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Abstract In this work we are considering the porous elastic system with porous elastic
dissipation and with elastic dissipation. Our main result is to show that the corresponding
semigroup is exponentially stable if and only if the wave speeds of the system are equal.
In the case of lack of exponential stability we show that the solution decays polynomially
and we prove that the rate of decay is optimal. It is worth noting that the result obtained
here is different from all existing in the literature for porous elastic materials, where the sum
of the two slow decay processes determine a process that decay exponentially. Numerical
experiments using finite differences are given to confirm our analytical results. Our numer-
ical results are qualitatively in agreement with the corresponding results from dynamical in
infinite dimensional.

Keywords Porous elasticity · Exponential decay · Polynomial decay

1 Introduction

Since the work of Goodman and Cowin [5] (see also [10]), in which a continuum theory of
granular materials with interstitial voids was established, there have appeared many signif-
icant studies for various elastic materials with voids covering applications to many fields,
such as biology materials, soils sciences, petroleum industry, etc.
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With this in mind, let us consider the evolution equations for one-dimensional theories
of porous materials given by {

ρutt = Tx + γ ut ,

Jφtt = Hx + G.
(1.1)

Here T is the stress, H is the equilibrated stress and G is the equilibrated body force.
The variables u and φ are, respectively, the displacement of the solid elastic material and
the volume fraction. The constitutive equations are⎧⎪⎨

⎪⎩
T = μux + bφ,

H = δφx,

G = −bux − ξφ − τφt .

(1.2)

Here ρ, J , μ, γ , b, δ, ξ and τ are the constitutive coefficients whose physical meaning
is well known.

The constitutive coefficients, in one-dimensional case, satisfies

ξ > 0, δ > 0, μ > 0, ρ > 0, J > 0, and μξ ≥ b2. (1.3)

As coupling is considered, b must be different from 0, but its sign does not matter in
the analysis. It is worth noting that γ and τ are nonnegative, that is γ ≥ 0 and τ ≥ 0. The
substitution of constitutive equations (1.2) into the evolution equations (1.1) give us

ρutt − μuxx − bφx + γ ut = 0, in (0,L) × (0,∞), (1.4)

Jφtt − δφxx + bux + ξφ + τφt = 0, in (0,L) × (0,∞). (1.5)

The above system we added the initial conditions

u(x,0) = u0(x), φ(x,0) = φ0(x), ut (x,0) = u1(x),

φt (x,0) = φ1(x), in (0,L)
(1.6)

and Dirichlet-Dirichlet boundary conditions

u(0, t) = u(L, t) = φ(0, t) = φ(L, t) = 0, t > 0, (1.7)

or with Dirichlet-Neumann boundary conditions

u(0, t) = u(L, t) = φx(0, t) = φx(L, t) = 0, t > 0, (1.8)

The system (1.4)–(1.8) is damped by γ ut and τφt in the case when γ > 0 and τ = 0 or
γ = 0 and τ > 0. In this sense, its energy is decreasing with time t .

One of the questions regarding stability of porous elastic system concerns the minimum
dissipation needed to obtain exponential decay. It is interesting to know if the energy is
controlled by an exponential or polynomial function. We therefore, focus on establishing
necessary and sufficient conditions to obtain stability of this system in both cases.

When γ > 0 and τ > 0, then using the same method as in (see [8]), we can conclude that
the system (1.4)–(1.8) is exponentially stable.

The paper is organized as follows. In Sect. 2, we present an overview of the main results
in the literature. In Sect. 3, we study the porous elastic system with porous dissipation. In
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Sect. 3.1, we study the existence and uniqueness of solutions for the system (3.1)–(3.5) using
the semigroup techniques. In Sect. 3.2, we prove that the semigroup S(t) = eAt associated
with the system (3.1)–(3.5) is exponentially stable if and only if ρ

μ
− J

δ
= 0. In Sect. 3.3, we

show that the semigroup S(t) = eAt associated with the system (3.1)–(3.5) decays polyno-
mially and we prove that the rate of decay is optimal. In Sect. 4, we study the porous elastic
system with elastic dissipation. In Sect. 4.1, we study the existence and uniqueness of solu-
tions for the system (4.1)–(4.5) using the semigroup techniques. In Sect. 4.2, we prove that
if the semigroup S(t) = eAt associated with the system (4.1)–(4.5) is exponentially stable if
and only if ρ

μ
− J

δ
= 0. In Sect. 4.3, we show that the semigroup S(t) = eAt associated with

the system (4.1)–(4.5) decays polynomially and we prove that the rate of decay is optimal.
In Sect. 5, we show the numerical results by using finite difference method to confirm our
analytical results.

2 Literature Overview

In recent decades, an increasing interest has been developed to determine the asymptotic
behavior of the solutions for porous elastic systems. For example, in [8] A. Magaña and
R. Quintanilla considered the system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρutt − μuxx − bφx − γ uxxt = 0 in (0,L) × (0,∞),

Jφtt − δφxx + bux + ξφ + τφt = 0 in (0,L) × (0,∞),

u(0, t) = u(L, t) = φx(0, t) = φx(L, t) = 0, t > 0,

(u(x,0),φ(x,0)) = (u0(x),φ0(x)), in (0,L),

(ut (x,0),φt (x,0)) = (u1(x),φ1(x)), in (0,L)

(2.1)

with positive constant γ . They proved that the system (2.1) is exponentially stable using
semigroup arguments due to Liu and Zheng [7]. On the other hand, when we consider the
system obtained for the variables u, φ and θ and we do not assume viscoelasticity (γ = 0),
but we assume porousviscosity (τ > 0), we obtain the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρutt − μuxx − bφx + βθx = 0 in (0,L) × (0,∞),

Jφtt − δφxx + bux + ξφ + τφt − mθ = 0 in (0,L) × (0,∞),

cθt − κθxx + βutx + mφt = 0 in (0,L) × (0,∞),

u(0, t) = u(L, t) = φx(0, t) = φx(L, t) = θx(0, t) = θx(L, t) = 0, t > 0,

(u(x,0),φ(x,0), θ(0, t)) = (u0(x),φ0(x), θ0(x)) in (0,L),

(ut (x,0),φt (x,0)) = (u1(x),φ1(x)), in (0,L).

(2.2)

Here m, β , c, and κ , are the constitutive coefficients whose physical meaning is well
known and θ is the temperature. In [3] Casas and Quintanilla discussed the asymptotic
behavior of system (2.2) and they proved the exponential stability based on the methods
developed by Liu and Zheng [7].

