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Abstract This paper concerns global existence and finite time blow-up behavior of positive
solutions for a nonlinear reaction-diffusion system with different diffusion coefficients. By
use of algebraic matrix theory and modern analytical theory, we extend results of Wang
(Z. Angew. Math. Phys. 51:160-167, 2000) to a more general system. Furthermore, we give
a complete answer to the open problem which was brought forward in Wang (Z. Angew.
Math. Phys. 51:160-167, 2000).
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1 Introduction and Main Results

In this paper, global existence and finite time blow-up behaviors of positive solutions for a
nonlinear reaction-diffusion system are to be discussed:

wip =di Au; +ulud?ul®, xe 2, 1>0,
wi(x, 1) =0, x€dQ, 10, (1.1)
u;(x,0) =u;o(x), xef,i=1,2,3,

where £2 is a bounded domain in R” with smooth boundary 942, initial values u;o(x) (1 <
i < 3) are non-negative and continuous functions which satisfy compatibility conditions.
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The exponents p;; (i, j = 1,2, 3) are non-negative constants, and diffusion coefficients d;
are positive constants for all 1 <i <3.

System (1.1) is usually used as a model to describe heat propagation in a three-component
combustible mixture (cf. [2]). In this case, u;, u, and u; represent temperatures of the in-
teracting components, and corresponding d; (1 <i < 3) are thermal conductivity, which are
supposed constant.

Written system (1.1) as integral equations, by constructing bounded monotone iterative
sequences it can be proved that system (1.1) has a local non-negative solution (cf. [15]).
However, uniqueness does not hold (cf. [12]). The comparison principle holds, see Sect. 1
of this paper.

For system of two components in a bounded domain £2 of the form

uy = Au; +ulul?, xef2,1>0,
u;i(x,t) =0, x€df2, t>0, (1.2)
ui(x,0) =u;o(x) >0, xe2,i=12,

Chen [4] in 1997 investigated special case: pi2, p21 > 0, p1o > p» — 1 and py; > p1;; — 1,
and critical exponents were proved. Later, Wang [22] considered a general case, and ob-
tained significant results which cover that of [4].

Let A be the first eigenvalue and ¢ (x) the corresponding eigenfunction of the problem

—Apx) =Xrp(x), xe€82; p(x)=0, xe€df2. (1.3)

Itis well known that A > 0, ¢(x) > 0in £2 and dp/dn < 0 on 352, here n is the unit outward
normal vector on 0£2. Then main results of [22] are read as follows:

Gy If
pu=<l,pn<1 and pppa=<0-p)d-—pn), (1.4)
then all solutions of (1.2) exist globally.
(i) If
pu>1,p2>0 py=0 po=1AirA<l pyn=1+pp-21)/ (1.5)
or
p2>1,pn1>0 ppo=0,pu=11<1 pn=<1+pud—2)/Ar (1.6)

Furthermore, if p;; =14 pa(1 —A)/Ain (1.5) or py; = 1+ po(1 —A)/A in (1.6), we also
assume A < 2/3. Then, for any initial data u;o(x) > 0, £ 0 (i = 1, 2), solutions of (1.2) blow
up in finite time.

(iii) If (1.4), (1.5) and (1.6) do not hold, then solutions of (1.2) exist globally for small
initial data, and blow up in finite time for large initial data.

There are many other related works on global existence and blow-up in finite time of
solutions to reaction-diffusion equations or systems with two components, see for example
[1, 6-19, 23-26] and references therein.

In this paper, we are going to try to generalize results of Wang [22] to system with
three components and different diffusion coefficients, and we mainly focus on conditions
of global existence and finite time blow-up for positive solutions of system (1.1). Our main
conclusions will be introduced and proved in Sect. 3, and from these it is not difficult to
see that fine structure of the matrix P, which is a nonlinear function of the exponents p;;
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(i, j =1, 2,3), is crucially important. This is one of very interesting features for our results.
The tools we adopt are a combination of algebraic matrix and modern analytical theory.
Here, it is noteworthy that we give a complete and final resolution to the open problem
which was presented in [22], please see Remark 4 below.

Here we point out that Li and his collaborators [16, 17] have applied properties of M-
matrix and a comparison principle to investigate global existence conditions for quasilinear
parabolic systems. There are different properties between M-matrix and the matrix in this
paper. Problem in this paper can be considered as a general version of [16] somewhat in the
aspect of different diffusion coefficients. Problem and results of this paper differ from that
of [17], and two of the most obvious differences are: the first is that for irreducible matrix,
our blow-up condition is independent of the value of the first eigenvalue of —A on £2 with
null Dirichlet boundary condition, and results of [17] do depend on it; the second is that
results of [17] do not cover our results. All of these will be discussed in Sect. 4. The rest of
the paper is organized as follows: in Sect. 2, we establish a comparison principle and some
preliminaries on properties with respect to matrix. We then discuss the global existence and
finite blow-up of solution in Sect. 3.

2 Preliminaries

In this section, we first prove a comparison principle and then some results related to matrix,
all of which will play an important role in the proof of our main theorems.

Proposition 1 (Comparison principle) Assume that f; is a continuous, non-decreasing and
non-negative function, and assume that continuous functions u; and v; satisfy u;, v; > 0 in
2 x(0,T) and

Uy — di Au; — fi(uy, uz, u3) =0, (x,1) €2 x(0,7),
Uit_diAvi_ﬁ(vl’vLU:;)fO, (x,t)E.QX(O, T)s
ui(x,t) >v;i(x,t) >0, (x,t) €082 x (0,7),

i (x,0) = ujo(x) > v;(x,0) =vj(x) >0, xe€£2,i=1.223.
Then u;(x,t) > v;(x, 1) forany (x,1) € 2 x [0, T) (i = 1,2, 3).

Proof Let w; = u; — v;, then w; satisfies

wi; —diAw; > fi(uy, uz, uz) — fi(vy, v2,v3), (x,1) €2 x(0,7),
w; (x, 1) >0, (x,1) €32 x (0, 7), 2.1)
w;(x,0) >0, xef,i=1223.

Set
tr=sup{t <T|w;(x,s)>0forall (x,s) €2 x (0,1}, i=1723.

On the contrary we assume that the conclusion would be not true, and which joined with
initial conditions of (2.1) and continuity of ; and v; implies

>0, i=1,2,3.

Put #* = min; <;<3 ¢#;, and without loss of generality we may think #* = #;. Note that w; is
continuous. By the definition of #* and initial-boundary conditions of (2.1), the existence of
X1 € §2 can be obtained such that w; (x, #;) =0.
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On the other hand, mon(_)tonicity of fi and the definition of t* = ¢#; show that w; > 0
(i=1,2,3)forall (x,t) € 2 x [0, #;] and w, satisfies

wy; —diAwy > fi(uy, uz, u3) — fi(w,v2,v3) 20, (x,1) € 2 x(0,1),
wi(x, 1) >0, (x,1) €982 x (0,17,
w1(.x,0)>0, XEQ.

Asw;(x1,#) =0and x; € £2, in view of the strong maximum principle for single equation it
follows that w; (x, t) =0 for every (x, t) € £2 x [0, #;), which is a contradiction. Therefore,
we arrive at conclusions of Proposition 1. O

We next establish some results on matrix, and we begin with notation and definition of
matrix.

Notation 1 |F| = det F is the determinant of matrix F .

Definition 1 Let A = (a;;), <, With n > 2. If there exists an array matrix F', such that

0 : A
where A; is a r-th sub-matrix and A, is (n — r)-th sub-matrix with 1 <r <n — 1, then A is

called to be reducible. Otherwise, A is irreducible.

We write M = (m;j)nx, Withm;; >0 (i, j=1,...,n)and A = (a;j)nxn =1 — M. Itis
obvious that A is reducible if and only if M is reducible.

Lemma 1 (cf. [20]) Suppose that M is a non-negative matrix. If M is irreducible, then M
has a positive eigenvalue ho which is the largest, i.e. || < Ao for any eigenvalue p of M,
and the corresponding eigenvector o = (ay, ..., )7 is positive, i.e. a; > 0 (1 <i <n).

Proposition 2 (cf. [25]) Suppose that M is a non-negative matrix, and all the principal
minor determinants of A = 1 — M are non-negative. If A is irreducible, then there exists o =
(a1, ...,0)T witha; >0 foralli=1,... n,suchthat Aa >0, i.e. o; — 22:1 mija; > 0.

