
Acta Appl Math (2016) 146:113–143
DOI 10.1007/s10440-016-0061-6

Global Dirichlet Heat Kernel Estimates for Symmetric
Lévy Processes in Half-Space

Zhen-Qing Chen1 · Panki Kim2

Received: 23 November 2014 / Accepted: 16 June 2016 / Published online: 10 August 2016
© Springer Science+Business Media Dordrecht 2016

Abstract In this paper, we derive explicit sharp two-sided estimates for the Dirichlet heat
kernels of a large class of symmetric (but not necessarily rotationally symmetric) Lévy pro-
cesses on half spaces for all t > 0. These Lévy processes may or may not have Gaussian
component. When Lévy density is comparable to a decreasing function with damping expo-
nent β, our estimate is explicit in terms of the distance to the boundary, the Lévy exponent
and the damping exponent β of Lévy density.
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1 Introduction

Classical Dirichlet heat kernel is the fundamental solution of the heat equation in an open set
with zero boundary values. Except for a few special cases, explicit form of the Dirichlet heat
kernel is impossible to obtain. Thus the best thing we can hope for is to establish sharp two-
sided estimates of Dirichlet heat kernels. See [21] for upper bound estimates and [28] for
the lower bound estimate for Dirichlet heat kernels of diffusions in bounded C1,1 domains.
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The generator of a discontinuous Lévy process is an integro-differential operator and so
it is a non-local operator. Dirichlet heat kernels (if they exist) of the generators of discon-
tinuous Lévy processes on an open set D are the transition densities of such Lévy processes
killed upon leaving D. Due to this connection, obtaining sharp estimates on Dirichlet heat
kernels is a fundamental problem both in probability theory and in analysis.

Before [10], sharp two-sided estimates for the Dirichlet heat kernel of any non-local op-
erator in open sets are unknown. Jointly with R. Song, in [10] for the fractional Laplacian
�α/2 := −(−�)α/2 with zero exterior condition, we succeeded in establishing sharp two-
sided estimates in any C1,1 open set D and over any finite time interval (see [3] for an
extension to non-smooth open sets). When D is bounded, one can easily deduce large time
heat kernel estimates from short time estimates by a spectral analysis. The approach devel-
oped in [10] provides a road map for establishing sharp two-sided heat kernel estimates of
other discontinuous processes in open subsets of Rd (see [2, 3, 6, 11, 12, 14–16, 23]). In
[13, 14, 20], sharp two-sided estimates for the Dirichlet heat kernels pD(t, x, y) of �α/2 and
of m− (m2/α −�)α/2 are obtained for all t > 0 in two classes of unbounded open sets: half-
space-like C1,1 open sets and exterior open sets. Since the estimates in [13, 14, 20] hold for
all t > 0, they are called global Dirichlet heat kernel estimates. An important question in this
direction is for how general discontinuous Lévy processes one can prove sharp two-sided
global Dirichlet heat kernel estimates in unbounded open subsets of Rd .

We conjectured in [13, (1.9)] that, when D is a half space-like C1,1 open set, the following
two-sided estimates hold for a large class of rotationally symmetric Lévy process X whose
Lévy exponent of X is Ψ (|ξ |): there are constants c1, c2, c3 ≥ 1 such that for every (t, x, y) ∈
(0,∞) × D × D,

1

c1

(
1√

tΨ (1/δD(x))
∧ 1

)(
1√

tΨ (1/δD(y))
∧ 1

)
p
(
t, c2(y − x)

)

≤ pD(t, x, y)

≤ c1

(
1√

tΨ (1/δD(x))
∧ 1

)(
1√

tΨ (1/δD(y))
∧ 1

)
p
(
t, c3(y − x)

)
(1.1)

where p(t, x) is the transition density of X. In this paper, we use “:=” as a way of definition.
For a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}.

Recently, the above conjecture is confirmed in [6, Theorem 5.8] for rotationally symmet-
ric unimodal Lévy process whose Lévy exponent x → Ψ (|x|) satisfies the following upper
and lower scaling properties: there are constants 0 < β1 < β2 < 2 and C > 1 so that

c−1

(
R

r

)β1

≤ Ψ (R)

Ψ (r)
≤ c

(
R

r

)β2

for any R ≥ r > 0. (1.2)

Condition (1.2) implies that the Lévy process is purely discontinuous, and by [4, Corol-
lary 23], its Lévy intensity kernel x → j (|x|) satisfies

c−1

|x|dΦ(|x|) ≤ j (|x|) ≤ c

|x|dΦ(|x|) for all x 
= 0, (1.3)

where Φ(r) := max|x|≤r 1/Ψ (1/|x|). It is easy to see that Φ(r) is comparable to 1/Ψ (1/r).
It follows from (1.2) that the same two-sided estimates hold for Φ in place of Ψ . Thus
condition (1.2) excludes damped Lévy processes such as relativistic stable processes. We
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remark here that under condition (1.2), it follows as a special case from [18] that the transi-
tion density p(t, x) of the rotationally symmetric unimodal Lévy process has the following
two-sided estimates:

c−1

(
Φ−1(t) ∧ t

|x|dΦ(|x|)
)

≤ p(t, x) ≤ c

(
Φ−1(t) ∧ t

|x|dΦ(|x|)
)

for all t > 0 and x ∈R
d . (1.4)

In this paper, we mainly focus on estimate (1.1) when D is a half space and we prove
that (1.1) holds for a large class of symmetric Lévy processes which may not be isotropic
and may have damped Lévy kernel. Moreover, our symmetric Lévy processes may or may
not have Gaussian component. Once the global Dirichlet heat kernel estimates for upper
half space and short time heat kernel estimates on C1,1 open sets are obtained, one can then
use the “push inward” method introduced in [20] to extend the results to half-space-like C1,1

open sets. See Remark 7.2. For recent results on short time Dirichlet heat kernel estimates for
symmetric Lévy processes in C1,1 open sets, we refer the reader to [15, 16]. Note that, for all
symmetric Lévy process in R, except compound Poisson processes, the survival probability
Px(ζ > t) of its subprocess in the half line (0,∞) is comparable to

1 ∧ max0≤y≤1/x 1/
√

Ψ (y)√
t

,

where x → Ψ (|x|) is its characteristic exponent (see [26, Theorem 4.6] and [5, Proposi-
tion 2.6]). This fact, which is used several times in this paper, is essential in our approach.

We now give more details on the main results of this paper. In this paper, d ≥ 1 and X =
(Xt ,Px)t≥0,x∈Rd is a symmetric discontinuous Lévy process (but possibly with Gaussian
component) on R

d with Lévy exponent Ψ (ξ) and Lévy density J where Px(X0 = x) = 1.
That is, X is a right continuous symmetric process having independent stationary increments
with

Ex

[
eiξ ·(Xt−X0)

] = e−tΨ (ξ) for every x ∈R
d and ξ ∈R

d . (1.5)

Throughout this paper, we assume that X is not a compounded Poisson process, which
corresponds exactly to the case that Ψ is unbounded. It is known that

Ψ (ξ) =
d∑

i,j=1

aij ξiξj +
∫
Rd

(
1 − cos(ξ · y)

)
J (y)dy for ξ = (ξ1, . . . , ξd) ∈ R

d ,

where A = (aij ) is a constant, symmetric, non-negative definite matrix and J is a symmetric
non-negative function on R

d \ {0} with
∫
Rd (1 ∧ |z|2)J (z)dz < ∞.

When ∫
Rd

exp
(−tΨ (ξ)

)
dξ < ∞ for t > 0, (ExpL)

the transition density p(t, x, y) = p(t, y − x) of X exists as a bounded continuous function
for each fixed t > 0, and it is given by

p(t, x) := (2π)−d

∫
Rd

e−iξ ·xe−tΨ (ξ)dξ, t > 0.
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Moreover,

p(t, x) ≤ (2π)−d

∫
Rd

e−tΨ (ξ)dξ = p(t,0) < ∞. (1.6)

Clearly, condition (ExpL) holds if inf|ξ |=1
∑d

i,j=1 aij ξiξj > 0. Conversely, suppose that, for
every t > 0, Xt has a probability density function p(t, x) under P0 and that x �→ p(t, x) is
L2-integrable. Then (1.5) can be rewritten as

∫
Rd

p(t, x)eix·ξ dx = e−tΨ (ξ)

and so, by the Plancherel theorem, e−tΨ (ξ) ∈ L2(Rd) for every t > 0; that is, (ExpL) holds.
Hence condition (ExpL) is equivalent to the existence of transition density function p(t, x)

of X that is L2(Rd)-integrable in x for every t > 0. If we assume that X has a transition
density function p(t, x) that is continuous in x, then, since

∫
Rd p(t, x)2dx = p(2t,0) < ∞,

(ExpL) holds. See [25, Proposition 4.1] for additional discussion on condition (ExpL).
Let

Ψ ∗(r) := sup
|z|≤r

Ψ (z) (1.7)

and use Φ to denote the non-decreasing function

Φ(r) = 1

Ψ ∗(1/r)
for r > 0. (1.8)

Note that since Ψ (z) is a continuous unbounded function on R
d , Ψ ∗ is a non-decreasing

continuous function on [0,∞) with Ψ ∗(0) = 0 and limr→∞ Ψ ∗(r) = ∞. Consequently, Φ is
a non-decreasing continuous function on [0,∞) with Φ(0) = 0 and limr→∞ Φ(r) = ∞. The
right continuous inverse function of Φ will be denoted by the usual notation Φ−1(r); that is,

Φ−1(t) = inf
{
s > 0 : Φ(s) > t

}
.

Note that 0 < Φ−1(t) < ∞ for every t > 0 and limt→0+ Φ−1(t) = 0. Define for r > 0,

Ψ ∗
1 (r) := sup

s∈(−r,r)

Ψ
(
(0, . . . ,0, s)

)
.

We consider the following condition: there exists a constant c ≥ 1 such that

Ψ ∗(r) ≤ cΨ ∗
1 (r) for all r > 0. (Comp)

Condition (Comp) is a mild assumption that is satisfied by a large class of symmetric
Lévy processes, see Lemma 2.9. Under assumptions (ExpL) and (Comp), we derive in
Lemma 2.10 a useful upper bound estimate for Dirichlet heat kernels.

