

and (3.5) follows.

Proof of Lemma 5 Directly from the maximum principal it is not difficult to see that
w(x, t) ≥ 0 for all (x, t) ∈ D × [0, T ). The assumption (3.5) illustrates that w0(x) is a sub-
solution of problem (3.4). Consequently, we again apply Lemma 4.1 of [19] to obtain that
wt ≥ 0 for all (x, t) ∈ D × (0, T ).

We next verify assertion (i). Although some part was given in the proof of main theorem
of [22], we will state it for the sake of completion. From definitions of λD and ϕD(x), we
obtain that λD > 0, ϕD(x) > 0 in D and ∂ϕD/∂η < 0 on ∂D (where η is the unit outward
normal vector on ∂D).

(a) When β/(σdλD) > max{1, −1 + b/σ } or β/(σdλD) = 1 or β/(σdλD) < 1, there
exists a positive constant θ such that

β/(σdλD) > θ > max{1, −1 + b/σ } when β/(σdλD) > max{1, −1 + b/σ },
θ = β/(σdλD) when β/(σdλD) = 1 > −1 + b/σ,

θ > max{1, −1 + b/σ } when β/(σdλD) = 1 ≤ −1 + b/σ or β/(σdλD) < 1.

For the above θ , multiplying (3.4) with ϕθ
D(x) and integrating the result, it follows

d

dt

∫

D

wϕθ
Ddx + θdλD

∫

D

wϕθ
Ddx

= dθ(θ − 1)

∫

D

w|∇ϕD|2ϕθ−2
D dx + keβt

∫

D

w1+σ ϕb+θ
D dx.
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Since
(∫

D

wϕθ
Ddx

)1+σ

≤
(∫

D

ϕ
θ−b/σ

D dx

)σ ∫

D

w1+σ ϕb+θ
D dx

and θ − b/σ > −1 and ∂ϕD/∂η < 0 on ∂D guarantee that

B :=
∫

D

ϕ
θ−b/σ

D dx < +∞,

above estimates and θ ≥ 1 result in

g′(t) ≥ kB−σ e(β−σdθλD)tg1+σ (t), t > 0; g(0) =
∫

D

w0(x)ϕθ
D(x)dx,

where

g(t) = eθdλDt

∫

D

w(x, t)ϕθ
D(x)dx.

Integrating it leads to

g−σ (t) ≤
⎧
⎨

⎩

g−σ (0) − σkB−σ t, if β = σθdλD,

g−σ (0) + σkB−σ

β − σθdλD

(1 − e(β−σθdλD)t ), if β �= σθdλD.

If

g(0) =
∫

D

w0(x)ϕθ
D(x)dx > 0 when θ ≤ β/(σdλD),

∫

D

w0(x)ϕθ
D(x)dx > B

(
σθdλD − β

kσ

)1/σ

when θ > β/(σdλD),

(3.6)

then due to σ > 0, we find that

lim
t→T

∫

D

w(x, t)ϕθ
D(x)dx = +∞

for some 0 < T < ∞. Consequently, w(x, t) blows up in the finite time T .
(b) When 1 < β/(σdλD) ≤ −1 + b/σ , we choose D∗ ⊂⊂ D such that the first eigen-

value λD∗ of −� in D∗ with homogeneous Dirichlet condition satisfies

β/(σdλD∗) > 1. (3.7)

Set δ = minD̄∗ ϕD(x), then δ > 0. By the strong maximum principle for single equation,
from (3.4) it follows that w(x, t) > 0 for all x ∈ D and 0 < t < T with T maximal existence
of w. Thus, by b ≥ 0 we have

⎧
⎨

⎩

wt − d�w ≥ kδbeβtw1+σ =: k∗eβtw1+σ , x ∈ D∗, t > 0,

w(x, t) > 0, x ∈ ∂D∗, t > 0,

w(x,0) = w0(x) ≥ 0, �≡ 0, x ∈ D∗.
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By virtue of comparison principle, we know nonnegative solution v(x, t) to problem
⎧
⎨

⎩

vt − d�v = k∗eβtv1+σ , x ∈ D∗, t > 0,

v(x, t) = 0, x ∈ ∂D∗, t > 0,

v(x,0) = w0(x) ≥ 0, �≡ 0, x ∈ D∗
(3.8)

possesses

v(x, t) ≤ w(x, t), ∀(x, t) ∈ D∗ × [0, T ).

On the other hand, problem (3.8) is just the problem (3.4) with D = D∗, k = k∗ and b = 0.
At this moment, (3.7) and b = 0 show that −1 + b/σ = −1 and

β/(σdλD∗) > 1 = max{1, −1 + b/σ }.
Thus, the above case (a) have been proven that v(x, t) blows up in a finite time T ∗. There-
fore, w(x, t) blows up in the finite time T ≤ T ∗. The Lemma is concluded. �

Lemma 6 Let D, λD and ϕD(x) be defined as in Lemma 5. Assume constants di,μi > 0
and qij ≥ 0 (i, j = 1,2,3) satisfy q11 ≤ 1, q22 ≤ 1 and (1 − q11)(1 − q22) < q12q21. Denote

d = min{d1, d2}, β = γ min{q13, q23},

σ =

⎧
⎪⎪⎨

⎪⎪⎩

q12q21 − (1 − q11)(1 − q22)

1 + q12 − q22
, if

1 + q21 − q11

1 + q12 − q22
≥ 1,

q12q21 − (1 − q11)(1 − q22)

1 + q21 − q11
, if

1 + q21 − q11

1 + q12 − q22
< 1.

(3.9)

Suppose non-negative functions vi(x, t) (1 ≤ i ≤ 2) satisfy
⎧
⎨

⎩

vjt − dj�vj ≥ μj eqj3γ tϕ
qj3
D v

qj1
1 v

qj2
2 , x ∈ D, t > 0,

vj (x, t) ≥ 0, x ∈ ∂D, t > 0,

vj (x,0) = vj0(x) ≥ 0, �≡ 0, x ∈ D, j = 1,2,

(3.10)

where γ is a arbitrary constant. Then, both v1(x, t) and v2(x, t) blow up in a finite time
for any initial data vi0(x) (1 ≤ j ≤ 2) if β/(σdλD) > 1, and while, blow-up in a finite time
happens only for suitable large initial data if β/(σdλD) ≤ 1.

Proof As qjj ≤ 1 (1 ≤ j ≤ 2) and (1−q11)(1−q22) < q12q21 imply that q12 > 0 and q21 > 0,
for σ > 0 defined by (3.9), we can take

⎧
⎪⎪⎨

⎪⎪⎩


1 = 1, 
2 = 1 + q21 − q11

1 + q12 − q22
, if

1 + q21 − q11

1 + q12 − q22
≥ 1,


2 = 1, 
1 = 1 + q12 − q22

1 + q21 − q11
, if

1 + q21 − q11

1 + q12 − q22
< 1.

