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Abstract In this paper, an Nicholson’s blowflies model with time-varying delays and a har-
vesting term is investigated. By applying the fixed point theorem, the properties of pseudo
almost periodic function, inequality analysis technique and constructing appropriate Lya-
punov functionals, we establish some new criteria for the existence and convergence dy-
namics of pseudo almost periodic solutions for the model. An illustrative example with its
numerical simulation is presented to demonstrate the effectiveness of the derived results.
Our results complement some previous studies.
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1 Introduction

To describe the population of the Australian sheep-blowfly Lucilia cuprina, Nicholson [1]
and Gurney et al. [2] proposed an Nicholson’s blowflies model which takes the form

ẋ(t) = −δx(t) + px(t − τ)e−ax(t−τ), δ,p, τ, a ∈ (0,∞), (1.1)
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where x(t) stands for the size of population at time t , p represents the maximum per capita
daily egg production rate, δ stands for the per capita daily adult death rate, 1

a
denotes the size

at which the blowfly population reproduces at its maximum rate, τ is the generation rate.
Since then, considerable effort has been devoted to investigating the dynamical behavior of
model (1.1) and its modifications. For example, Ding and Li [3] investigated the stability
and bifurcation of numerical discretization version of (1.1), Kulenovic et al. [4] considered
the global attractivity of system (1.1), So and Yu [5] focused on the stability and uniform
persistence of the discrete version of model (1.1). For more details, we refer the reader to
[6–21].

It is well known that in real natural word, the change of the environment and impulsive
effect play an important role in many biological and ecological dynamical systems [22]. In-
spired by the viewpoint, Alzabut [22] investigated the following delay Nicholson’s blowflies
model with impulsive effect which is a generalized form of model (1.1)

⎧
⎪⎨

⎪⎩

ẋ(t) = −α(t)x(t) +
n∑

i=1

βi(t)x(t − τ)e−λi (t)x(t−τ) + h(t), t �= θk,

�x(θk) = γkx(θk) + δk, k ∈N,

(1.2)

where α(t), βi(t), λi(t), h(t) ∈ [R+,R+], τ > 0 and γk, δk ∈ R, k ∈ N, h(t) is a harvesting
function, �x(t) represents the difference x(t+) − x(t−), where x(t+) and x(t−) define the
limits from right and left, respectively, θk denotes the instants at which size of the pop-
ulation suffers an increment of δk units. By applying the contraction mapping principle
and Gronwall-Bellman’s inequality, Alzabut [22] obtained some sufficient conditions which
guarantee the existence and exponential stability of positive almost periodic solution for the
model (1.2).

Here we would like to point out that many authors investigate the dynamical behavior
of Nicholson’s blowflies model with constant or periodic environment. However, the real
living environments of species are not always like this due to the ecological effects of human
activities and industry, for example, the location of manufacturing industries and pollution of
the atmosphere, soil, rivers, and so on [23–30]. Based on this situation, it is more reasonable
to assume that the parameters of the models are pseudo almost periodic functions, which
allow complex repetitive phenomena to be represented as an almost periodic process plus an
ergodic component. As pointed out by Dads and Ezzinbi [31], it would be of great interest to
investigate the pseudo almost periodic systems with delay. Stimulated by the aforementioned
discussions, we will consider the pseudo almost periodic solution of the following modified
system of model (1.2)

ẋ(t) = −α(t)x(t) +
n∑

i=1

βi(t)x
(
t − τ(t)

)
e−λi (t)x(t−τ(t)) + h(t). (1.3)

The main aim of this article is to establish some sufficient conditions for the existence,
convergence and exponential convergence of pseudo almost periodic solutions of (1.3). The
obtained results will show that the criteria for convergence and exponential convergence of
pseudo almost periodic solution of (1.3) are both delay and harvesting rate dependent. Re-
cently, although there are some papers that deal with the pseudo almost periodic solutions
of differential equations [32–42]. To the best of our knowledge, it is the first time to focus
on the existence, convergence and exponential convergence of pseudo almost periodic solu-
tions of (1.3). The obtained results of this article are completely new and complement some
previous studies.

