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Abstract We consider the inverse problem of reconstructing the initial condition of a one-
dimensional time-fractional diffusion equation from measurements collected at a single in-
terior location over a finite time-interval. The method relies on the eigenfunction expansion
of the forward solution in conjunction with a Tikhonov regularization scheme to control the
instability inherent in the problem. We show that the inverse problem has a unique solution
provided exact data is given, and prove stability results regarding the regularized solution.
Numerical realization of the method and illustrations using a finite-element discretization
are given at the end of this paper.
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1 Introduction

Fractional partial differential equations are extensions of the classical models for which the
usual time and/or space derivatives are replaced by fractional-order ones. In recent years,
such equations (and fractional calculus in general) have gained increasing currency in the
field of mathematical modeling due to a promising wide range of applications in physics,
engineering, hydrology, polymer sciences, finance, and many other disciplines; see for ex-
ample [7, 13, 15, 20, 23].

In this paper, we consider the one-dimensional time-fractional diffusion equation

∂α
t u(x, t) = ∂xxu(x, t) + f (x), x ∈ I, 0 < t < T, (1)
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subject to the initial and boundary conditions

u(x,0) = ψu(x), x ∈ I,

u(0, t) = 0, 0 < t ≤ T ,

u(l, t) = 0, 0 < t ≤ T ,

(2)

where I = (0, l), and ∂α
t u(x, t) stands for the Caputo fractional derivative of u(x, t) with

respect to the time variable t of order α ∈ (0,1). Such equations can be used, for example,
to model a sub-diffusion process that takes place in a straight pipe (such as a column exper-
iment) of finite length l over the time period 0 ≤ t ≤ T . See also [2, 10, 12, 18] for more
details and concrete examples.

Finding the density u from a given source f and initial distribution ψu is usually termed
as a forward problem. Here we are concerned with the following inverse problem:

Given f (x) and a measurement gm(t) of g(t) = u(x0, t), t ∈ [0, T ], estimate the spa-
tially varying function ψu(x).

Such inverse problem can be used to recover the initial concentration of a contaminant
(or the initial temperature profile in the case of a heat conduction problem) in a sub-
diffusive media which is important for example in environmental engineering, hydrology,
and physics. Here we regard x0 as a fixed interior location at which the measurements are to
be taken.

Nowadays, it can be noticed that one of the most successful and concrete applications of
fractional diffusion equations is to adequately describe anomalous diffusion in a complex
media such as the sub-diffusion (slow propagation) and super-diffusion (fast propagation)
phenomena which have been observed in transport processes in porous media, protein dif-
fusion within cells, transport of ions in column experiments, movement of a material along
fractals, etc., see [2, 10, 12, 15, 18, 23].

Equation (1) and its variations have been extensively examined in the last few decades
from both theoretical and scientific applications points of view. In [22] Sakamoto and Ya-
mamoto established the unique existence of the weak solution and they gave regularity re-
sults and representation formulas for the solution based on the eigenfunction expansion.
Murio [19] developed an implicit finite difference approximation and showed that it is un-
conditionally stable. Agrawal [1] obtained an explicit form of the solution using a finite sine
transform. We also mention [2, 7, 17, 20, 27] and references therein for a non-exhaustive list
of publications in this area.