It is obvious that

−σ = (1 − q11)
1 − q12
2, −σ = −q21
1 + (1 − q22)
2. (3.11)

When β/(σdλD) > 1, we choose a sub-domain D∗ ⊂⊂ D, such that the first eigenvalue
λD∗ of −� in D∗ with homogeneous Dirichlet boundary condition satisfies

β/(σdλD) > β/
(
σdλ∗

D

)
> 1. (3.12)
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Denote ϕD∗(x) as the eigenfunction corresponding to λD∗ with maxD̄∗ ϕD∗(x) = 1. When
β/(σdλD) ≤ 1, we still consider such domain D∗, and in this moment we see

β/(σdλD∗) < β/(σdλD) ≤ 1. (3.13)

From the definition of ϕD(x) we know that there exists a constant δ such that ϕD(x) ≥ δ

for all x ∈ D̄∗. By the strong maximum principle for single equation it can be inferred from
(3.10) that vj (x, t) > 0 for all x ∈ D and t > 0. Thus,

vj (x, t) > 0, x ∈ ∂D∗, t > 0, j = 1,2.

Consequently, (3.10) yields

⎧
⎨

⎩

vjt − dj�vj ≥ μjδ
qj3 eqj3γ tv

qj1
1 v

qj2
2 , x ∈ D∗, t > 0,

vj (x, t) > 0, x ∈ ∂D∗, t > 0,

vj (x,0) = vj0(x) ≥ 0, �≡ 0, x ∈ D∗, j = 1,2.

For σ > 0, 
1 ≥ 1 and 
2 ≥ 1 given above, define

vj (x, t) = w
j (x, t), x ∈ D∗, 0 < t < T, 1 ≤ j ≤ 2,

where w(x, t) is the unique non-negative solution of (3.4) in D∗ stead of D with such
constants d , β , σ defined as above and b = 0, k = min1≤j≤2{μjdδqj3/(dj 
j )}. Lemma 5,
(3.12) and (3.13) show that w(x, t) blows up in a finite time T for any w0(x) ≥ 0, �≡ 0 when
β/(σdλD∗) > 1, and when β/(σdλD∗) < 1, w(x, t) blows up in a finite time T only for
w0(x) ≥ 0 satisfying

⎧
⎪⎪⎨

⎪⎪⎩

∫

D∗
w0(x)ϕθ

D∗(x)dx > B

(
σθdλD∗ − β

kσ

)1/σ

,

θ > 1, B =
∫

D∗
ϕθ

D∗(x)dx < +∞.

In remain part of this proof, we further suppose that w0(x) satisfies the condition (3.5) with
d , k and b, and then Lemma 5 shows that wt ≥ 0 for every (x, t) ∈ D∗ × (0, T ).

By definitions of k, β , b, σ and 
j , thanks to wt ≥ 0, we deduce that

dj�vj + μjδ
qj3 eqj3γ tv

qj1
1 v

qj2
2

= dj
jw

j −1�w + dj
j (
j − 1)w
j −2|∇w|2 + μjδ

qj3 eqj3γ twqj1
1+qj2
2

≥ dj
jw

j −1�w + μjδ

qj3 eqj3γ tw
j +σ

≥ dj
j

d
w
j −1

(
d�w + keβtw1+σ

) = dj
j

d
w
j −1wt

≥ 
jw

j −1wt = vjt , (x, t) ∈ D∗ × (0, T ), j = 1,2.

We make an extension of w0(x) to D by defining w0(x) = 0 in D̄\D̄∗. Select

vj0(x) > w0

j (x), x ∈ D̄, j = 1,2,

then from the above and the comparison principle, we derive that
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vj (x, t) > vj (x, t), (x, t) ∈ D̄∗ × [0, T ∗), j = 1,2.

Therefore, (v1, v2) blows up in a finite time T ∗ with T ∗ ≤ T for suitable initial data. �

Remark 3 By going through process of the above proof, it is not difficult to see that when
d1 = d2 (which implies d = d1 = d2), we can remove this hypothesis that w0(x) satisfies the
condition (3.5) with b = 0 and d , k defined as above, and conclusions in Lemma 6 still hold.

With the help of Lemma 5 and Lemma 6, we are able to finish the proof of Theorem 2.
Let ϕ(x) be as in (1.3). Further, from now on we may assume in this paper that 0 ≤ ϕ(x) ≤ 1
for all x ∈ Ω̄ (this can be achieved by adjust the value of ϕ(x) if necessary).

Proof of Theorem 2 (Blow-up results) We are going to demonstrate blow-up conditions for
solutions to problem (1.1) now, and we will develop our discussion according to three cases.

Case 1. |A| < 0 and all the lower-order principal minor determinants of A are non-
negative.

In Lemma 2 we take M = P , and then the existence of 
i > 0 (1 ≤ i ≤ 3) satisfying
(2.2) are obtained. Select σ > 0 so large that 
i ≥ 1 (1 ≤ i ≤ 3). Let Ω1 ⊂⊂ Ω be any
sub-domain. For such fixed σ > 0 and 
i , denote

d = min
1≤i≤3

di, ui(x, t) = w
i (x, t), i = 1,2,3,

where w(x, t) is the unique non-negative solution of (3.4) with k = min1≤i≤3 d/(di
i), β =
b = 0 and D = Ω1. It has been known from Lemma 5 that w(x, t) blows up in a finite time
T and wt ≥ 0 in Ω1 × (0, T ) for some suitable initial datum w0(x) satisfying all conditions
in assertions (i) and (ii) of Lemma 5. Define w0(x) = 0 in Ω̄\Ω̄1, and select

ui0(x) ≥ w0

i (x) + ϕ(x), x ∈ Ω̄, i = 1,2,3,

which implies

ui0(x) > ui(x,0), x ∈ Ω̄1, i = 1,2,3. (3.14)

By the maximum principle, we have ui(x, t) > 0 (1 ≤ i ≤ 3) for all (x, t) ∈ Ω̄1 × [0, T ∗),
where T ∗ is the maximal existence time of (u1, u2, u3). It follows that

ui(x, t) > 0 = ui(x, t), (x, t) ∈ ∂Ω1 × (
0, T ∗), i = 1,2,3. (3.15)

By definitions of k and d , from (2.2) and wt ≥ 0, we deduce that for 1 ≤ i ≤ 3,

di�ui + u
pi1
1 u

pi2
2 u

pi3
3 = di
iw


i−1�w + di
i(
i − 1)w
i−2|∇w|2 + wpi1
1+pi2
2+pi3
3

≥ di
i

d
w
i−1

(

d�w + d

di
i

wpi1
1+pi2
2+pi3
3+1−
i

)

≥ di
i

d
w
i−1

(
d�w + kw1+σ

) = di
i

d
w
i−1wt

≥ 
iw

i−1wt = uit , (x, t) ∈ Ω1 × (

0, T ∗). (3.16)
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Using the comparison principle once again, one has that, from (3.14)–(3.16),

ui(x, t) > ui(x, t), (x, t) ∈ Ω̄1 × [0, T ∗), i = 1,2,3.