The remainder of the paper is organized as follows. In Sect. 2, we introduce some nota-
tions, lemmas and definitions, which can be used to check the existence of pseudo almost
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periodic solutions of system (1.3). In Sect. 3, we present some new sufficient conditions
for the existence of the continuously differentiable pseudo almost periodic solution of (1.3).
Some sufficient conditions on the convergence and exponential convergence of pseudo al-
most periodic solutions of (1.3) are established in Sect. 4. An example and its numerical
simulations are given to illustrate the effectiveness of the obtained results in Sect. 5. Finally,
a brief conclusion is drawn.

2 Preliminary Results

In this section, we would like to recall some notations, basic definitions and lemmas which
are used in what follows. Throughout this paper, we will use the notations as follows:

u+ = sup
t∈R

∣
∣u(t)

∣
∣, u− = inf

t∈R
∣
∣u(t)

∣
∣,

where u(t) is a bounded continuous function. Let BC(R,R) denote the set of bounded con-
tinued functions from R to R, and BUC(R,R) be the set of all bounded and uniformly
continuous functions from R to R. Obviously, (BC(R,R),‖.‖) is a Banach space where
‖.‖ denotes the sup norm ‖.‖ := supt∈R ‖u(t)‖. Let C = C([−τ+,0],R) be the continuous
functions space equipped with the supremum norm ‖.‖ and denote C+ = C([−τ+,0],R+),
where R+ = [0,+∞). If x(t) is continuous and defined on [−τ+ + t0, ρ) with t0, ρ ∈ R,
then for all t ∈ [t0, ρ), we define xt ∈ C, in which xt (ϑ) = x(t + ϑ) for all ϑ ∈ [−τ+,0].

Considering the biological interpretation of model (1.3), we only investigate the positive
solution. The initial conditions are given by

xt0 = ϕ,ϕ ∈ C+, ϕ(0) > 0. (2.1)

Let xt (t0, ϕ) (or x(t; t0, ϕ)) be a solution of the initial value problem (1.3) and (2.1) with
xt0(t0, ϕ) = ϕ ∈ C+ and t0 ∈ R. In addition, let [t0, ζ(ϕ)) be the maximal right interval of
existence of xt (t0, ϕ).

Definition 2.1 (see [43, 44]) Let u(t) ∈ BC(R,R), u(t) is said to be almost periodic on R if,
for any ε > 0, the set T (u, ε) = {δ : ‖u(t + δ) − u(t)‖ < ε for all t ∈ R} is relatively dense;
that is, for any ε > 0, it is possible to find a real number l = l(ε) > 0; for any interval with
length l(ε), there exists a number δ = δ(ε) in this interval such that ‖u(t + δ) − u(t)‖ < ε,
for all t ∈R.

We denote by AP(R,R) the set of the almost periodic functions from R to R. Besides,
the concept of pseudo almost periodicity (PAP) was introduced by Zhang [43] in the early
nineties. It is a natural generalization of the classical almost periodicity. Precisely, define the
class of functions PAP0(R,R) as follows:

{

u ∈ BC(R,R)

∣
∣
∣
∣ lim

T →+∞
1

2T

∫ T

−T

∣
∣u(t)

∣
∣dt = 0

}

.

A function u ∈ BC(R,R) is called pseudo almost periodic if it can be expressed as u =
u1 + u2, where u1 ∈ AP(R,R) and u2 ∈ PAP0(R,R). The collection of such functions will
be denoted by PAP(R,R). The functions u1 and u2 in the above definition are, respectively,
called the almost periodic component and the ergodic perturbation of the pseudo almost
periodic function u. The decomposition given in definition above is unique. Observe that
(PAP(R,R),‖.‖) is a Banach space and AP(R,R) is a proper subspace of PAP(R,R) since
the function u2(t) = sin2 t + sin2

√
7t + exp(−t4 sin2 t) is pseudo almost periodic function

but not almost periodic.
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Lemma 2.2 (see [23]) If u(t) ∈ PAP(R,R), τ (t) ∈ AP(R,R) and τ̇ (t) ≤ τ0 < 1, then u(t −
τ(t)) ∈ PAP(R,R).

Lemma 2.3 (see [23]) If u(t), v(t) ∈ PAP(R,R), then u(t)v(t) ∈ PAP(R,R).

Definition 2.4 (see [20, 45]) Let x ∈ R
n and Q(t) be a n × n continuous matrix defined

on R. The linear system

ẋ(t) = Q(t)x(t) (2.2)

is said to admit an exponential dichotomy on R if there exist positive constants ki, αi ,
i = 1,2 and projection P and the fundamental solution matrix X(t) of (2.2) satisfying

∥
∥X(t)PX−1(s)

∥
∥ ≤ k1e

−α1(t−s), for t ≥ s,
∥
∥X(t)(I − P )X−1(s)

∥
∥ ≤ k2e

−α2(s−t), for t ≤ s,

where I is the identity matrix.