In general, the explicit estimates of the transition density p(t, y) in R
d depend heavily on

the corresponding Lévy measure and Gaussian component (see [8, 18]). On the other hand,
scale-invariant parabolic Harnack inequality holds with the explicit scaling in terms of Lévy
exponent for a large class of symmetric Lévy processes (see [18, Theorem 4.12], [8, The-
orem 4.11] and our Theorem 5.3). Motivated by this, we first develop a rather general ver-
sion of Dirichlet heat kernel upper bound estimate in Proposition 3.6 under the assumption
that parabolic Harnack inequality (PHI(Φ)) and (UJS) hold. See Sect. 3 for the definition
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of (PHI(Φ)). We say (UJS) holds if there exists a positive constant c such that for every
y ∈ R

d ,

J (y) ≤ c

rd

∫
B(0,r)

J (y − z)dz whenever r ≤ |y|/2. (UJS)

Note that (UJS) is very mild assumption in our setting. In fact, (UJS) always holds if
J (x)  j (|x|) for some non-increasing function j (see [7, page 1070]). Moreover, if J

is continuous on R
d \ {0}, then (PHI(Φ)) implies (UJS). In fact, using (3.1) below instead

of [7, (2.10)], this follows from the proof of [7, Proposition 4.1]. We also show in Theorem
3.2 that (PHI(Φ)) implies (ExpL).

Assume in addition that for every t > 0, x → p(t, x) is weakly radially decreasing in the
following sense: there exist constants c > 0 and C1,C2 > 0 such that

p(t, x) ≤ cp(C1t,C2y) for t ∈ (0,∞) and |x| ≥ |y| > 0. (HKC)

We remark here that the same assumption with C1 = 1 for small t was made in [15]. Then our
Dirichlet heat kernel upper bound estimate obtained in Propositions 3.6 yields the desired
upper bound estimate in (1.1). Moreover, we show that this assumption on p(t, x) (see
Sect. 4 below) and the upper bound of pD(t, x) imply a very useful lower bound of pD(t, x);
see Theorem 4.5.

Jointly with T. Kumagai, in [8, 9, 18] we have established two-sided sharp heat kernel
estimates for a large class of symmetric Markov processes. In Sects. 5–7, we assume the
jumping kernels of our Lévy process satisfy the assumptions of [8, 9, 18], that is, condi-
tions (UJS), (5.4) and (5.5) of this paper. Then all the aforementioned conditions (ExpL),
(Comp), (PHI(Φ)), (HKC) are satisfied. Using the two-sided heat kernel estimates for sym-
metric Markov processes on R

d from [8, 9, 18] (see Theorem 5.3) and our lower bound es-
timates for Dirichlet heat kernels in Theorem 4.5, we obtain two-sided global Dirichlet heat
kernel estimates (7.4), essentially prove the conjecture (1.1) for such symmetric Lévy pro-
cesses and for D = H. See Remark 7.2(i) for details. Furthermore, our estimates are explicit
in terms of the distance to the boundary, the Lévy exponent and the damping exponent β of
Lévy density; see Theorem 7.1.

In this paper, we use the following notations. For any two positive functions f and
g, f  g means that there is a positive constant c ≥ 1 so that c−1g ≤ f ≤ cg on their
common domain of definition. For any open set V , we denote by δV (x) the distance
of a point x to the boundary of V , i.e., δV (x) = dist(x, ∂V ). We sometimes write point
z = (z1, . . . , zd) ∈ R

d as (̃z, zd) with z̃ ∈ R
d−1. We denote H := {x = (̃x, xd) ∈ R

d : xd > 0}
the upper half space. For a set W in R

d , W and |W | denotes the closure and the Lebesgue
measure of W in R

d , respectively. Throughout the rest of this paper, the positive constants
a0, a1,M1,Ci , i = 0,1,2, . . . , can be regarded as fixed. In the statements of results and the
proofs, the constants ci = ci(a, b, c, . . .), i = 0,1,2, . . . , denote generic constants depend-
ing on a, b, c, . . . , whose exact values are unimportant. They start anew in each statement
and each proof. The dependence of the constants on the dimension d ≥ 1 may not be men-
tioned explicitly.

2 Setup and Preliminary Estimates

Let X be a symmetric Lévy process on R
d with Lévy exponent Ψ (z) and Lévy density

J (z). Recall the definition of the non-decreasing functions Ψ ∗(r) and Φ(r) from (1.7)
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and (1.8), respectively. We emphasize that the Lévy process X does not need to be rota-
tionally symmetric. The following is known and true for any negative definite function (see
[22, Lemma 1]).

Lemma 2.1 For every t > 0 and λ ≥ 1,

1 ≤ Φ(λt)

Φ(t)
≤ 2

(
1 + λ2

)
.

For an open set D, denote by τD := inf{t > 0 : Xt /∈ D} the first exit time of D.

Theorem 2.2 There exists a constant c = c(d) > 0 such that

P0(|Xt | > r) ≤ ct/Φ(r) for (t, r) ∈ (0,∞) × (0,∞). (2.1)

Consequently, there exists ε1 = ε1(d) > 0 such that for all r > 0,

P0

(
τB(0,r/2) > ε1Φ(r)

) ≥ 1/2. (2.2)

Proof (2.1) is a consequence of [27, (3.2)] and [22, Corollary 1].
Since the Lévy process X is conservative, (2.1) implies by [1, Lemma 3.8] that for every

t, r > 0,

P0(τB(0,2r) ≤ t) = P0

(
sup
s≤t

|Xs | > 2r
)

≤ 2c2t/Φ(r).

Thus P0(τB(0,r/2) ≤ ε1Φ(r)) ≤ 2c2ε1Φ(r)/Φ(r/2), which by Lemma 2.1 is no larger than
20c2ε1. Taking ε1 = 1/(40c2) proves the theorem. �

Recall that J is the Lévy density of X, which gives rise to a Lévy system for X describing
the jumps of X. For any x ∈ R

d , stopping time S (with respect to the filtration of X), and
nonnegative measurable function f on R+ ×R

d ×R
d with f (s, y, y) = 0 for all y ∈R

d and
s ≥ 0 we have

Ex

[∑
s≤S

f (s,Xs−,Xs)

]
= Ex

[∫ S

0

(∫
Rd

f (s,Xs, y)J (Xs − y)dy

)
ds

]
(2.3)

(e.g., see [18, Appendix A] and the proof of [17, Lemma 4.7]).
The following is a special case of [22, Corollary 1], whose upper bound will be used in

the next lemma.

Lemma 2.3 For every r > 0,

1

2Φ(r)
≤ ‖A‖

r2
+

∫
Rd

J (z)

(
1 ∧ |z|2

r2

)
dz ≤ 8(1 + 2d)

Φ(r)

where

‖A‖ := sup
|ξ |≤1

d∑
i,j=1

ai,j ξiξj .
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Using Lemma 2.3, the proof of the next lemma is rather routine (see [24, Lemma 4.10]).
In fact, this lemma is proved in [22, Lemma 3 and Corollary 1] for a = 1/2. The proof for
general a is similar. Thus we skip the proof.

Lemma 2.4 For every a ∈ (0,1), there exists c = c(a) > 0 so that for any r > 0 and any
open set U with U ⊂ B(0, r),

Px

(
XτU ∈ B(0, r)c

) ≤ c

Φ(r)
Ex[τU ], x ∈ U ∩ B(0, ar).

Note that for d-th coordinate Xd
t of Xt = (X1

t , . . . ,X
d
t ) is a Lévy process with

Ex

[
eiη(Xd

t −Xd
0 )

] = E(̃0,x)

[
ei(̃0,η)·(Xt −X0)

] = e−tΨ ((̃0,η)) for every x ∈R and η ∈R.

That is, Xd
t is a 1-dimensional symmetric Lévy process with Lévy exponent Ψ1(η) :=

Ψ ((̃0, η)). Throughout this paper we let Ψ ∗
1 (r) := supz∈(−r,r) Ψ1(z) and use Φ1 to denote

the increasing function

Φ1(r) = 1

Ψ ∗
1 (r−1)

, r > 0.

Clearly

Ψ ∗
1 (r) ≤ Ψ ∗(r) and Φ(r) ≤ Φ1(r).

Since τH := inf{t > 0 : Xd
t > 0}, by [5, Proposition 2.6] (see also [26, Theorems 3.1

and 4.6]) all symmetric Lévy processes, except compound Poisson processes, enjoy the
following estimates of the survival probability on H.

Lemma 2.5 Suppose that Ψ1 is unbounded, then there exists an absolute constant C > 0
such that

C−1

(√
Φ1(δH(x))

t
∧ 1

)
≤ Px(τH > t) ≤ C

(√
Φ1(δH(x))

t
∧ 1

)
.

Let

τ 1
r := inf

{
t > 0 : Xd

t /∈ (0, r)
}

Combining [5, Lemma 2.3 and Proposition 2.4] we have

Lemma 2.6 Suppose that Ψ1 is unbounded, then there exists an absolute constant c > 0
such that for any r ∈ (0,∞) and

E(̃0,x)

[
τ 1
r

] ≤ cΦ1(r)
1/2Φ1

(
δ(0,r)(x)

)1/2
for x ∈ (0, r).

Recall that, when (ExpL) holds, the transition density p(t, x, y) := p(t, x − y) of X

exists as a bounded continuous function. In this case, for an open set D we define

pD(t, x, y) := p(t, x, y) −Ex

[
p(t − τD,XτD , y) : τD < t

]
for t > 0, x, y ∈ D (2.4)

Using the strong Markov property of X, it is easy to verify that pD(t, x, y) is the transition
density for XD , the subprocess of X killed upon leaving an open set D.
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Lemma 2.7 Suppose (ExpL) holds. Then for every (t, x, y) ∈ (0,∞) ×H×H,

pH(t, x, y) ≤ 3C2p(t/3,0)

(√
Φ1(δH(x))

t
∧ 1

)(√
Φ1(δH(y))

t
∧ 1

)

where C is the constant in Lemma 2.5.

Proof Since by (1.6)

sup
z,w∈H

pH(t/3, z,w) ≤ sup
z∈H

p(t/3, z) = p(t/3,0),

using the semigroup property and symmetry we have

pH(t, x, y) =
∫
H

∫
H

pH(t/3, x, z)pH(t/3, z,w)pH(t/3,w,y)dzdw

≤ p(t/3,0)Px(τH > t/3)Py(τH > t/3).

Now the lemma follows from Lemma 2.5. �

Using (2.3), the proof of next lemma is the same as the one in [16, Lemma 3.1] so it is
omitted.

Lemma 2.8 Suppose (ExpL) holds. Suppose that U1,U3,E are open subsets of Rd , with
U1,U3 ⊂ E and dist(U1,U3) > 0. Let U2 := E\(U1 ∪ U3). If x ∈ U1 and y ∈ U3, then for
every t > 0 we have

pE(t, x, y) ≤ Px(XτU1
∈ U2) · sup

s<t,z∈U2

pE(s, z, y)

+
∫ t

0
Px(τU1 > s)Py(τE > t − s)ds · sup

u∈U1,z∈U3

J (u − z). (2.5)

Recall condition (Comp) from Introduction. The next lemma says that it is a mild as-
sumption.