Therefore, (u1, u2, u3) blows up in a finite time T ∗ with T ∗ ≤ T .
Case 2. |A| ≥ 0, all the first principal minor determinants of A are non-negative, and

there is one of the second principal minors of A whose determinant is negative.
Assume that pii ≤ 1 (1 ≤ i ≤ 3), and we may think without loss of generality that (1 −

p22)(1 − p33) < p23p32. Take u10(x) large enough such that

u10(x) ≥ ϕ(x) for all x ∈ Ω̄.

Remember that (u1, u2, u3) is a non-negative solution of problem (1.1). It follows that
{

u1t − d1�u1 ≥ 0 = (e−λd1t ϕ(x))t − d1�(e−λd1t ϕ(x)), x ∈ Ω, t > 0,

u(x, t) = 0 = e−λd1t ϕ(x), x ∈ ∂Ω, t > 0,

and thus,

u1(x, t) ≥ e−λd1t ϕ(x), (x, t) ∈ Ω̄ × [0, T )

where T is maximal existence time of u1. Consequently,
⎧
⎨

⎩

uit − di�ui ≥ e−λd1pi1t ϕpi1u
pi2
2 u

pi3
3 , x ∈ Ω, t > 0,

ui(x, t) = 0, x ∈ ∂Ω, t > 0,

ui(x,0) = ui0(x) ≥ 0, x ∈ Ω, i = 2,3.

In Lemma 6, we put D = Ω , γ = −λd1, μj = 1, dj = di , qj3 = pi1, qj1 = pi2 and qj2 = pi3

for all i = 2,3 and j = 1,2. It is not difficult to see that conditions of Lemma 6 hold.
Therefore, Lemma 6 shows that for some suitable large (u20, u30), the corresponding (u2, u3)

blows up in a finite time T ∗ with T ∗ ≤ T , and so does (u1, u2, u3).
Case 3. Both case 1 and the case 2 do not happen.
Without loss of generality we assume that p11 > 1. Let ui0(x) ≥ ϕ(x) (2 ≤ i ≤ 3) for all

x ∈ Ω̄ . Then as above, we have

ui(x, t) ≥ e−λdi tϕ(x), (x, t) ∈ Ω̄ × [0,∞), i = 2,3,

which leads to
⎧
⎨

⎩

u1t − d1�u1 ≥ exp{−λ(d2p12 + d3p13)t}ϕp12+p13u
p11
1 , x ∈ Ω, t > 0,

u1(x, t) = 0, x ∈ ∂Ω, t > 0,

u1(x,0) = u10(x) ≥ 0, x ∈ Ω.

In Lemma 5, we choose D = Ω , d = d1, k = 1, β = −λ(d2p12 + d3p13), b = p12 + p13 and
σ = p11 − 1, then the corresponding solution w(x, t) of problem (3.4) blows up in a finite
time T for suitable large w0(x) satisfying conditions in assertion (i) of Lemma 5. From
p11 > 1 and the comparison principle for single equation, we achieve

u1(x, t) ≥ w(x, t), ∀(x, t) ∈ Ω̄ × [0, T ∗),

with some constant T ∗ ≤ T , provided that

u10(x) ≥ w0(x) for all x ∈ Ω.
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Hence, u1 blows up in the finite time T ∗, and it follows that (u1, u2, u3) blows up in a finite
time for suitable large initial data (u10, u20, u30).

Therefore, we have finished all the proof of Theorem 2. �

3.2 P Is Reducible

In this subsection, we will consider the case that P is reducible, and we will find conditions
for global existence and blow-up in finite time of solutions to problem (1.1).

For reducible matrix P , we may think without loss of generality that P = P1 or P = P2

with P1 and P2 defined by (3.1). We first investigate the case P = P1.

3.2.1 When P = P1

Note that P = P1 implies p21 = p31 = 0. Hence, any solution (u1, u2, u3) of problem (1.1)
satisfies

⎧
⎨

⎩

uit − di�ui = u
pi2
2 u

pi3
3 , x ∈ Ω, t > 0,

ui(x, t) = 0, x ∈ ∂Ω, t > 0,

ui(x,0) = ui0(x) ≥ 0, x ∈ Ω, i = 2,3.

(3.17)

Theorem 3 For P = P1, if all the principal minor determinants of A are non-negative, then
all solutions of (1.1) exist globally.

Proof From assumptions of Theorem 3 it can be found that

p11 ≤ 1, p22 ≤ 1, p33 ≤ 1, (1 − p22)(1 − p33) ≥ p23p32.

Thus, with the aid of problem (G) we are able to follow ideas of [22] to obtain global
existence of (u2, u3), and then from this and p11 ≤ 1, it is not difficult to see that u1 exists
globally. In fact, when p23p32 = 0, it is clear that (u2, u3) exists globally. When p23p32 �= 0,
the condition p22 ≤ 1, p33 ≤ 1 and (1 − p22)(1 − p33) ≥ p23p32 can be rewritten as

1 − p22

p23
· 1 − p33

p32
≥ 1.

There exist 0 < 
i < 1 for 2 ≤ i ≤ 3, such that

(1 − p22)/p23 ≥ 
3/
2, (1 − p33)/p32 ≥ 
2/
3.

In problem (G), set

d = max
2≤i≤3

di, k(t) = k = max
2≤i≤3

d/(di
i), θ = 1 +
∑

2≤i≤3

(
max
x∈Ω̄

ui0(x)
)1/
i

.

As in the proof of Theorem 1, w(x, t) exists globally, w(x, t) ≥ θ > 1 and wt ≥ 0 for all
x ∈ Ω and t > 0. Moreover, by letting

ūi = w
i , x ∈ Ω̄, t > 0, i = 2,3,

and applying arguments similar as in the proof of Theorem 1, one can arrive at the conclusion
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ūi (x, t) > ui(x, t), ∀(x, t) ∈ Ω̄ × [0,∞), i = 2,3.

It means that (u2, u3) exists globally. We complete this theorem. �

Theorem 4 For P = P1, if pii ≤ 1 (1 ≤ i ≤ 3) and (1 − p22)(1 − p33) < p23p32, then
solution of (1.1) exists globally for small initial data, and while blows up in a finite time for
large initial data.

Proof Let (u1, u2, u3) be any non-negative solution of problem (1.1), then (u2, u3) satisfies
(3.17). By virtue of conditions in this theorem, directly comparing (3.17) and (3.10) gives
(u2, u3) blows up in a finite time T for large (u20(x), u30(x)). Therefore, (u1, u2, u3) blows
up in a finite time T for large initial data.