It is worth remembering that the porous elastic system with two independent dampings,
one in the displacement of a solid elastic material and one in the volume fraction is ex-
ponentially stable, independently of any relation between the coefficients speed of wave
propagation (see also [16–18]).
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In the paper [14], M.L. Santos and D.S. Almeida Júnior studied the following porous
elastic system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρutt − μuxx − bφx + γ (x)(ut + φt ) = 0 in Ω × (0,∞),

Jφtt − δφxx + bux + ξφ + γ (x)(ut + φt ) = 0 in Ω × (0,∞),

(u(x,0),φ(x,0)) = (u0(x),φ0(x)), in Ω,

(ut (x,0),φt (x,0)) = (u1(x),φ1(x)), in Ω,

(2.3)

where the localized damping involves the sum of displacement velocity of a solid elastic
material and the volume fraction velocity. Note that, Ω = (0,L) and ω = (L1,L2) with
0 ≤ L1 < L2 ≤ L and γ ∈ L∞(Ω) is a nonnegative function satisfying:

∃γ0 > 0; γ (x) ≥ γ0, a.e. x ∈ ω. (2.4)

The main contribution in [14] has been to provide a necessary and sufficient condition for
the strong stability and the exponential decay of the porous elastic system with the rank-one
localized damping where the boundary of the damping region must contain at least one of
the end points of the spatial domain.

In short, two independent damping, one in each equation cause exponential stability of
the model. On the other hand, the same damping acting on both equations causes exponential
stability of the model. The open question is to know if a single damping acting on a model
equation causes exponential stability, that depend on a relation between the coefficients
speed of wave propagation. This issue will be addressed in this paper.

3 System with Porous Elastic Dissipation: γ = 0 and τ > 0

To start, we take γ = 0. Then the system (1.4)–(1.5) becomes the system

ρutt − μuxx − bφx = 0, in (0,L) × (0,∞), (3.1)

Jφtt − δφxx + bux + ξφ + τφt = 0, in (0,L) × (0,∞). (3.2)

To above system we added the following initial conditions

u(x,0) = u0(x), φ(x,0) = φ0(x), in (0,L), (3.3)

ut (x,0) = u1(x), φt (x,0) = φ1(x), in (0,L). (3.4)

and Dirichlet-Neumann boundary conditions

u(0, t) = u(L, t) = φx(0, t) = φx(L, t) = 0, t > 0. (3.5)

It is worth mentioning some papers in connection with the goal of our article. In [13]
R. Quintanilla studied the system (3.1)–(3.5). The author used the Routh–Hurwitz Theorem
to prove the lack of exponential decay. In another paper, J.M. Rivera and R. Quintanilla
[9] proved that the energy of system (3.1)–(3.5) is controlled by a rate decay of type 1

t
.

Moreover, using a result due to Prüss [12] they improved the polynomial rate of decay by
taking more regular initial data.

Remark 1 Is this dissipation which involves only the second equation sufficient to stabilize
the full system and if so at which rate?
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Importantly, the issue associated with exponential stability and optimal polynomial decay
were not treated in the above papers. These issues will be addressed here.

3.1 Semigroup Settings

In this section we will show that the system (3.1)–(3.5) is well posed using the semigroup
techniques. To do this, let us consider the Hilbert space

H := H 1
0 (0,L) × L2(0,L) × H 1

∗ (0,L) × L2
∗(0,L),

where

H 1
∗ (0,L) = H 1(0,L) ∩ L2

∗(0,L), with L2
∗(0,L) =

{
z ∈ L2(0,L) :

∫ L

0
z(x) dx = 0

}
,

with inner product given by

(U,V )H :=
∫ L

0

(
ρvv̄∗ + Jϕϕ̄∗ + μuxū

∗
x + δφxφ̄

∗
x + ξφφ̄∗ + b

(
uxφ̄

∗ + ū∗
xφ

))
dx, (3.6)

for U = (u, v,φ,ϕ)′, V = (u∗, v∗, φ∗, ϕ∗)′. By hypothesis, we have μξ ≥ b2. Take ξ1 ∈
(0, ξ ] such that μξ1 − b2 = 0. Then, we obtain

(U,V )H ≥ ρ

∫ L

0
|v|2 dx + J

∫ L

0
|ϕ|2 dx + δ

∫ L

0
|φx |2 dx +

∫ L

0

∣∣μ 1
2 ux − ξ

1
2

1 φ
∣∣2

dx

+ (ξ − ξ1)

∫ L

0
|φ|2 dx. (3.7)

This enable us to see clearly that the above (U,V )H defines an inner product on H and
the associated norm ‖ · ‖H is equivalent to the usual one.

If we write U = {u,ut , φ,φt } and U0 = {u0, u1, φ0, φ1} then the system (3.1)–(3.5) can
be rewritten as follows ⎧⎨

⎩
dU

dt
= AU, for t > 0,

U(0) = U0,

(3.8)

where A : D(A) ⊂ H → H is the operator defined by

A :=

⎛
⎜⎜⎜⎝

0 Id 0 0

ρ−1μD2 0 ρ−1bD 0

0 0 0 Id

−J−1bD 0 J−1(δD2 − ξ) −J−1τ

⎞
⎟⎟⎟⎠ , D = d

dx

with

D(A) = H 2(0,L) ∩ H 1
0 (0,L) × H 1

0 (0,L) × H 2(0,L) ∩ H 1
∗ (0,L) × H 1

∗ (0,L).

Furthermore for U = (u, v,φ,ϕ)′ ∈ D(A), a simple computation gives us

Re(AU,U)H = −τ

∫ L

0
|ϕ|2 dx ≤ 0, (3.9)
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from where it follows that A is a dissipative operator.
Then, we have the following result concerning existence and uniqueness of solutions of

the problem (3.1)–(3.5).

Theorem 1 The operator A generates a C0-semigroup S(t) of contraction on H. Thus,
for any initial data U0 ∈ H, the problem (3.1)–(3.5) has a unique weak solution U ∈
C0([0,∞),H). Moreover, if U0 ∈ D(A), then U is strong solution of (3.1)–(3.5), that is,
U ∈ C0([0,∞),D(A)) ∩ C1([0,∞),H).

Proof It easy to see that D(A) is dense in H. Then, using the Lumer-Phillips theorem (see
[11], Theorem 1.4.3), we prove that the operator A generates a C0-semigroup of contractions
S(t) = eAt on H. �

We introduce the energy functional E of equations (3.1)–(3.5). It is given by

E(t) = 1

2

∫ L

0

(
ρ|ut |2 + J |φt |2 + μ|ux |2 + δ|φx |2 + ξ |φ|2 + b(uxφ̄ + ūxφ)

)
dx. (3.10)

It is immediate that the energy functional (3.10) is a monotone non increasing function
of the time t . Indeed, to see this we have the following proposition.

Proposition 1 The solution (u,ut , φ,φt ) of (3.1)–(3.5) with initial data in D(A) satisfies

E′(t) = −τ

∫ L

0
|φt |2 dx ≤ 0, ∀t ≥ 0. (3.11)

Therefore the energy is non increasing.

Proof Multiplying (3.1) by ut and (3.2) by φt , one easily concludes (3.11). �

From (3.11), for τ ≥ 0, we obtain the energy dissipation law

E(t) ≤ E(0), t ≥ 0. (3.12)

It is clear that if τ = 0 we obtain the energy conservation law

E(t) = E(0), t ≥ 0. (3.13)

3.2 Exponential Decay

In this section, we will prove the semigroup associated with the system (3.1)–(3.5) is expo-
nentially stable if and only if ρ

μ
= J

δ
. To do this, we use the following result due to Gearhart-

Herbst-Prüss-Huang [4] for dissipative systems (see also [6, 12]).