Lemma 2.9 Suppose there are a non-negative function j on (0,∞) and a ≥ 0 ci ≥ 1, i = 1,

2, such that

c−1
1 a|y|2 ≤

d∑
i,j=1

ai,j yiyj ≤ c1a|y|2 and c−1
1 j

(|y|/c2

) ≤ J (y) ≤ c1j
(
c2|y|)

for all y ∈R
d , (2.6)

Then c−1Ψ ∗
1 (r) ≤ Ψ ∗(r) ≤ cΨ ∗

1 (r), and so (Comp) holds.

Proof Let

φ
(|ξ |) = a|ξ |2 +

∫
Rd

(
1 − cos(ξ · y)

)
j
(|y|)dy.
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By a change of variables, (2.6) implies that

Ψ (ξ) ≤ c1

(
a|ξ |2 +

∫
Rd

(
1 − cos(ξ · y)

)
j
(
c2|y|)dy

)

≤ c3

(
a
∣∣c−1

2 ξ
∣∣2 +

∫
Rd

(
1 − cos

(
c−1

2 ξ · z))j(|z|)dz

)
= c3φ

(|ξ |/c2

)

and

Ψ (ξ) ≥ c−1
1

(
a|ξ |2 +

∫
Rd

(
1 − cos(ξ · y)

)
j
(|y|/c2

)
dy

)
≥ c5φ

(
c2|ξ |)

Thus by Lemma 2.1, which holds for any negative definite function, Ψ ∗(r)  sups≤r φ(s) 
Ψ ∗

1 (r) for all r > 0. �

Using Lemma 2.8, we can obtain the following upper bound of pH(t, x, y).

Lemma 2.10 Suppose (ExpL) and (Comp) hold. For each a > 0, there exists a constant
c = c(a,Ψ ) > 0 such that for every (t, x, y) ∈ (0,∞) ×H×H with aΦ−1(t) ≤ |x − y|,

pH(t, x, y) ≤ c

(√
Φ(δH(x))

t
∧ 1

)(
sup

(s,z):s≤t,
|x−y|

2 ≤|z−y|≤ 3|x−y|
2

pH(s, z, y)

+ (√
tΦ

(
δH(y)

) ∧ t
)

sup
w:|w|≥ |x−y|

3

J (w)
)
. (2.7)

Proof If δH(x) > aΦ−1(t)/(24), by Lemma 2.1

√
Φ(δH(x))

t
≥

√
Φ(aΦ−1(t)/(24))

Φ(Φ−1(t))
≥

√
1

2

a2

a2 + (24)2
.

Thus (2.7) is clear.
We now assume δH(x) ≤ aΦ−1(t)/(24) ≤ |x − y|/(24) and let x0 = (̃x,0), U1 :=

B(x0, aΦ−1(t)/(12)) ∩ H, U3 := {z ∈ H : |z − x| > |x − y|/2} and U2 := H \ (U1 ∪ U3).
Recall that Xd

t is the d-th coordinate process of X with Lévy exponent Ψ1(η) = Ψ ((̃0, η)).
Clearly,

τU1 ≤ inf
{
t > 0 : Xd

t /∈ (
0, aΦ−1(t)/12

)} =: τ d
1 .

Applying Lemma 2.6 on the interval (0, aΦ−1(t)/12) and assumption (Comp), and noting
Lemma 2.1, we have

Ex[τU1 ] ≤ E
Xd

δH(x)

[
τ d

1

] ≤ c1

√
tΦ

(
δH(x)

)
. (2.8)

Since |z − x| > 2−1|x − y| ≥ a2−1Φ−1(t) for z ∈ U3, we have for u ∈ U1 and z ∈ U3,

|u − z| ≥ |z − x| − |x0 − x| − |x0 − u| ≥ 1

2
|x − y| − 6−1aΦ−1(t) ≥ 1

3
|x − y|.

Thus, U1 ∩ U3 = ∅ and,

sup
u∈U1,z∈U3

J (u − z) ≤ sup
(u,z):|u−z|≥ 1

3 |x−y|
J (u − z) = sup

w:|w|≥ 1
3 |x−y|

J (w). (2.9)
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Since for z ∈ U2

3

2
|x − y| ≥ |x − y| + |x − z| ≥ |z − y| ≥ |x − y| − |x − z| ≥ |x − y|

2
≥ a2−1Φ−1(t),

we have

sup
s≤t,z∈U2

pH(s, z, y) ≤ sup
s≤t,

|x−y|
2 ≤|z−y|≤ 3|x−y|

2

pH(s, z, y). (2.10)

Moreover, by Lemma 2.5 and (Comp)

∫ t

0
Px(τU1 > s)Py(τH > t − s)ds

≤
∫ t

0
Px(τH > s)Py(τH > t − s)ds

≤ c3

∫ t

0

√
Φ1(δH(y))

s

(√
Φ1(δH(y))

t − s
∧ 1

)
ds

≤ c4

√
Φ

(
δH(x)

)(√
Φ

(
δH(y)

) ∧ √
t
)∫ t

0

1√
s(t − s)

ds

= c5

√
Φ

(
δH(x)

)(√
Φ

(
δH(y)

) ∧ √
t
)
.

Applying this and (2.5), (2.8), (2.9) and (2.10), we obtain,

pH(t, x, y) ≤ c6

∫ t

0
Px(τU1 > s)Py(τH > t − s)ds sup

w:|w|≥ 1
3 |x−y|

J (w)

+ c6Px(XτU1
∈ U2) sup

s≤t,z∈U2

p(s, z, y)

≤ c7

√
Φ

(
δH(x)

)(√
Φ

(
δH(y)

) ∧ √
t
)

sup
w:|w|≥ 1

3 |x−y|
J (w)

+ c6Px(XτU1
∈ U2) sup

s≤t,
|x−y|

2 ≤|z−y|≤ 3|x−y|
2

p(s, z, y).

Finally, applying Lemmas 2.4 and 2.1 and then (2.8), we have

Px(XτU1
∈ U2) ≤ Px

(
XτU1

∈ B
(
x0, aΦ−1(t)/(12)

)c)

≤ c8

t
Ex[τU1 ] ≤ c9t

−1/2
√

Φ
(
δH(x)

)
.

Thus we have proved (2.7). �

Example 2.11 Let d = 1, and

j (y) = |y|−(1+α)

(
1 +

∞∑
n=1

n1[n,n+2−n]
(|y|)

)
,
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or

j (y) = |y|−(1+α) +
∞∑

n=1

n1[n,n+2−n]
(|y|).

In either case, the Lévy exponent Ψ (ξ) for symmetric Lévy process having j (y) as its Lévy
intensity is comparable to |ξ |α . So conditions (ExpL) and (Comp) are satisfied. Conse-
quently results in this section are valid for this Lévy process. However, in either case, j does
not satisfy (UJS) at points n when n is large (nor (5.5) below).

3 Consequences of Parabolic Harnack Inequality

Let Zs := (Vs,Xs) be the space-time process of X, where Vs = V0 − s. The law of the
space-time process s �→ Zs starting from (t, x) will be denoted as P(t,x).

Definition 3.1 A non-negative Borel measurable function h(t, x) on [0,∞) ×R
d is said to

be parabolic (or caloric) on (a, b] × B(x0, r) if for every relatively compact open subset U

of (a, b] × B(x0, r), h(t, x) = E(t,x)[h(ZτZ
U
)] for every (t, x) ∈ U ∩ ([0,∞) × R

d), where

τZ
U := inf{s > 0 : Zs /∈ U}.

It follows from the strong Markov property of X and (2.4), (t, x) �→ pD(t, x, y) is
parabolic on (0,∞) × D for every y ∈ D.

Throughout this section, we assume the following (scale-invariant) parabolic Harnack
inequality (PHI(Φ)) holds for X: For every δ ∈ (0,1), there exists c = c(d, δ) > 0 such that
for every x0 ∈ R

d , t0 ≥ 0, R > 0 and every non-negative function u on [0,∞) × R
d that is

parabolic on (t0, t0 + 4δΦ(R)] × B(x0,R),

sup
(t1,y1)∈Q−

u(t1, y1) ≤ c inf
(t2,y2)∈Q+

u(t2, y2), (PHI(Φ))

where Q− = (t0 + δΦ(R), t0 + 2δΦ(R)] × B(x0,R/2) and Q+ = [t0 + 3δΦ(R), t0 +
4δΦ(R)] × B(x0,R/2).

Theorem 3.2 Suppose that (PHI(Φ)) holds. Then (ExpL) holds and so the Lévy process X

has a bounded continuous density function p(t, x). Moreover, there is a constant c > 0 so
that

p(t, x) ≤ c
(
Φ−1(t)

)−d
for every t > 0 and x ∈R

d . (3.1)

Proof Let f ≥ 0 be an arbitrary bounded L1-integrable function on R
d . Clearly u(t, x) :=

Ptf (x) = Ex[f (Xt)] is a non-negative parabolic function on (0,∞) × R
d . Thus by

(PHI(Φ)) and the symmetry of the semigroup {Pt ; t > 0}, for every x0 ∈R
d and t > 0,

Ptf (x0) ≤ c1 inf
z∈B(x0,Φ−1(t))

P3t f (z) ≤ c2

(
Φ−1(t)

)−d

∫
B(x0,Φ−1(t))

P3t f (z)dz

= c2

(
Φ−1(t)

)−d

∫
Rd

P3t1B(x0,Φ−1(t))(z)f (z)dz ≤ c2

(
Φ−1(t)

)−d

∫
Rd

f (z)dz.

This implies that X has a transition density function p(t, x) and p(t, x) ≤ c2(Φ
−1(t))−d

a.e. on R
d . Consequently, as mentioned earlier in the Introduction, (ExpL) holds by the
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Plancherel theorem, which in turn implies that p(t, x) is bounded and jointly continuous
and so (3.1) holds. �

Under the assumptions (PHI(Φ)) and (UJS), we can derive an interior lower bound for
pD(t, x, y) for all t > 0; see Propositions 3.4 and 3.5. Similar bound for t ≤ T was obtained
in [16] for subordinate Brownian motions with Gaussian component. In this section, we use
the convention that δD(·) ≡ ∞ when D =R

d .
The next lemma holds for every symmetric Lévy process and it follows from [27, (3.2)]

and [22, Corollary 1].

Lemma 3.3 For any positive constants a, b, there exists c = c(a, b,Ψ ) > 0 such that for all
z ∈R

d and t > 0,

inf
y∈B(z,aΦ−1(t)/2)

Py(τB(z,aΦ−1(t)) > bt) ≥ c.

For the next two results, D is an arbitrary nonempty open set.

Proposition 3.4 Suppose (PHI(Φ)) holds. Let a > 0 be a constant. There exists c =
c(a) > 0 such that

pD(t, x, y) ≥ c
(
Φ−1(t)

)−d
(3.2)

for every (t, x, y) ∈ (0,∞) × D × D with δD(x) ∧ δD(y) ≥ aΦ−1(t) ≥ 4|x − y|.