In the following, we only need to show (u1, u2, u3) exists globally for small initial data.
Let M = (pij ) and A = I − M with i, j = 2,3. Then by Proposition 3 we see that A is ir-
reducible, and so, M is irreducible. Hence, Lemma 1 implies existence of the largest eigen-
value λ0 with λ0 > 0. By virtue of Remark 1 and Lemma 3, we know that λ0 �= 1. Therefore,
thanks to Remark 1 and Lemma 4 we find that there exist positive constants 
i , such that


i ≥ 

pi2
2 


pi3
3 (1 + L)pi2+pi3 , i = 2,3, (3.18)

where the positive constant L is determined by (3.3). Let ψ(x) be defined in (3.2) with
d = max2≤i≤3 1/di . Similar to the discussion of global existence part in Theorem 2, with the
help of estimates (3.18) it follows that u2 and u3 exist globally provided that

ui0(x) < 
i

(
1 + ψ(x)

)
, ∀x ∈ Ω̄, i = 2,3. (3.19)

As p11 ≤ 1, u1 exists globally following from global existence of u2 and u3. Therefore,
(u1, u2, u3) exist globally for such initial data satisfying (3.19). We conclude this theorem. �

Theorem 5 Let P = P1 and let λ be the first eigenvalue of problem (1.3). Then we have
(A) Assume p32 = 0, p33 = 1 and p22 > 1, then the following results hold:
(A1) When p23(1 − d3λ)/(d2λ) > p22 − 1 or p23(1 − d3λ)/(d2λ) = p22 − 1 > 1 + p23 −

p22, all solutions of (1.1) blow up in a finite time for any ui0(x) ≥ 0, �≡ 0 (1 ≤ i ≤ 3).
(A2) When p23(1 − d3λ)/(d2λ) < p22 − 1, solution of (1.1) blows up in a finite time for

suitable large ui0(x) (1 ≤ i ≤ 3), and exists globally with uniform bounds for suitable small
ui0(x) (1 ≤ i ≤ 3).

(A3) When p22 − 1 = p23(1 − d3λ)/(d2λ) ≤ 1 + p23 − p22, solution of (1.1) blows up
in a finite time for suitable large ui0(x) (1 ≤ i ≤ 3), and exists globally for small ui0(x)

(1 ≤ i ≤ 3).
(B) Assume p23 = 0, p22 = 1 and p33 > 1, then the following results hold:
(B1) When p32(1 − d2λ)/(d3λ) > p33 − 1 or p32(1 − d2λ)/(d3λ) = p33 − 1 > 1 + p32 −

p33, all solutions of (1.1) blow up in a finite time for any ui0(x) ≥ 0, �≡ 0 (1 ≤ i ≤ 3).
(B2) When p32(1−d2λ)/(d3λ) < 1+p32 −p33, solution of (1.1) blows up in a finite time

for suitable large ui0(x) (1 ≤ i ≤ 3), and exists globally with uniform bounds for suitable
small ui0(x) (1 ≤ i ≤ 3).

(B3) When p33 − 1 = p32(1 − d2λ)/(d3λ) ≤ 1 + p32 − p33, solution of (1.1) blows up
in a finite time for suitable large ui0(x) (1 ≤ i ≤ 3), and exists globally for small ui0(x)

(1 ≤ i ≤ 3).
(C) Suppose both the above assumptions and the conditions of Theorem 3 and Theorem 4

do not hold, then solution of (1.1) blows up in a finite time for suitable large ui0(x) (1 ≤
i ≤ 3), and exists globally for small ui0(x) (1 ≤ i ≤ 3).
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Remark 4 It is not difficult to see that, when d2 = d3 = 1, conditions in (A3) are equivalent
to 2/3 ≤ λ < 1 and p22 = 1 + p23(1 − λ)/λ, and the conditions in (B3) are equivalent to
2/3 ≤ λ < 1 and p33 = 1 + p32(1 − λ)/λ. Therefore, Theorem 5 answers the open problem
in [22].

Proof of Theorem 5 Let (u1, u2, u3) be any non-negative solution of problem (1.1), then
ui(x, t) > 0 (1 ≤ i ≤ 3) for all (x, t) ∈ Ω × (0, T ) with the maximal existence time T for
(u1, u2, u3), and (u2, u3) satisfies (3.17). Note that if (u2, u3) blows up in a finite time,
obviously, (u1, u2, u3) blows up in a finite time, and if (u2, u3) exists globally, then from
the first equation of (1.1) we know that u1(x, t) exits globally for small u10(x), and so does
(u1, u2, u3). Hence, in the following we only need to check whether (u2, u3) exists globally
for all cases other than case (C5) which will be discussed independently.

We first demonstrate case (A) and case (B). Under the help of assertion (i) in Lemma 5
and arguments of paper [22], we are going to prove case (A), and case (B) can be verified
similarly.

Blow-up results in case (A). Notice that u3 satisfies

⎧
⎨

⎩

u3t − d3�u3 = u3, x ∈ Ω, t > 0,

u3(x, t) = 0, x ∈ ∂Ω, t > 0,

u3(x,0) = u30(x) ≥ 0, �≡ 0 x ∈ Ω.

By the maximum principle we can suppose without loss of generality that u30(x) ≥ εϕ(x)

for some ε > 0. Thus, u3(x, t) ≥ ε exp{(1 − d3λ)t}ϕ(x), and

⎧
⎨

⎩

u2t − d2�u2 ≥ εp23 exp{p23(1 − d3λ)t}ϕp23(x)u
p22
2 , x ∈ Ω, t > 0,

u2(x, t) = 0, x ∈ ∂Ω, t > 0,

u2(x,0) = u20(x) ≥ 0, �≡ 0, x ∈ Ω.

Put D = Ω , d = d2, λD = λ, k = εp23 , β = p23(1 − d3λ), b = p23 and σ = p22 − 1 in
Lemma 5, then assertion (i) of Lemma 5 and the comparison principle for single equation
show that u2(x, t) satisfies all blow-up results in (A).

Global existence results in case (A). From problem (G) and the problem satisfied by u3,
it is know that u3(x, t) exists globally for any nonnegative u30(x). Then, similar as analysis
in the beginning of this proof, global existence of u2(x, t) for small u20(x) follows from
(3.17). Therefore, (u2, u3) exists globally for small u20(x) and u30(x).

When p23(1 − d3λ)/(d2λ) < p22 − 1, analogously as above it can be concluded that
u3(x, t) ≤ exp{(1 − d3λ)t}ϕ(x) provided that u30(x) ≤ ϕ(x). By p23 ≥ 0, it leads to

u2t − d2�u2 ≤ exp
{
p23(1 − d3λ)t

}
u

p22
2 , (x, t) ∈ Ω × (0, T ).

As p23(1 − d3λ) < (p22 − 1)d2λ, there must be a constant 0 < θ < d2λ with p23(1 − d3λ) <

(p22 − 1)θ . For such θ , by taking a positive constant ε ≤ (d2λ − θ)1/(p22−1), a direct compu-
tation shows that ū2(x, t) = εe−θtϕ(x) satisfies

ū2t − d2�ū2 ≥ exp
{
p23(1 − d3λ)t

}
ū

p22
2 , x ∈ Ω, t > 0.

From the comparison principle it follows that u2 ≤ ū2 if u20(x) ≤ εϕ(x) in Ω . The defini-
tions of ū2, ϕ(x) and ε imply that u2(x, t) < (d2λ)1/(p22−1).