Several inverse problems related to (1)–(2) have been proposed. We mention briefly some
of the publications in this area. Wang and Liu [25] considered the inverse problem of the de-
termination of the initial distribution from internal measurements of u(·, T ), their problem
is in 2D and they used total variation regularization to obtain stable approximations of the
backward problem. They presented some examples in image de-blurring. In [6], Deng and
Yang proposed a numerical method based on the idea of reproducing kernel approximation
to reconstruct the unknown initial heat distribution from a finite set of scattered measure-
ments of transient temperature at a fixed final time. Ye and Xu [26] formulated the inverse
problem as an optimal control problem to obtain a space-time spectral method. They derived
optimality conditions and some error bounds based on the weak formulation of the forward
problem. Zhang and Xu [28] considered the problem of identifying the time-independent
source term f from the additional boundary data u(0, ·). They established uniqueness re-
sults and deduced analytical solution based on the method of eigenfunction expansion. See
also [4, 14, 16, 21, 24] for other related inverse problems and their mathematical treatment.
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Our proposed method relies on the eigenfunction expansion of the forward solution
which can be deduced from the work by [22]. Then we handle the instability of the in-
verse problem using a Tikhonov regularization scheme; the precise formulation will be
given in Sect. 3. We prove existence and stability theorems concerning the resulted infinite-
dimensional optimization problem. Besides giving theoretical results, we also present nu-
merical examples to show the efficiency of the proposed approach.

This paper is organized as follows. In Sect. 2 we present some definitions and results,
in Sect. 3 we introduce the main problem and results, numerical illustrations using a finite-
element discretization are contained in Sect. 4.

2 Preliminaries

In this section, we present some results and definitions pertaining to this paper. We use (·, ·)
to denote the scalar product on L2(I ), and H 1

0 (I ), H 1(I ), H 2(I ) the usual Sobolev spaces,
e.g. [3], and [9] for other spaces appearing in this paper.

The Caputo fractional derivative of order α of a function u with respect to t is defined as

∂α
t u(x, t) = 1

Γ (1 − α)

∫ t

0
(t − τ)−α ∂u(x, τ )

∂τ
dτ,

where Γ (·) is the Gamma function. More about fractional calculus can be found in [7, 15].
The Mittag-Leffler function of index (α,β) is the complex function defined as

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, α > 0, β ∈ R, z ∈C.

The function Eα,β(z) is an entire function, and so the function Eα,β(t) is real analytic for
t ∈ R, see [15, 20]. For brevity, we write Eα(·) to denote Eα,1(·). We have the following
lemmas:

Lemma 1 Suppose that α ∈ (0,2), β ∈ R, and μ satisfies απ ≤ 2μ ≤ 2 min{π,απ}, then
there exits a positive constant C = C(α,β,μ) such that

∣∣Eα,β(z)
∣∣ ≤ C

1 + |z| , z ∈ C, μ ≤ ∣∣arg(z)
∣∣ ≤ π. (3)

Lemma 2 Let k be a nonnegative integer, then

∫ ∞

0
e−zt tαk+β−1E

(k)
α,β

(±atα
)
dt = k!zα−β

(zα ∓ a)k+1
, �(z) > |a|1/α.

The proofs of the above two lemmas can be found in [20]. From Lemmas 1 and 2, and the
analytic continuation we conclude the following corollary concerning the Laplace transform
of the M-L function Eα(−atα).

Corollary 1 For a > 0 and α ∈ (0,1) we have

∫ ∞

0
e−ztEα

(−atα
)
dt = zα−1

zα + a
, �(z) > 0. (4)
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We conclude with the following result which shows that problem (1)–(2) has a unique
(weak) solution and gives a representation formula in terms of the eigenfunctions of the
operator −∂xx .

Corollary 2 Assuming that α ∈ (0,1), ψu ∈ H 1
0 (I ), and f ∈ L2(I ), then there exists a

unique solution u ∈ L2(0, T ;H 2(I ) ∩ H 1
0 (I )) to (1). Moreover, the solution u has the rep-

resentation

u(x, t) =
∞∑

n=1

(ϕn,ψu)Eα

(−λnt
α
)
ϕn(x) +

∞∑
n=1

λ−1
n (ϕn, f )

(
1 − Eα

(−λnt
α
))

ϕn(x)

in L2(0, T ;H 2(I ) ∩ H 1
0 (I )), where ϕn(x) = √

2/l sin(
√

λn x) and λn = (nπ/l)2.