Proposition 3 (cf. [25]) Let M be a non-negative matrix. Assume that all the lower-order
principal minor determinants of A =1 — M are non-negative and |A| < 0. Then A is irre-
ducible and there exists

T
a=(og,...,0a,)

with a; > 0 (1 <i <n), such that Aa <0, i.e. a; — Z;'.:l mija; <O0.
From the above results we have

Lemma 2 Let M be a non-negative 3-th matrix. Suppose that all the lower-order principle
minor determinants of A = 1 — M are non-negative and |A| < 0. Then A is irreducible and
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for any positive constant o there exists positive constants £; (1 <i <3), such that
3
—o=0— Y myt;, 1<i<3. (2.2)
j=1

Proof From Proposition 3 we know that M is irreducible. Direct computation gives

1 —0 —my —mi3
L = v l—mp  —ma
Al o —m3zp 1 —m3
o (|1=mp —my mp  —mp3 —mi —mil)
—_— T T pu— 9
|A| —m3p 1 —msz m3  1—ms L —myp —my

here we use the fact that |A| < 0 and

>0,

I—myp  —mo3
—mzp 1 —m33

=ma(1 —m33) +m3mpy >0,

mip —mi3
mzp  1—ms3

=mpmy +mp3(l —my) >0.

—nmj —mj3
1 —mo —mo3

Hence, if £; = 0, then by the fact that m;; >0 and 1 —m;; >0 (7, j = 1, 2, 3) we find that
mi3my3 = 0.

Since we have proved that A is irreducible which guarantees that m3m,3 # 0. It is a con-
traction. Therefore, £; > 0.
Similarly, we can obtain that £; > 0 for i = 2, 3, and the desired conclusion holds. O

Lemma 3 Let M be a non-negative 3-th matrix. Suppose that M is irreducible and A is the
largest eigenvalue of M. If Ao = 1, then all the principal minor determinants of A=1— M
are non-negative.

Proof Let a = (a1, ay,a3)” be the eigenvector of M corresponding with Ay, then by
Lemma 1 we see that o; > 0 forall 1 <i <3, and

Aa=(1—Ap)a=0. 2.3)
It follows that
|A]=0.
Eq. (2.3) can be changed into
3
= mya;, =123 (2.4)
j=1
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As m3ms3 # 0 follows by the fact that M is irreducible, due to m;; > 0 and o; > 0
(i, j=1,2,3), from (2.4) we obtain 1 — m33 > 0. Similarly, we can prove that 1 —m; > 0
and 1 — my > 0.

Up to now, we have concluded that both |A| itself and all the first order principal minor
determinants of A are non-negative. Therefore, to accomplish the proof we only need to infer
that all the second order principal minor determinants of A are non-negative. Conversely,
assume that at least one of the second order principal minors of A is negative, and let’s say
without loss of generality that

1— _
myy mo3 <0.
—m3z 1 —m33
Note that 1 > m;; >0 (1 <i <3). It yields
1—myp —my —my  —mpy —my; 1 —mo
|Al = (1 —my) +mp -
—mz 1 —m33 —m3; 1 —m3z —m3;  —m3

< —myamai (1 —m33) — miamazms — myzmoymsy — myzmsz; (1 —moy)

<0,

which contradicts to |A| = 0. Therefore, all the assertions of Lemma 3 have concluded. [l

Lemma 4 Let M be a non-negative 3-th matrix. Suppose that M is irreducible and A is
the largest eigenvalue of M. If Ly # 1, then for any constant L > 0, there exists positive
constants £; such that

4= 00 NB (1 4 Lymitriatis ] < <3, (2.5)

Proof (2.5) can be rewritten as

3
In€ =Y miyInt; > (i +mp+ma)n(l+L), i=123. (2.6)
j=l1

Put

L* = max (mu +mjp +m;3),

I<i<
then (2.6) holds provided that

3
In¢; —» “mi;Int; > L*In(1 + L). (2.7)

j=1

From Lemma 1, we know that Ay > 0 and its corresponding eigenvector o =
(a1, a2, a3)" > 0, such that

(I — Mya = (1 — rg)a. 2.8)

When 0 < Ay < 1, it follows from (2.8) that

1 — o)
Zm,ja] A=t o 2103
2
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Let
Inl; =Keo;, i=1,2,3, 2.9)

where the positive constant K is to be determined later. Then the above results in

— A0)¥;
In¢; —Zml,lnﬁ — KA =doei o 1,23,

Consequently, if we choose positive constant K suitable large so that

K (1 = o) min o = 2L* In(1 + L),

then (2.7) follows.
When Ay > 1, (2.8) implies

(o — D o
Zml,( ;) >0, i=1,2,3. (2.10)

By letting
In¢;=—Ko;, i=1,2,3 (2.11)
with
KMo—1) 11223% >2L"In(1+ L),
then from (2.10) it can be found that (2.7) holds.

Therefore, existence of positive constants £; (1 <i < 3) is ensured by (2.9) and (2.11),
which correspond to the case Ao < 1 and the case Xy > 1, respectively. |

Remark 1 Going through the proofs of Lemmas 2—4, we find that all results in these three
lemmas hold for any r-th matrix with » > 1.
3 Main Theorems and Their Proofs

In this section, we will state our main results. Let constants p;; > 0 (i, j =1, 2, 3) and be
defined by (1.1). Denote

pPii P12 P13 P P12 P13 Pt P12 P13
P=|pan pn ps|, Pi=| 0 pn pxs|, Py=|pan pn ps|,
P31 P2 PR 0 pn p3 0 0 psx
3.1

andlet A=1—P.
We will illustrate our results on the basis of properties of the matrix P.
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3.1 P IsIrreducible

When P is irreducible, conditions on global existence and blow-up in a finite time of solu-
tions to problem (1.1) will be established as follows.

Theorem 1 Assume P is irreducible. If all the principal minor determinants of A are non-
negative, then solutions of (1.1) exist globally.

Proof With the help of Proposition 2, there exists & = (a;, a2, @3)” > 0, such that Aa > 0.
For 1 <i <3, write

Q;

= , d=maxd;, i=1,2,3.
ol I<i<3

Itiseasy toseethat 0 < ¢; <1 (1 <i <3).
Let k(t) € C'([0,4+00)) be a positive function satisfying k'(¢) > 0. It is well known
that for positive constant 6 = 1+ )", _, _;(max, g u;o(x))'/", the unique nonnegative to the

linear problem

w,=dAw+k(t)w, xe£2,1t>0,
w(x,t) =0, x€082,t>0, (G)
w(x,0)=20, x e

exists globally. Furthermore, w(x, ) > 6 > 1 directly from the maximum principal. As 6 is
a sub-solution of the above problem, results of [19] (refer to Lemma 4.1, p. 199) assert that
w; >0forall x € 2 and r > 0.

Let w(x,t) be the unique nonnegative solution to problem (G) with k(t) = k =
max<;<3d/(d;{;), and let

i=w", xeR,t>0i=1,2.73,
it can be inferred that for 1 <i <3 and w; >0,
d; At + iR = diw T Aw + dil; (6 — DT | Vw P whitfitriziateist
<dil;w i Aw + wh = %w["_l (dAw + (;1 w)

iti

dil; . dili 4.
§7wl (dAw + kw) = w T wy,

<twilw,=a;,, xe£,t>0,
ui(x,t)>1>0=u;(x,t), x€9d82,t>0,
i;(x,0) > ujp(x) >0, xef.
Therefore, the comparison principle (cf. Proposition 1) asserts that u; (x, ) > u;(x,t) (1 <

i<3)forall x € 2 and r > 0. As (i, il2, ii3) exists globally, (u, u,, us) exists globally.
We have completed the proof. |

Theorem 2 Let P be irreducible. If assumptions of Theorem 1 do not hold, then all solutions

of (1.1) are globally bounded for small initial data, and blow up in a finite time for large
initial data.

@ Springer



Global Existence and Finite Time Blow-up for a Reaction-Diffusion. .. 129

Proof of Theorem 2 (Global existence) In this part, we are going to deduce conditions to
ensure global existence of solutions for problem (1.1). Let ¥ (x) be the uniqueness solution
of

1
—AY =d =max;<;<3 T x €S2,

Y =0, x€df.

