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Abstract We consider a nonlocal Fisher-KPP reaction-diffusion model arising from popu-
lation dynamics, consisting of a certain type reaction term uα(1 − ∫

Ω
uβdx), where Ω is a

bounded domain in R
n(n ≥ 1). The energy method is applied to prove the global existence

of the solutions and the results show that the long time behavior of solutions heavily depends
on the choice of α, β. More precisely, for 1 ≤ α < 1 + (1 − 2/p)β, where p is the exponent
from the Sobolev inequality, the problem has a unique global solution. Particularly, in the
case of n ≥ 3 and β = 1, α < 1 + 2/n is the known Fujita exponent (Fujita in J. Fac. Sci.,
Univ. Tokyo, Sect. 1A, Math. 13:109–124, 1966). Comparing to Fujita equation (Fujita in J.
Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 13:109–124, 1966), this paper will give an opposite
result to our nonlocal problem.

Keywords Fisher-KPP equation · Reaction-diffusion · Global existence

1 Introduction

In this paper, we study the following nonlocal initial boundary value problem,

ut − �u = uα

(

1 −
∫

Ω

uβ(x, t)dx

)

, x ∈ Ω, t > 0, (1a)

∇u · ν = 0, x ∈ ∂Ω, (1b)

u(x,0) = u0(x) ≥ 0, x ∈ Ω, (1c)

where u is the density of population, Ω is a smooth bounded domain in R
n, n ≥ 1, α,β ≥ 1

and ν is the outer unit normal vector on ∂Ω . Without loss of generality, throughout this
paper we assume |Ω| = 1 (otherwise, rescale the problem by |Ω|).
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This kind of model is developed to describe the population dynamics [6, 9] with the form

∂u

∂t
= ∂2u

∂x2
+ F(u), (2)

where u is the population density, ∂2u

∂x2 describes the random displacement of the individuals
of the population, the function F(u) is considered as the rate of the reproduction of the
population. Its usual form is the local version

F(u) = uα(1 − u) − γ u, (3)

the reaction term consists of the reproduction term which is represented by u to a power
uα and (1 − u) which stands for the local consumption of available resources, the last term
−γ u is the mortality of the population.

The nonlocal version is

∂u

∂t
= ∂2u

∂x2
+ uα

(

1 −
∫ ∞

−∞
φ(x − y)u(y, t)dy

)

− γ u,

where
∫ ∞

−∞ φ(y)dy = 1. φ(x − y) represents the probability density function that describes
the distribution of individuals around their average positions. Noting that if φ is a Dirac δ

function, the nonlocal problem reduces to the local version (3).
In this paper, we will study the problem with nonlocal version reaction term. Nonlocal

type reaction terms can describe also Darwinian evolution of a structured population density
or the behaviors of cancer cells with therapy [5, 9]. There are some already known results
on the reaction-diffusion equation with a nonlocal term. In [1], the authors considered the
equation with reaction term

F(t, u) = f (t, u) +
∫

Ω

g(t, u)dx, t > 0, (4)

where f = eu and g = keu (k > 0), for which the above problem represents an ignition
model for a compressible reactive gas, and they proved the finite time blow-up of solutions.

Later, a power-like nonlinearity was investigated by Wang and Wang [11], i.e.

F(t, u) =
∫

Ω

up(t, y)dy − kuq(t, x), t > 0,

with p,q > 1, and they proved that solutions blow up in finite time for some large initial
data.

Moreover, [5] studied the closest models to the ones we are focusing in this work

F(u) = up − 1

|Ω|
∫

Ω

up(t, y)dy,

this typical structure has mass conservation, and the authors showed that if p > n/(n − 2),
the solutions will blow up in finite time with some large initial data and exist globally for
some small initial data, while for 1 < p < n/(n − 2), the solution exists globally for any
initial value.

Recently, in [2], we considered the case β = 1 in (1a)–(1c), firstly the decay estimates of
mass

∫
Ω

u(t, x)dx was presented and then using the decay properties we proved the global
existence of solutions.
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Compared to [5] and [2], there is no mass conservation or mass decay in our work, thus
we need to explore other conditions for global existence of solutions. Moreover, if Ω = R

n

and (1−∫
Rn uβdx) remains positive, (1a)–(1c) has similar structure to Fujita equation [7] for

which the problem has no global solution for 1 ≤ α < 1 + 2/n (n ≥ 3). Therefore, we guess
that our problem in bounded domain might also have no global solution for 1 ≤ α < 1+2/n,
β = 1. However, we will give an opposite result in the nonlocal case.