Proof From [22, Theorem 2.1], we deduce that problem (1)–(2) with f = 0 has the unique
solution

∞∑
n=1

(ϕn,ψu)Eα

(−λnt
α
)
ϕn(x) in L2

(
0, T ;H 2(I ) ∩ H 1

0 (I )
)
,

and from [22, Theorem 2.2], we see that problem (1)–(2) with ψu = 0 has the unique solution

∞∑
n=1

λ−1
n (ϕn, f )

(
1 − Eα

(−λnt
α
))

ϕn(x) in L2
(
0, T ;H 2(I ) ∩ H 1

0 (I )
)
,

and consequently the result follows. �

3 Main Results

Next we formulate and analyze a regularization method for the aforementioned inverse prob-
lem. Throughout the sequel we regard C as a generic constant which may vary in different
places. We shall assume that f ∈ L2(I ) and x0 is a fixed point in I and satisfying the condi-
tions ϕn(x0) 	= 0 for all positive integers n.

To present our optimization approach for handling the inverse problem, consider the
operator At : [0, T ] × H 1

0 (I ) → R given by

Atψ =
∞∑

n=1

ϕn(x0)Eα

(−λnt
α
)
(ϕn,ψ) +

∞∑
n=1

λ−1
n (ϕn, f )

(
1 − Eα

(−λnt
α
))

ϕn(x0).

Since for exact data g we have Atψu = g(t), we want to choose the approximation ψ of ψu

such that the residual ‖Atψ − gm‖ is small. But since inverse diffusion problems are known
to be ill-posed [8], we expect instability in the fractional inverse problem. One possible
remedy to this issue is to use regularization. To this end, we instead consider the optimization
problem

min
ψ∈H 1

0 (I )

‖Atψ − gm‖2
L2(0,T )

+ β‖ψ‖2
H 1(I )

, (5)

where β > 0 is the regularization parameter and ‖ψ‖2
H 1(I )

is the regularizing term. We note
that problem (5) can be identified as a Tikhonov regularized version of the familiar output
least-squares approach.
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First we show that the proposed inverse problem has a unique solution provided exact
data is given.

Theorem 1 Suppose that u and w are the solutions of (1) with initial conditions ψu ∈ H 1
0 (I )

and ψw ∈ H 1
0 (I ), respectively. If u(x0, t) = w(x0, t) for all 0 ≤ t ≤ T , then ψu = ψw in

L2(I ).

Proof Since u(x0, t) = w(x0, t), from Corollary 2 we can conclude that

∞∑
n=1

(ϕn,ψu)Eα

(−λnt
α
)
ϕn(x0) =

∞∑
n=1

(ϕn,ψw)Eα

(−λnt
α
)
ϕn(x0), 0 ≤ t ≤ T .

Let a > 0 be a fixed constant, and consider the series

∞∑
n=1

(ϕn,ψu)Eα

(−λnz
α
)
ϕn(x0), |z| ≥ a.

By bound (3), the fact that |z| ≥ a, and Schwarz inequality we have

∣∣(ϕn,ψu)Eα

(−λnz
α
)
ϕn(x0)

∣∣ ≤ C‖ψu‖L2(I )

1 + λnaα
≤ C

1

n2
,

and consequently, the series is uniformly convergent to an analytic function. Hence, the se-
ries

∑∞
n=1(ϕn,ψu)Eα(−λnt

α)ϕn(x0) is real analytic in t > 0. By real analytic continuation,
we see that

∞∑
n=1

(ϕn,ψu)Eα

(−λnt
α
)
ϕn(x0) =

∞∑
n=1

(ϕn,ψw)Eα

(−λnt
α
)
ϕn(x0), t ≥ 0.

Multiplying both sides by e−zt , and then integrating from 0 to ∞ we get

∫ ∞

0

∞∑
n=1

e−zt (ϕn,ψu)Eα

(−λnt
α
)
ϕn(x0)dt

=
∫ ∞

0

∞∑
n=1

e−zt (ϕn,ψw)Eα

(−λnt
α
)
ϕn(x0)dt.