(3.2)

Then for some constant L > 0,
O<y(x)<L, Vxef. (3.3)

Since P is irreducible, it follows from Lemma 1 that P has an eigenvalue Ay > 0 which
is the largest, and the corresponding eigenvector a = (@, a2, a3)” > 0. In addition, Lemma
3 and assumptions of Theorem 2 assert Ay # 1. Then by Lemma 4 we know the existence of
positive constants ¢; (1 <i < 3), such that estimates (2.5) hold. For such fixed ¢;, take

uix,)=6(1+yx), xef2,t>0.

A series of computations and (2.5) give

i — dy Al — @l AP AN = ddi; — €0 SRR (14 g (x)) e

>0 — Vel elB (1 + LyPintrateis > 0, x e 82,1t >0,
ui(x,t) =¢4;>0=u;(x,t), x€982,t>0,i=1,2,3.
Therefore, if we choose initial data such that
uip(x) < ;(1+¢(x)=i;(x,0), Vxef,i=12.3,
then by Proposition 1, it can be deduced that for 1 <i <3,
wi(x,t) <ii;j(x,1), xe8,t>0.

Consequently, all solutions (u, u,, u3) of (1.1) exist globally for small u;o(x) (1 <i <3).0

Before demonstrating blow-up results of Theorem 2, we introduce two lemmas, which
will not just once be used in the coming discussion.

Lemma S Assume that D C R" is a bounded domain with smooth boundary dD. Let A be
the first eigenvalue of — A in D with homogeneous Dirichlet boundary condition and ¢p(x)
the corresponding eigenfunction satisfying maxp ¢p(x) = 1. Let k and o be any positive
constants. Suppose w(x, t) is the unique non-negative solution to the problem

w, —dAw =keP b (x)w't?, xeD, t >0,
w(x,t) =0, x€edD, t>0, (3.4)
w(x,0) =we(x) >0, #£0 x €D,

where B is a constant and constants b > 0 and d > 0. Then we have

G) If B/(odrp) > 1 or B/(cdrp) =1> —1+b/o, then w(x,t) blows up in a finite
time T for any initial datum wo(x), and meanwhile, if 8/(cdip) <1 or B/(cdrp) =1 <
—14b/0, such phenomenon appears only for w(x, t) with wo(x) satisfying (3.6).
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(ii) Assume the initial function wy(x) satisfies
wo(x) =0 ondD and dAwy(x)+ k(pg(x)w(l)” (x)>0 forallx e D, (3.5

then w;(x,t) > 0 for every (x,t) € D x (0, T), where T is the maximal existence time of
w(x,1t).

Remark 2 (1) To complete the upcoming proof of Lemma 6, just as stated in Remark 3, the
assumption in above assertion (ii) is needed only for the case d; # d>.

(2) It should be emphasized here that there exist nontrivial nonnegative functions such
that assumptions in above assertion (i) and assertion (ii) hold simultaneously. Indeed, by
upper and sub-solution method, it can be deduced that for any given positive constant M,
boundary problem

—dAv =ke? ()0t (x), xeD,
v(x) =0, xe€eaD

has a nontrivial nonnegative solution v(x) between O and e¢p(x) with positive constant
& < (Ap/k)'/°. Therefore, when 8/(cdAp) > 1 or when B/(cdrp) =1> —1+b/o, take
wo(x) = v(x), then (3.5) holds, and when 8/(cdXp) <1 or when 8/(cdAip) =1<—1+
b/o, take wy(x) = Lv(x) with £ > 1 sufficiently large such that (3.6) holds, then

d Awg(x) + ke (1) wy ™ (x) = L(dAv(x) + kel ()07 (x)) =0, x €2,
and (3.5) follows.

Proof of Lemma 5 Directly from the maximum principal it is not difficult to see that
w(x,t) >0 forall (x,7) € D x [0, T). The assumption (3.5) illustrates that wg(x) is a sub-
solution of problem (3.4). Consequently, we again apply Lemma 4.1 of [19] to obtain that
w, >0 forall (x,t) e D x (0,T).

We next verify assertion (i). Although some part was given in the proof of main theorem
of [22], we will state it for the sake of completion. From definitions of A, and ¢p(x), we
obtain that Ap > 0, ¢p(x) > 0in D and dpp/dn < 0 on dD (where n is the unit outward
normal vector on 9 D).

(@) When B/(ocdip) > max{l, —1+b/co} or B/(cdrp)=1or B/(cdrp) < 1, there
exists a positive constant € such that

B/(cdrp) >0 >max{l, —1 +b/o} when B8/(cdrp)>max{l, —1+b/o},
6 =B/(odrp) when B/(cdrip)=1>—1+b/o,
0 > max{l, —14+b/c} when B/(cdrp)=1<—1+b/o or B/(cdrp) < 1.

For the above 6, multiplying (3.4) with go‘,’) (x) and integrating the result, it follows
d 0 0
— [ wepdx +6drp | wepdx
dr Jp D

=do® — 1)/ w|Vop 2ol 2dx +keﬁ’/ w' b dx.
D D
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1+o o
(/ wga%dx) < (/ (p%_b/adx> / W' bt dx
D D D

and® —b/o > —1 and d¢p/dn < 0 on d D guarantee that

Since

B ::f (pf;h/"dx < +00,
D
above estimates and 6 > 1 result in
g'(t) > kB oeP=od0r)glto () ¢ > 0; g@%=flmuw%@ML
D

where
g(t) = ef@o! /D w(x, 1) (x)dx.
Integrating it leads to
g§77(0) —ckB™t, if B=06dAp,
g0 < 277 (0) + - ikng:}\D a- e(ﬂ-a@d?\p)l)’ if B £ oOdhp.
If

5(0) = / Wo(¥)¢y(x)dx > 0 when 8 < B/(cdAp),
D

3.6)

_ /o

/ wo(x)q)(’D(x)dx > B(Ued]);72ﬂ> when 6 > B/(od\p),
D

then due to o > 0, we find that
lim/ w(x, 1)) (x)dx = +oo
t—T D

for some 0 < T' < oo. Consequently, w(x, ¢) blows up in the finite time 7.
(b) When 1 < B/(cdArp) < —1+b/o, we choose D* CC D such that the first eigen-
value Ap+ of —A in D* with homogeneous Dirichlet condition satisfies

Set 6 = ming« ¢p(x), then § > 0. By the strong maximum principle for single equation,
from (3.4) it follows that w(x, ) > O forall x € D and 0 <t < T with T maximal existence
of w. Thus, by b > 0 we have

w, —dAw > k8bePw'te = k*efw'te, xeD* t>0,

w(x, 1) >0, xe€dD* t>0,
w(x,0) =wy(x) >0, £0, x € D*.
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By virtue of comparison principle, we know nonnegative solution v(x, t) to problem

v, —dAv =k*efrylteo, xeD* t>0,
v(x,t) =0, xedD*, t >0, 3.8)
v(x,0) =wo(x)>0,#£0, xeD*

possesses
vix, ) <w(x,t), V(x,t)eD*x[0,T).

On the other hand, problem (3.8) is just the problem (3.4) with D = D*, k =k* and b = 0.
At this moment, (3.7) and b = 0 show that —1 + b/oc = —1 and

B/(cdip) > 1 =max{l, —1 +b/c}.

Thus, the above case (a) have been proven that v(x, ) blows up in a finite time 7*. There-
fore, w(x, t) blows up in the finite time 7 < T*. The Lemma is concluded. O

Lemma 6 Let D, Lp and ¢p(x) be defined as in Lemma 5. Assume constants d;, jt; > 0
and q;; >0 (i, j =1,2,3) satisfy g1 <1, gp < 1 and (1 — q11)(1 — g22) < q12q21. Denote

d =min{d;, d»}, B =y min{qs, g3},
q12q21 — (1 —q1)(1 — g2) if1+¢]21 —dqu

1+qi—q» T l+gqn—qn
q12q21 — (1 —q11)(1 — g2) i L+ g21 —qu <1 (3-9)
I+ ¢21 —qu ' l+go—gn
Suppose non-negative functions v; (x, t) (1 <i <?2) satisfy
vj; —djAvj > Mjequf(quﬂv'f”vgﬂ, xeD, t>0,
vi(x,1) >0, xeoD, t>0, (3.10)
Uj(x,O):vjo(X)ZO,iéo, xeD, j:1,2,

where y is a arbitrary constant. Then, both v((x,t) and vy(x,t) blow up in a finite time
for any initial data v;o(x) (1 < j <2)if B/(cdrp) > 1, and while, blow-up in a finite time
happens only for suitable large initial data if B/(ocdAp) < 1.