The next thing left to do is to prove case (C). By going through all conditions with
respect to pij in Theorem 3, Theorem 4 and case (A) and (B) in Theorem 5, conditions in
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case (C) with respect to pij are as follows: (C1) p22 > 1, p33 = 1 and p32 > 0; (C2) p22 > 1,
p33 �= 1; (C3) p33 > 1, p22 = 1 and p23 > 0; (C4) p33 > 1, p22 < 1; (C5) p11 > 1, p22 ≤ 1
and p33 ≤ 1.

Global existence results in cases (C1)–(C4). Define

ūi = 
i

(
1 + ψ(x)

)
, x ∈ Ω, t > 0, i = 2,3,

where positive constants 
i are determined later, and function ψ(x) is fixed by (3.2) which
possesses property (3.3). Note that P = P1 implies p21 = p31 = 0. A series of calculations
derive

ūit − di�ūi ≥ ū
pi2
2 ū

pi3
3 , x ∈ Ω, t > 0, i = 2,3,

provided that

{
(1 − p22) ln 
2 ≥ p23 ln
3 + (p22 + p23) ln(1 + L),

(1 − p33) ln 
3 ≥ p32 ln
2 + (p32 + p33) ln(1 + L).
(3.20)

For case (C1), we select constants 0 < 
i ≤ 1 (2 ≤ i ≤ 3) satisfying

− ln
2 = max

{
p32 + p33

p32
,

p22 + p23

p22 − 1

}

ln(1 + L), 
3 = 1,

then estimate (3.20) holds. For case (C2), when p33 > 1, constants 0 < 
i ≤ 1 (2 ≤ i ≤ 3)
satisfying

− ln
2 = (p22 + p23) ln(1 + L)

p22 − 1
, − ln
3 = (p32 + p33) ln(1 + L)

p33 − 1

make estimate (3.20) hold, and when p33 < 1, if we take 0 < 
2 ≤ 1 and 
3 ≥ 1 such that

− ln 
2 = [(1 − p33)p22 + p23(1 + p32)] ln(1 + L)

(p22 − 1)(1 − p33)
, ln
3 = (p32 + p33) ln(1 + L)

1 − p33
,

estimate (3.20) follows. For case (C3) and case (C4), we can verify the validity of estimate
(3.20) by applying similar arguments as in case (C1) and case (C2). Therefore, the compar-
ison principle and estimate (3.20) show

ūi (x, t) > ui(x, t), ∀x ∈ Ω, t > 0, i = 2,3

provided that ui0(x) < 
i(1 +ψ(x)) (2 ≤ i ≤ 3) in Ω for such 
i fixed above. It implies that
(u2, u3) exists globally.

Global existence results in cases (C5). Note that p22 ≤ 1 and p33 ≤ 1 in this case. When
(1 − p22)(1 − p33) ≥ p23p32, it has been shown in the proof Theorem 3 that (u2, u3) exists
globally for any ui0(x) ≥ 0, �≡ 0 (2 ≤ i ≤ 3), and when (1 − p22)(1 − p33) < p23p32, it has
been shown in the proof Theorem 4 that (u2, u3) exists globally for small ui0(x) ≥ 0, �≡ 0
(2 ≤ i ≤ 3).

Blow-up results in case (C). Similar as in proof Theorem 2 (Blow-up results), from
ui0(x) ≥ ϕ(x) in Ω we deduce that

ui(x, t) ≥ e−λdi tϕ(x), (x, t) ∈ Ω̄ × [0, T ), 1 ≤ i ≤ 3
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with the maximal existence time T of (u1, u2, u3). When p11 > 1, we obtain

⎧
⎨

⎩

u1t − d1�u1 ≥ exp{−λ(d2p12 + d3p13)t}ϕp12+p13up11 , x ∈ Ω, 0 < t < T,

u1(x, t) = 0, x ∈ ∂Ω, 0 < t < T,

u10(x) ≥ ϕ(x) ≥ 0, �≡ 0, x ∈ Ω.

In view of assertion (i) of Lemma 5 and the comparison principle for single equation, we
find that u1 blows up in a finite time T for large u10(x), and so does (u1, u2, u3). When
p22 > 1 or p33 > 1, by applying similar arguments to u2 or u3, we also find (u1, u2, u3)

blows up in a finite time T for large (u10(x), u20(x), u30(x)). Therefore, we conclude this
theorem. �

3.2.2 When P = P2

By proceeding our discussion as in Sect. 3.2.1, we see that behaviors of solution for prob-
lem (1.1) with P = P2 and p12p21 = 0 are similar to that for P = P1. So, from now on
we suppose, unless otherwise noted, that p12p21 �= 0. By P = P2 it follows that solution
(u1, u2, u3) of problem (1.1) is bound to satisfy

⎧
⎨

⎩

u3t − d3�u3 = u
p33
3 , x ∈ Ω, t > 0,

u3(x, t) = 0, x ∈ ∂Ω, t > 0,

u3(x,0) = u30(x) ≥ 0, x ∈ Ω.

(3.21)

Theorem 6 Let P = P2 and p33 �= 1. If all the principal minor determinants of A are non-
negative, then all solutions of (1.1) exist globally.

Proof Let (u1, u2, u3) be any solution of problem (1.1). From the assumptions, p33 < 1
follows. Hence, by virtue of the comparison principle for a single equation we have that for
any u30(x) ≥ 0,

u3(x, t) <
[
(1 − p33)t + a

]1/(1−p33) =: C(t), ∀x ∈ Ω̄, t > 0, (3.22)

where a = 1 + maxΩ̄ u30(x). Then from problem (1.1) we find that

⎧
⎨

⎩

uit ≤ di�ui + (C(t))pi3u
pi1
1 u

pi2
2 , x ∈ Ω, t > 0,

ui(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

ui(x,0) = ui0(x) ≥ 0, x ∈ Ω, i = 1,2.

(3.23)

As all the principal minor determinants of A are non-negative and P = P2, we have

p11 ≤ 1, p22 ≤ 1 and (1 − p11)(1 − p22) ≥ p12p21.

Define

ūi = w
i , x ∈ Ω̄, t > 0, i = 1,2,

where positive constants 0 < 
i < 1 satisfy

(1 − p11)/p12 ≥ 
2/
1, (1 − p22)/p21 ≥ 
1/
2
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when p12p21 �= 0 (the case p12p21 = 0 is trivial), and w(x, t) is the unique nonnegative
solution to problem (G) with

d = max
1≤i≤2

di, k(t) = max
1≤i≤2

d

di
i

(
C(t)

)pi3 , θ = 1 +
∑

1≤i≤2

(
max
x∈Ω̄

ui0(x)
)1/
i

.

The remaining part is exactly the same as that in the proof of Theorem 3, and we will arrive
at the conclusion: (u1, u2) exists globally. Therefore, by remembering that u3 exists globally,
(u1, u2, u3) exists globally. �

Theorem 7 Let P = P2 and p33 �= 1. If conditions of Theorem 6 do not hold, then solution
of (1.1) exists globally for small initial data, and blows up in a finite time for large initial
data.