Since the function t−αe−βt is integrable on the interval 0 < t < ∞ for β > 0, and

∣∣e−t�(z)(ϕn,ψu)Eα

(−λnt
α
)
ϕn(x0)

∣∣ ≤ e−t�(z)
C0‖ψu‖L2(I )

1 + λntα
≤ Ct−αe−t�(z),

the Lebesgue dominated convergence theorem and (4) imply

∞∑
n=1

(ϕn,ψu)ϕn(x0)

zα + λn

=
∞∑

n=1

(ϕn,ψw)ϕn(x0)

zα + λn

, �(z) > 0,

or equivalently

∞∑
n=1

(ϕn,ψu)ϕn(x0)

ξ + λn

=
∞∑

n=1

(ϕn,ψw)ϕn(x0)

ξ + λn

, �(ξ) > 0.
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But since each term in this series is analytic, and
∣∣∣∣ (ϕn,ψu)ϕn(x0)

ξ + λn

∣∣∣∣ ≤ ‖ψu‖L2(I )

�(ξ) + λn

≤ C
1

n2
,

it follows from the Weierstrass M-test that the series converges uniformly to an analytic
function for �(ξ) > 0. Now since

∣∣∣∣ (ϕn,ψu)ϕn(x0)

ξ + λn

∣∣∣∣ ≤ ‖ψu‖L2(I )

�(ξ) + λn

≤ C
1

n2 − 3

for n ≥ 2 and �(ξ) > λ1 − λ2, and the series
∑∞

n=2(n
2 − 3)−1 is convergent, we conclude

that

∞∑
n=2

(ϕn,ψu)ϕn(x0)

ξ + λn

is analytic for �(ξ) > λ1 − λ2. By continuation, we have

(ϕ1,ψu)ϕ1(x0)

ξ + λ1
+

∞∑
n=2

(ϕn,ψu)ϕn(x0)

ξ + λn

= (ϕ1,ψw)ϕ1(x0)

ξ + λ1
+

∞∑
n=2

(ϕn,ψw)ϕn(x0)

ξ + λn

on the set A1 = {ξ ∈ C : �(ξ) > λ1 − λ2, ξ 	= −λ1}. Integrating both sides over any circle
contained in A1 and containing the point z = −λ1 in its interior, then applying the Cauchy
integral theorem, we get

−2π(ϕ1,ψu)i = −2π(ϕ1,ψw)i,

that is, (ϕ1,ψu) = (ϕ1,ψw). Repeating the above argument, we inductively conclude that

(ϕn,ψu) = (ϕn,ψw), n = 2,3, . . . .

Hence, ψu = ψw in L2(I ), which ends the prove. �

The next task is to show that the optimization problem (5) has a unique solution. To this
end, we need the following lemma:

Lemma 3 For a fixed β > 0, the functional Jβ : H 1
0 (I ) →R given by

Jβ(ψ) = ‖Atψ − gm‖2
L2(0,T )

+ β‖ψ‖2
H 1(I )

is weakly lower semicontinuous and strictly convex.

Proof Let ψ ∈ H 1
0 (I ), and let {ψn} be any sequence in H 1

0 (I ) with ψn ⇀ ψ in H 1
0 (I ). In

view of (3) and the Cauchy-Schwarz inequality we have

‖Atψn − Atψ‖2
L2(0,T )

≤ C

∫ T

0

∞∑
k=1

(
1 + k2tα

)−2
∞∑

j=1

∣∣(ϕj ,ψn − ψ)
∣∣2

dt

≤ C

∫ T

0
t−αdt

∞∑
k=1

k−2
∞∑

j=1

∣∣(ϕj ,ψn − ψ)
∣∣2

≤ C‖ψn − ψ‖2
L2(I )

,
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where the last inequality follows from Bessel’s inequality. But since (e.g. Evans [9]) the
space H 1(I ) is compactly embedded in L2(I ), we have ψn → ψ in L2(I ), and consequently

lim
n→∞‖Atψn − Atψ‖L2(0,T ) = 0.