Proof Asq;; <1(1 <j<2)and (1—g11)(1—g22) < q12qg21 imply that ;> > 0 and g2; > 0,
for o > 0 defined by (3.9), we can take

1 — 1 —
+ 21 — g1 if +qn a

=1, £, = s =z L
1+q12—qn 1+qi2—q»
1 — 1 —
=1, 6 = +q12 (]22’ i + g21 — q11 -1
L+ g21 —qn 1+qi2—qx
It is obvious that
—o =1 —qgi)t —qi2ls, —0 =—gl + (1 —gn)l,. (3.11)

When B/(odAp) > 1, we choose a sub-domain D* CC D, such that the first eigenvalue
Ap+ of —A in D* with homogeneous Dirichlet boundary condition satisfies

B/(odAip) > ﬁ/(odk’g) > 1. (3.12)
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Denote ¢p+(x) as the eigenfunction corresponding to Ap+ with max 3« ¢p=(x) = 1. When
B/(cdip) <1, we still consider such domain D*, and in this moment we see

B/(odipr) < B/(cdrp) < 1. (3.13)
From the definition of ¢p(x) we know that there exists a constant § such that ¢p(x) > 4
for all x € D*. By the strong maximum principle for single equation it can be inferred from
(3.10) that vj(x,t) > O for all x € D and ¢ > 0. Thus,
vj(x,1) >0, xe€dD*, t>0, j=1,2.

Consequently, (3.10) yields

vj,—devjZ;L,—B"ﬂe"f”’v?"v;m, xeD* t>0,
vi(x,t) >0, xe€eaD*, t>0,
vj(x,0) =vjo(x) >0, #0, xeD* j=1,2.

Foro >0, ¢, > 1 and ¢, > 1 given above, define
v, )=w(x,1), xeD* 0<t<T, 1<j<2,

where w(x,t) is the unique non-negative solution of (3.4) in D* stead of D with such
constants d, B, o defined as above and b =0, k = min|<;j<>{u;d897/(d;£;)}. Lemma 5,
(3.12) and (3.13) show that w(x, ¢) blows up in a finite time 7 for any wo(x) > 0, % 0 when
B/(cdAipx) > 1, and when B/(ocdip+) < 1, w(x,t) blows up in a finite time 7" only for
wo(x) > 0 satisfying

O'ed)\.D* —ﬁ)l/a

/* wo (x) @ (x)dx > B( =

6>1, B=/ go%*(x)dx<+oo.
D*

In remain part of this proof, we further suppose that wy(x) satisfies the condition (3.5) with
d, k and b, and then Lemma 5 shows that w, > 0 for every (x, 1) € D* x (0, T).
By definitions of k, 8, b, o and £}, thanks to w;, > 0, we deduce that

dj AH,‘ + Mj(gqﬂeqﬂwy‘fjlggﬂ
=d; 0w Aw +d0;(0; — Dw' T Vw|? + ;8953437 it 1422
> djfjwzf_lAw + Mj3ﬂ1j3eqj'3}/twlj+a
> %wgffl(dAw + ke w!*7) = dit; wbiy,
d d
> Lw' =v;,, (,0eD*x(0,T), j=12.
We make an extension of wy(x) to D by defining wy(x) = 0 in D\ D*. Select

vjo(x) > w'i (x), xeD, j=1,2,

then from the above and the comparison principle, we derive that
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vi(x, 1) >v;(x, 1), (x,1)€D*x[0,T"), j=1,2.

Therefore, (v;, v2) blows up in a finite time 7* with 7* < T for suitable initial data. O

Remark 3 By going through process of the above proof, it is not difficult to see that when
dy = d, (which implies d = d, = d,), we can remove this hypothesis that wy(x) satisfies the
condition (3.5) with b = 0 and d, k defined as above, and conclusions in Lemma 6 still hold.

With the help of Lemma 5 and Lemma 6, we are able to finish the proof of Theorem 2.
Let ¢(x) be_as in (1.3). Further, from now on we may assume in this paper that 0 < ¢(x) <1
for all x € £2 (this can be achieved by adjust the value of ¢(x) if necessary).

Proof of Theorem 2 (Blow-up results) We are going to demonstrate blow-up conditions for
solutions to problem (1.1) now, and we will develop our discussion according to three cases.
Case 1. |A| < 0 and all the lower-order principal minor determinants of A are non-
negative.
In Lemma 2 we take M = P, and then the existence of ¢; > 0 (1 <i < 3) satisfying
(2.2) are obtained. Select o > 0 so large that £; > 1 (1 <i < 3). Let £2, CC £2 be any
sub-domain. For such fixed o > 0 and ¢;, denote

d = min d;, w,(x,)=wl(x,1), i=12.3,

where w(x, t) is the unique non-negative solution of (3.4) with k = min,<;<3 d/(d;{;), B =
b =0 and D = £2,. It has been known from Lemma 5 that w(x, ¢) blows up in a finite time

T and w, > 0 in £2; x (0, T') for some suitable initial datum wq(x) satisfying all conditions
in assertions (i) and (ii) of Lemma 5. Define wy(x) = 0 in £2\£2;, and select

uio(x) = wo'l (x) + p(x), xeR,i=123,
which implies
uio(x) > u,(x,0), xe2, i=123. (3.14)

By the maximum principle, we have u;(x,t) > 0 (1 <i <3) for all (x,?) € 2, x [0, T*),
where T* is the maximal existence time of (11, u,, u3). It follows that

wi(x, 1) >0=u,(x,1), (x,1)€d2; x (0,T*), i=1,2,3. (3.15)
By definitions of k and d, from (2.2) and w; > 0, we deduce that for 1 <i <3,

di Au; +ul uh?ul® = diw i Aw + dil; (6 — Dw'i T Vw]? 4 writ i tpiziatrist

> d"giwﬁﬁl dAw + d wPitti+pizba+pizla+1-4;
—d

iti

diti dili
> Tw[‘ l(dAw+kw1+U):_w21 lwl
> Gw' i w =u,,  (x,1) €82 x (0,T%). (3.16)
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Using the comparison principle once again, one has that, from (3.14)—(3.16),
wi(x,t)>u;(x,1), (x,1)eR; x[0,T*), i=1,2,3.

Therefore, (11, uy, u3) blows up in a finite time 7* with 7* < T.

Case 2. |A| >0, all the first principal minor determinants of A are non-negative, and
there is one of the second principal minors of A whose determinant is negative.

Assume that p;; <1 (1 <i <3), and we may think without loss of generality that (1 —
P22)(1 — p33) < pa3ps. Take ujo(x) large enough such that

up(x) >@e(x) forallx e 2.
Remember that (i, uy, u3) is a non-negative solution of problem (1.1). It follows that

uy —diAuy =0=(*"px)), —diAlep(x)), xef,1>0,
u(x,t) =0=e*'p(x), x€d82,1t>0,

and thus,
ui(x, 1) > e Mp(x), (x,1)eR2x[0,T)

where T is maximal existence time of u,. Consequently,

Uy — di Auy > e it riny B2y B3 1 x € 2, 1> 0,
ui(x,1)=0, X €932, t>0,
u;i(x,0) =ujp(x) >0, xef2,i=273.

InLemma 6, weput D=2,y =—Ad, uj=1,d; =d;, qj3 = pi1,qj1 = pir and qj» = p;3
for all i =2,3 and j = 1, 2. It is not difficult to see that conditions of Lemma 6 hold.
Therefore, Lemma 6 shows that for some suitable large (15, 139), the corresponding (u5, u3)
blows up in a finite time 7* with 7* < T, and so does (u1, u,, u3).

Case 3. Both case 1 and the case 2 do not happen.

Without loss of generality we assume that p;; > 1. Let u;o(x) > ¢(x) (2 <i < 3) for all
x € £2. Then as above, we have

ui(x, 1) >e Mo(x), (x,1) e R x[0,00), i=2,3,

which leads to

uy, —dyAuy > exp{—i(dapia + dspi3)t}pP2trsul . x €2, 1> 0,
ui(x,t) =0, xe€df,t>0,
uy(x,0) =up(x) >0, xef.

In Lemma 5, we choose D =£2,d =d|, k=1, B = —A(dap1o + d3p13), b = p12 + p13 and
o = p1; — 1, then the corresponding solution w(x, t) of problem (3.4) blows up in a finite

time 7 for suitable large wo(x) satisfying conditions in assertion (i) of Lemma 5. From
p11 > 1 and the comparison principle for single equation, we achieve

ur(x, 1) = wix, 1), Vx,1)€2x[0,T%),
with some constant 7* < T, provided that

up(x) > wo(x) forall x € £2.