Theorem 2 Let S(t) = eAt be a C0-semigroup of contractions on a Hilbert space H. Then
S(t) is exponentially stable if and only if

ρ(A) ⊇ {iλ : λ ∈R} ≡ iR and lim|λ|→∞
∥∥(iλI −A)−1

∥∥
L(H)

< ∞, (3.14)

hold, where ρ(A) is the resolvent set of the differential operator A.
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In order to show exponential decay, first let us consider the product in H of U =
(u, v,φ,ϕ)′ ∈ D(A) with the resolvent equation of A, that is

iλ‖U‖2
H − (AU,U)H = (F,U)H.

Then taking the real part and using inequality (3.9) we obtain

∫ L

0
|ϕ|2 dx ≤ ‖U‖H‖F‖H, (3.15)

where F = (f 1, f 2, f 3, f 4)′ ∈ H.
The resolvent system in terms of coefficients is given by

iλu − v = f 1, (3.16)

iλρv − μuxx − bφx = f 2, (3.17)

iλφ − ϕ = f 3, (3.18)

iλJϕ − δφxx + bux + ξφ + τϕ = f 4. (3.19)

According to Theorem 2, to prove exponential stability of contraction semigroups it is
sufficient and necessary to show that conditions in (3.14) are satisfied. Now, we shall show
that the resolvent is uniformly bounded over the imaginary axis. Thus, we state the following
lemma.

Lemma 1 With the above notations we have

iR⊂ ρ(A). (3.20)

Proof Since A has a compact resolvent, its spectrum is discrete. Thus, to prove (3.20) it
suffices to show that A has no purely imaginary eigenvalue. First we note easily that zero
is not an eigenvalue of A. Then, let λ be a non-zero real number, and let us consider U =
(u, v,φ,ϕ)′ ∈ D(A) with ‖U‖H = 1 and such that AU − iλU = 0.

We shall prove that U = (0,0,0,0)′. Taking the inner product in H from above equation
with U , we obtain

iλ‖U‖2
H − (AU,U)H = 0.

Therefore, from (3.15) with F = 0 we conclude that ϕ = 0. Now, from (3.18) with
f 3 = 0 we get φ = 0. Furthermore, from (3.19) with f 4 = 0 it follows that ux = 0 and
using Poincaré’s inequality result u = 0. Finally, from (3.16) with f 1 = 0 we obtain v = 0.
This implies that U = 0. But this is a contradiction, therefore there is no purely imaginary
eigenvalues. �

Remark 2 In particular this result implies that the semigroup is strongly stable, that is

S(t)U0 → 0,

where S(t) := eAt is the C0-semigroup of contractions on Hilbert space H and U0 is the
initial data.
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Now, we will prove that the system (3.1)–(3.5) is exponentially stable for the condition
ρ

μ
= J

δ
. This proof involves some auxiliary lemmas.

Lemma 2 There exists a positive constant M such that

∫ L

0
|φ|2 ≤ M

|λ|
(‖U‖2

H + ‖U‖H‖F‖H
)
, (3.21)

and

δ

∫ L

0
|φx |2 dx + b

∫ L

0
uxφ̄ dx + ξ

∫ L

0
|φ|2 dx ≤ M‖U‖H‖F‖H + M

|λ| ‖U‖H‖F‖H,

(3.22)

for |λ| large enough.

Proof Multiplying equation (3.18) by φ̄ and integrating on (0,L), we have

λ

∫ L

0
|φ|2 dx =

∫ L

0
ϕφ̄ dx +

∫ L

0
f 3φ̄ dx.

Applying Poincaré and Young inequalities and taking into account the inequality (3.15)
one has the inequality (3.21).

Now, multiplying equation (3.19) by φ̄ and integrating on (0,L), we get

iλJ

∫ L

0
ϕφ̄ dx︸ ︷︷ ︸

:=I1

− δ

∫ L

0
φxxφ̄ dx + b

∫ L

0
uxφ̄ dx + ξ

∫ L

0
|φ|2 dx

= −τ

∫ L

0
ϕφ̄ dx +

∫ L

0
f 4φ̄ dx.

Substituting φ given by (3.18) into I1 and integrating by parts we get

δ

∫ L

0
|φx |2 dx − δ(φxφ̄)

∣∣∣∣
L

0

+ b

∫ L

0
uxφ̄ dx + ξ

∫ L

0
|φ|2 dx

= J

∫ L

0
|ϕ|2 dx + J

∫ L

0
ϕf̄ 3 dx − τ

∫ L

0
ϕφ̄ dx︸ ︷︷ ︸

:=I2

+
∫ L

0
f 4φ̄ dx.

Then, again substituting φ given by (3.18) this time into I2 and using boundary conditions
(3.5) we have that

δ

∫ L

0
|φx |2 dx + b

∫ L

0
uxφ̄ dx + ξ

∫ L

0
|φ|2 dx

≤
(

J + τ

|λ|
)∫ L

0
|ϕ|2 dx +

(
J + τ

|λ|
)∫ L

0
|ϕ|∣∣f 3

∣∣dx +
∫ L

0

∣∣f 4
∣∣|φ|dx.

From inequality (3.15) we conclude the proof of lemma. �
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Lemma 3 There exists a positive constant M such that

μ

∫ L

0
|ux |2 dx + b

∫ L

0
φūx dx + ξμ

b

∫ L

0
|φ|2 dx + δ

(
μ

b
− 1

)∫ L

0
|φx |2 dx

≤ |λ|
∣∣∣∣μδ

b

(
ρ

μ
− J

δ

)∣∣∣∣
∫ L

0
|v||φx |dx + M‖U‖H‖F‖H + M

|λ|
(‖U‖2

H + ‖U‖H‖F‖H
)
,

(3.23)

for |λ| large enough.

Proof Multiplying equation (3.19) by μ

b
(ux + φ) and integrating by parts on (0,L), we have

iλ
Jμ

b

∫ L

0
ϕūx dx + iλ

Jμ

b

∫ L

0
ϕφ̄ dx︸ ︷︷ ︸

:=I3

− δμ

b

(
φx(ux + φ)

)∣∣∣∣
L

0

+ δμ

b

∫ L

0
φx(ux + φ)x dx + μ

∫ L

0
|ux |2 dx + μ

∫ L

0
uxφ̄ dx

+ ξμ

b

∫ L

0
φūx dx + ξμ

b

∫ L

0
|φ|2 dx

= −τμ

b

∫ L

0
ϕ(ux + φ)dx + μ

b

∫ L

0
f 4(ux + φ)dx.