Proof We fix (t, x, y) ∈ (0,∞) × D × D satisfying δD(x) ∧ δD(y) ≥ aΦ−1(t) ≥ 4|x − y|.
Note that |x − y| ≤ aΦ−1(t)/4 and that

B
(
x, aΦ−1(t)/4

) ⊂ B
(
y, aΦ−1(t)/2

) ⊂ B
(
y, aΦ−1(t)

) ⊂ D.

So by the symmetry of pD , (PHI(Φ)), Theorem 3.2, and Lemma 2.1, there exists c1 =
c1(a) > 0 such that

c1pD(t/2, x,w) ≤ pD(t, x, y) for every w ∈ B
(
x, aΦ−1(t)/4

)
.

This together with Lemma 3.3 yields that

pD(t, x, y) ≥ c1

|B(x, aΦ−1(t)/4)|
∫

B(x,aΦ−1(t)/4)

pD(t/2, x,w)dw

≥ c2

(
Φ−1(t)

)−d

∫
B(x,aΦ−1(t)/4)

pB(x,aΦ−1(t)/4)(t/2, x,w)dw

= c2

(
Φ−1(t)

)−d
Px(τB(x,aΦ−1(t)/4) > t/2) ≥ c3

(
Φ−1(t)

)−d
,

where ci > 0 for i = 2,3. �

Recall the condition (UJS) from the Introduction.

Proposition 3.5 Suppose (PHI(Φ)) and (UJS) hold. For every a > 0, there exists a constant
c = c(a) > 0 such that pD(t, x, y) ≥ ctJ (x − y) for every (t, x, y) ∈ (0,∞) × D × D with
δD(x) ∧ δD(y) ≥ aΦ−1(t) and aΦ−1(t) ≤ 4|x − y|.
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Proof By Lemma 3.3, starting at z ∈ B(y, (12)−1aΦ−1(t)), with probability at least c1 =
c1(a) > 0 the process X does not move more than (18)−1aΦ−1(t) by time t . Thus, using the
strong Markov property and the Lévy system in (2.3), we obtain

Px

(
XD

t ∈ B
(
y,6−1aΦ−1(t)

))
≥ c1Px

(
XD

t∧τ
B(x,(18)−1aΦ−1(t))

∈ B
(
y, (12)−1aΦ−1(t)

)
and

t ∧ τB(x,(18)−1aΦ−1(t)) is a jumping time
)

= c1Ex

[∫ t∧τ
B(x,(18)−1aΦ−1(t))

0

∫
B(y,(12)−1aΦ−1(t))

J (Xs − u)duds

]
. (3.3)

By (UJS), we obtain

Ex

[∫ t∧τ
B(x,(18)−1aΦ−1(t))

0

∫
B(y,(12)−1aΦ−1(t))

J (Xs − u)duds

]

= Ex

[∫ t

0

∫
B(y,(12)−1aΦ−1(t))

J
(
XB(x,(18)−1aΦ−1(t))

s − u
)
duds

]

≥ c2Φ
−1(t)d

∫ t

0
Ex

[
J
(
XB(x,(18)−1aΦ−1(t))

s − y
)]

ds

≥ c2Φ
−1(t)d

∫ t

t/2

∫
B(x,(72)−1aΦ−1(t/2))

J (w − y)

× pB(x,(18)−1aΦ−1(t))(s, x,w)dwds. (3.4)

Since, for t/2 < s < t and w ∈ B(x, (72)−1aΦ−1(t/2))

δB(x,(18)−1aΦ−1(t))(w) ≥ (18)−1aΦ−1(t) − (72)−1aΦ−1(t/2) ≥ 2−1(18)−1aΦ−1(s)

and

|x − y| < (72)−1aΦ−1(t/2) ≤ 4−1(18)−1aΦ−1(s),

we have by Theorem 3.2 and Lemma 3.4 that for t/2 < s < t and w ∈ B(x, (72)−1a ×
Φ−1(t/2)),

pB(x,(18)−1aΦ−1(t))(s, x,w) ≥ c3

(
Φ−1(s)

)−d ≥ c3

(
Φ−1(t)

)−d
. (3.5)

Combining (3.3), (3.4) with (3.5) and applying (UJS) again, we get

Px

(
XD

t ∈ B
(
y,6−1aΦ−1(t)

))

≥ c4t

∫
B(x,(72)−1aΦ−1(t/2))

J (w − y)dw

≥ c5t
(
Φ−1(t/2)

)d
J (x − y) ≥ c6t

(
Φ−1(t)

)d
J (x − y). (3.6)

In the last inequality we have used Lemma 2.1. The proposition now follows from the
Chapman-Kolmogorov equation along with (3.3), (3.4) and Proposition 3.4. Indeed,
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pD(t, x, y) =
∫

D

pD(t/2, x, z)pD(t/2, z, y)dz

≥
∫

B(y,aΦ−1(t/2)/6)

pD(t/2, x, z)pD(t/2, z, y)dz

≥ c7

(
Φ−1(t/2)

)−d
Px

(
XD

t/2 ∈ B
(
y, aΦ−1(t/2)/6

))
≥ c6c7tJ (x − y). �

We now apply Lemma 2.10 to get the following heat kernel upper bound.

Proposition 3.6 Suppose (Comp), (PHI(Φ)) and (UJS) hold. Then there exists a constant
c > 0 such that for every (t, x, y) ∈ (0,∞) ×H×H

pH(t, x, y) ≤ c

(√
Φ(δH(x))

t
∧ 1

)(√
Φ(δH(y))

t
∧ 1

)
sup

|w|≥|x−y|/6
p(t,w).

Proof By Lemma 2.7 and Theorem 3.2,

pH(t, x, y) ≤ c1

(
Φ−1(t)

)−d

(√
Φ(δH(x))

t
∧ 1

)(√
Φ(δH(y))

t
∧ 1

)
.

If Φ−1(t) ≥ |x − y|, by Proposition 3.4, p(t, x − y) ≥ c2(Φ
−1(t))−d . Thus

pH(t, x, y) ≤ c3

(√
Φ(δH(x))

t
∧ 1

)(√
Φ(δH(y))

t
∧ 1

)
p(t, x − y). (3.7)

We extend the definition of p(t,w) by setting p(t,w) = 0 for t < 0 and w ∈R
d . For each

fixed x, y ∈ R
d and t > 0 with |x − y| > 8r , one can easily check that (s,w) �→ p(s,w − y)

is a parabolic function in (−∞,∞) × B(x,2r). Suppose Φ−1(t) ≤ |x − y| and let (s, z)

with s ≤ t and |x−y|
2 ≤ |z − y| ≤ 3|x−y|

2 . By (PHI(Φ)), there is a constant c4 ≥ 1 so that for
every t > 0,

sup
s≤t

p(s, z − y) ≤ c4p(t, z − y).

Hence we have

sup
s≤t,

|x−y|
2 ≤|z−y|≤ 3|x−y|

2

p(s, z − y) ≤ c4 sup
|x−y|

2 ≤|z−y|≤ 3|x−y|
2

p(t, z − y)

= c4 sup
|x−y|

2 ≤|z|≤ 3|x−y|
2

p(t, z). (3.8)

Using this and Lemma 2.10 and Proposition 3.5, we have for every (t, x, y) ∈ (0,∞)×H×
H with Φ−1(t) ≤ |x − y|,

pH(t, x, y)

≤ c5

(√
Φ(δH(x))

t
∧ 1

)(
sup

|x−y|
2 ≤|z|≤ 3|x−y|

2

p(t, z) + (√
tΦ

(
δH(y)

) ∧ t
)

sup
|w|≥ |x−y|

3

J (w)
)
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≤ c6

(√
Φ(δH(x))

t
∧ 1

)(
sup

|z|≥|x−y|/2
p(t, z) + sup

|w|≥|x−y|/3
p(t,w)

)

≤ 2c6

(√
Φ(δH(x))

t
∧ 1

)
sup

|w|≥|x−y|/3
p(t,w).

In view of (3.7), the last inequality holds in fact holds for all (t, x, y) ∈ (0,∞) × H × H.
Thus we have by an analogy of (3.8) that for every (t, x, y) ∈ (0,∞)×H×H with |x −y| ≥
Φ−1(t),

sup
s≤t,

|x−y|
2 ≤|z−y|≤ 3|x−y|

2

pH(s, z, y) ≤c7

(√
Φ(δH(y))

t
∧ 1

)
sup

|z−y|≥|x−y|/2
sup

|w|≥|z−y|/3
p(t,w)

≤c8

(√
Φ(δH(y))

t
∧ 1

)
sup

|w|≥|x−y|/6
p(t,w). (3.9)

Therefore by Lemma 2.10, Proposition 3.5 and (3.9),

pH(t, x, y)

≤ c9

(√
Φ(δH(x))

t
∧ 1

)(
sup

s≤t,
|x−y|

2 ≤|z−y|≤ 3|x−y|
2

pH(s, z, y)

+ (√
tΦ

(
δH(y)

) ∧ t
)

sup
|w|≥ |x−y|

3

J (w)
)

≤ c10

(√
Φ(δH(x))

t
∧ 1

)(√
Φ(δH(y))

t
∧ 1

)

×
(

sup
|w|≥|x−y|/6

p(t,w) + sup
|w|≥|x−y|/3

p(t,w)
)

≤ 2c10

(√
Φ(δH(x))

t
∧ 1

)(√
Φ(δH(y))

t
∧ 1

)
sup

|w|≥|x−y|/6
p(t,w). �

4 Condition (HKC) and Its Consequence

Under the condition (HKC), clearly we have the following by Proposition 3.6.

Theorem 4.1 Suppose that conditions (Comp), (PHI(Φ)), (HKC), and (UJS) hold. Then
there exists a constant C3 > 0 such that for every (t, x, y) ∈ (0,∞) ×H×H

pH(t, x, y) ≤ C3

(√
Φ(δH(x))

t
∧ 1

)(√
Φ(δH(y))

t
∧ 1

)
p
(
C1t,6−1C2(x − y)

)
.

We consider the following condition.

lim
M→∞

sup
r>0

Ψ ∗(r)
Ψ ∗(Mr)

= 0. (4.1)
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It is equivalent to

lim
M→∞

sup
t>0

t

Φ(MΦ−1(t))
= lim

M→∞
sup
t>0

tΨ ∗(M−1Ψ ∗−1
(1/t)

) = 0. (4.2)

The following gives a sufficient condition for (4.1).

Proposition 4.2 Suppose that X has a transition density function p(t, x) that is continuous
at x = 0 for every t > 0 and p(t,0) ≤ c(Φ−1(t))−d < ∞ for all t > 0. Then condition (4.1)
holds. In particular, (PHI(Φ)) implies that the condition (4.1) holds.