@ Springer



136 H.Li, Y. Zhang

Hence, u, blows up in the finite time 7*, and it follows that (u, u,, u3) blows up in a finite
time for suitable large initial data (uo, u29, 430)-
Therefore, we have finished all the proof of Theorem 2. O

3.2 P Is Reducible

In this subsection, we will consider the case that P is reducible, and we will find conditions
for global existence and blow-up in finite time of solutions to problem (1.1).

For reducible matrix P, we may think without loss of generality that P = Py or P = P,
with P; and P, defined by (3.1). We first investigate the case P = P;.

3.2.1 When P = P,

Note that P = P; implies p,; = p3; = 0. Hence, any solution (u, u;, u3) of problem (1.1)
satisfies

Ui —diAu; =u5Pul®, xeR,1>0,
u;(x,1)=0, x€d2, t>0, (3.17)
u;(x,0) =u;p(x) >0, xeNR, i=23.

Theorem 3 For P = Py, if all the principal minor determinants of A are non-negative, then
all solutions of (1.1) exist globally.

Proof From assumptions of Theorem 3 it can be found that

pn=<l, pn=<l1, ps3<l, (1—pn)(l—ps3)=>pspn.

Thus, with the aid of problem (G) we are able to follow ideas of [22] to obtain global
existence of (u,, u3), and then from this and p; < 1, it is not difficult to see that u; exists
globally. In fact, when py3 p3, =0, it is clear that (u,, u3) exists globally. When p,3 p3; # 0,
the condition py; <1, p33 <1 and (1 — px)(1 — p33) > pa3 p3z can be rewritten as

I—pn 1-ps
P23 P32

> 1.

There exist 0 < £; < 1 for 2 <i <3, such that

(I = pxn)/ps =43/l, (1— p33)/pxn>L/L3.

In problem (G), set

1/¢;
d=maxd;, k(t)=k=maxd/(d¥;), 6=1+ Z (maxu,-o(x)) .
2<i<3 2<i<3 r<ie3 xeQ

As in the proof of Theorem 1, w(x, t) exists globally, w(x,?) >0 > 1 and w, > 0 for all
x € £2 and ¢ > 0. Moreover, by letting

gi=wh, xe2,1>0,i=273,

and applying arguments similar as in the proof of Theorem 1, one can arrive at the conclusion
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i (x,0) >u;(x, 1), V(x,1)e 82 x][0,00), i=2,3.

It means that (u5, u3) exists globally. We complete this theorem. ]

Theorem 4 For P = Py, if p;; <1 (1 <i <3) and (1 — pp)(1 — p33) < psp3, then
solution of (1.1) exists globally for small initial data, and while blows up in a finite time for
large initial data.

Proof Let (u, uy, u3) be any non-negative solution of problem (1.1), then (u,, u3) satisfies
(3.17). By virtue of conditions in this theorem, directly comparing (3.17) and (3.10) gives
(13, u3) blows up in a finite time T for large (u20(x), u39(x)). Therefore, (u, us, u3) blows
up in a finite time T for large initial data.

In the following, we only need to show (i, u, u3) exists globally for small initial data.
Let M = (p;;) and A =1 — M with i, j =2, 3. Then by Proposition 3 we see that A is ir-
reducible, and so, M is irreducible. Hence, Lemma 1 implies existence of the largest eigen-
value Xy with 1y > 0. By virtue of Remark 1 and Lemma 3, we know that Ay # 1. Therefore,
thanks to Remark 1 and Lemma 4 we find that there exist positive constants ¢;, such that

£ > 052003 (1 + LyPatris =23, (3.18)

where the positive constant L is determined by (3.3). Let ¥/ (x) be defined in (3.2) with
d = max;<;<3 1/d;. Similar to the discussion of global existence part in Theorem 2, with the
help of estimates (3.18) it follows that u, and u; exist globally provided that

up(x) <&(1+¢ ), Vref,i=223. (3.19)

As p1; <1, u; exists globally following from global existence of u, and u;. Therefore,
(uy, us, us) exist globally for such initial data satisfying (3.19). We conclude this theorem. [

Theorem S Let P = P, and let X be the first eigenvalue of problem (1.3). Then we have

(A) Assume p3; =0, p33 =1 and py > 1, then the following results hold:

(A1) When pys(1 — dsA)/(dad) > pa — 1 or pys(1 —d3A)/(dad) = po — 1> 1+ pa3 —
P2, all solutions of (1.1) blow up in a finite time for any u;o(x) >0, £0 (1 <i <3).

(Ay) When py3(1 — ds))/(dar) < prp — 1, solution of (1.1) blows up in a finite time for
suitable large u;o(x) (1 <i < 3), and exists globally with uniform bounds for suitable small
ujo(x) (1 <i <3).

(A3) When pyp — 1 = pps(1 — d3))/(dar) < 1+ pa3s — pan, solution of (1.1) blows up
in a finite time for suitable large u;o(x) (1 <i < 3), and exists globally for small u;y(x)
(1=<i<3).

(B) Assume pr3 =0, pn =1 and p33 > 1, then the following results hold:

(B1) When p3(1 — daA)/(d3)) > p3zs — L or p3a(1 —daA)/(d3h) = p33 — 1 > 1+ p3p —
P33, all solutions of (1.1) blow up in a finite time for any u;o(x) >0, £0 (1 <i <3).

(By) When p3(1 —daA) /(ds)) < 1+ p3p — p33, solution of (1.1) blows up in a finite time
for suitable large u;o(x) (1 <i < 3), and exists globally with uniform bounds for suitable
small u;o(x) (1 <i <3).

(B3) When py; — 1 = p3(1 — dy))/(d3)) < 1 + psy — p3s, solution of (1.1) blows up
in a finite time for suitable large u;o(x) (1 <i < 3), and exists globally for small u;o(x)
1=<i<3).

(C) Suppose both the above assumptions and the conditions of Theorem 3 and Theorem 4
do not hold, then solution of (1.1) blows up in a finite time for suitable large u;o(x) (1 <
i <3), and exists globally for small u;o(x) (1 <i <3).
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Remark 4 1t is not difficult to see that, when d, = ds = 1, conditions in (A3) are equivalent
to 2/3 <Xi <1 and pyp =1+ px(l — A)/A, and the conditions in (B3) are equivalent to
2/3 <X <1and p33 =1+ p3(1 — A)/A. Therefore, Theorem 5 answers the open problem
in [22].

Proof of Theorem 5 Let (u, uy,u3) be any non-negative solution of problem (1.1), then
ui(x,t) >0 (1 <i<3)forall (x,7) € 2 x (0, T) with the maximal existence time T for
(uy, un, us3), and (u,, u3) satisfies (3.17). Note that if (u,,u3) blows up in a finite time,
obviously, (u, uy, u3) blows up in a finite time, and if (u, u3) exists globally, then from
the first equation of (1.1) we know that u; (x, t) exits globally for small u¢(x), and so does
(u1, uy, u3). Hence, in the following we only need to check whether (u,, u3) exists globally
for all cases other than case (Cs) which will be discussed independently.

We first demonstrate case (A) and case (B). Under the help of assertion (i) in Lemma 5
and arguments of paper [22], we are going to prove case (A), and case (B) can be verified
similarly.

Blow-up results in case (A). Notice that u3 satisfies

usz, — dsAusz = us, xef2, t>0,
usz(x,t) =0, xe€oa, t>0,
u3(x,0) =uz(x) >0,#20 x €.

By the maximum principle we can suppose without loss of generality that uzo(x) > ep(x)
for some ¢ > 0. Thus, u3(x,t) > eexp{(l —dsM)t}p(x), and

Uy — daAuy > P exp{paz (1 — dsM)t}pP3 ()ud?, x e 2, 1> 0,
uy(x,t) =0, X€NR, t>0,
usz(x,0) =uy(x) >0,#0, xef.

Put D=2, d=d,, \p=2A, k =¢eP3, /3 = p23(1 —d3)u), b= P23 and o = P2 — 1 in
Lemma 5, then assertion (i) of Lemma 5 and the comparison principle for single equation
show that u, (x, t) satisfies all blow-up results in (A).

Global existence results in case (A). From problem (G) and the problem satisfied by u3,
it is know that u3(x, t) exists globally for any nonnegative u3((x). Then, similar as analysis
in the beginning of this proof, global existence of u,(x,t) for small u,y(x) follows from
(3.17). Therefore, (u;, u3) exists globally for small u,y(x) and u3o(x).