Our main result can summarised as follows

Theorem 1 Let n ≥ 1. Assume u0 is nonnegative and u0 ∈ Lk(Ω) for any 1 < k < ∞. If α

satisfies

1 ≤ α < 1 + (1 − 2/p)β,

where β ≥ 1 and p satisfies

p =
⎧
⎨

⎩

2n
n−2 , n ≥ 3,

2 < p < ∞, n = 2,

∞, n = 1,

(5)

then problem (1a)–(1c) has a unique nonnegative classical solution.

This paper is mainly devoted to the proof of Theorem 1.

2 Global Existence of the Classical Solution

This part mainly focuses on the global existence of the classical solution to (1a)–(1c). We
will use the following ODE inequality [3, 4] through this section.

Lemma 2 Assume y(t) ≥ 0 is a C1 function for t > 0 satisfying

y ′(t) ≤ η − γy(t)a

for a > 1, η > 0, γ > 0. Then y(t) has the following hyper-contractive property

y(t) ≤ (η/γ )1/a +
[

1

γ (a − 1)t

] 1
a−1

for any t > 0. (6)

Furthermore, if y(0) is bounded, then

y(t) ≤ max
(
y(0), (η/γ )1/a

)
. (7)

The proof of global existence depends on a priori estimates in the following Proposition 3
and then we will use the compactness arguments to make the proof rigorous.

Proposition 3 Let n ≥ 1, p is defined as in (5). Assume u0 ∈ Lk(Ω) for any 1 < k < ∞. If
α satisfies

1 ≤ α < 1 + (1 − 2/p)β,
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where β ≥ 1, then any nonnegative solution of (1a)–(1c) satisfies that for any 1 < k < ∞
and any t > 0

∥
∥u(·, t)∥∥k

Lk(Ω)
≤ C

(
k,‖u0‖Lβ(Ω)

) + C
(
k,‖u0‖Lβ(Ω)

)
t
− k−β

β(1−2/p) , (8)

and for any 0 < T < ∞

∇u
k
2 ∈ L2

(
0, T ;L2(Ω)

)
. (9)

Proof of Proposition 3 The proof will be given step by step. We firstly give the estimates
on the boundedness of

∫
Ω

uβdx, then using the boundedness of Lβ norm, we will prove that
for all k > β , the Lk norm of the solution is bounded in time.

Step 1 (A priori estimates). Using kuk−1 (k > 1) as a test function for (1a)–(1c) and inte-
grating it by parts

d

dt

∫

Ω

ukdx + 4(k − 1)

k

∫

Ω

∣
∣∇u

k
2
∣
∣2

dx + k

∫

Ω

uβdx

∫

Ω

uk+α−1dx = k

∫

Ω

uk+α−1dx. (10)

Choosing 1 < k′ < k + α − 1, combining Hölder’s inequality and the Sobolev embedding
theorem one has

∫

Ω

uk+α−1dx

=
∫

Ω

uλ k
2

2(k+α−1)
k u(1−λ) k

2
2(k+α−1)

k dx

≤ ∥
∥u

k
2
∥
∥λ

2(k+α−1)
k

Lp(Ω)

∥
∥u

k
2
∥
∥(1−λ)

2(k+α−1)
k

L
2k′
k (Ω)

≤ C(k)
(∥
∥∇u

k
2
∥
∥λ

L2(Ω)

∥
∥u

k
2
∥
∥1−λ

L
2k′
k (Ω)

+ ∥
∥u

k
2
∥
∥λ

L2(Ω)

∥
∥u

k
2
∥
∥1−λ

L
2k′
k (Ω)

) 2(k+α−1)
k

≤ C(k)
(∥
∥∇u

k
2
∥
∥

2λ(k+α−1)
k

L2(Ω)

∥
∥u

k
2
∥
∥

2(1−λ)(k+α−1)
k

L
2k′
k (Ω)

+ ∥
∥u

k
2
∥
∥

2λ(k+α−1)
k

L2(Ω)

∥
∥u

k
2
∥
∥

2(1−λ)(k+α−1)
k

L
2k′
k (Ω)

)
, (11)

where λ is the exponent from Hölder’s inequality, i.e.