From (3.18) into I3 and using boundary conditions given by (3.5), we obtain

iλ
Jμ

b

∫ L

0
ϕūx dx︸ ︷︷ ︸

:=I4

− Jμ

b

∫ L

0
|ϕ|2 dx − Jμ

b

∫ L

0
ϕf̄ 3 dx + δμ

b

∫ L

0
|φx |2 dx

+ δμ

b

∫ L

0
φxūxx dx + μ

∫ L

0
|ux |2 dx + ξμ

b

∫ L

0
φūx dx + ξμ

b

∫ L

0
|φ|2 dx

= −μ

∫ L

0
uxφ̄ dx − τμ

b

∫ L

0
ϕ(ux + φ)dx + μ

b

∫ L

0
f 4(ux + φ)dx. (3.24)

On the other hand, from (3.16) we have

−iλ

∫ L

0
ūϕx dx −

∫ L

0
v̄ϕx dx =

∫ L

0
f̄ 1ϕx dx,

from where integrating by parts it follows that

iλ

∫ L

0
ūxϕ dx = iλ

∫ L

0
v̄φx dx −

∫ L

0
v̄f 3

x dx −
∫ L

0
f̄ 1

x ϕ dx. (3.25)

Substituting (3.25) into I4, we can rewrite (3.24) as

iλ
Jμ

b

∫ L

0
v̄φx dx − Jμ

b

∫ L

0
v̄f 3

x dx − Jμ

b

∫ L

0
f̄ 1

x ϕ dx + δμ

b

∫ L

0
|φx |2 dx
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+ δμ

b

∫ L

0
φxūxx dx︸ ︷︷ ︸

:=I5

+ μ

∫ L

0
|ux |2 dx + ξμ

b

∫ L

0
φūx dx + ξμ

b

∫ L

0
|φ|2 dx

= Jμ

b

∫ L

0
|ϕ|2 dx − μ

∫ L

0
uxφ̄ dx + Jμ

b

∫ L

0
ϕf̄ 3 dx

− τμ

b

∫ L

0
ϕ(ux + φ)dx + μ

b

∫ L

0
f 4(ux + φ)dx. (3.26)

From (3.17), we have

μ

∫ L

0
ūxxφx dx = −iλρ

∫ L

0
v̄φx dx − b

∫ L

0
|φx |2 dx −

∫ L

0
f̄ 2φx dx. (3.27)

Replacing (3.27) into I5 on equation (3.26), results

iλ
Jμ

b

∫ L

0
v̄φx dx + δμ

b

∫ L

0
|φx |2 dx − iλ

ρδ

b

∫ L

0
v̄φx dx − δ

∫ L

0
|φx |2 dx

− δ

b

∫ L

0
f̄ 2φx dx + μ

∫ L

0
|ux |2 dx + ξμ

b

∫ L

0
φūx dx + ξμ

b

∫ L

0
|φ|2 dx

= Jμ

b

∫ L

0
|ϕ|2 dx − μ

∫ L

0
uxφ̄ dx + Jμ

b

∫ L

0
ϕf̄ 3 dx + Jμ

b

∫ L

0
v̄f 3

x dx

+ Jμ

b

∫ L

0
f̄ 1

x ϕ dx − τμ

b

∫ L

0
ϕ(ux + φ)dx + μ

b

∫ L

0
f 4(ux + φ)dx,

from where after some simplifications it follows that

μ

∫ L

0
|ux |2 dx + ξμ

b

∫ L

0
φūx dx + ξμ

b

∫ L

0
|φ|2 dx + δ

(
μ

b
− 1

)∫ L

0
|φx |2 dx

= iλ
μδ

b

(
ρ

μ
− J

δ

)∫ L

0
v̄φx dx + Jμ

b

∫ L

0
|ϕ|2 dx − μ

∫ L

0
uxφ̄ dx

+ Jμ

b

∫ L

0
ϕf̄ 3 dx + Jμ

b

∫ L

0
v̄f 3

x dx + Jμ

b

∫ L

0
f̄ 1

x ϕ dx

+ δ

b

∫ L

0
f̄ 2φx dx − τμ

b

∫ L

0
ϕ(ux + φ)dx + μ

b

∫ L

0
f 4(ux + φ)dx.

Therefore, with the help of the inequalities (3.15) and (3.21), since it μξ ≥ b2, one has
the conclusion of lemma. �

Lemma 4 There exists a positive constant M such that any solution of system (3.1)–(3.5)
satisfies

ρ

∫ L

0
|v|2 dx ≤ μ

∫ L

0
|ux |2 dx + b

∫ L

0
φūx dx + M‖U‖H‖F‖H. (3.28)
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Proof Multiplying equation (3.17) by ū and integrating by parts on (0,L) we have

iλρ

∫ L

0
vū dx − μ(uxū)

∣∣∣∣
L

0

+ μ

∫ L

0
|ux |2 dx − b(φū)

∣∣∣∣
L

0

+ b

∫ L

0
φūx dx =

∫ L

0
f 2ū dx.

From (3.16) and by boundary conditions (3.5), we get

ρ

∫ L

0
|v|2 dx = μ

∫ L

0
|ux |2 dx + b

∫ L

0
φūx dx − ρ

∫ L

0
vf̄ 1 dx −

∫ L

0
f 2ū dx,

from where we have the conclusion of lemma. �

Theorem 3 The semigroup associated with system (3.1)–(3.5) is exponentially stable if and
only if ρ

μ
= J

δ
.

Proof From Lemmas 2, 3 and 4 we get

‖U‖2
H ≤ M‖U‖H‖F‖H + M

|λ|
(‖U‖2

H + ‖U‖H‖F‖H
)
, ∀U ∈ D(A),

which implies,

‖U‖H ≤ M‖F‖H, ∀U ∈ D(A),

from there the exponential decay holds.
To show that the condition is also necessary we will proceed as follows: we will ar-

gue by contradiction, that is, we will show that there exists a sequence of values (λn) ⊂ R

with limn→∞ |λn| = ∞ and Un = (un, vn,φn,ϕn)
′ for Fn = (f 1

n , f 2
n , f 3

n , f 4
n )′ ⊂ H such that

(iλnI −A)Un = Fn where Fn is bounded in H, however ‖Un‖H tends to infinity.
We choose F ≡ Fn with F = (0, f 2,0,0)′ where f 2 = sin(αλx), with

α =
√

ρ

μ
, λ ≡ λn = nπ

αL
, n ∈N.

Because of the boundary conditions, we can suppose that

u = A sin(αλx) and φ = B cos(αλx),

where A and B depend on λ and will be determined explicitly in what follows. Therefore,
the solutions of system (3.16)–(3.19) is equivalent to finding A and B , such that

(−λ2ρ + μα2λ2
)
A + bαλB = ρ,

bαλA + (−λ2J + δα2λ2 + ξ + iλτ
)
B = 0.

Using definition of α, it results

bαλB = ρ, (3.29)

bαλA +
[
−δ

(
J

δ
− ρ

μ

)
λ2 + ξ + iλτ

]
B = 0. (3.30)
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Solving (3.29), we obtain that B is

B = ρ

bαλ
. (3.31)

Substituting (3.31) into (3.30), we get

A = ρ[δ( J
δ

− ρ

μ
)λ2 − ξ − iλτ ]

b2α2λ2
. (3.32)

Finally, suppose that ρ

μ
�= J

δ
, to obtain

‖Un‖2
H ≥ ρ

∫ L

0
|vn|2 dx = ρ

∫ L

0

∣∣λA sin(αλ)
∣∣2

dx = ρ|λnA|2 L

2
→ ∞, as n → ∞.