When py3(1 — ds))/(daA) < pr — 1, analogously as above it can be concluded that
us(x,t) <exp{(l — dsA)t}p(x) provided that uszo(x) < ¢(x). By p3 > 0, it leads to

uy — drAuy <exp{px(l —dsMtjus®,  (x,1) €2 x (0,T).

As py3(1 —dsA) < (prp2 — 1)dsA, there must be a constant 0 < 6 < dyA with py3(1 —d3)) <
(p22 — 1)8. For such 6, by taking a positive constant & < (doA — 8)"/P2~D 3 direct compu-
tation shows that i, (x, t) = ee " ¢ (x) satisfies

ity — dy Aty > exp{ po3(1 — dsM)t}iub?,  x €2, 1> 0.
From the comparison principle it follows that u, < u; if uy9(x) < e@(x) in £2. The defini-
tions of it5, ¢(x) and & imply that u,(x, t) < (dyr)"/ P27 D,

The next thing left to do is to prove case (C). By going through all conditions with
respect to p;; in Theorem 3, Theorem 4 and case (A) and (B) in Theorem 5, conditions in
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case (C) with respect to p;; are as follows: (Cy) px» > 1, ps3 =1and p3 > 0; (C2) p > 1,

P33 #1;(C3) p3s> 1, ppp=1and py > 0; (Cy) p33 > 1, p2a <15 (Cs) p1y > 1, ppn <1
and p33 < 1.
Global existence results in cases (C1)—(C4). Define

i =L(1+¢x), x€R,1>0, i=273,

where positive constants ¢; are determined later, and function ¥ (x) is fixed by (3.2) which
possesses property (3.3). Note that P = P, implies pp; = p3; = 0. A series of calculations
derive

i —di Ay > uy?ul®, xe€f2,1>0, i =23,

provided that

1— Int, > Inl; + + In(1+ L),
{( P2)Ints > pr3Inds + (p2 + p23) In( ) (3.20)

(1 = p33)Inds3 > p3Inds + (p32 + p33) In(1 + L).
For case (C), we select constants 0 < ¢; < 1 (2 <i < 3) satisfying

_ln32=max{ p32+p33’ p22+p123 }ln(l +L), =1,

P32 P2 —

then estimate (3.20) holds. For case (C;), when p3; > 1, constants 0 < ¢; <1 (2 <i <3)
satisfying

_ (p22 + p23)In(1 + L)
pn—1

_ (p2+ p33)In(1 + L)

—lnﬂz
p3—1

, —1n€3

make estimate (3.20) hold, and when p33 < 1, if we take 0 < £, < 1 and ¢35 > 1 such that

[(1 = p33) p22 + p23(1 + p32)]In(1 + L)
(p22 — D(1 — p33)

_ (pn+p3)In(1+L)

, In K}
1= ps;

—lnéz =

estimate (3.20) follows. For case (C3) and case (C4), we can verify the validity of estimate
(3.20) by applying similar arguments as in case (C;) and case (C). Therefore, the compar-
ison principle and estimate (3.20) show

u;(x,t) >ui(x,t), Vxef2,t>0,i=2,3

provided that u;o(x) < £;(1 4+ ¥ (x)) (2 <i < 3)in §2 for such ¢; fixed above. It implies that
(un, usz) exists globally.

Global existence results in cases (Cs). Note that p,; <1 and p33 <1 in this case. When
(1 — p2)(1 — p33) = pa3p32, it has been shown in the proof Theorem 3 that (u;, u3) exists
globally for any u;0(x) > 0,£ 0 (2 <i < 3), and when (1 — p2)(1 — p33) < pa3p32, it has
been shown in the proof Theorem 4 that (u,, u3) exists globally for small u;o(x) > 0,0
2<i<3).

Blow-up results in case (C). Similar as in proof Theorem 2 (Blow-up results), from
ujo(x) > @(x) in £2 we deduce that

ui(x, 1) >e*o(x), (x,1)eR2x[0,T), 1<i<3
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with the maximal existence time 7" of (u1, u,, u3). When p;; > 1, we obtain

uy, —diAuy > exp{—A(dapin +d3pi3)t}pPetPybii . x e, 0<t<T,
uy(x, 1) =0, x€df2,0<t<T,
upp(x) > @(x) >0, #£0, xen.

In view of assertion (i) of Lemma 5 and the comparison principle for single equation, we
find that u; blows up in a finite time 7T for large u,0(x), and so does (u;, uy, u3). When
P2 > 1 or ps3 > 1, by applying similar arguments to u, or uz, we also find (u, u,, u3)
blows up in a finite time 7 for large (u10(x), uz0(x), u3o(x)). Therefore, we conclude this
theorem. O

3.2.2 When P = P,

By proceeding our discussion as in Sect. 3.2.1, we see that behaviors of solution for prob-
lem (1.1) with P = P, and pj;py; = 0 are similar to that for P = P;. So, from now on
we suppose, unless otherwise noted, that pjopy; # 0. By P = P, it follows that solution
(uy, uy, us3) of problem (1.1) is bound to satisfy

uy —dsAus=ul®, xe,1>0,

usz(x,t) =0, x€df2, t>0, (3.21)
u3(x,0) =uz(x) >0, xe€5.

Theorem 6 Let P = P, and ps3 # 1. If all the principal minor determinants of A are non-
negative, then all solutions of (1.1) exist globally.

Proof Let (uy,u;,us) be any solution of problem (1.1). From the assumptions, p3; < 1
follows. Hence, by virtue of the comparison principle for a single equation we have that for
any uzo(x) =0,

ws(x, 1) < [(1 = p)t +a] " = c(r), Vxe,1>0, (3.22)
where a = 1 + maxg u3o(x). Then from problem (1.1) we find that

uy <diAu; + (C@)P3uluf?, xe 2, t>0,

u;(x,t)=0, x €382, te(0,T), (3.23)
u;i(x,0) =ujp(x) >0, xefR,i=12.

As all the principal minor determinants of A are non-negative and P = P,, we have

pii<1,pn=<1 and (1— pi)(1— pn)=>papi.

Define
a=w", xef2,t>0,i=1,2,

where positive constants 0 < ¢; < 1 satisfy
(I =pi)/pz=t/4, (= pn)/pu =i/t
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when pi2p21 # 0 (the case pjopr; = 0 is trivial), and w(x, ¢) is the unique nonnegative
solution to problem (G) with

d pi3 1/
d = max di. k(t)_&%m(ca)) Lo=1+ ) (?Ezguio(x)) .

I<i<2

The remaining part is exactly the same as that in the proof of Theorem 3, and we will arrive
at the conclusion: (u1, u,) exists globally. Therefore, by remembering that u3 exists globally,
(uy, uy, usz) exists globally. O

Theorem 7 Let P = P, and p33 # 1. If conditions of Theorem 6 do not hold, then solution
of (1.1) exists globally for small initial data, and blows up in a finite time for large initial
data.

Proof Let (u, us, u3) be any solution of problem (1.1). When p33 # 1, from (3.2) and (3.3),
it can be deduced by the comparison principle that

uz(x, 1) < l3(14+ ¢ @) <l(1+L)=:C, VxeR,t>0 (3.24)
provided that
b= (1+ L)/ () < 6(1+ 9 (x), Vxef. (3.25)

By P = P, it is easy to obtain
Al=(—py || P PR
| —pn 1—p»

We are going to carry out our discussion according to two cases.

Case 1. P33z < 1, max{pll, pzz} < 1 and (1 - pll)(l - [)22) < pPr2pai. It follows that
|A| < 0. As above, us(x, t) exists globally for any u3(x).

Blow-up part. we go all the analysis procedure of Case 2 in the proof of Theorem 2
(Blow-up results), and the desired conclusion in this theorem is derived. The only thing
which need us do is to change the role of u; and p;; with each other.