λ =
k

2k′ − k
2(k+α−1)

k
2k′ − 1

p

∈ (0,1) (12)

and p satisfies
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⎧
⎪⎨

⎪⎩

p = 2n
n−2 , n ≥ 3,

2(k+α−1)

k
< p < ∞, n = 2,

p = ∞, n = 1.

(13)

Now we will divide the analysis into three cases n ≥ 3, n = 2 and n = 1.
For n ≥ 3, p = 2n

n−2 and then

λ =
kn
2k′ − kn

2(k+α−1)

kn
2k′ + 1 − n

2

∈ (0,1) (14)

with k > max{ (n−2)(α−1)

2 ,1}. Taking k′ > (α−1)n

2 , simple computations arrive at

2λ(k + α − 1)

k
=

kn
k′ + (α−1)n

k′ − n

kn
2k′ + 1 − n

2

< 2.

To sum up, for k′ > max{ (α−1)n

2 ,1}, thanks to Young’s inequality, from (11) one has

∫

Ω

uk+α−1dx ≤ k − 1

k2

∥
∥∇u

k
2
∥
∥2

L2(Ω)
+ C(k)

∥
∥u

k
2
∥
∥

(1−λ)
2(k+α−1)

k
1

1− λ(k+α−1)
k

L
2k′
k (Ω)

+ C(k)
∥
∥u

k
2
∥
∥

2λ(k+α−1)
k

L2(Ω)

∥
∥u

k
2
∥
∥

2(1−λ)(k+α−1)
k

L
2k′
k (Ω)

. (15)

Letting

r = (1 − λ)
2(k + α − 1)

k

1

1 − λ(k+α−1)

k

, (16)

together (10) with (15) yields

d

dt

∫

Ω

ukdx + k

∫

Ω

uβdx

∫

Ω

uk+α−1dx + 3(k − 1)

k

∥
∥∇u

k
2
∥
∥2

L2(Ω)

≤ C(k)‖u‖ kr
2

Lk′
(Ω)

+ C(k)‖u‖λ(k+α−1)

Lk(Ω)
‖u‖(1−λ)(k+α−1)

Lk′
(Ω)

. (17)

On the other hand, taking k, k′ such that

β < k′ < k + α − 1,

using Hölder’s inequality we have

‖u‖
Lk′

(Ω)
≤ ‖u‖θ

Lk+α−1(Ω)
‖u‖1−θ

Lβ (Ω)
, (18)

where

θ =
1
β

− 1
k′

1
β

− 1
k+α−1

∈ (0,1). (19)
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Hence

‖u‖ kr
2

Lk′
(Ω)

≤ ‖u‖ krθ
2

Lk+α−1(Ω)
‖u‖(1−θ) kr

2
Lβ(Ω)

≤ (‖u‖k+α−1
Lk+α−1(Ω)

‖u‖β

Lβ(Ω)

) krθ
2(k+α−1) ‖u‖(1−θ) kr

2 − krθβ
2(k+α−1)

Lβ (Ω)
. (20)

Here we can choose k′ such that
(

1 − θ − θβ

k + α − 1

)

≥ 0, (21)

it equals to

k + α − 1 + β

k′ ≤ 2. (22)

In addition, recalling the definition of r and θ , some computations deduce that

krθ

2(k + α − 1)
< 1 (23)

is equivalent to

(1 − λ)(k + α − 1)

(
1

β
− 1

k′

)

<

(

1 − λ(k + α − 1)

k

)(
k + α − 1

β
− 1

)

⇔ 1

k + α − 1
+ λ − 1

k′ <
λ

k

(

1 − α − 1

β

)

, (24)

plugging the definition of λ into (24) we have

1 ≤ α < 1 + 2β

n
. (25)

Besides, when n = 2, 2(k+α−1)

k
< p < ∞, some computations yield that

1 ≤ α < 1 +
(

1 − 2

p

)

β, (26)

follows (23). When n = 1, p = ∞, 1 ≤ α < 1 + β also establishes (23).
Now we can take

k′ = k + α − 1 + β

2
> max

{

1,
(α − 1)n

2

}

,

so that θ =
1
β

− 2
k+α−1+β

1
β

− 1
k+α−1

and

(

1 − θ − θβ

k + α − 1

)