Lemma 2.5 (see [43]) Assume that Q(t) is an almost periodic matrix function and g(t) ∈
PAP(R,Rp). If the linear system (2.2) admits an exponential dichotomy, then pseudo almost
periodic system

ẋ(t) = Q(t)x(t) + g(t) (2.3)

has a unique pseudo almost periodic solution x(t), and

x(t) =
∫ t

−∞
X(t)PX−1(s)g(s)ds −

∫ +∞

t

X(t)(I − P )X−1(s)g(s)ds. (2.4)

Proof It is check that (2.4) is a solution of (2.3). Now we only show that the solution (2.4)
is bounded. By (2.4), we have

∣
∣x(t)

∣
∣ =

∫ t

−∞

∣
∣X(t)PX−1(s)

∣
∣
∣
∣g(s)

∣
∣ds +

∫ +∞

t

∣
∣X(t)(I − P )X−1(s)

∣
∣
∣
∣g(s)

∣
∣ds

≤ ‖g‖
[∫ t

−∞
k1e

−α1(t−s)ds +
∫ +∞

t

k2e
−α2(s−t)ds

]

≤ ‖g‖
[

k1

α1
+ k2

α2

]

.

Since g is bounded, then x is bounded. The bounded solution is unique because the homo-
geneous equation (2.2) has no nontrivial bounded solution.

Next we will prove that g ∈ PAP(R,Rp). Let I1(t) = ∫ t

−∞ X(t)PX−1(s)g(s)ds and

I2(t) = − ∫ +∞
t

X(t)(I − P )X−1(s)g(s)ds. Then x(t) = I1(t) + I2(t). In view of Defini-
tion 2.4, we have

1

2T

∫ T

−T

∣
∣I1(t)

∣
∣dt ≤ 1

2T

∫ T

−T

dt

∫ t

−∞

∣
∣X(t)PX−1(s)

∣
∣
∣
∣g(s)

∣
∣ds

≤ 1

2T

∫ T

−T

dt

∫ t

−∞
k1e

−α1(t−s)
∣
∣g(s)

∣
∣ds

= 1

2T

∫ T

−T

dt

[∫ −T

−∞
k1e

−α1(t−s)
∣
∣g(s)

∣
∣ds +

∫ t

−T

k1e
−α1(t−s)

∣
∣g(s)

∣
∣ds

]
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≤ 1

2T

∫ −T

−∞

∣
∣g(s)

∣
∣ds

∫ T

−T

k1e
−α1(t−s)dt + 1

2

∫ T

−T

∣
∣g(s)

∣
∣ds

∫ T

s

k1e
−α1(t−s)dt

= I ∗
1 + I ∗

2 ,

where I ∗
1 = 1

2T

∫ −T

−∞ |g(s)|ds
∫ T

−T
k1e

−α1(t−s)dt and I ∗
2 = 1

2

∫ T

−T
|g(s)|ds

∫ T

s
k1e

−α1(t−s)dt . To
prove that I1(t) ∈ PAP(R,Rp), we need to prove that both I ∗

1 → 0 and I ∗
2 → 0 when

T → ∞. We know that

I ∗
1 = 1

2T

∫ −T

−∞

∣
∣g(s)

∣
∣ds

∫ T

−T

k1e
−α1(t−s)dt

≤ 1

2T
‖g‖ k1

α1

[
eα1T − e−α1T

]
∫ −T

−∞
eα1sds

≤ 1

2T
‖g‖ k1

α2
1

[
1 − e−2α1T

]
.

Then I ∗
1 → 0 as T → ∞.

I ∗
2 = 1

2T

∫ T

−T

∣
∣g(s)

∣
∣ds

∫ T

s

k1e
−α1(t−s)dt

≤ 1

2T

∫ T

−T

k1

α1

[
1 − e−α1(s−T )

]∣
∣g(s)

∣
∣ds

≤ 1

2T
‖g‖ k1

α1

∫ T

−T

∣
∣g(s)

∣
∣ds.