Then, applying Theorem 2, our conclusions follows. �

3.3 Polynomial Decay

Now, we prove that the solution of system (3.1)–(3.5) decays polynomially to zero as time
goes to infinity when ρ

μ
�= J

δ
. Moreover, we show that this rate of decay is optimal in the

sense that the rate 1/
√

t cannot be improved. To this end we apply the following result due
to Borichev and Tomilov [2].

Theorem 4 Let S(t) be a bounded C0-semigroup on a Hilbert space H with generator A
such that iR⊂ ρ(A). Then

1

|λ|β
∥∥(iλI −A)−1

∥∥
L(H)

≤ C, ∀λ ∈ R ⇔ ∥∥S(t)A−1
∥∥
L(H)

≤ C

t1/β
. (3.33)

So in order to prove the result of polynomial decay, first we present the following auxil-
iary lemma.

Lemma 5 There exists a positive constant M such that

b

∫ L

0
|v||φx |dx ≤ M|λ|‖U‖H‖F‖H + M‖U‖H‖F‖H + M‖F‖2

H, (3.34)

for |λ| large enough.

Proof From equation (3.19) we have

−iλJ

∫ L

0
ϕ̄(iλφ)dx − iλδ

∫ L

0
φ̄xxφ dx + iλb

∫ L

0
ūxφ dx

+ iλξ

∫ L

0
|φ|2 dx + iλτ

∫ L

0
ϕ̄φ dx = iλ

∫ L

0
f̄ 4φ dx.

Integrating by parts and using boundary conditions (3.5) we get

−iλJ

∫ L

0
ϕ̄(iλφ)dx + iλδ

∫ L

0
|φx |2 dx − iλb

∫ L

0
ūφx dx
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+ iλξ

∫ L

0
|φ|2 dx + iλτ

∫ L

0
ϕ̄φ dx = iλ

∫ L

0
f̄ 4φ dx.

Using (3.16) and (3.18) in the above equation, results

−iλJ

∫ L

0
|ϕ|2 dx − iλJ

∫ L

0
ϕ̄f 3 dx + iλδ

∫ L

0
|φx |2 dx + b

∫ L

0
v̄φx dx

+ b

∫ L

0
f̄ 1φx dx + iλξ

∫ L

0
|φ|2 dx + τ

∫ L

0
|ϕ|2 dx + τ

∫ L

0
ϕ̄f 3 dx

=
∫ L

0
f̄ 4ϕ dx +

∫ L

0
f̄ 4f 3 dx,

from where it follows that

b

∫ L

0
|v||φx |dx ≤ (

J |λ| + τ
)∫ L

0
|ϕ|2 dx + δ|λ|

∫ L

0
|φx |2 dx + ξ |λ|

∫ L

0
|φ|2 dx

+ (
J |λ| + τ

)∫ L

0
|ϕ|∣∣f 3

∣∣dx + b

∫ L

0

∣∣f 1
∣∣|φx |dx

+
∫ L

0

∣∣f 4
∣∣|ϕ|dx +

∫ L

0

∣∣f 4
∣∣∣∣f 3

∣∣dx.

Therefore, from equations (3.15) and (3.22), we have the conclusion of lemma. �

Theorem 5 Let us suppose that δ
J

�= μ

ρ
, then the semigroup associated with system (3.1)–

(3.5) is polynomially stable and

∥∥S(t)U0

∥∥
H ≤ 1√

t
‖U0‖D(A).

Moreover, this rate of decay is optimal, in the sense that decay must be slower than t−
1

2−ε

for any ε > 0.

Proof From Lemmas 2, 3, 4 and equation (3.15), we obtain

‖U‖2
H ≤ C|λ|

∣∣∣∣ δ

J
− μ

ρ

∣∣∣∣
∫ L

0
|v||φx |dx + M‖U‖H‖F‖H + M

|λ| ‖U‖H‖F‖H,

where C is a positive constant.
Combining the above inequality with the Lemma 5, since it δ

J
�= μ

ρ
, we get

‖U‖2
H ≤ M|λ|2‖U‖H‖F‖H + M|λ|‖U‖H‖F‖H + M‖U‖H‖F‖H

+ M

|λ| ‖U‖H‖F‖H + M|λ|‖F‖2
H,

for |λ| large enough, it follows that

1

|λ|2 ‖U‖H ≤ M‖F‖H, ∀U ∈ D(A),
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which is equivalent to ∥∥(λI −A)−1
∥∥
L(H)

≤ M|λ|2.
Then, using Theorem 4 one gets the first conclusion of theorem. To prove that the rate

is optimal we use same ideas of the proof of Theorem 3 (see Theorem 5.3 in [1] for more
details). �

4 System with Elastic Dissipation: γ > 0 and τ = 0

To start, we take τ = 0. Then the system (1.4)-(1.5) becomes the system

ρutt − μuxx − bφx + γ ut = 0, in (0,L) × (0,∞), (4.1)

Jφtt − δφxx + bux + ξφ = 0, in (0,L) × (0,∞). (4.2)

We added to system above the following initial conditions

u(x,0) = u0(x), φ(x,0) = φ0(x), in (0,L), (4.3)

ut (x,0) = u1(x), φt (x,0) = φ1(x), in (0,L), (4.4)

and Dirichlet-Neumann boundary conditions

u(0, t) = u(L, t) = φx(0, t) = φx(L, t) = 0, t > 0, (4.5)

Remark 3 It is important to emphasize that the above system with elastic damping only was
not considered in the literature. Thus, the results obtained in this section are new and which
is a breakthrough for these models.

4.1 Semigroup Settings

We begin with the issue of wellposedness of solutions corresponding to the system (4.1)–
(4.5). Therefore, we have that the solutions of this problem can be generated by means of a
semigroup of contractions. In fact, this semigroup is defined in

H := H 1
0 (0,L) × L2(0,L) × H 1

∗ (0,L) × L2
∗(0,L),

by operator

A :=

⎛
⎜⎜⎜⎝

0 Id 0 0

ρ−1μD2 −ργ ρ−1bD 0

0 0 0 Id

−J−1bD 0 J−1(δD2 − ξ) 0

⎞
⎟⎟⎟⎠ , D = d

dx
,

with inner product given by

(U,V )H :=
∫ L

0

(
ρvv̄∗ + Jϕϕ̄∗ + μuxū

∗
x + δφxφ̄

∗
x + ξφφ̄∗ + b

(
uxφ̄

∗ + ū∗
xφ

))
dx, (4.6)
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for U = (u, v,φ,ϕ)′, V = (u∗, v∗, φ∗, ϕ∗)′. It is worth recalling that this product is equiva-
lent to the usual product in the Hilbert space H.

The domain of A is

D(A) = H 2(0,L) ∩ H 1
0 (0,L) × H 1

0 (0,L) × H 2(0,L) ∩ H 1
∗ (0,L) × H 1

∗ (0,L).