= 0. (27)

Thus, from (20), using Young’s inequality one obtains

‖u‖ kr
2

Lk′
(Ω)

≤ k

4
‖u‖k+α−1

Lk+α−1(Ω)
‖u‖β

Lβ(Ω)
+ C(k). (28)
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recalling (18), together with (17) we have

d

dt

∫

Ω

ukdx + k

∫

Ω

uβdx

∫

Ω

uk+α−1dx + 3(k − 1)

k

∥
∥∇u

k
2
∥
∥2

L2(Ω)

≤ k

4
‖u‖k+α−1

Lk+α−1(Ω)
‖u‖β

Lβ(Ω)
+ C(k)

+ C(k)‖u‖λ(k+α−1)

Lk(Ω)

(‖u‖θ

Lk+α−1(Ω)
‖u‖1−θ

Lβ (Ω)

)(1−λ)(k+α−1)
. (29)

Besides, Hölder inequality yields that

‖uβ · 1‖L1(Ω) ≤ ‖uβ‖
L

k+α−1
β (Ω)

‖1‖
L

k+α−1
k+α−1−β (Ω)

,

hence we have

(∫

Ω

uβdx

) k+α−1
β

≤ C
(|Ω|)

∫

Ω

uk+α−1dx, (30)

multiplying
∫

Ω
uβdx to both sides one obtains

C
(|Ω|)

(∫

Ω

uβdx

)1+ k+α−1
β

≤
∫

Ω

uβdx

∫

Ω

uk+α−1dx. (31)

Here C(|Ω|) is a constant depending on |Ω|. Plugging (31) into (29) one has

d

dt

∫

Ω

ukdx + k

2

(∫

Ω

uβdx

) k+α−1+β
β

+ k

2

∫

Ω

uβdx

∫

Ω

uk+α−1dx + 3(k − 1)

k

∥
∥∇u

k
2
∥
∥2

L2(Ω)

≤ k

4
‖u‖k+α−1

Lk+α−1(Ω)
‖u‖β

Lβ(Ω)
+ C(k)

+ C(k)‖u‖λ(k+α−1)

Lk(Ω)

(‖u‖θ

Lk+α−1(Ω)
‖u‖1−θ

Lβ (Ω)

)(1−λ)(k+α−1)
. (32)

Thus

d

dt

∫

Ω

ukdx + k

4

(∫

Ω

uβdx

) k+α−1+β
β + k

4

∫

Ω

uβdx

∫

Ω

uk+α−1dx + 3(k − 1)

k

∥
∥∇u

k
2
∥
∥2

L2(Ω)

≤ C(k) + C(k)‖u‖λ(k+α−1)

Lk(Ω)

(‖u‖θ

Lk+α−1(Ω)
‖u‖1−θ

Lβ (Ω)

)(1−λ)(k+α−1)
. (33)

Now we derive the Lβ estimates. Taking

k = β

in (33), recalling (27) and using Young’s inequality we obtain that the second term of the
right side of (33)

C(β)‖u‖λ(β+α−1)

Lβ(Ω)

(‖u‖θ

Lβ+α−1(Ω)
‖u‖1−θ

Lβ (Ω)

)(1−λ)(β+α−1)

= C(β)‖u‖λ(β+α−1)

Lβ(Ω)

(‖u‖β+α−1
Lβ+α−1(Ω)

‖u‖β

Lβ(Ω)

)θ(1−λ)
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≤ β

8
‖u‖β+α−1

Lβ+α−1(Ω)
‖u‖β

Lβ(Ω)
+ C(β)‖u‖λ(β+α−1) 1

1−θ(1−λ)

Lβ (Ω)

≤ β

8
‖u‖β+α−1

Lβ+α−1(Ω)
‖u‖β

Lβ(Ω)
+ C(β) + β

8
‖u‖β+α−1+β

Lβ(Ω)
. (34)

Hence from (33) and (34) we conclude that

d

dt

∫

Ω

uβdx + C0(β)

(∫

Ω

uβdx

)1+ β+α−1
β

+ C1(β)

∫

Ω

∣
∣∇u

β
2
∣
∣2

dx ≤ C2(β), (35)

then the result follows Lemma 2 that

∫

Ω

uβdx ≤ max

{

‖u0‖β

Lβ(Ω)
,

(
C2(β)