Global existence part. Let ¢ (x) and L be as in (3.2) and (3.3), respectively. For 1 <i <2,
put

ui(x, ) =6(1+vy @), (x,1) € x[0,00),

where constants ¢; are to be fixed later. By computation, it is not difficult to see from (3.24)
that

iy > d; Adi; + @M EDPCP, xe 2,10, i=1,2
hold, provided that
(I =pi)Ing; — pipInty > pi3InC + (p1y + pi2 + pi13) In(1 4+ L), (3.26)
—parlné; + (1 — pp)Iné; > ppInC + (pa1 + p22 + p23)In(1 + L). (3.27)

As p11 <1, ppp <1land (1 — p11)(1 — p2) < p12p21, by directly solving we make sure the
existence of positive constants £; and ¢, such that (3.26) and (3.27) hold. Obviously,

ui(x,t)=4; >0=u;(x,t), V(x,1) €082 x(0,00), 1 <i<2.
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Therefore, if

wio(x) <itj(x,0)=4;(1+vyx), Vxef, 1<i<2,
then Proposition 1 asserts that

wi(x, 1) <it;(x,1), Y(x,1)e2x[0,00), 1<i<2,

which joining with (3.24) asserts that (u;, u, u3) exists globally.

Case 2. At least one of the first order principal minor determinants of A is negative. In
the following we divide our discussion into two cases.

(A) p33 > 1. By (3.21), it is well known to us all that u;(x, #) blows up in a finite time
for suitable large u30(x), and from (3.24), u3(x, t) exists globally with an uniform bounds
for all u3o(x) satisfying (3.25). Therefore, solutions (u;, u,, u3) of problem (1.1) blow up in
a finite time for large u;o(x) (1 <i <3).

In the following we only need to analysis behaviors of (u;, u,, u3) for small u;o(x) (1 <
i <3).Inview of (3.24), (3.23) holds with C(¢) = C. From assumptions of this theorem and
p12p21 # 0, one of the following must happen:

(A)) max{p;, p} <1 and (1— p;)(1— pn)=> prp.
(A2) max{pi, pp} <1 and (11— p)—pn)<pipi.
(A3) max{pii, pn}>1(pi2 =0, pyy =0and p1»py # 0 imply pi» > Oand py; > 0).

Therefore, following proofs of Theorem 3, Theorem 4 and Theorem 5, by Proposition 1 we
know that solution (u1, u;) to problem (3.23) exists globally for small initial data, and so
does (Lt] , U, I/t3)‘

(B) p33 < 1 and max{p;;, p2n} > 1. As u3(x,t) has global bounds for any u3y(x) sat-
isfying (3.25). Hence, blow-up of (uy, u;, u3) depends on that of (u;, u,). As above, from
(3.23) with M(T) = C we conclude that solution (u, u,) exists globally for small initial
data, and thus, (¢, us, u3) exists globally for small u;o(x) (1 <i < 3).

In the case of large u;o(x) (1 <i < 3), we may think that u;o(x) > ¢(x) (i =2,3). In
view of max{pi1, p»n} > 1, p1 > 0 and p,; > 0, we may suppose without loss of gen-
erality that p;; > 1. Then, we follow analysis exactly the same as Case 3 in the proof of
Theorem 2 (Blow-up results), and in the final we will certainly arrive at the conclusion that
uy(x,t) blows up in a finite time for suitable large uo(x). Therefore, (u, u,, u3) blows up
in a finite time for large u;o(x) (1 <i <3). We complete this theorem. O

Theorem 8 Let P = P, and ps3 = 1. If all the principal minor determinants of A are non-
negative, then all solutions of (1.1) exist globally.

Proof Let (uy, u,, u3) be any solution of problem (1.1). From p33 = 1 and (3.21), by virtue
of the comparison principle for a single equation we have that for any u3o(x) > 0,

uz(x,t) <ae' =:C(t), a=1+maxus(x), Vx € 2,1>0,
2

then (3.23) follows. Going along with arguments in the proof of Theorem 6 we arrive at
conclusions in this theorem. |
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Theorem 9 Suppose P = P, and p3; = 1. Let A be the first eigenvalue of problem (1.3).
Assume p1y <1, pp < 1 and (1 — p11)(1 — pxn) < p12pai. Define

d = min{d,, d,}, B = —d3r)min{py3, px},

p12p21 — (1 = p1)(1 — pxn) ; L+ p21 — pu

9 217

_ 1+ pi2— pxn 1+ pi—pn
pi2pa — (1 = pr)(d — p2n) ; 1+ pa — pu -1
I+ pa1 — pu ' L+ pi2—p2 .

If B/(odA) > 1, then all solutions of (1.1) blow up in a finite time for any u;o(x) >0, #0
(1 <i < 3), and meanwhile, if B/(cd)) <1, then solution of (1.1) blows up in a finite
time for suitable large u;o(x) (1 <i < 3), and exists globally for small u;o(x) (1 <i <3).
Especially, when od). min{l + p12 — p2, 1 + pa1 — p11} > (1 — dsA) max{pi3(1 — px) +
P12P23, P23(1 — p11) + pa1pi1z}, then solution of (1.1) is global bounded for suitable small
ujo(x) (1 <i <3).

Proof The proof is similar as that of Theorem 5, here we omit it. ]

Theorem 10 Assume P = P, p33 = 1 and max{p,,, p»n} > 1. Then the following conclu-
sions hold.

(1) If p11 > 1, then solution of (1.1) blows up in a finite time for any u;o(x) >0, £ 0
(1 <i <3)when pi13(1 —d3X) — pradod > (p11 — Ddi A or when pi3(1 — ds)) — pradoh =
(p11 — DdiaA > (1 4 pio + p13 — p11)diA; solution of (1.1) blows up in a finite time for
suitable large uyo(x) when pi3(1 — ds)) — pradah < (p11 — 1)di A or when pi3(1 —ds)) —
pradrk = (p11 — DdiA < (1 + p1o+ p13z — pr)dih.

(2) If pa > 1, then solution of (1.1) blow up in a finite time for any u;o(x) >0, #£0
(I <i <3)when ps(1 —dsr) — padid > (pr2 — D)dah or py3(1 —d3\) — pardih = (p2n —
Ddoh > (1 4 pa1 + pas — pa)doh; solution of (1.1) blows up in a finite time for suitable
large uz(x) when py3(1 —dsA) — paidih < (p2o — )dah or when pa3(1 —d3)) — paidih =
(P22 — DNdoA < (14 pa1 + p23 — pn)dah.

(3) Suppose that conditions in the above (1) and (2) do not hold. Case (a;) If Ad; >
1 and piaps1 > 0, then solution of (1.1) exists globally with uniform bounds for suitable
small u;o(x) (1 <i <3). Case (az) If p1ap21 =0, then solution of (1.1) exists globally
for small u;o(x) (1 <i <3). Case (a3) If Ad; < 1 and p;p21 > 0, we further assume that
min{pi1, pn} > 1, pis(1 — dsA) — prpdad < (p11 — Ddid and pr3(1 — d3)) — pardih <
(p22 — D)da), then solution of (1.1) exists globally for suitable small u;o(x) (1 <i <3).

Proof Let (11, uy,u3) be any solution of problem (1.1), then u;(x,t) > 0 for all (x,¢) €
2 x (0,T), where T > 0 is the maximal existence time of (1, u,, u3).

Blow-up results. We need only deduce assertion (1), since assertion (2) can be obtained
analogously. Applying arguments as in the proof of Theorem 5, we find that u;o(x) > e@(x)
(1 <i <3) for some ¢ > 0. Thus,

us(x, 1) > eexp{(1 —ada)t}p(x),  ua(x,1) > cexp{—Adatlp(x), Vxef,1>0.
It follows that

uy — dyAuy = gP2¥PBEPREP expl[—Ady p1a 4+ (1 — Ad3) pialtjul", x €2, 1>0,
uy(x,t) =0, x€df2, t >0,
ui(x,0) =up(x), xef.
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Therefore, when p;; > 1, Lemma 5 has proven that u; (x, t) satisfies requirements in asser-
tion (1), and thus, assertion (1) are available for (uy, u,, us).
Global existence. Suppose uzp(x) < ¢(x) in £2, it follows that

uz(x, 1) <exp{(1 —rd3)t}o(x) <exp{(1 —dsM)t}, Vxef,1>0. (328)

Remember that max{p;;, p»} > 1, and we may think without loss of generality that p;; > 1
in the following.
Case (a;): Ad3 > 1 and pjopy; > 0. By (3.28) we have u3(x, t) <1, and hence,

wip — di Au; < ufuf?, xe€en, t>0,
u;(x,)=0, x€d2; u;(x,0)=u;p(x), x€2, 1<i<2.