Proof Let (u1, u2, u3) be any solution of problem (1.1). When p33 �= 1, from (3.2) and (3.3),
it can be deduced by the comparison principle that

u3(x, t) < 
3

(
1 + ψ(x)

) ≤ 
3(1 + L) =: C, ∀x ∈ Ω, t > 0 (3.24)

provided that


3 = (1 + L)p33/(1−p33), u30(x) < 
3

(
1 + ψ(x)

)
, ∀x ∈ Ω. (3.25)

By P = P2 it is easy to obtain

|A| = (1 − p33)

∣
∣
∣
∣
1 − p11 −p12

−p21 1 − p22

∣
∣
∣
∣ .

We are going to carry out our discussion according to two cases.
Case 1. p33 < 1, max{p11, p22} ≤ 1 and (1 − p11)(1 − p22) < p12p21. It follows that

|A| < 0. As above, u3(x, t) exists globally for any u30(x).
Blow-up part. we go all the analysis procedure of Case 2 in the proof of Theorem 2

(Blow-up results), and the desired conclusion in this theorem is derived. The only thing
which need us do is to change the role of ui and pij with each other.

Global existence part. Let ψ(x) and L be as in (3.2) and (3.3), respectively. For 1 ≤ i ≤ 2,
put

ūi (x, t) = 
i

(
1 + ψ(x)

)
, (x, t) ∈ Ω × [0,∞),

where constants 
i are to be fixed later. By computation, it is not difficult to see from (3.24)
that

ūit ≥ di�ūi + ū
pi1
1 ū

pi2
2 Cpi3 , x ∈ Ω, t > 0, i = 1,2

hold, provided that

(1 − p11) ln
1 − p12 ln 
2 ≥ p13 lnC + (p11 + p12 + p13) ln(1 + L), (3.26)

−p21 ln
1 + (1 − p22) ln 
2 ≥ p23 lnC + (p21 + p22 + p23) ln(1 + L). (3.27)

As p11 ≤ 1, p22 ≤ 1 and (1 − p11)(1 − p22) < p12p21, by directly solving we make sure the
existence of positive constants 
1 and 
2 such that (3.26) and (3.27) hold. Obviously,

ūi (x, t) = 
i > 0 = ui(x, t), ∀(x, t) ∈ ∂Ω × (0,∞), 1 ≤ i ≤ 2.
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Therefore, if

ui0(x) < ūi(x,0) = 
i

(
1 + ψ(x)

)
, ∀x ∈ Ω̄, 1 ≤ i ≤ 2,

then Proposition 1 asserts that

ui(x, t) < ūi(x, t), ∀(x, t) ∈ Ω̄ × [0,∞), 1 ≤ i ≤ 2,

which joining with (3.24) asserts that (u1, u2, u3) exists globally.
Case 2. At least one of the first order principal minor determinants of A is negative. In

the following we divide our discussion into two cases.
(A) p33 > 1. By (3.21), it is well known to us all that u3(x, t) blows up in a finite time

for suitable large u30(x), and from (3.24), u3(x, t) exists globally with an uniform bounds
for all u30(x) satisfying (3.25). Therefore, solutions (u1, u2, u3) of problem (1.1) blow up in
a finite time for large ui0(x) (1 ≤ i ≤ 3).

In the following we only need to analysis behaviors of (u1, u2, u3) for small ui0(x) (1 ≤
i ≤ 3). In view of (3.24), (3.23) holds with C(t) = C. From assumptions of this theorem and
p12p21 �= 0, one of the following must happen:

(A1) max{p11, p22} ≤ 1 and (1 − p11)(1 − p22) ≥ p12p21.

(A2) max{p11, p22} ≤ 1 and (1 − p11)(1 − p22) < p12p21.

(A3) max{p11, p22} > 1 (p12 ≥ 0, p21 ≥ 0 andp12p21 �= 0 imply p12 > 0 andp21 > 0).

Therefore, following proofs of Theorem 3, Theorem 4 and Theorem 5, by Proposition 1 we
know that solution (u1, u2) to problem (3.23) exists globally for small initial data, and so
does (u1, u2, u3).

(B) p33 < 1 and max{p11, p22} > 1. As u3(x, t) has global bounds for any u30(x) sat-
isfying (3.25). Hence, blow-up of (u1, u2, u3) depends on that of (u1, u2). As above, from
(3.23) with M(T ) = C we conclude that solution (u1, u2) exists globally for small initial
data, and thus, (u1, u2, u3) exists globally for small ui0(x) (1 ≤ i ≤ 3).

In the case of large ui0(x) (1 ≤ i ≤ 3), we may think that ui0(x) ≥ ϕ(x) (i = 2,3). In
view of max{p11, p22} > 1, p12 > 0 and p21 > 0, we may suppose without loss of gen-
erality that p11 > 1. Then, we follow analysis exactly the same as Case 3 in the proof of
Theorem 2 (Blow-up results), and in the final we will certainly arrive at the conclusion that
u1(x, t) blows up in a finite time for suitable large u10(x). Therefore, (u1, u2, u3) blows up
in a finite time for large ui0(x) (1 ≤ i ≤ 3). We complete this theorem. �

Theorem 8 Let P = P2 and p33 = 1. If all the principal minor determinants of A are non-
negative, then all solutions of (1.1) exist globally.

Proof Let (u1, u2, u3) be any solution of problem (1.1). From p33 = 1 and (3.21), by virtue
of the comparison principle for a single equation we have that for any u30(x) ≥ 0,

u3(x, t) < aet =: C(t), a = 1 + max
Ω̄

u30(x), ∀x ∈ Ω̄, t > 0,

then (3.23) follows. Going along with arguments in the proof of Theorem 6 we arrive at
conclusions in this theorem. �
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Theorem 9 Suppose P = P2 and p33 = 1. Let λ be the first eigenvalue of problem (1.3).
Assume p11 ≤ 1, p22 ≤ 1 and (1 − p11)(1 − p22) < p12p21. Define

d = min{d1, d2}, β = (1 − d3λ)min{p13, p23},

σ =

⎧
⎪⎪⎨

⎪⎪⎩

p12p21 − (1 − p11)(1 − p22)

1 + p12 − p22
, if

1 + p21 − p11

1 + p12 − p22
≥ 1,

p12p21 − (1 − p11)(1 − p22)

1 + p21 − p11
, if

1 + p21 − p11

1 + p12 − p22
< 1.

If β/(σdλ) > 1, then all solutions of (1.1) blow up in a finite time for any ui0(x) ≥ 0, �≡ 0
(1 ≤ i ≤ 3), and meanwhile, if β/(σdλ) ≤ 1, then solution of (1.1) blows up in a finite
time for suitable large ui0(x) (1 ≤ i ≤ 3), and exists globally for small ui0(x) (1 ≤ i ≤ 3).
Especially, when σdλmin{1 + p12 − p22, 1 + p21 − p11} > (1 − d3λ)max{p13(1 − p22) +
p12p23, p23(1 − p11) + p21p13}, then solution of (1.1) is global bounded for suitable small
ui0(x) (1 ≤ i ≤ 3).

Proof The proof is similar as that of Theorem 5, here we omit it. �

Theorem 10 Assume P = P2, p33 = 1 and max{p11, p22} > 1. Then the following conclu-
sions hold.