From the reverse triangle inequality and simple manipulations we see that

lim
n→∞‖Atψn − gm‖L2(0,T ) = ‖Atψ − gm‖L2(0,T ).

Thus, since ‖ · ‖ is weakly lower semicontinuous, it follows that

Jβ(ψ) = ‖Atψ − gm‖2
L2(0,T )

+ β‖ψ‖2
H 1(I )

≤ lim
n→∞‖Atψn − gm‖2

L2(0,T )
+ β lim

n→∞
‖ψn‖2

H 1(I )

≤ lim
n→∞

Jβ(ψn),

showing that Jβ is weakly lower semicontinuous.
Next, we show that Jβ is strictly convex. In view of the fact that ‖ · ‖2

H 1(I )
is strictly

convex, it suffices to show that the functional J given by

J (ψ) = ‖Atψ − gm‖2
L2(0,T )

is convex. For all ϕ,ψ ∈ H 1
0 (I ) and λ ∈ [0,1] we have

J
(
λϕ + (1 − λ)ψ

) = ∥∥λ(Atϕ − gm) + (1 − λ)(Atψ − gm)
∥∥2

L2(0,T )

≤ (
λ‖Atϕ − gm‖L2(0,T ) + (1 − λ)‖Atψ − gm‖L2(0,T )

)2

≤ λJ (ϕ) + (1 − λ)J (ψ),

where the last inequality follows from the fact that | · |2 is convex (on R). Thus J is convex,
and so the functional Jβ is strictly convex. �

Now we are ready to prove the existence and uniqueness results for the minimization
problem given in (5).

Theorem 2 The optimization problem (5) has a unique solution ψβ ∈ H 1
0 (I ).

Proof Let ε = infψ∈H 1
0 (I ) Jβ(ψ). By definition of infimum, there exists a sequence {ψn} ⊂

H 1
0 (I ) such that Jβ(ψn) → ε. Clearly {ψn} is bounded in the Hilbert space H 1

0 (I ), and so,
there exists a subsequence of {ψn}, which we still denote by {ψn}, and a ψ̃ ∈ H 1

0 (I ) such
that ψn ⇀ ψ̃ in H 1

0 (I ). Since Jβ is weakly lower semicontinuous we have

Jβ(ψ̃) ≤ lim
n→∞

Jβ(ψn) = ε,

showing that ψ̃ is a solution of the optimization problem (5). The uniqueness follows from
the strict convexity of Jβ , which ends the proof. �

We conclude this section with the following stability result.
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Theorem 3 Suppose that ψu ∈ H 1
0 (I ) and g ∈ L2(0, T ). Let {gn} ⊂ L2(0, T ) be a sequence

of observations of g, and let {εn} and {βn} be two sequences of real numbers such that

1. ε2
n ≤ βn ≤ εn ∀n ∈ N,

2. ‖gn − g‖L2(0,T ) ≤ εn ∀n ∈N,
3. εn → 0 as n → ∞.

For each n ∈ N, let ψn ∈ H 1
0 (I ) be the unique solution of the optimization problem

min
ψ∈H 1

0 (I )

‖Atψ − gn‖2
L2(0,T )

+ βn‖ψ‖2
H 1(I )

.

Then ψn → ψu in L2(I ).

Proof From the definition of ψn, for all n ∈ N we have

βn‖ψn‖2
H 1(I )

≤ ‖Atψu − gn‖2
L2(0,T )

+ βn‖ψu‖2
H 1(I )

= ‖g − gn‖2
L2(0,T )

+ βn‖ψu‖2
H 1(I )

≤ βn + βn‖ψu‖2
H 1(I )

.