Note that |g(.)| ∈ PAP(R,Rp), we can conclude that I ∗
2 → 0 as T → ∞. In a similar way,

we can also prove that I2(t) ∈ PAP(R,Rp). The proof of Lemma 2.5 is complete. �

Lemma 2.6 (see [20, 45]) Let bi(t) be an almost periodic function on R and

M[bi] = lim
T →+∞

1

T

∫ t+T

t

bi(s)ds > 0, ij ∈ Λ. (2.5)

Then the linear system

ẋ(t) = diag
(−b1(t),−b2(t), . . . ,−bn(t)

)
x(t) (2.6)

admits an exponential dichotomy on R.

Lemma 2.7 (see [23]) Let l be a real number and u be a nonnegative function defined on
[l,+∞) such that u is integrable on [l,+∞) and is uniformly continuous on [l,+∞). Then
limt→+∞ u(t) = 0.

Throughout this paper, we make the following assumptions for system (1.3):
(H1) For i = 1,2, . . . , n, α−, λ−

i are positive, α(t), βi(t), λi(t), h(t) ∈ PAP(R, (0,+∞)),

τ (t) ∈ AP(R,R+) and τ(t) are continuously differential functions which satisfies

0 ≤ τ(t) ≤ τ+, 0 ≤ τ̇ (t) ≤ τ0 < 1.

(H2) There exist two constants γ1 > 0 and γ2 > 0 such that

γ1 < γ2,

n∑

i=1

β+
i

λ−
i

1

α−e
+ h+

α− < γ2,
1

α+

n∑

i=1

β−
i γ2e

−λ+
i

γ2 + h−

α+ > γ1 ≥ 1

λ− ,

where λ− = min1≤i≤n{λ−
i }.
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(H3) The following condition holds.

1

e2α−

n∑

i=1

β+
i < 1.

(H4) The following condition holds.

α− − 1

e2

n∑

i=1

β+
i

1

1 − τ0
< 1.

(H5) The following condition holds.

α− − 1

e2

n∑

i=1

β+
i − 1

e2

n∑

i=1

β+
i

1

1 − τ0
> 0.

Remark 2.1 We know that βi represents the per capita daily egg production rate, α stands
for the per capita daily adult death rate, 1

λi
denotes the size at which the blowfly population

reproduces at its rate, τ is the generation rate. Thus all the conditions (H1)–(H5) have prac-
tical biological meanings. When these biological variables satisfy some suitable conditions,
then the pseudo almost periodic solutions of the model will exist and all the other pseudo
almost periodic solutions of the model will convergence exponentially to its unique pseudo
almost periodic solution. In this sense, all the conditions (H1)–(H5) represent some problem
of applied nature.

3 Existence of Pseudo Almost Periodic Solutions

In this section, we will establish sufficient conditions on the existence of pseudo almost
periodic solutions of (1.3).

Lemma 3.1 Let C0 = {ϕ|ϕ ∈ C,γ1 < ϕ(t) < γ2, t ∈ [−τ+,0]}. Assume that (H1) and (H2)
are satisfied. Then, for any ϕ ∈ C, the solution x(t; t0, ϕ) of system (1.3) satisfies

γ1 < x(t; t0, ϕ) < γ2, t ∈ [t0, ζ(ϕ)) (3.1)

and the existence interval of each solution of system (1.3) can be extended to [t0,+∞).

Proof Denote x(t) = x(t; t0, ϕ). Let [t0, t∗) ⊆ [t0, ζ(ϕ)) be an interval such that

x(t) > 0, ∀t ∈ [t0, t∗).
First, we claim that

0 < x(t) < γ2, ∀t ∈ [t0, t∗). (3.2)

In fact, if (3.1) does not hold, then there exists t1 ∈ (t0, t
∗) such that

x(t1) = γ2, and 0 < x(t) < γ2 ∀t ∈ [t0 − τ+, t1). (3.3)

In view of the fact supy≥0
y

ey = 1
e

and (3.1)–(3.3), we have
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0 ≤ ẋ(t1)

= −α(t1)x(t1) +
n∑

i=1

βi(t1)x
(
t1 − τ(t1)

)
e−λi (t1)x(t1−τ(t1)) + h(t1)

= −α(t1)x(t1) +
n∑

i=1

βi(t1)

λi(t1)
λi(t1)x

(
t1 − τ(t1)

)
e−λi (t1)x(t1−τ(t1)) + h(t1)