(1) If p11 > 1, then solution of (1.1) blows up in a finite time for any ui0(x) ≥ 0, �≡ 0
(1 ≤ i ≤ 3) when p13(1 − d3λ) − p12d2λ > (p11 − 1)d1λ or when p13(1 − d3λ) − p12d2λ =
(p11 − 1)d1λ > (1 + p12 + p13 − p11)d1λ; solution of (1.1) blows up in a finite time for
suitable large u10(x) when p13(1 − d3λ) − p12d2λ < (p11 − 1)d1λ or when p13(1 − d3λ) −
p12d2λ = (p11 − 1)d1λ ≤ (1 + p12 + p13 − p11)d1λ.

(2) If p22 > 1, then solution of (1.1) blow up in a finite time for any ui0(x) ≥ 0, �≡ 0
(1 ≤ i ≤ 3) when p23(1 − d3λ)−p21d1λ > (p22 − 1)d2λ or p23(1 − d3λ)−p21d1λ = (p22 −
1)d2λ > (1 + p21 + p23 − p22)d2λ; solution of (1.1) blows up in a finite time for suitable
large u20(x) when p23(1 − d3λ)−p21d1λ < (p22 − 1)d2λ or when p23(1 − d3λ)−p21d1λ =
(p22 − 1)d2λ ≤ (1 + p21 + p23 − p22)d2λ.

(3) Suppose that conditions in the above (1) and (2) do not hold. Case (a1) If λd3 ≥
1 and p12p21 > 0, then solution of (1.1) exists globally with uniform bounds for suitable
small ui0(x) (1 ≤ i ≤ 3). Case (a2) If p12p21 = 0, then solution of (1.1) exists globally
for small ui0(x) (1 ≤ i ≤ 3). Case (a3) If λd3 < 1 and p12p21 > 0, we further assume that
min{p11, p22} ≥ 1, p13(1 − d3λ) − p12d2λ < (p11 − 1)d1λ and p23(1 − d3λ) − p21d1λ <

(p22 − 1)d2λ, then solution of (1.1) exists globally for suitable small ui0(x) (1 ≤ i ≤ 3).

Proof Let (u1, u2, u3) be any solution of problem (1.1), then ui(x, t) > 0 for all (x, t) ∈
Ω × (0, T ), where T > 0 is the maximal existence time of (u1, u2, u3).

Blow-up results. We need only deduce assertion (1), since assertion (2) can be obtained
analogously. Applying arguments as in the proof of Theorem 5, we find that ui0(x) ≥ εϕ(x)

(1 ≤ i ≤ 3) for some ε > 0. Thus,

u3(x, t) ≥ ε exp
{
(1 − λd3)t

}
ϕ(x), u2(x, t) ≥ ε exp{−λd2t}ϕ(x), ∀x ∈ Ω, t > 0.

It follows that
⎧
⎨

⎩

u1t − d1�u1 ≥ εp12+p13ϕp12+p13 exp{[−λd2p12 + (1 − λd3)p13]t}up11
1 , x ∈ Ω, t > 0,

u1(x, t) = 0, x ∈ ∂Ω, t > 0,

u1(x,0) = u10(x), x ∈ Ω.



144 H. Li, Y. Zhang

Therefore, when p11 > 1, Lemma 5 has proven that u1(x, t) satisfies requirements in asser-
tion (1), and thus, assertion (1) are available for (u1, u2, u3).

Global existence. Suppose u30(x) ≤ ϕ(x) in Ω , it follows that

u3(x, t) ≤ exp
{
(1 − λd3)t

}
ϕ(x) ≤ exp

{
(1 − d3λ)t

}
, ∀x ∈ Ω, t > 0. (3.28)

Remember that max{p11, p22} > 1, and we may think without loss of generality that p11 > 1
in the following.

Case (a1): λd3 ≥ 1 and p12p21 > 0. By (3.28) we have u3(x, t) ≤ 1, and hence,

{
uit − di�ui ≤ u

pi1
1 u

pi2
2 , x ∈ Ω, t > 0,

ui(x, t) = 0, x ∈ ∂Ω; ui(x,0) = ui0(x), x ∈ Ω, 1 ≤ i ≤ 2.

Let

ū1 = 

(
1 + ψ(x)

)
, ū2 = (

1 + ψ(x)
)
, x ∈ Ω, t > 0,

where positive constant 
 < 1 satisfies

− ln
 ≥ max

{
(p11 + p12) ln(1 + L)

p11 − 1
,

(p21 + p22) ln(1 + L)

p21

}

,

and the positive constant L and the nonnegative function ψ(x) are defined by (3.3) and (3.2),
respectively. It is not difficult to check that

{
ūit − di�ūi ≥ ū

pi1
1 ū

pi2
2 , x ∈ Ω, t > 0,

ū1(x, t) = 
 > 0, ū2(x, t) = 1 > 0, x ∈ ∂Ω, t > 0, 1 ≤ i ≤ 2.

By the comparison principle, we achieve

ūi (x, t) > ui(x, t), ∀x ∈ Ω, t > 0, 1 ≤ i ≤ 2,

provided that u10(x) < 
(1 + ψ(x)) and u20(x) < 1 + ψ(x) in Ω , which illustrates that u1

and u2 exist globally with uniform bounds. Recall that u3 ≤ 1. Consequently, (u1, u2, u3)

has an uniform bounds for suitable small initial data.
Case (a2): p12p21 = 0. When p12 = 0, from the equation of u1 and p11 > 1, by the

comparison principle for the single equation we find that u1(x, t) exists globally for small
u10(x). Then, by the equation of u2 it follows that u2(x, t) exists globally for small u20(x).
Hence, (u1, u2, u3) exists globally for suitable small (u10, u20, u30). When p21 = 0, global
existence of (u1, u2, u3) for suitable small (u10, u20, u30) can be accomplished similarly.

Case (a3): λd3 < 1 and p12p21 > 0. From (3.28) it follows

{
uit − di�ui ≤ u

pi1
1 u

pi2
2 exp{pi3(1 − λd3)t}, x ∈ Ω, t > 0,

ui(x, t) = 0, x ∈ ∂Ω, t > 0; ui(x,0) = ui0(x), x ∈ Ω, 1 ≤ i ≤ 2.