Proof Since X has a transition density function p(t, x) that is continuous at x = 0 for every
t > 0,

∫
Rd p(t/2, x)2dx = p(t,0) < ∞. It follows then e−tΨ (ξ) is integrable on R

d and so

p(t, x) = (2π)−d

∫
Rd

e−ix·ξ e−tΨ (ξ)dξ.

In particular,
∫
Rd e−tΨ (ξ)dξ = (2π)dp(t,0) ≤ c1(Φ

−1(t))−d for every t > 0. In other words,

∫
Rd

e−Ψ (ξ)/rdξ ≤ c1

(
Φ−1(1/r)

)−d = c1

((
Ψ ∗)−1

(r)
)d

, r > 0.

Thus, for all R, r > 0 we have

e−Ψ ∗(R)/r
∣∣B(0,R)

∣∣ ≤
∫

B(0,R)

e−Ψ (ξ)/rdξ ≤ c1

((
Ψ ∗)−1

(r)
)d

. (4.3)

Note that Ψ ∗(r) is a non-decreasing continuous function on [0,∞) with Ψ ∗(0) = 0 and
limr→∞ Ψ ∗(r) = ∞. Thus for every r > 0 and λ > 1, there is R > 0 so that Ψ ∗(R) = λr .
Hence we have from (4.3) that e−λ((Ψ ∗)−1(λr))d ≤ c2((Ψ

∗)−1(r))d , and so

(Ψ ∗)−1(λr)

(Ψ ∗)−1(r)
≤ (

c2e
λ
)1/d

. (4.4)

For M > 1, let λ = λ(M) = log(Md/c2) so that (c2e
λ)1/d = M . Then by (4.4) with s =

(Ψ ∗)−1(r) we have Ms ≥ (Ψ ∗)−1(λr). In other words, Ψ ∗(Ms) ≥ λr = log(Md/c2)Ψ
∗(s).

Therefore

sup
s>0

Ψ ∗(s)
Ψ ∗(Ms)

≤ 1

log(Md/c2)
,

which goes to zero as M → ∞. The last assertion of the theorem follows directly from
Theorem 3.2. �

Lemma 4.3 Suppose that (4.1) holds. Then for each fixed c > 0 the function

Hc(M) := c−d sup
t>0

P
(|Xt | > cMΦ−1(t)

)

vanishes at ∞; that is, limM→∞ Hc(M) = 0.
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Proof By Theorem 2.2, we have

sup
t>0

P
(|Xt | > cMΦ−1(t)

) ≤ c1 sup
t>0

t

Φ(cMΦ−1(t))
,

which goes to zero as M → ∞ by (4.2). �

For the remainder of this section, we assume that conditions (Comp), (PHI(Φ)), (HKC)
and (UJS) hold, and discuss some lower bound estimates of pH(t, x, y) under these condi-
tions. We first note that by (Comp) and Lemma 2.5, there exists C0 > 0 such that

C−1
0

(√
Φ(δH(x))

t
∧ 1

)
≤ Px(τH > t) ≤ C0

(√
Φ(δH(x))

t
∧ 1

)
. (4.5)

We denotes by ed the unit vector in the positive direction of the xd -axis in R
d .

Lemma 4.4 There exist a1 > 0 and M1 > 4a1 such that for every x ∈H and t > 0 we have

∫
{u∈H∩B(ξx (t),M1Φ−1(t)):Φ(δH(u))>a1t}

pH(t, x,u)du ≥ 4−1C−1
0

(√
Φ(δH(x))

t
∧ 1

)

where ξx(t) := x + a1Φ
−1(t)ed and C0 is the constant in (4.5).

Proof By Theorem 4.1 and a change of variable, for every t > 0 and x ∈H,

∫
{u∈H:Φ(δH(u))≤at}

pH(t, x,u)du

≤ C3

(√
Φ(δH(x))

t
∧ 1

)∫
{u∈H:Φ(δH(u))≤at}

(√
Φ(δH(u))

t
∧ 1

)

× p
(
C1t,6−1C2(x − u)

)
du

≤ C3
√

a

(√
Φ(δH(x))

t
∧ 1

)∫
{u∈H:Φ(δH(u))≤at}

p
(
C1t,6−1C2(x − u)

)
du

≤ C3
√

a

(√
Φ(δH(x))

t
∧ 1

)∫
Rd

p
(
C1t,6−1C2(x − u)

)
du

= C3(6/C2)
d
√

a

(√
Φ(δH(x))

t
∧ 1

)∫
Rd

p(C1t,w)dw

= C3(6/C2)
d
√

a

(√
Φ(δH(x))

t
∧ 1

)
. (4.6)

Choose a1 > 0 small so that C3(6/C2)
d√a1 ≤ (8C0)

−1 where C0 is the constant in (4.5).
For x ∈ H, we let ξx(t) := x + a1Φ

−1(t)ed . For every t > 0, M ≥ 2a1 and u ∈ H ∩
B(ξx(t),MΦ−1(t))c , we have
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|x − u| ≥ ∣∣ξx(t) − u
∣∣ − ∣∣x − ξx(t)

∣∣ ≥ ∣∣ξx(t) − u
∣∣ − a1Φ

−1(t)

≥
(

1 − a1

M

)∣∣ξx(t) − u
∣∣ ≥ 1

2

∣∣ξx(t) − u
∣∣

Thus using Theorem 4.1 and condition (HKC), by a change of variable we have for every
t > 0 and M ≥ 2a1,∫

H∩B(ξx (t),MΦ−1(t))c
pH(t, x,u)du

≤ C3

(√
Φ(δH(x))

t
∧ 1

)∫
H∩B(ξx (t),MΦ−1(t))c

(√
Φ(δH(u))

t
∧ 1

)

× p
(
C1t,6−1C2(x − u)

)
du

≤ C3

(√
Φ(δH(x))

t
∧ 1

)∫
H∩B(ξx (t),MΦ−1(t))c

p
(
C2

1 t, (12)−1C2
2

(
ξx(t) − u

))
du

≤ C3

(√
Φ(δH(x))

t
∧ 1

)∫
B(0,MΦ−1(t))c

p
(
C2

1 t, (12)−1C2
2u

)
du

= C3

(
(12)−1C2

2

)d

(∫
B(0,(12)−1C2

2 MΦ−1(t))c
p
(
C2

1 t, v
)
dv

)(√
Φ(δH(x))

t
∧ 1

)

≤ C3H(12)−1C2
2
(M)

(√
Φ(δH(x))

t
∧ 1

)
. (4.7)

By Lemma 4.3, and Proposition 4.2, we can choose M1 > 4a1 large so that
C3H(12)−1C2

2
(M1) < 8−1 · C−1

0 . Then by (4.5), (4.6), (4.7) and our choice of a1 and M1,
we conclude that∫

{u∈H∩B(ξx (t),M1Φ−1(t)):Φ(δH(u))>a1t}
pH(t, x,u)du

=
∫
H

pH(t, x,u)du −
∫
H∩B(ξx (t),M1Φ−1(t))c

pH(t, x,u)du

−
∫

{u∈H:Φ(δH(u))≤a1t}
pH(t, x,u)du

≥ 4−1 · C−1
0

(√
Φ(δH(x))

t
∧ 1

)
. �

For x ∈H and t > 0, let ξx(t) := x + a1Φ
−1(t)ed and define

B(x, t) := {
z ∈ H∩ B

(
ξx(t),M1Φ

−1(t)
) : Φ(

δH(z)
)
> a1t

}
. (4.8)

Theorem 4.5 There exist c1, c2 > 0 such that for all (t, x, y) ∈ (0,∞) ×H×H,

pH(t, x, y)

≥ c1

(√
Φ(δH(x))

t
∧ 1

)(√
Φ(δH(y))

t
∧ 1

)(
inf

(u,v)∈B(x,t)×B(y,t)
pH(t/3, u, v)

)
(4.9)
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≥ c2

(√
Φ(δH(x))

t
∧ 1

)(√
Φ(δH(y))

t
∧ 1

)
×

×

⎧⎪⎨
⎪⎩

inf
(u,v):2M1Φ−1(t)≤|u−v|≤3|x−y|/2

Φ(δH(u))∧Φ(δH(v))>a1 t

pH(t/3, u, v) if |x − y| > 4M1Φ
−1(t),

(Φ−1(t))−d if |x − y| ≤ 4M1Φ
−1(t).

(4.10)

Proof By Chapman-Kolmogorov equation,

pH(t, x, y) ≥
∫
B(y,t)

∫
B(x,t)

pH(t/3, x,u)pH(t/3, u, v)pH(t/3, v, y)dudv

≥
(

inf
(u,v)∈B(x,t)×B(y,t)

pH(t/3, u, v)
)∫

B(y,t)

∫
B(x,t)

× pH(t/3, x,u)pH(t/3, v, y)dudv.

Thus (4.9) follows from Lemma 4.4.
Observe that for (u, v) ∈ B(x, t) × B(y, t),

∣∣ξx(t) − ξy(t)
∣∣ = |x − y|, δH(u) ∧ δH(v) ≥ a1Φ

−1(t), (4.11)

and

|x − y| − 2M1Φ
−1(t) ≤ |u − v| ≤ |x − y| + ∣∣u − ξx(t)

∣∣ + ∣∣v − ξy(t)
∣∣

≤ |x − y| + 2M1Φ
−1(t). (4.12)

When |x − y| > 4M1Φ
−1(t), we have by (4.12) that for (u, v) ∈ B(x, t) × B(y, t),

|x − y|/2 ≤ |u − v| ≤ 3|x − y|/2

and so 2M1Φ
−1(t) ≤ |u − v|. Thus, for |x − y| > 4M1Φ

−1(t),

inf
(u,v)∈B(x,t)×B(y,t)

pH(t/3, u, v) ≥ inf
(u,v):2M1Φ−1(t)≤|u−v|≤3|x−y|/2

Φ(δH(u))∧Φ(δH(v))>a1 t

pH(t/3, u, v). (4.13)

When |x − y| ≤ 4M1Φ
−1(t), by (4.12) |u − v| ≤ 6M1Φ

−1(t) for (u, v) ∈ B(x, t) ×
B(y, t). Thus using (4.11) and (PHI(Φ)) (at most 2 + 12[M1/a1] times) and Lemma 2.1
and Proposition 3.4, we get

pH(t/3, u, v) ≥ c1pH(t/6, u,u) ≥ c2
(
Φ−1(t)

)−d

for every (u, v) ∈ B(x, t) × B(y, t). (4.14)

(4.10) now follows from (4.9), (4.13) and (4.14). �

5 Heat Kernel Upper Bound Estimates in Half Spaces

In this section, we consider a large class of symmetric Lévy processes with concrete condi-
tion on the Lévy densities. Under these conditions, we can check that conditions (Comp),



132 Z.-Q. Chen, P. Kim

(HKC) and (PHI(Φ)) all hold. Thus we can apply Proposition 3.6 and Theorem 4.5 to es-
tablish sharp two-sided estimates of the transition density of such Lévy processes in half
spaces.