≤ −α−x(t1) +
n∑

i=1

β+
i

λ−
i

1

e
+ h+

= α−
[

−γ2 +
n∑

i=1

β+
i

λ−
i

1

α−e
+ h+

α−

]

< 0,

which is a contradiction and implies that (3.2) holds.
Next we prove that

x(t) > γ1, ∀t ∈ [t0, ζ(ϕ)). (3.4)

If (3.4) does not hold, then there exists t2 ∈ (t0, ζ(ϕ)) such that

x(t2) = γ1, and x(t) > γ1 ∀t ∈ [t0 − τ+, t2). (3.5)

In view of (3.2) and (H2), we have

γ1 < x(t) < γ2, λ
+
i x(t) ≥ λ+

i

1

λ−
i

≥ 1, ∀t ∈ [t0 − τ+, t2). (3.6)

By (1.3), (3.5), (3.6), (H2) and the fact min1≤v≤μ
v
ev = μ

eμ , we have

0 ≥ ẋ(t2)

= −α(t2)x(t2) +
n∑

i=1

βi(t2)x
(
t2 − τ(t2)

)
e−λi (t2)x(t2−τ(t2)) + h(t2)

= −α(t2)x(t2) +
n∑

i=1

βi(t2)

λi(t2)
λi(t2)x

(
t2 − τ(t2)

)
e−λi (t2)x(t2−τ(t2)) + h(t2)

≥ −α+x(t2) +
n∑

i=1

β−
i

λ+
i

λ+
i x

(
t − τ(t2)

)
e−λ+

i
x(t2−τ(t2)) + h−

≥ −α+x(t2) +
n∑

i=1

β−
i

λ+
i

λ+
i γ2e

−λ+
i

γ2 + h−

≥ α+
[

−γ1 + 1

α+

n∑

i=1

β−
i γ2e

−λ+
i

γ2 + h−

α+

]

> 0,

which is a contradiction and implies that (3.4) holds. In view of (3.2) and (3.4), we can
conclude that (3.1) holds which implies that x(t) is bounded. Thus it follows from the con-
tinuation theorem in Hale [46, Theorem 12.2.4] that the existence interval of each solution
for system (1.3) can be extended to [t0,+∞). The proof of Lemma 3.1 is complete. �

We define a nonlinear operator Γ as follows.

(Γ φ)(t) := xφ(t) =
∫ t

−∞
e− ∫ t

s α(ξ)dξU(s)ds, (3.7)
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where φ ∈ PAP(R,R) and

U(s) =
n∑

i=1

βi(s)x
(
s − τ(s)

)
e−λi (s)x(s−τ(s)) + h(s).

Lemma 3.2 If (H1) holds, then Γ maps PAP(R,R) into itself.

Proof In view of Lemma 2.2, Lemma 2.3 and the composition theorem of pseudo almost
periodic solution functions (see [47]), we know that U(s) ∈ PAP(R,R). Thus U(s) can be
expressed as

U(s) = U1(s) + U1(s),

where U1(s) ∈ PAP(R,R) and U2(s) ∈ PAP0(R,R). Then we have

(Γ φ)(t) =
∫ t

−∞
e− ∫ t

s α(ξ)dξU1(s)ds +
∫ t

−∞
e− ∫ t

s α(ξ)dξU2(s)ds

= (Γ U1)(t) + (Γ U2)(t).

We first prove the almost periodicity of (Γ U1)(t). It follows from the almost periodicity of
U1 that for any ε > 0, there exists a number l(ε) such that in any interval [�,� + l(ε)], one
can find a number σ which has the following property

sup
s∈R

∣
∣U1(s + σ) − U1(s)

∣
∣ < ε.

Hence

∣
∣(Γ U1)(t + σ) − (Γ U1)(t)

∣
∣ =

∣
∣
∣
∣

∫ t+σ

−∞
e− ∫ t+σ

s α(ξ)dξU1(s)ds −
∫ t

−∞
e− ∫ t

s α(ξ)dξU1(s)ds

∣
∣
∣
∣

≤
∫ t

−∞
e− ∫ t

s α(ξ)dξ
∣
∣U1(s + σ) − U1(s)

∣
∣ds

≤ ε

α− .

Thus (Γ U1)(t) ∈ AP(R,R).
We next prove (Γ U2)(t) ∈ PAP(R,R). We only need to prove

lim
T →+∞

1

2T

∫ T

−T

∣
∣
∣
∣

∫ t

−∞
e− ∫ t

s α(ξ)dξU2(s)ds

∣
∣
∣
∣dt = 0.