Therefore {ψn} is bounded in H 1
0 (I ), and so, there exists a subsequence of {ψn}, which we

still denote by {ψn}, and a vector ψ̃ ∈ H 1
0 (I ) such that ψn ⇀ ψ̃ in H 1

0 (I ). We have

‖Atψn − g‖2
L2(0,T )

≤ 2
(‖Atψn − gn‖2

L2(0,T )
+ ‖gn − g‖2

L2(0,T )

)

≤ 2
(‖Atψu − gn‖2

L2(0,T )
+ βn‖ψu‖2

H 1(I )
+ ε2

n

)

≤ 2
(
ε2
n + βn‖ψu‖2

H 1(I )
+ ε2

n

)
,

and so from the proof of Lemma 3 we see that

‖Atψ̃ − g‖L2(0,T ) = lim
n→∞‖Atψn − g‖L2(0,T ) = 0.

Now the fact that ψu is unique implies ψ̃ = ψu, and since ψn → ψ̃ in L2(I ), we also have
ψn → ψu in L2(I ), which ends the proof. �

4 Numerical Illustration

In this section we will demonstrate how to implement the proposed method in a practical
algorithm. We present several examples to evaluate the proposed algorithm.

4.1 Implementation

In the actual computations we compute the minimizer of (5) from a finite-dimensional sub-
space XN of H 1

0 (I ). That is, the solution of the continuous optimization problem (5) is
approximated by the solution of the discretized optimization problem

min
ψ∈XN

JN
β (ψ) := ‖Atψ − gm‖2

L2(0,T )
+ β‖ψ‖2

H 1(I )
. (6)
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Since XN is finite-dimensional, it is convex and closed. Thus, from the fact that Jβ is weakly
lower semicontinuous, strictly convex, and coercive it follows that the optimization problem
(6) admits a unique solution, which we shall denote by ψβ .

Let {ψ1,ψ2, . . . ,ψN } be a basis for XN , and write the solution ψβ of (6) as

ψβ =
N∑

i=1

Aiψi.

Define the matrices P,B ∈R
N×N , the vector K ∈R

N , and the constant C ∈R by

(B)i,j = (γi, γj )L2(0,T ), (P)i,j = (ψi,ψj )H 1(I ),

(K)i = (γi, gm − F)L2(0,T ), C = ‖F − gm‖2
L2(0,T )

,

where the functions γi and F are defined as

γi(t) =
∞∑

k=1

(ϕk,ψi)Eα

(−λkt
α
)
ϕk(x0),

F (t) =
∞∑

k=1

λ−1
k (ϕk, f )

(
1 − Eα

(−λkt
α
))

ϕk(x0).

Then by simple manipulations, one can show that

JN
β (A) = AT BA − 2AT K + C + βAT PA.

Since the objective functional JN
β is convex, a necessary and sufficient condition for A ∈ R

N

to be a global minimizer is

∇JN
β (A) = 2BA − 2K + 2βPA = 0,

and hence, the vector of coefficients A is obtained by solving the linear system of equations

(B + βP)A = K.

4.2 Examples

In the following examples the approximating subspace XN of H 1
0 (I ) is chosen to be the

space of continuous piecewise linear polynomials with respect to the regular mesh

0 = x0 < x1 < · · · < xN+1 = l

and having zero boundary values. We use the standard basis functions of XN which are
defined by the conditions

ψi(xj ) = δi,j , i = 1, . . . ,N, j = 0, . . . ,N + 1,

where δi,j is the Kronecker delta function.
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Remark 1 It can be shown that XN is in fact a subspace of H 1
0 (I ), and the set {ψ1, . . . ,ψN }

is indeed a basis for XN ; see for example [3, 5]. Instead, one can also use the approximating
subspace

XN = span
{
sin(πx/l), sin(2πx/l), . . . , sin(Nπx/l)

}
,

which we shall not consider in the experiments below.

In these experiments we assume that the measurement gm of u(x0, ·) is contaminated by
an additive Gaussian noise satisfying

‖gm − u(x0, ·)‖L2(0,T )

‖u(x0, ·)‖L2(0,T )

= ε,

where ε represents the noise level in the data. Furthermore, the observation time and position
are taken to be T = 0.1 and x0 = 1/

√
2, respectively.