By a standard reduction order method, (4.1)–(4.5) can be rewritten as the first order
evolution equation ⎧⎨

⎩
dU

dt
= AU, for t > 0,

U(0) = U0,

(4.7)

where U = {u,ut , φ,φt } and U0 = {u0, u1, φ0, φ1}.
It is not difficult to see that the operator A is dissipative in the energy space H, that is

Re(AU,U)H = −γ

∫ L

0
|v|2 dx ≤ 0. (4.8)

from where we conclude that ∫ L

0
|v|2 dx ≤ ‖U‖H‖F‖H. (4.9)

From the Lumer–Phillips theorem [11], we have that A is an infinitesimal generator of a
contraction C0-semigroup.

Theorem 6 The operator A generates a C0-semigroup S(t) of contraction on H. Thus,
for any initial data U0 ∈ H, the system (4.1)–(4.5) has a unique weak solution U ∈
C0([0,∞[;H). Moreover, if U0 ∈ D(A), then U is strong solution of (4.1)–(4.5), that is
U ∈ C0([0,∞[;D(A)) ∩ C1([0,∞[;H).

Let the energy E be defined as in Sect. 3.1, that is,

E(t) = 1

2

∫ L

0

(
ρ|ut |2 + J |φt |2 + μ|ux |2 + δ|φx |2 + ξ |φ|2 + b(uxφ̄ + ūxφ)

)
dx.

Thus, the above energy functional is a monotone non increasing function of the time t .

Proposition 2 The solution (u,ut , φ,φt ) of (4.1)–(4.5) with initial data in D(A) satisfies

E′(t) = −γ

∫ L

0
|ut |2 dx ≤ 0, (4.10)

for all t ≥ 0 and γ > 0.

4.2 Exponential Decay

In this section, we will prove the exponential stability of system (4.1)–(4.5) using the con-
dition ρ

μ
= J

δ
, otherwise the system has lack of exponential decay. To start consider the

resolvent equation iλU −AU = F in terms of its components can be rewritten as
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iλu − v = f 1, (4.11)

iλρv − μuxx − bφx + γ v = f 2, (4.12)

iλφ − ϕ = f 3, (4.13)

iλJϕ − δφxx + bux + ξφx = f 4. (4.14)

Now, following Theorem 2 we will show that the resolvent is uniformly bounded over
the imaginary axes.

Lemma 6 With the above notation, we have

iR⊂ ρ(A).

Proof Since (I −A)−1 is compact in H, to prove that iR ⊂ ρ(A) it is enough to show that
A has no purely imaginary eigenvalues. Let us reasoning by contradiction. Let us suppose
that there exists λ ∈R

∗ such that iλ is an eigenvalue with eigenvector U = (u, v,φ,ϕ)′ �= 0
satisfying iλU − AU = 0. From (4.9), with F = 0 we have that v = 0. Then, from (4.11)
we get u = 0. Now, from (4.12) we obtain φx = 0 and using Poincaré’s inequality results
φ = 0. Finally, from (4.13) we get ϕ = 0. Therefore, U = 0 which is a contradiction. �

Lemma 7 There exists a positive constant M such that any strong solution of system (4.1)–
(4.5) satisfies

μ

∫ L

0
|ux |2 dx + ξ

∫ L

0
|φ|2 dx + b

∫ L

0
φūx dx + b

∫ L

0
uxφ̄ dx

≤ C1

∫ L

0
|φx |2 dx + M‖U‖H‖F‖H + M

|λ|
(‖U‖2

H + ‖U‖H‖F‖H
)
, (4.15)

where C1 is a positive constant and for |λ| large enough.

Proof We multiply equation (4.12) by ū and the result integrate by parts on (0,L). Then,
using (4.11), we get

μ

∫ L

0
|ux |2 dx + b

∫ L

0
φūx dx

= ρ

∫ L

0
|v|2 dx − γ

∫ L

0
vū dx + ρ

∫ L

0
vf̄ 1 dx +

∫ L

0
f 2ū dx. (4.16)

Because μξ ≥ b2 we get

μ

∫ L

0
|ux |2 dx + ξ

∫ L

0
|φ|2 dx + b

∫ L

0
φūx dx + b

∫ L

0
uxφ̄ dx

≤ ξ

∫ L

0
|φ|2 dx + μξ

b

∫ L

0
uxφ̄ dx + ρ

∫ L

0
|v|2 dx − γ

∫ L

0
vū dx

+ ρ

∫ L

0
vf̄ 1 dx +

∫ L

0
f 2ū dx.
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Now, we integrate by parts and we use equation (4.11). Then, applying Poincare’s in-
equality, we have that

μ

∫ L

0
|ux |2 dx + ξ

∫ L

0
|φ|2 dx + b

∫ L

0
φūx dx + b

∫ L

0
uxφ̄ dx

≤ C1

∫ L

0
|φx |2 dx +

(
ρ + γ

|λ|
)∫ L

0
|v|2 dx + b

|λ|
∫ L

0
|v||φx |dx + b

|λ|
∫ L

0

∣∣f 1
∣∣|φx |dx

+
(

ρ + γ

|λ|
)∫ L

0
|v|∣∣f 1

∣∣dx +
∫ L

0

∣∣f 2
∣∣|u|dx,

where C1 is a positive constant. Therefore, from inequality (4.9), we conclude the proof of
lemma. �

The next lemma gives the important relation between the coefficients for obtaining the
necessary and sufficient condition for exponential stability of the system (4.1)–(4.5).

Lemma 8 There exists a positive constant M such that

δ

2

∫ L

0
|φx |2 dx ≤ |λ|

∣∣∣∣μδ

b

(
J

δ
− ρ

μ

)∣∣∣∣
∫ L

0
|v||φx |dx + M‖U‖H‖F‖H + M

|λ| ‖U‖H‖F‖H,

(4.17)

for |λ| large enough.

Proof We multiply (4.14) by μ

b
ūx and the result we integrate by parts on (0,L) to obtain

iλ
Jμ

b

∫ L

0
ϕūx dx + δμ

b

∫ L

0
φxūxx dx + μ

∫ L

0
|ux |2 dx + ξμ

b

∫ L

0
φūx dx

= μ

b

∫ L

0
f 4ūx dx. (4.18)

From (4.12), we have that

μ

∫ L

0
ūxxφx dx = −iλρ

∫ L

0
v̄φx dx − b

∫ L

0
|φx |2 dx + γ

∫ L

0
v̄φx dx −

∫ L

0
f̄ 2φx dx.