Suppose that ψ1 is an increasing function on [0,∞) with ψ1(r) = 1 for 0 < r ≤ 1 and
there are constants a2 ≥ a2 > 0, γ2 ≥ γ1 > 0 and β ∈ [0,∞] so that

a1e
γ1rβ ≤ ψ1(r) ≤ a2e

γ2rβ

for every 1 < r < ∞. (5.1)

Suppose that φ1 is a strictly increasing function on [0,∞) with φ1(0) = 0, φ1(1) = 1 and
there exist constants 0 < a3 < a4 and 0 < β1 ≤ β2 < 2 so that

a3

(
R

r

)β1

≤ φ1(R)

φ1(r)
≤ a4

(
R

r

)β2

for every 0 < r < R < ∞. (5.2)

Since 0 < β1 ≤ β2 < 2, (5.2) implies that

∫ r

0

s

φ1(s)
ds  r2

φ1(r)
,

∫ ∞

r

1

sφ1(s)
ds  1

φ1(r)
for every r > 0. (5.3)

Throughout the remainder of this paper, we assume that (UJS) holds and that there are
constants γ ≥ 1, κ1, κ2 and a0 ≥ 0 such that

γ −1a0|ξ |2 ≤
d∑

i,j=1

ai,j ξiξj ≤ γ a0|ξ |2 for every ξ ∈R
d , (5.4)

and

γ −1 1

|x|dφ1(|x|)ψ1(κ2|x|) ≤ J (x) ≤ γ
1

|x|dφ1(|x|)ψ1(κ1|x|) for x ∈R
d . (5.5)

Note that (UJS) holds if κ1 = κ2 in (5.5).
Recall Φ is the function defined in (1.8). The next lemma gives explicit relation between

Φ and φ1.

Lemma 5.1 When β = 0,

Φ(r) 
{

φ1(r)1{a0=0} + r21{a0>0} for r ∈ [0,1],
φ1(r) for r ≥ 1; (5.6)

while for β ∈ (0,∞],

Φ(r) 
{

φ1(r)1{a0=0} + r21{a0>0} for r ∈ [0,1],
r2 for r ≥ 1.

(5.7)

Proof By Lemma 2.3 and (5.4),

1

Φ(r)
 a0

r2
+

∫
Rd

(
1 ∧ |z|2

r2

)
J (z)dz
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Thus, by (5.5) and (5.1)

c−1
0

(
a0

r2
+ r−2

∫ r

0

s

φ1(s)
e−κ2γ2sβ

ds +
∫ ∞

r

1

sφ1(s)
e−κ2γ2sβ

ds

)

≤ 1

Φ(r)
≤ c0

(
a0

r2
+ r−2

∫ r

0

s

φ1(s)
e−κ1γ1sβ

ds +
∫ ∞

r

1

sφ1(s)
e−κ1γ1sβ

ds

)
. (5.8)

When β = 0, it follows from (5.3) and (5.8) that

1

Φ(r)
 a0

r2
+ r−2

∫ r

0

s

φ1(s)
ds +

∫ ∞

r

1

sφ1(s)
ds  a0

r2
+ 1

φ1(r)
for r > 0. (5.9)

Note that taking R = 1 and r = 1 in (5.2), we have

φ1(r) ≥ a−1
4 rβ2 ≥ a−1

4 r2 for r ∈ [0,1] and

φ1(R) ≤ a4R
β2 ≤ a4R

2 for R ≥ 1. (5.10)

This together with (5.9) establishes (5.6).
When r ≥ 1 and β > 0,

∫ ∞

r

s−β1−1e−κ1γ1sβ

ds ≤ c1

∫ ∞

r

s−3ds ≤ c1r
−2/2.

Thus by (5.2), for β > 0 and r ≥ 1,

r−2
∫ r

0

s

φ1(s)
e−κ1γ1sβ

ds +
∫ ∞

r

1

sφ1(s)
e−κ1γ1sβ

ds

≤ r−2
∫ ∞

0

s

φ1(s)
e−κ1γ1sβ

ds +
∫ ∞

r

1

sφ1(s)
e−κ1γ1sβ

ds ≤ c2r
−2,

while

r−2
∫ r

0

s

φ1(s)
e−κ2γ2sβ

ds +
∫ ∞

r

1

sφ1(s)
e−κ2γ2sβ

ds ≥ r−2
∫ 1

0

s

φ1(s)
e−κ2γ2sβ

ds ≥ c3r
−2.

By (5.3), for r ≤ 1 and β > 0,

r−2
∫ r

0

s

φ1(s)
e−κ1γ1sβ

ds +
∫ ∞

r

1

sφ1(s)
e−κ1γ1sβ

ds

≤ r−2
∫ r

0

1

sφ1(s)
ds +

∫ 1

r

1

sφ1(s)
ds +

∫ ∞

1
e−κ1γ1sβ

ds

≤ c4

φ1(r)
+ c4 ≤ c5

φ1(r)

and

r−2
∫ r

0

s

φ1(s)
e−κ2γ2sβ

ds +
∫ ∞

r

1

sφ1(s)
e−κ2γ2sβ

ds ≥ e−κ2γ2r−2
∫ r

0

s

φ1(s)
ds ≥ c6

φ1(r)
.

These combined with (5.8) and (5.10) immediately yield (5.7). �

As an immediate consequence of Lemmas 2.9 and 5.1, we have the following.
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Corollary 5.2 The conditions (4.1), (ExpL) and (Comp) hold.

Since we have assumed (UJS), (5.4) and (5.5), our Lévy process X belongs to a subclass
of the processes considered in [8, 9, 18, 19]. Therefore p(t, x, y) is Hölder continuous on
(0,∞) × R

d × R
d and for every open set D, transition density pD(t, x, y) for the killed

process XD is Hölder continuous on (0,∞) × D × D. Define

pc(t, r) = t−d/2 exp
(−r2/t

)
. (5.11)

Recall that a0 is the ellipticity constant in (5.4). For each a,T > 0, we define a function
ha,T (t, r) on (t, r) ∈ (0, T ] × [0,∞) as

ha,T (t, r) :=

⎧⎪⎨
⎪⎩

a0p
c(t, ar) + (Φ−1(t)−d ∧ (tj (ar)) if β ∈ [0,1] or r ∈ [0,1],

t exp(−a(r(log T r
t
)(β−1)/β ∧ rβ)) if β ∈ (1,∞) with r ≥ 1,

(t/(T r))ar if β = ∞ with r ≥ 1;
(5.12)

and, for each a,T > 0, define a function ka,T (t, r) on (t, r) ∈ [T ,∞) × [0,∞) as

ka,T (t, r) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Φ−1(t)−d ∧ [(a0p
c(t, ar)) + tj (ar)] if β = 0,

t−d/2 exp(−a(rβ ∧ r2T
t

)) if β ∈ (0,1],
t−d/2 exp(−ar((1 + log+ rT

t
)(β−1)/β ∧ rT

t
)) if β ∈ (1,∞),

t−d/2 exp(−ar((1 + log+ rT
t
) ∧ r2T

t
)) if β = ∞.

(5.13)

Note that r → ha,T (t, r) and r → ka,T (t, r) are decreasing.

Theorem 5.3 The parabolic Harnack inequality (PHI(Φ)) holds. Moreover, for each posi-
tive constant T , there are positive constants ci , i = 1, . . .6, which depend on the ellipticity
constant a0 of (5.4), such that

c−1
2 hc1,T

(
t, |x|) ≤ p(t, x) ≤ c2hc3,T

(
t, |x|) for every (t, x) ∈ (0, T ] ×R

d ,

and

c−1
4 kc5,T

(
t, |x|) ≤ p(t, x) ≤ c4kc6,T

(
t, |x|) for every (t, x) ∈ [T ,∞) ×R

d .

In particular, the condition (HKC) holds.

The above two-sided estimates on p(t, x, y) follow from [18, Theorem 1.2] and [8, Theo-
rems 1.2 and 1.4] when a0 = 0, and from [9, 19] when a0 > 0. Note that even though in [18,
Theorem 1.2] and [8, Theorems 1.2 and 1.4] two-sided estimates for p(t, x, y) are stated
separately for the cases 0 < t ≤ 1 and t > 1, the constant 1 does not play any special role.
In fact, for example for T < 1 one can easily check

c−1
3 hc2,1(t, r) ≤ hc1,T (t, r) ≤ c3hc2,1(t, r) on t < T ,

and the two-sided estimates for p(t, x) hold for the cases 0 < t ≤ T and t > T , and can be
stated in the above way.
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Remark 5.4 We remark here that in [8, Theorems 1.2(2.b)], the | log |x−y|
t

| term should re-
placed by 1 + log+ |x−y|

t
. In the proof of [8, Theorems 1.2(2.b)], the case that |x − y|  t

when β ∈ (1,∞) missed to be considered. Once taking into account of that missed case,
One can see from [8] that (5.13) is the correct form. See the statement and the proof of
Proposition 6.7 below for the lower bound.

We now present the main result of this section.

Theorem 5.5 There exist c1, c2 > 0 such that for all (t, x, y) ∈ (0,∞) ×H×H,

pH(t, x, y) ≤ c1

(√
Φ(δH(x))

t
∧ 1

)(√
Φ(δH(y))

t
∧ 1

)

×
{

hc2,1(t, |x − y|/6) if t ∈ (0,1),

kc2,1(t, |x − y|/6) if t ∈ [1,∞).

Proof Since r → ha,T (t, r) and r → ka,T (t, r) are decreasing, by Theorem 5.3

sup
w:|w|≥ |x−y|

6

p(t,w) ≤ c1

{
sup

w: |x−y|
6 ≤|w| hc2,1(t, |w|) if t ∈ (0,1),

sup
w: |x−y|

6 ≤|w| kc2,1(t, |w|) if t ∈ [1,∞),

≤ c1

{
hc2,1(t, |x − y|/6) if t ∈ (0,1),

kc2,1(t, |x − y|/6) if t ∈ [1,∞).

This together with Proposition 3.6 proves the theorem. �

6 Interior Lower Bound Estimates

In this section, we derive following preliminary lower bound estimates on pH(t, x, y). Recall
that we have assumed (UJS), (5.4) and (5.5).

Theorem 6.1 Let a,T be positive constants. There exist c = c(a,β1, β2, β,T ) > 0 and
C4 = C4(a,β1, β2, β,T ) > 0 such that

pH(t, x, y) ≥ c

{
hC4,T (t, |x − y|) if t ∈ (0, T ),

kC4,T (t, |x − y|) if t ∈ [T ,∞),

for every (t, x, y) ∈ (0,∞) ×H×H with δH(x) ∧ δH(y) ≥ aΦ−1(t).

We will prove this theorem through several propositions. The following proposition fol-
lows immediately from Propositions 3.4 and 3.5, Lemma 5.1 and condition (5.5).