The regularization parameter β is chosen using the L-curve strategy which is an a pri-
ori rule that chooses the parameter β that corresponds to the corner (point of maximum
curvature) of the parametrized curve

(‖Atψβ − gm‖L2(0,T ),‖ψβ‖L2(I )

)
.

We refer the reader to [8, 11] for more detailed discussion. In the sequel, we designate the
symbol βO to denote optimal choice of the regularization parameter β (using the knowledge
of the exact solution), and βL to denote the parameter obtained by the L-curve criterion.

We note that the ill-posedness of the considered inverse problem is reflected by the large
condition number of the matrix B which was somewhere between 109 and 1013 for most of
the experiments below.

Example 1 In this first example, we consider the fractional order diffusion equation

∂
1/2
t u = ∂xxu + x2 − x, 0 < x < 1, 0 < t < 0.1,

u(x,0) = sin(2πx) − (
x4 − 2x3 + x

)
/12,

u(0, t) = 0,

u(1, t) = 0.

The forward solution is

u(x, t) = exp
(
16π4t

)
Erfc

(
4π2

√
t
)

sin(2πx) + x3

6
− x4

12
− x

12
.

In Table 1 we compare the relative L2-errors for several noise levels using optimal regular-
ization parameter and the L-curve method. The exact solution versus the recovered initial
concentrations are shown in Fig. 1. A plot for the L-curve is shown in Fig. 3(a).
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Table 1 Relative L2 errors for
several noise levels using optimal
regularization parameter and the
L-curve method

Noise level Regularization parameter Relative error

10.0 % βO = 1.4E−07 1.04709E−01

βL = 1.1E−07 1.16601E−01

5.0 % βO = 2.8E−08 5.46318E−02

βL = 3.1E−08 5.60365E−02

1.0 % βO = 6.4E−09 3.40054E−02

βL = 7.6E−09 3.56627E−02

0.5 % βO = 9.6E−10 2.93584E−02

βL = 1.2E−09 3.00965E−02

Fig. 1 Comparison between the exact initial condition ψu and the recovered approximations for different
noise levels

Example 2 In this example we consider the equations:

∂
3/4
t u = ∂xxu + π2 sin(πx), 0 < x < 1, 0 < t < 0.1,

u(x,0) = 2 sin(πx),

u(0, t) = 0,

u(1, t) = 0.

The forward solution is

u(x, t) = E3/4
(−π2t3/4

)
sin(πx) + sin(πx).

In Table 2 we compare the relative L2-errors for several noise levels using optimal regular-
ization parameter and the L-curve method. The exact solution versus the recovered initial
concentrations are shown in Fig. 2. A plot for the L-curve is shown in Fig. 3(b).
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Table 2 Relative L2 errors for
several noise levels using optimal
regularization parameter and the
L-curve method.

Noise level Regularization parameter Relative error

10.0 % βO = 5.1E−05 6.59978E−02

βL = 3.7E−05 7.27418E−02

5.0 % βO = 2.7E−05 3.32345E−02

βL = 8.6E−06 7.05794E−02

1.0 % βO = 4.6E−06 6.88561E−03

βL = 5.3E−07 2.65480E−02

0.5 % βO = 1.8E−06 3.74646E−03

βL = 1.7E−07 9.75352E−03

Fig. 2 Comparison between the exact initial condition ψu and the recovered approximations for different
noise levels

Fig. 3 L-curves corresponding to noise level ε = 0.005. The graphs are plotted in a log-log scale



Recovering the Initial Distribution for a Time-Fractional Diffusion 99

5 Conclusions and Future Work

We have investigated the possibility of recovering initial distribution in a time-fractional
diffusion equation. We proposed a regularized output least-square method and give existence
results and a stability analysis. The numerical experiments showed encouraging results.

Our analysis does not contain any convergence rates which we hope to obtain in a fu-
ture work. Furthermore, we look to generalize the results for problems with higher spatial
domains which are more realistic to scientific applications.
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