(4.19)

Substituting (4.19) in (4.18), we obtain

iλ
Jμ

b

∫ L

0
ϕūx dx − iλ

δρ

b

∫ L

0
v̄φx dx − δ

∫ L

0
|φx |2 dx + δγ

b

∫ L

0
v̄φx dx

+ μ

∫ L

0
|ux |2 dx + ξμ

b

∫ L

0
φūx dx − γ

b

∫ L

0
f̄ 2φx dx = μ

b

∫ L

0
f 4ūx dx. (4.20)

Now, from (4.11) and (4.13), we can get

iλ

∫ L

0
ūxϕ dx = iλ

∫ L

0
v̄ϕ dx −

∫ L

0
f̄ 1

x ϕ dx −
∫ L

0
v̄f 3

x dx. (4.21)
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Then, substituting (4.21) in (4.20), it results

δ

∫ L

0
|φx |2 dx = iλ

δμ

b

(
J

δ
− ρ

μ

)∫ L

0
v̄φx dx + μ

∫ L

0
|ux |2 dx + ξμ

b

∫ L

0
φūx dx︸ ︷︷ ︸

:=I6

+ δγ

b

∫ L

0
v̄φx dx −

∫ L

0
f̄ 1

x ϕ dx − γ

b

∫ L

0
f̄ 2φx dx

−
∫ L

0
v̄f 3

x dx − μ

b

∫ L

0
f 4ūx dx. (4.22)

From (4.16) we have that

I6 ≤ C2

(∫ L

0
|v|2 dx −

∫ L

0
vū dx +

∫ L

0
vf̄ 1 dx +

∫ L

0
f 2ū dx

)
, (4.23)

where C2 is a positive constant. Then, replacing (4.23) into (4.22) and using Young’s in-
equality, we get

δ

2

∫ L

0
|φx |2 dx ≤ |λ|

∣∣∣∣μδ

b

(
J

δ
− ρ

μ

)∣∣∣∣
∫ L

0
|v||φx |dx +

(
C2 + C2

|λ| + δ2γ 2

2b2

)∫ L

0
|v|2 dx

+
(

C2 + C2

|λ|
)∫ L

0
|v|∣∣f 1

∣∣dx + C2

∫ L

0

∣∣f 2
∣∣|u|dx +

∫ L

0

∣∣f 1
x

∣∣|ϕ|dx

+ γ

b

∫ L

0

∣∣f 2
∣∣|φx |dx +

∫ L

0
|v|∣∣f 3

x

∣∣dx + μ

b

∫ L

0

∣∣f 4
∣∣|ux |dx.

Therefore, from (4.9) one has the conclusion of lemma. �

Lemma 9 There exists a positive constant M such that

J

∫ L

0
|ϕ|2 dx ≤ δ

∫ L

0
|φx |2 dx + ξ

∫ L

0
|φ|2 dx + b

∫ L

0
uxφ̄ dx + M‖U‖H‖F‖H. (4.24)

Proof Multiplying (4.14) by φ̄ and integrating by parts on (0,L), we get

iλJ

∫ L

0
ϕφ̄ dx + δ

∫ L

0
|φx |2 dx + b

∫ L

0
uxφ̄ dx + ξ

∫ L

0
|φ|2 dx =

∫ L

0
f 4φ̄ dx. (4.25)

Then, using (4.13) in equation (4.25), we obtain

J

∫ L

0
|ϕ|2 dx = δ

∫ L

0
|φx |2 dx + b

∫ L

0
uxφ̄ dx + ξ

∫ L

0
|φ|2 dx

−
∫ L

0
ϕ̄f 3 dx −

∫ L

0
f 4φ̄ dx,

from where, using (4.9) we have the conclusion on lemma. �

Theorem 7 The semigroup S(t) = eAt associated with system (4.1)–(4.5) is exponentially
stable if and only if ρ

μ
= J

δ
.
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Proof From Lemmas 7, 8 and 9 we obtain

‖U‖2
H ≤ M‖U‖H‖F‖H + M

|λ|
(‖U‖2

H + ‖U‖H‖F‖H
)
, ∀U ∈ D(A),

for |λ| large enough, we conclude that

‖U‖H ≤ M‖F‖H, ∀U ∈ D(A).

From there the exponential decay holds.
To show that the condition is also necessary let us assume that there exists U ∈ H

such that ‖U‖H �= 0. Without loss of generality we can take f 1 = f 2 = f 3 = 0 and
f 4 = cos(αλx), where

α =
√

J

δ
, λ ≡ λn = nπ

αL
, n ∈N.

Now taking into account the boundary conditions given in equation (4.5), we can suppose
that

u = A sin(αλx) and φ = B cos(αλx).

Therefore, system (4.11)–(4.14) is equivalent to(−λ2ρ + μα2λ2 + iλγ
)
A + bαλB = 0, (4.26)

bαλA + (−λ2J + δα2λ2 + ξ
)
B = J, (4.27)

from where, using the definition of α, we obtain

A = − Jbαλ

[μξ( J
δ

− ρ

μ
) − b2α2]λ2 + iξλγ

, B = J [μ(J
δ

− ρ

μ
)λ2 + iλγ ]

[μξ( J
δ

− ρ

μ
) − b2α2]λ2 + iξλγ

.

From where, since that ρ

μ
�= J

δ
and μξ ≥ b2, we have

‖Un‖2
H ≥ J

∫ L

0
|ϕn|2 dx = J

∫ L

0

∣∣λB cos(αλ)
∣∣2

dx = J |λnB|2 L

2
→ ∞, as n → ∞.

Therefore, we conclude the proof of theorem. �

4.3 Polynomial Decay

Now, we prove that the solution of system (4.1)–(4.5) decays polynomially to zero as time
goes to infinity when ρ

μ
�= J

δ
.

Lemma 10 There exists a positive constant M such that

∫ L

0
|v||φx |dx ≤ M|λ|‖U‖H‖F‖H + M

|λ| ‖U‖H‖F‖H + M

|λ|2 ‖U‖H‖F‖H. (4.28)

for |λ| > 1 large enough.
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Proof We note that, by using Young’s inequality, the following inequality holds

∫ L

0
|v||φx |dx ≤ |λ|

2

∫ L

0
|v|2 dx + 1

2|λ|
∫ L

0
|φx |2 dx, (4.29)

for |λ| > 0. Furthermore, from Lemma 8, we have that

∫ L

0
|φx |2 dx ≤ 2|λ|μ

b

∣∣∣∣Jδ − ρ

μ

∣∣∣∣
∫ L

0
|v||φx |dx + M‖U‖H‖F‖H + M

|λ| ‖U‖H‖F‖H

≤ M|λ|2
∫ L

0
|v|2 dx + 1

2

∫ L

0
|φx |2 dx + M‖U‖H‖F‖H + M

|λ| ‖U‖H‖F‖H,

which implies that

1

2

∫ L

0
|φx |2 dx ≤ M|λ|2

∫ L

0
|v|2 dx + M‖U‖H‖F‖H + M

|λ| ‖U‖H‖F‖H. (4.30)

Then, substituting (4.30) into (4.29), we get

∫ L

0
|v||φx |dx ≤ M|λ|

∫ L

0
|v|2 dx + M

|λ| ‖U‖H‖F‖H + M

|λ|2 ‖U‖H‖F‖H.

From inequality (4.9) we conclude the proof of lemma. �

Theorem 8 If ρ

μ
�= J

δ
then the semigroup associated with system (4.1)–(4.5) satisfies

∥∥S(t)U0

∥∥
H ≤ ‖U0‖D(A).

Moreover, this rate of decay is optimal, in the sense that decay must be slower than t−
1

2−ε

for any ε > 0.

Proof To prove this result we suppose that ρ

μ
�= J

δ
and we combine Lemmas 7, 8, 9 and 10.