Proposition 6.2 Let D be an open subset of Rd . For every a > 0, there exists a constant
c = c(a) > 0 so that

pD(t, x, y) ≥ c
((

Φ−1(t)
)−d ∧ tj

(|x − y|))
for every (t, x, y) ∈ (0,∞) × D × D with δD(x) ∧ δD(y) ≥ aΦ−1(t).
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Proposition 6.2 yields the interior lower bound for pD(t, x, y) and p(t, x, y) for the case
β = 0 and a0 = 0. Proposition 6.2 also yield the interior lower bound for pD(t, x, y) and
p(t, x, y) for the case β ∈ (0,1], t ≤ T and a0 = 0. As a direct consequence of Proposi-
tion 3.5, we have

Corollary 6.3 Suppose β ∈ (0,∞). For every a,T ,C∗ > 0, there exist c1, c2 > 0 so that

pH(t, x, y) ≥ c1te
−c2|x−y|β

for every (t, x, y) ∈ [T ,∞)×H×H with δH(x)∧δH(y) ≥ aΦ−1(t) and |x−y| ≥ C∗Φ−1(t).
In particular, when 0 < β ≤ 1, for every a,T ,C∗ > 0, there exist c1, c2 > 0 such that

pH(t, x, y) ≥ c1te
−c2|x−y|β when |x − y|2−β ≥ t/C∗,

δH(x) ∧ δH(y) ≥ aΦ−1(t) and t ≥ T .

The last assertion in Corollary 6.3 holds because Φ−1(t)  t1/2 for t ≥ T (by
Lemma 5.1), and for t ≥ T and x, y with |x − y|2−β ≥ t/C∗, one has |x − y|2 ≥ ct where
c = (T /C∗)1/(2−β)C−1∗ .

A standard chaining argument give the following Gaussian lower bound. The proof is
similar to the one of [8, Theorem 5.4].

Proposition 6.4 Suppose β ∈ (0,∞]. For every C∗, a, T > 0, there exist constants c1, c2 >

0 such that

pH(t, x, y) ≥ c1t
−d/2 exp

(
−c2|x − y|2

t

)

for every (t, x, y) ∈ [T ,∞) ×H×H with δH(x) ∧ δH(y) ≥ aΦ−1(t) and C∗|x − y| ≤ t/T .

Proof By considering t/T instead of t , without loss of generality we assume T = 1.
Fix a constant C∗ > 0 and let R := |x − y|. When t ≥ 1 ≥ R, by Proposition 6.2
and (5.7), pD(t, x, y) ≥ c1Φ

−1(t)−d ≥ c2t
−d/2. When t ≥ R2 ≥ 1, note that R2 ≤ c3Φ(R)

for some c3 > 0. Thus in view of Lemma 2.1, by applying the parabolic Harnack inequality
(PHI(Φ)) at most 3(1 + 16a−2)c3 times, we have from Proposition 3.4 that pD(t, x, y) ≥
c4Φ

−1(t)−d ≥ c5t
−d/2. Hence we only need to consider the case 1 ∨ (C∗R) ≤ t ≤ R2 (so

C∗ ≤ 1), which we now assume. By (5.7), there exist a constant c0 ∈ (0,1) such that

c−1
0

√
s ≥ Φ−1(s) ≥ c0

√
s for every s ≥ 2−1(C∗)2.

Thus δH(x) ∧ δH(y) ≥ ac0
√

t .
Let n be the smallest positive integer so that t/n ≥ (R/n)2. Then

1 ≤ R2/t ≤ n < 1 + R2/t ≤ 2R2/t and 2(R/n)2 ≥ t/n ≥ (R/n)2. (6.1)

Since t ≥ C∗R, by (6.1)

t

n
≥ t

1 + R2/t
= t2

t + R2
≥ 2−1

(
t

R

)2

≥ 2−1(C∗)2. (6.2)
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Let x = x0, x1, . . . , xn = y be the points equally spaced on the line segment connecting x to
y so that |xi − xi+1| = R/n for i = 0, . . . , n − 1. Set Bi := B(xi,2−1ac0R/n). Since t/n ≥
(R/n)2 (by (6.1)) and t/n ≥ 2−1(C∗)2 (by (6.2)), we have for every (yi, yi+1) ∈ Bi × Bi+1,

δH(yi) ∧ δH(yi+1) ≥ ac0

√
t − 2−1ac0R/n ≥ 2−1ac0

√
t/n ≥ 2−1ac2

0Φ
−1(t/n)

and

4|yi − yi+1| ≤ 4(1 + ac0)R/n ≤ 4(1 + ac0)
√

t/n ≤ 4
(
c−1

0 + a
)
Φ−1(t/n).

By Proposition 3.4 and applying (PHI(Φ)) at most N times, where N depends only on a,
Φ and C∗ (or by Proposition 6.2), we have

pH(t/n, yi, yi+1) ≥ c6(t/n)−d/2 for every (yi, yi+1) ∈ Bi × Bi+1. (6.3)

Using (6.3) and then (6.1), we have

pH(t, x, y) ≥
∫

B1

. . .

∫
Bn−1

pH(t/n, x, y1) . . . pH(t/n, yn−1, y)dy1 . . . dyn−1

≥ c6(t/n)−d/2
n−1∏
i=1

(
c7(t/n)−d/2(R/n)d

) ≥ c6(t/n)−d/2
(
c72−d/2

)n−1

≥ c8(t/n)−d/2 exp(−c9n) ≥ c10t
−d/2 exp

(
−c11|x − y|2

t

)
. (6.4)

�

Proposition 6.5 Suppose a0, a > 0. There are positive constants c1 and c2 so that

pH(t, x, y) ≥ c1Φ
−1(t)−d ∧

(
t−d/2 exp

(
−c2|x − y|2

t

)
+ tj

(|x − y|)
)

for every (t, x, y) ∈ (0,∞) × H × H with δH(x) ∧ δH(y) ≥ aΦ−1(t) if either β ∈ [0,1] or
|x − y| ≤ 1.

Proof We first consider following five cases: (1) t ≥ 1 and |x − y| ≤ 1 when β ∈ [0,∞],
(2) t ≥ 1 and x, y ∈ R

d when β = 0, (3) |x − y|2−β ≥ t ≥ 1 when β ∈ (0,1], (4) t ≤ 1 and
|x − y| ≥ 1 when β ∈ (0,1] (5) |x − y|2 ≤ t ≤ 1 when β ∈ [0,∞].

Using the condition (5.5), we see that for these five cases it holds that for every c1 > 0
there is c2 > 0 such that

t−d/2 exp

(
−c1|x − y|2

t

)
≤ c2tj

(|x − y|). (6.5)

Hence by Propositions 6.2 and 6.4 and (5.6)–(5.7), it suffices to consider the case when
t ≤ |x − y|2 ≤ 1, which we will assume for the remainder of the proof.

By (5.6)–(5.7), there is a constant c1 ∈ (0,1/2) so that c1r
2 ≤ Φ(r) ≤ r2/c1. Set R =

|x−y|. Let n to be the smallest integer so that t/n ≥ c−1
1 (R/n)2. Observe that R2

c1t
≤ n ≤ 2R2

c1t
.

Let x0 = x, x1, . . . , xn = y be the evenly spaced points on be the line segment connecting x
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to y so that |xi − xi+1| = R/n. Let Bi = Bi(xi, aR/4n). Then for every we have for every
(yi, yi+1) ∈ Bi × Bi+1,

δH(yi) ∧ δH(yi+1) ≥ a
√

c1t − aR/2n ≥ a
√

c1t/2 ≥ 2−1ac1Φ
−1(t)

and

4|yi − yi+1| ≤ 4(1 + a)R/n ≤ 8
√

c1t/n ≤ 8Φ−1(t/n).

By Proposition 3.4 and applying (PHI(Φ)) at most finite many times (or by Proposition 6.2),
we have

pH(t/n, yi, yi+1) ≥ c3(t/n)−d/2 for every (yi, yi+1) ∈ Bi × Bi+1. (6.6)

Using (6.6) and then (6.1), by the same argument in (6.4) we have

pH(t, x, y) ≥ c4t
−d/2 exp

(
−c5|x − y|2

t

)
.

This together with Proposition 6.2 gives the desired lower bound interior estimate for t ≤
|x − y|2 ≤ 1. This completes the proof of the proposition. �

Proposition 6.2, Corollary 6.3 and Propositions 6.4–6.5 give the desired interior lower
bound stated in Theorem 6.1 for pH(t, x, y) when β ∈ [0,1]. We now consider the case
β = ∞ and the case β ∈ (1,∞) separately.

Proposition 6.6 Suppose that T ,a > 0 and β = ∞. Then, there exist constants ci =
ci(a, T ) > 0, i = 1,2, such that for any x, y in H with δH(x) ∧ δH(y) ≥ aΦ−1(t), we have

pH(t, x, y) ≥ c1

(
t

T |x − y|
)c2|x−y|

when |x − y| ≥ 1 ∨ (t/T ). (6.7)

Proof By considering t/T instead of t , without loss of generality we assume T = 1. We
let R1 := |x − y| ≥ 1. We define k as the integer satisfying (4 ≤)4R1 ≤ k < 4R1 + 1 <

5R1 and rt := 2−1aΦ−1(t). Let x = x0, x1, . . . , xk = y be the points equally spaced on the
line segment connecting x to y so that |xi − xi+1| = R1/k for i = 0, . . . , k − 1 and Bi :=
B(xi, rt/k), with i = 0,1,2, . . . , k. Then, δH(xi) > 2rt and Bi ⊂ B(xi, rt ) ⊂ B(xi,2rt ) ⊂ H,
with i = 0,1,2, . . . , k.

Since 4(1 ∨ t) ≤ 4R1 ≤ k, we have rt/k ≤ a/8 and, for each yi ∈ Bi

|yi − yi+1| ≤ |yi − xi | + |xi − xi+1| + |xi+1 − yi+1|

≤ aΦ−1(1/4)

2
+ R1

k
+ aΦ−1(1/4)

2
≤ aΦ−1(1/4) + 1/4. (6.8)

Moreover, δH(yi) ≥ δH(xi) − |yi − xi | > rt > rt/k .
Thus, by Proposition 6.2 and (6.8) and using the fact t/k ≤ R1/k ≤ 1/4, there are con-

stants ci = ci(a) > 0, i = 1,2, such that for (yi, yi+1) ∈ Bi × Bi+1 we have

pH(t/k, yi, yi+1) ≥ c1

(
φ−1

1 (t/k)−d ∧ t/k

|yi − yi+1|dφ1(|yi − yi+1|)
)

≥ c2
(
φ−1

1 (t/k)−d ∧ t/k
) = c2

(
1 ∧ (t/k)

) = c2t/k. (6.9)



Global Dirichlet Heat Kernel Estimates for Symmetric Lévy Processes. . . 139

Observe that 4R1 ≤ k < 2(k − 1) < 8R1, φ−1
1 (t/k) ≥ a

1/β1
3 (t/k)1/β1 . Thus, from (6.9) we

obtain

pH(t, x, y) ≥
∫

B1

. . .