C0(β)

) 1

1+ β+α−1
β

}

. (36)

Step 2 (Lk estimates for k > β). Furthermore, for k > β , from (33) together with

‖u‖Lk(Ω) ≤ ‖u‖η

Lk+α−1(Ω)
‖u‖1−η

Lβ(Ω)
, (37)

where

η =
1
β

− 1
k

1
β

− 1
k+α−1

∈ (0,1), (38)

it concludes that

d

dt

∫

Ω

ukdx + C(k)

(∫

Ω

uβdx

)1+ β+α−1
β

+ C0(k)

∫

Ω

∣
∣∇u

k
2
∣
∣2

dx ≤ C(k). (39)

On the other hand, using Sobolev inequality and Young’s inequality we observing the fact
that

∫

Ω

ukdx ≤ C(k)
(∥
∥∇u

k
2
∥
∥λ0

L2(Ω)

∥
∥u

k
2
∥
∥1−λ0

L
2β
k (Ω)

+ ∥
∥u

k
2
∥
∥λ0

L2(Ω)

∥
∥u

k
2
∥
∥1−λ0

L
2β
k (Ω)

)2

≤ C(k)
(∥
∥∇u

k
2
∥
∥2λ0

L2(Ω)

∥
∥u

k
2
∥
∥2(1−λ0)

L
2β
k (Ω)

+ ∥
∥u

k
2
∥
∥2λ0

L2(Ω)

∥
∥u

k
2
∥
∥2(1−λ0)

L
2β
k (Ω)

)

≤ C
(
k,‖u0‖Lβ(Ω)

)∥∥∇u
k
2
∥
∥2λ0

L2(Ω)
+ 1

2
‖u‖k

Lk(Ω)
+ C

(
k,‖u0‖Lβ(Ω)

)
, (40)

where

λ0 =
kn
2β

− n
2

kn
2β

− n
p

< 1. (41)

Then

(∫

Ω

ukdx

) 1
λ0 ≤ C0(k)

∥
∥∇u

k
2
∥
∥2

L2(Ω)
+ C

(
k,‖u0‖Lβ(Ω)

)
. (42)
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Substituting (42) into (39) arrives at

d

dt

∫

Ω

ukdx + C
(
k,‖u0‖Lβ(Ω)

)
(∫

Ω

ukdx

) 1
λ0 ≤ C

(
k,‖u0‖Lβ(Ω)

)
. (43)

Consequently, it follows from Lemma 2 that for any k > β and any t > 0
∫

Ω

ukdx ≤ C
(
k,‖u0‖Lβ(Ω)

) + C
(
k,‖u0‖Lβ(Ω)

)
t
− k−β

β(1−2/p) . (44)

In addition, integrating (35) and (39) from 0 to T in time, then for any T > 0 and k > 1

∫

Ω

uk(T )dx +
∫ T

0

∫

Ω

∣
∣∇u

k
2
∣
∣dxdt ≤

∫

Ω

uk
0dx + C

(‖u0‖Lβ(Ω), k
)
T .

Hence it follows the conclusion (9). This completes the proof. �

Now we can use the compactness arguments to complete the proof of Theorem 1. The
proof is standard and here we give the key steps. Firstly, taking k = 2 and k = 2α in (8)
and (9) we obtain ‖u‖L2(0,T ;L2(Ω)) and ‖ut‖L2(0,T ;H−1(Ω)) are bounded for any 0 < T < ∞,
then by Aubin-Lions lemma [8] we have the strong compactness of u in L2(0, T ;L2(Ω)).
Therefore, standard compactness arguments deduce the global existence of weak solu-
tions (in the sense of distribution). In the second, from Proposition 3, the reaction term
uα(1 − ∫

Ω
uβdx) ∈ Lk(0, T ;Lk(Ω)) for any k > 1 and 0 < T < ∞, then from classical

parabolic theory, the weak solution is strong solution in W
2,1
k (0, T ;Ω). By virtue of Sobolev

embedding we can bootstrap it to get global existence of classical solution. Moreover, since
uα(1−∫

Ω
uβdx) is bounded from above and below, then using comparison principle we can

get the uniqueness of the classical solution [10]. Everything together we show that (1a)–(1c)
has a unique global solution. This closes the proof of Theorem 1.
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