Let
n=014+vy®), wm=01+vyx), xef,:>0,

where positive constant £ < 1 satisfies

)

—Int > max{
pii—1 P21

(p11+ p12)In(1 + L) (pa1+ pp)In(l + L) }

and the positive constant L and the nonnegative function ¥ (x) are defined by (3.3) and (3.2),
respectively. It is not difficult to check that

I/_l,'t —d,'Aﬁ,' zﬁf“lz?z, X EQ, t>0,
u(x,t)=€>0, up(x,t)=1>0, x€d2,t>0, 1<i<2.

By the comparison principle, we achieve
w;(x,t)>u;(x,1), Vxe2,1r>0,1<i<2,

provided that u1o(x) < £(1 + ¥ (x)) and usp(x) < 1 + ¥ (x) in £2, which illustrates that u;
and u, exist globally with uniform bounds. Recall that u; < 1. Consequently, (1, us, u3)
has an uniform bounds for suitable small initial data.

Case (az): p12p21 = 0. When pj; = 0, from the equation of u; and p,; > 1, by the
comparison principle for the single equation we find that u, (x, t) exists globally for small
u10(x). Then, by the equation of u; it follows that u,(x, t) exists globally for small u5(x).
Hence, (uy, u,, u3) exists globally for suitable small (u1g, t0, uz0). When p,; =0, global
existence of (uy, u,, u3) for suitable small (u19, 19, u3o) can be accomplished similarly.

Case (a3): Adz < 1 and py; ps2; > 0. From (3.28) it follows

uy; —d;Au; < uf“uf” CXp{pig(l — )\d3)[}, xef2, t>0,
u;(x,t) =0, x €92, t >0; u;(x,0) =u;o(x), xe€2, 1<i<2.

As pp(1 —dsA) — pndid < (pn2 — Ddad and pi3(1 — dsd) — pradar < (p11 — DdiA, we
can choose a domain £2 CC £2; such that the first eigenvalue X to the problem (1.3) in £2;
satisfying

pi3(1 —dsd) < [(pi1 — Ddi + prada]Ai,

(3.29)
pu(l —dsh) < [(p — Dy + pardi A,
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and ¢;(x) the corresponding function satisfying maxg ¢;(x) = 1. It is well known that
¢1(x) > 0 in £2;, and there exists a constant ¢ > 0, such that ¢;(x) > ¢ for all x € £2. With
the help of (3.29), there are positive constants 0 < 8; < djA; and 0 < 6, < drA1, such that

(p11 — 101 + p1262 = p13(1 — ds1), D216 + (P22 — D6, > pp3(1 — d3A). (3.30)

For such fixed such 6;, take positive constant § such that

. [In(diA; —6)) In(da2i —62)
In§ = min )

) (3.31)
Pii-1 P21

and define
uy = §exp{—01t}p1(x), iy =exp{—6rt}p;(x), x€82,1t>0,
then direct computation combining with (3.30)—(3.31) gives that for 1 <i <2,

{ﬁ,-, —d;Au; > uy" iy exp{pis(1 — Ada)t}, x€£2,1>0,
ui(x,t)y=¢>0, x €082, t>0.
Therefore,
wi(x,t) >u;(x,1t), Vxef2,t>0,1<i<2,
provided that u0(x) < e and u(x) < ¢ in §2. Consequently, (u;, u,, u3) exists globally

for suitable small initial data. We complete the proof. ]

Remark 5 (1) When d; = d,, from the above proof one can find that there is no need to
require min{p11, pn}>1.

(2) All above results in this paper can be extended to problem (1.1) with m-components
(m=4).

4 Further Discussion

In this section, we do some discussion about results between this paper and papers [16, 17].
In 2003, Li and his collaborator considered the homogeneous Dirichlet boundary value prob-
lem

i = cu (Au,-+]_[u§’”>, x€R, >0 4.1)
j=1
and the homogeneous Dirichlet boundary value problem

j ’

wi—Au=[Jul". xe t>0, 4.2)
j=1

where £2 C R" is a bounded domain, the constants ¢; > 0, o; > 0, p;; >0 (1 <i,j <m).
Under the assumption that u;o(x) (1 <i < m) are continuous, positive and bounded in 2,
for irreducible matrix P = (p;;), their main results are read as follows:
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Theorem B ([16, Theorem 1.1]) If I — P is an M-matrix, then all solutions of (4.2) are
global, and if I — P is not an M-matrix, then there exist both nontrivial global solutions
and nonglobal solutions of (4.2).

Theorem C ([17, Theorem 1.1]) (i) When I — P is a nonsingular M-matrix, all solutions
of (4.1) exist globally (uniformly bounded in time).

(if) When I — P is not an M-matrix, there exist both nontrivial global solutions and
nonglobal solutions of (4.1).

(iii) When I — P is a singular M-matrix, assume that £ = (£,,...,£,) is a solution
of (I — P)e=0with £, >0 (1 <i <m) and minj<j<, £, = 1, and £ = (€y,...,4,) is
also a solution of (I — P)¢ =0 with ;>0 (l<i<m)and maxi<j<m ¢ =1. Let A=
mini<;<, 1/¢; and = maxi<j<m 1/¢;. Then there exist no global nontrivial solutions of
4.1) for A < A, and all solutions of (4.1) exist globally (uniformly bounded in time) for
A > X, where X is defined by (1.3).

Elementary approaches adopted in [16, 17] and our paper are exactly the same (compar-
ison principle and matrix theory). Properties of M-matrix are used in the former, and the
latter cares only about whether all of the principal minor determinants are nonnegative. Just
as stated in Remark 5(2), all results in our paper can be extended to m-system (m > 4). Pa-
pers [16, 17] only focus on irreducible matrix P = (p;;), and we investigate both reducible
matrix P = (p;;) and irreducible matrix P = (p;;). Authors of [16] assumed all diffusion
coefficients are 1 or equal, and our methods are used for different coefficients. Results of
paper [17] do not cover the case o; =0 for all 1 <i < m, which just corresponds to our
problem (1.1).

Now we will directly compare results of three papers. Notice that the former two only
discuss irreducible P which was concerned in Sect. 3.1 of our paper. Let P = (p;j)3x3
and A =1 — P for convenience. We rearrange assumptions about A. By [3, p. 134, (A))],
[3,p. 149, (A))] and [3, p. 156, (1) and (4)], we have

A is an M-matrix <= all the principal minors of A are nonnegative. (4.3)
A is a nonsingular M-matrix <= all the principal minors of A are positive, 4.4)

A is a singular, irreducible M-matrix => |A| =0, and each principal submatrix of A
other than A itself is a nonsingular M-matrix. 4.5)

Thanks to (4.3), by the definition it can be deduced that if A is not an M-matrix, then A
must be

at least one of principal minor determinants of A is negative. (4.6)

Therefore, from above it is easily seen that all results in Theorem B (that is the main
result and also the only result in [16]) are included in our Theorem 1 and Theorem 2 for the
special case d; =1 (1 <i < m). In other words, we generalize results of [16] for different
diffusion coefficients.

Now it comes to paper [17] and this article. When A is an irreducible M-matrix, with
the help of (4.3)—(4.5), one can find that such matrix A certainly meets requirements of our
Theorem 1. In this time, conclusions of Theorem C(i) cohere with that of our Theorem 1, and
conclusions of Theorem C(iii) differ with that of Theorem 1. However, some matrix A in our
Theorem 1, does not satisfy conditions of Theorem C(i) and conditions of Theorem C(iii).
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When A is an irreducible but not M-matrix, we find from (4.6) that A satisfies conditions of
our Theorem 2, and conclusions in these two papers are the same.
In fact, such difference has taken place in their single equation, and we take the critical
case as an example. For the problem
{u,:u”‘(Au-}—u), xef, t>0, a7
ux,t)=0, x€082, t>0; ulx,0)=uyx)>0, xe '

with constant o > 0, it is well known that whether solution exists globally or blows up in
a finite time depends on the first eigenvalue A of —A in £2 with null Dirichlet boundary
condition (refer to [5, 7, 8, 14] for example; see also [17]). More precisely, there exist global
nontrivial solutions for problem (4.7) if and only if A > 1. On the other hand, [21, p. 8§,

Proposition 3] has proved that all solutions of problem
(u,:Au—i—u, xesf, t>0, 48)
ux,t)=0, x€0d2, t>0; ux,0 =up(x)>0,#0, x 2 ’

are global. Hence, any solution of problem (4.8) exists globally no matter how much is the
value of A.

The above analysis clarifies that for problem (1.1) and problem (4.1), assumptions of
theorems and the corresponding behaviors of solutions are different in some cases, which
in return illustrate that the two problems are different and can not discuss them as the same
one problem.
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