As p23(1 − d3λ) − p21d1λ < (p22 − 1)d2λ and p13(1 − d3λ) − p12d2λ < (p11 − 1)d1λ, we
can choose a domain Ω ⊂⊂ Ω1 such that the first eigenvalue λ1 to the problem (1.3) in Ω1

satisfying

p13(1 − d3λ) <
[
(p11 − 1)d1 + p12d2

]
λ1,

p23(1 − d3λ) <
[
(p22 − 1)d2 + p21d1

]
λ1,

(3.29)
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and ϕ1(x) the corresponding function satisfying maxΩ̄1
ϕ1(x) = 1. It is well known that

ϕ1(x) > 0 in Ω1, and there exists a constant ε > 0, such that ϕ1(x) ≥ ε for all x ∈ Ω̄ . With
the help of (3.29), there are positive constants 0 < θ1 < d1λ1 and 0 < θ2 < d2λ1, such that

(p11 − 1)θ1 + p12θ2 ≥ p13(1 − d3λ), p21θ2 + (p22 − 1)θ2 ≥ p23(1 − d3λ). (3.30)

For such fixed such θi , take positive constant δ such that

ln δ = min

{
ln(d1λ1 − θ1)

p11−1
,

ln(d2λ1 − θ2)

p21

}

, (3.31)

and define

ū1 = δ exp{−θ1t}ϕ1(x), ū2 = exp{−θ2t}ϕ1(x), x ∈ Ω, t > 0,

then direct computation combining with (3.30)–(3.31) gives that for 1 ≤ i ≤ 2,

{
ūit − di�ūi ≥ ū

pi1
1 ū

pi2
2 exp{pi3(1 − λd3)t}, x ∈ Ω, t > 0,

ūi(x, t) = ε > 0, x ∈ ∂Ω, t > 0.

Therefore,

ūi (x, t) > ui(x, t), ∀x ∈ Ω, t > 0, 1 ≤ i ≤ 2,

provided that u10(x) ≤ δε and u20(x) ≤ ε in Ω . Consequently, (u1, u2, u3) exists globally
for suitable small initial data. We complete the proof. �

Remark 5 (1) When d1 = d2, from the above proof one can find that there is no need to
require min{p11, p22} ≥ 1.

(2) All above results in this paper can be extended to problem (1.1) with m-components
(m ≥ 4).

4 Further Discussion

In this section, we do some discussion about results between this paper and papers [16, 17].
In 2003, Li and his collaborator considered the homogeneous Dirichlet boundary value prob-
lem

uit = ciu
αi

i

(

�ui +
m∏

j=1

u
pij

j

)

, x ∈ Ω, t > 0 (4.1)

and the homogeneous Dirichlet boundary value problem

uit − �ui =
m∏

j=1

u
pij

j , x ∈ Ω, t > 0, (4.2)

where Ω ⊂ R
n is a bounded domain, the constants ci > 0, αi > 0, pij ≥ 0 (1 ≤ i, j ≤ m).

Under the assumption that ui0(x) (1 ≤ i ≤ m) are continuous, positive and bounded in Ω ,
for irreducible matrix P = (pij ), their main results are read as follows:
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Theorem B ([16, Theorem 1.1]) If I − P is an M-matrix, then all solutions of (4.2) are
global, and if I − P is not an M-matrix, then there exist both nontrivial global solutions
and nonglobal solutions of (4.2).

Theorem C ([17, Theorem 1.1]) (i) When I − P is a nonsingular M-matrix, all solutions
of (4.1) exist globally (uniformly bounded in time).

(ii) When I − P is not an M-matrix, there exist both nontrivial global solutions and
nonglobal solutions of (4.1).

(iii) When I − P is a singular M-matrix, assume that 
 = (
1, . . . , 
m) is a solution
of (I − P )
 = 0 with 
i > 0 (1 ≤ i ≤ m) and min1≤i≤m 
i = 1, and 
̄ = (
̄1, . . . , 
̄m) is
also a solution of (I − P )
 = 0 with 
̄i > 0 (1 ≤ i ≤ m) and max1≤i≤m 
̄i = 1. Let λ =
min1≤i≤m 1/
i and λ̄ = max1≤i≤m 1/
̄i . Then there exist no global nontrivial solutions of
(4.1) for λ < λ, and all solutions of (4.1) exist globally (uniformly bounded in time) for
λ > λ̄, where λ is defined by (1.3).

Elementary approaches adopted in [16, 17] and our paper are exactly the same (compar-
ison principle and matrix theory). Properties of M-matrix are used in the former, and the
latter cares only about whether all of the principal minor determinants are nonnegative. Just
as stated in Remark 5(2), all results in our paper can be extended to m-system (m ≥ 4). Pa-
pers [16, 17] only focus on irreducible matrix P = (pij ), and we investigate both reducible
matrix P = (pij ) and irreducible matrix P = (pij ). Authors of [16] assumed all diffusion
coefficients are 1 or equal, and our methods are used for different coefficients. Results of
paper [17] do not cover the case αi = 0 for all 1 ≤ i ≤ m, which just corresponds to our
problem (1.1).

Now we will directly compare results of three papers. Notice that the former two only
discuss irreducible P which was concerned in Sect. 3.1 of our paper. Let P = (pij )3×3

and A = I − P for convenience. We rearrange assumptions about A. By [3, p. 134, (A1)],
[3, p. 149, (A1)] and [3, p. 156, (1) and (4)], we have

A is an M-matrix ⇐⇒ all the principal minors of A are nonnegative. (4.3)

A is a nonsingular M-matrix ⇐⇒ all the principal minors of A are positive, (4.4)

A is a singular, irreducible M-matrix =⇒ |A| = 0, and each principal submatrix of A

other than A itself is a nonsingular M-matrix. (4.5)

Thanks to (4.3), by the definition it can be deduced that if A is not an M-matrix, then A

must be

at least one of principal minor determinants of A is negative. (4.6)

Therefore, from above it is easily seen that all results in Theorem B (that is the main
result and also the only result in [16]) are included in our Theorem 1 and Theorem 2 for the
special case di = 1 (1 ≤ i ≤ m). In other words, we generalize results of [16] for different
diffusion coefficients.

Now it comes to paper [17] and this article. When A is an irreducible M-matrix, with
the help of (4.3)–(4.5), one can find that such matrix A certainly meets requirements of our
Theorem 1. In this time, conclusions of Theorem C(i) cohere with that of our Theorem 1, and
conclusions of Theorem C(iii) differ with that of Theorem 1. However, some matrix A in our
Theorem 1, does not satisfy conditions of Theorem C(i) and conditions of Theorem C(iii).
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When A is an irreducible but not M-matrix, we find from (4.6) that A satisfies conditions of
our Theorem 2, and conclusions in these two papers are the same.

In fact, such difference has taken place in their single equation, and we take the critical
case as an example. For the problem

{
ut = uα(�u + u), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0; u(x,0) = u0(x) > 0, x ∈ Ω
(4.7)

with constant α > 0, it is well known that whether solution exists globally or blows up in
a finite time depends on the first eigenvalue λ of −� in Ω with null Dirichlet boundary
condition (refer to [5, 7, 8, 14] for example; see also [17]). More precisely, there exist global
nontrivial solutions for problem (4.7) if and only if λ > 1. On the other hand, [21, p. 8,
Proposition 3] has proved that all solutions of problem

{
ut = �u + u, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0; u(x,0) = u0(x) ≥ 0, �≡ 0, x ∈ Ω
(4.8)

are global. Hence, any solution of problem (4.8) exists globally no matter how much is the
value of λ.

The above analysis clarifies that for problem (1.1) and problem (4.1), assumptions of
theorems and the corresponding behaviors of solutions are different in some cases, which
in return illustrate that the two problems are different and can not discuss them as the same
one problem.
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