∫
Bk−1

pH(t/k, x, y1) . . . pH(t/k, yk−1, y)dyk−1 . . . dy1

≥ (c2t/k)k

k−1∏
i=1

|Bi | ≥ (c2t/k)kck−1
3 (t/k)d(k−1)/β1

≥ c4(c5t/k)c6k ≥ c7(c8t/R1)
c9R1 ≥ c10(t/R1)

c11R1 . �

Proposition 6.7 Suppose that T > 0, a > 0 and β ∈ (1,∞). Then, there exist constants
ci = ci(a,β,T ) > 0, i = 1,2 such that for any x, y in H with δH(x) ∧ δH(y) ≥ aΦ−1(t) we
have

pH(t, x, y) ≥ c1t exp

(
−c2

(
|x − y|

(
log

T |x − y|
t

) β−1
β

∧ (|x − y|)β

))

if t ≤ T , |x − y| > 1,

and

pH(t, x, y) ≥ c1t
−d/2 exp

(
−c2

(
|x − y|

(
1 + log+ T |x − y|

t

) β−1
β

))

if t > T , |x − y| > t/T .

Proof Without loss of generality we assume T = 1. We fix a > 0, and we let R1 := |x −y|.
(i) If 1 ≤ R1 ≤ 3 and t ≤ 1, the proposition holds by virtue of Proposition 6.2.

(ii) If R1(log(R1/t))(β−1)/β ≥ (R1)
β (when t ≤ 1), the proposition holds also by virtue of

Proposition 6.2.
(iii) If t > 1 and 3t ≥ R1 ≥ t , the proposition holds by virtue of Proposition 6.4.
(iv) We now assume (t,R1) ∈ ((0,1] × (3,∞)) ∪ ((1,∞) × (3t,∞)) and

R1(log(R1/t))(β−1)/β < (R1)
β , which is equivalent to R1 exp{−(R1)

β} < t . Note that
R1/t > 3.

Let k ≥ 2 be a positive integer such that

1 < R1

(
log

R1

t

)−1/β

≤ k < R1

(
log

R1

t

)−1/β

+ 1 < 2R1

(
log

R1

t

)−1/β

. (6.10)

We define rt := (2−1aΦ−1(t/R1)) ∧ ((6)−1(log(R1/t))1/β). Then, by (6.10) we have

(
2−1aΦ−1(t/R1)

) ∧ R1

6k
≤ rt ≤ 1

6

(
log

R1

t

)1/β

<
R1

3k
. (6.11)

Let x = x0, x1, . . . , xk = y be the points equally spaced on the line segment connecting x to
y so that |xi − xi+1| = R1/k for i = 0, . . . , k − 1 and Bi := B(xi, rt ), with i = 0,1,2, . . . , k.
Then, δH(yi) ≥ 2−1aΦ−1(t) > 2−1aΦ−1(t/k) for every yi ∈ Bi . Note that from (6.11) we
obtain

1

3

R1

k
≤ |xi − xi+1| − 2rt ≤ |yi − yi+1| ≤ |xi − xi+1| + 2rt ≤ 5

3

R1

k
(6.12)
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for every (yi, yi+1) ∈ Bi × Bi+1. We also observe that, by (6.10)

t

k
≤ t

R1

(
log(R1/t)

)1/β ≤ sup
s≥3

s−1(log s)1/β < ∞

and

R1

2k
≥ 1

4

(
log(R1/t)

)1/β ≥ 1

4
(log 3)1/β > 0.

Thus, using Proposition 6.2 along with (6.10) and (6.12) we obtain

pH(t/k, yi, yi+1) ≥ c1
t

k
j
(|yi − yi+1|

) ≥ c2
t

k
(R1/k)−d−β2e−c3(R1/k)β

≥ c4
t

R1

(
k

2R1

)d+β2−1

e−c3(R1/k)β

≥ c4
t

R1

(
log

R1

t

)− d+β2−1
β

(
t

R1

)c3

≥ c4

(
t

R1

)c5

. (6.13)

Since the definition of rt yields

rt ≥ c6

(
(t/R1)

(β2∧β)−1 ∧ (
log(R1/t)

)1/β) ≥ c7(t/R1)
(β2∧β)−1

by using (6.10), (6.13) and the semigroup property we conclude that

pH(t, x, y)

≥
∫

B1

· · ·
∫

Bk−1

pH(t/k, x, y1) · · ·pH(t/k, yk−1, y)dy1 · · ·dyk−1

≥ ck
4c

k−1
7

(
t

R1

)c5k+(β2∧β)−1(k−1)d

≥ c8 exp
(−c9k log(R1/t)

)
≥ c8 exp

(−c9

(
R1 log(R1/t)−1/β + 1

)
log(R1/t)

)

≥ c8 exp
(−2c9

(
R1 log(R1/t)

β−1
β

))

≥ c8

{
t exp(−2c9(R1 log(R1/t)

β−1
β )) if (t,R1) ∈ (0,1] × (3,∞)

t−d/2 exp(−2c9(R1(1 + log+(R1/t)
β−1
β ))) if (t,R1) ∈ (1,∞) × (3t,∞). �

Propositions 6.6–6.7 together with Proposition 6.2 and Propositions 6.4–6.5 yield the
interior lower bound estimates of Theorem 6.1 for β ∈ (1,∞].

Remark 6.8 Assume that D is an connected open set with the following property: there exist
λ1 ∈ [1,∞) and λ2 ∈ (0,1] such that for every r ≤ 1 and x, y in D with δD(x) ∧ δD(y) ≥ r

there exists in D a length parameterized rectifiable curve l connecting x to y with the length
|l| of l less than or equal to λ1|x − y| and δD(l(u)) ≥ λ2r for u ∈ [0, |l|].

Under this assumption, we can also prove Theorem 6.1 on such D with minor modifica-
tions. We omit the details here; see [23, Sect. 3] for the case t < T and φ(r) = rα .
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7 Two-Sided Heat Kernel Estimates

In this section we prove the two-sided estimates of pH(t, x, y) under conditions (5.4)
and (5.5).

Theorem 7.1 Suppose (UJS), (5.4) and (5.5) hold. There exist c1, c2, c3 > 0 such that for
all (t, x, y) ∈ (0,∞) ×H×H,

pH(t, x, y) ≤ c1

(√
Φ(δH(x))

t
∧ 1

)(√
Φ(δH(y))

t
∧ 1

)

×
{

hc2,1(t, |x − y|/6) if t ∈ (0,1),

kc2,1(t, |x − y|/6) if t ∈ [1,∞),

and

pH(t, x, y) ≥ c−1
1

(√
Φ(δH(x))

t
∧ 1

)(√
Φ(δH(y))

t
∧ 1

)

×
{

hc3,1(t,3|x − y|/2) if t ∈ (0,1),

kc3,1(t,3|x − y|/2) if t ∈ [1,∞).

Proof By Theorem 5.5, we only need to show the lower bound of pH(t, x, y). For this, we
will apply Theorem 4.5. Let C4 be the constant C4 in Theorem 6.1 with T = 1/3.

Since r → ha,T (t, r) and r → ka,T (t, r) are decreasing, we have by Theorem 6.1 that for
|x − y| > 4M1Φ

−1(t),

inf
(u,v):2M1Φ−1(t)≤|u−v|≤3|x−y|/2

Φ(δH(u))∧Φ(δH(v))>a1 t

pH(t/3, u, v) ≥ c1

{
hC4,1/3(t/3,3|x − y|/2) if t ∈ (0,1),

kC4,1/3(t/3,3|x − y|/2) if t ∈ [1,∞),

≥ c2

{
hc3,1(t,3|x − y|/2) if t ∈ (0,1),

kc3,1(t,3|x − y|/2) if t ∈ [1,∞).
(7.1)

When 6M1Φ
−1(t) ≥ r and t ≥ 1, by (5.7), we have c8M1t

1/2 ≥ r . Thus on 6M1Φ
−1(t) ≥

r and t ≥ 1

kC4,1/3(t/3, r) ≥ c4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Φ−1(t)−d if β = 0,

t−d/2 exp(−C4(r
β ∧ 3 r2

t
)) if β ∈ (0,1],

t−d/2 exp(−C4((r(1 + log+ r
t
)

β−1
β ) ∧ 3 r2

t
)) if β ∈ (1,∞),

t−d/2 exp(−C4((r(1 + log+ r
t
)) ∧ 3 r2

t
)) if β = ∞,

≥ c5Φ
−1(t)−d . (7.2)

So by (7.2) and Theorem 6.1, for |x − y| ≤ 4M1Φ
−1(t),

Φ−1(t) ≥ c6

{
hc7,1(t,3|x − y|/2) if t ∈ (0,1),

kc7,1(t,3|x − y|/2) if t ∈ [1,∞).
(7.3)
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Combining (4.10), (7.1) and (7.3), we conclude that

pH(t, x, y) ≥ c8

(√
Φ(δH(x))

t
∧ 1

)(√
Φ(δH(y))

t
∧ 1

)

×
{

hc9,1(t,3|x − y|/2) if t ∈ (0,1),

kc9,1(t,3|x − y|/2) if t ∈ [1,∞). �

Remark 7.2 (i) In view of Theorem 5.3, we can restate Theorem 7.1 as follows. There are
positive constants ci , 1 ≤ i ≤ 5, so that

1

c1

(
1√

tΨ (1/δD(x))
∧ 1

)(
1√

tΨ (1/δD(y))
∧ 1

)
p
(
c2t, c3(y − x)

)

≤ pD(t, x, y)

≤ c1

(
1√

tΨ (1/δD(x))
∧ 1

)(
1√

tΨ (1/δD(y))
∧ 1

)
p
(
c4t, c5(y − x)

)
(7.4)

where p(t, x) is the transition density of X. This essentially confirms the conjecture (1.1)
for this class of symmetric Lévy processes and for D =H.

(ii) Recently sharp two-sided Dirichlet heat kernel estimates have been established in
[15, 16] for a large class of symmetric Lévy processes in C1,1 open sets for t ≤ 1. The Lévy
process considered in [15, 16] satisfy the conditions (5.4), (5.5) and (UJS) of this paper.
Now assume X is a symmetric Lévy process considered [15, 16]. Then using the “push
inward” method of [20] (see [13] for its use in relativistic stable processes case) and the short
time heat kernel estimates in [15, 16], we can obtain global sharp two-sided Dirichlet heat
kernel estimates on half-space-like C1,1 open sets from the Dirichlet heat kernel estimates
established in this paper on half-spaces. We leave the details to the interested reader.

Acknowledgement We thank the referees for helpful comments.
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