After that, we use the same ideas as in the proof of Theorem 5. Therefore it will be omitted
here. The proof is complete. �

5 Numerical Approach

In this section we focus on numerical-computational aspects of systems (3.1)–(3.2) and
(4.1)–(4.2). We consider a numerical scheme using finite difference and we reproduce nu-
merically the analytical results established on exponential decay. We are concerned mainly
on reproducing the results reached in Theorems 3 and 7. That is to say, if ρ

μ
= J

δ
holds, then

the dissipative systems treated here get the exponential decay of solutions. Otherwise, we
have lack of exponentially stable.

Here we study the problems in a single system, which takes into account both γ ut and
τφt dissipations. Then, we choose the constant γ and τ , conveniently, if we want to study
the system (3.1)–(3.2) or (4.1)–(4.2).
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5.1 Fully-Discrete Scheme in Finite Difference

Given K,N ∈N we set �x = L
K+1 and �t = T

N+1 and we introduce the nets

x0 = 0 < x1 = �x < · · · < xK = K�x < xK+1 = (K + 1)�x = L,

t0 = 0 < t1 = �t < · · · < tN = N�t < tN+1 = (N + 1)�t = T ,
(5.1)

with xk = k�x and tn = n�t for k = 0,1, . . . ,K + 1, and n = 0,1, . . . ,N + 1.
Taking an explicit scheme using finite differences, our problem consists of finding

(un
k ,φ

n
k ) satisfying the following numerical scheme

ρ
un+1

k − 2un
k + un−1

k

�t2
= μ

un
k+1 − 2un

k + un
k−1

�x2
+ b

φn
k+1 − φn

k−1

2�x
− γ

un+1
k − un−1

k

2�t
, (5.2)

J
φn+1

k − 2φn
k + φn−1

k

�t2
= δ

φn
k+1 − 2φn

k + φn
k−1

�x2
− b

un
k+1 − un

k−1

2�x
− ξ

φn
k+1 + 2φn

k + φn
k−1

4

− τ
φn+1

k − φn−1
k

2�t
, (5.3)

for all k = 1, . . . ,K and n = 1, . . . ,N . To simplicity our numerical calculations, we consider
the homogeneous boundary conditions given by

un
0 = un

K+1 = 0, φn
0 = φn

K+1 = 0, ∀n = 1,2, . . . ,N, (5.4)

and initial conditions given by

u0
k = u(xk,0), u1

k = u0
k + �tut (xk,0), ∀k = 1, . . . ,K,

φ0
k = φ(xk,0), φ1

k = φ0
k + �tφt (xk,0), ∀k = 1, . . . ,K.

(5.5)

The discrete energy of system (5.2)–(5.5) is given by

En = �x

2

K∑
k=0

[
ρ

(
un+1

k − un
k

�t

)2

+ J

(
φn+1

k − φn
k

�t

)2

+ δ

(
φn+1

k+1 − φn+1
k

�x

)(
φn

k+1 − φn
k

�x

)

+ μ

(
un+1

k+1 − un+1
k

�x

)(
un

k+1 − un
k

�x

)
+ ξ

(
φn+1

k+1 + φn+1
k

2

)(
φn

k+1 + φn
k

2

)

+ b

(
un+1

k+1 − un+1
k

�x

)(
φn

k+1 + φn
k

2

)
+ b

(
φn+1

k+1 + φn+1
k

2

)(
un

k+1 − un
k

�x

)]
, (5.6)

which is a discretization of the continuous energy given by (3.10).
The totally discrete equations are all consistent and of order O(�x2,�t2). Besides, they

converge with �x,�t → 0 if and only if they are stable. For issues related to numerical
stability, we have to make a more elaborate analysis based on references by Wright [19, 20].
At this point, it is worth to mention that discrete energy En given by (5.6) is positive since

that �t ≤ min{�x

√
J
δ
,2

√
J
ξ
,�x

√
2ρ

μ
} (see [15] for details). Thus, this restriction for �t is

a candidate to be stability criterion of system (5.2)–(5.5).
The proposition below establishes the law of dissipation in the numerical context analo-

gous to continuous case (see Propositions 1 and 2).
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Proposition 3 Let (un
k ,φ

n
k ) be a solution of the finite difference scheme (5.2)–(5.5) with

γ, τ > 0. Then for all �t and �x, the discrete rate of change of energy of the numerical
scheme (5.2)–(5.5) at the instant of time tn is given by

En − En−1

�t
= −γ�x

K∑
k=1

(
un+1

k − un−1
k

2�t

)2

− τ�x

K∑
k=1

(
φn+1

k − φn−1
k

2�t

)2

≤ 0, (5.7)

for all n = 1, . . . ,N,N + 1.

Proof As in the continuous case the technical procedure for obtaining the energy En is

analogous to, we use the multipliers at discrete level given by (
un+1
j

−un−1
j

2�t
) and (

φn+1
j

−φn−1
j

2�t
)

and we organize the results in order to make up the difference En − En−1. The proof is too
long and we omit it here. �

5.2 Numerical Simulations

In this section, we focus on the numerical scheme (5.2)–(5.5) and its energy En to illus-
trate by means of the numerical experiments the analytical results established in previous
sections. We emphasize that we are not concerned with issues of numerical convergence
between exact solution and numerical solution and the respective rate of convergence.

For numerical example, we consider L = 1, T = 2 and take in account that μξ ≥ b2. In
the initial conditions we assume that

u(xk,0) = φ(xk,0) = 0,

ut (xk,0) = sin

(
ν
πxk

L

)
, ν ∈ N,

φt (xk,0) = sin

(
ν
πxk

L

)
, ν ∈N.

Fig. 1 Conservative case
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Fig. 2 Full damped

Fig. 3 δ
J

�= μ
ρ

The accuracy of the numerical scheme (5.2)–(5.5) can be seen through of the en-
ergy conservation law. Indeed, taking γ = τ = 0 in (5.7) we obtain that En = E0, n =
1,2, . . . ,N + 1, as we can see in Fig. 1. In Fig. 2 we have the full damped case, in which
we consider γ > 0 and τ > 0. In both cases, we have used δ

J
�= μ

ρ
.

5.3 Case 1: τ > 0 and γ = 0

As we can see in Figs. 3 and 4, the numerical experiments are in qualitative agreement
with the analytical results established in our work. That is to say, if δ

J
= μ

ρ
we obtain the

exponential decay, on the contrary, there exists a lack of exponential decay (see Theorem 3).
Here, in both cases, we take En = En/E0.
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Fig. 4 δ
J

= μ
ρ

Fig. 5 δ
J

�= μ
ρ

5.4 Case 2: τ = 0 and γ > 0

The results of this section are also in agreement with the analytical results obtained in the
previous sections, in particular Sect. 4. As can be seen in the following figures, the energy
decay is slower for cases where we have δ

J
�= μ

ρ
. In Fig. 5, the graphics can be interpreted

as a typical behavior of polynomial decay. Note that after 2 seconds the curve En/E0 tends
to 0.1. On the other hand, for δ

J
= μ

ρ
, in Fig. 6, taking in account the same simulations data,

the decay is more fast.
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Fig. 6 δ
J

= μ
ρ
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