In fact,

lim
T →+∞

1

2T

∫ T

−T

∣
∣
∣
∣

∫ t

−∞
e− ∫ t

s α(ξ)dξU2(s)ds

∣
∣
∣
∣dt

≤ lim
T →+∞

1

2T

∫ T

−T

∣
∣
∣
∣

∫ t

−∞
e−α−(t−s)U2(s)ds

∣
∣
∣
∣dt

≤ L1 + L2,

where

L1 = lim
T →+∞

1

2T

∫ T

−T

[∫ t

−T

∣
∣e−α−(t−s)U2(s)

∣
∣ds

]

dt,
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L2 = lim
T →+∞

1

2T

∫ T

−T

[∫ −T

−∞

∣
∣e−α−(t−s)U2(s)

∣
∣ds

]

dt.

In the sequel, we will estimate L1 and L2. Let t − s = χ . In view of Fubin’s theorem, we
have

L1 = lim
T →+∞

1

2T

∫ T

−T

[∫ t

−T

∣
∣e−α−(t−s)U2(s)

∣
∣ds

]

dt

= lim
T →+∞

1

2T

∫ T

−T

[∫ t

−T

e−α−(t−s)
∣
∣U2(s)

∣
∣ds

]

dt

= lim
T →+∞

1

2T

∫ T

−T

[∫ t+T

0
e−χα− ∣

∣U2(t − χ)
∣
∣dχ

]

dt

≤ lim
T →+∞

1

2T

∫ T

−T

[∫ +∞

0
e−χα− ∣

∣U2(t − χ)
∣
∣dχ

]

dt

=
∫ +∞

0
e−χα−

[
1

2T

∫ T

−T

∣
∣U2(t − χ)

∣
∣dt

]

dχ

=
∫ +∞

0
e−χα−

[
1

2T

∫ T −χ

−T −χ

∣
∣U2(υ)

∣
∣dυ

]

dχ

≤
∫ +∞

0
e−χα−

[
T + χ

T

1

2(T + χ)

∫ T +χ

−T −χ

∣
∣U2(υ)

∣
∣dυ

]

dχ.

Denote

U ∗(T ,χ) =
∫ T +χ

−T −χ

∣
∣U2(υ)

∣
∣dυ.

Since U2 ∈ PAP0(R,R), then we can conclude that U ∗(T ,χ) is bounded and satisfies
limT →+∞ U ∗(T ,χ) = 0. In view of the Lebesgue’s dominated convergence theorem, we
get

L1 = lim
T →+∞

1

2T

∫ T

−T

[∫ t

−T

∣
∣e−α−(t−s)U2(s)

∣
∣ds

]

dt = 0.

Notice that ‖U2‖ = supt∈R |U2(s)| < +∞, then

L1 = lim
T →+∞

1

2T

∫ T

−T

[∫ −T

−∞

∣
∣e−α−(t−s)U2(s)

∣
∣ds

]

dt

= lim
T →+∞

1

2T

∫ T

−T

[∫ −T

−∞
e−α−(t−s)

∣
∣U2(s)

∣
∣ds

]

dt

≤ lim
T →+∞

1

2T

1

(α−)2

(
1 − e−2α−T

)‖U2‖ = 0,

which implies that (Γ U2)(t) ∈ PAP0(R,R). Then Γ (U)(t) ∈ PAP(R,R). Thus Γ (φ)(t) ∈
PAP(R,R). The proof of Lemma 3.2 is completed. �

Theorem 3.1 If (H1)–(H3) hold, then system (1.3) has an unique pseudo almost periodic
solution in the region

Ω = {
x

∣
∣ x ∈ PAP(R,R), γ1 < x(t) < γ2, t ∈R

}
.
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Proof For any φ ∈ PAP(R,R), we consider the auxiliary equation which takes the form:

ẋ(t) = −α(t)x(t) +
n∑

i=1

βi(t)φ
(
t − τ(t)

)
e−λi (t)φ(t−τ(t)) + h(t). (3.8)

Noticing that M[α] > 0, we can conclude from Lemma 2.6 that the following linear equation

ẋ(t) = −α(t)x(t) (3.9)

admits an exponential dichotomy on R. In view of Lemma 2.5, we know that system (1.3)
has exactly one solution expressed by

xφ(t) =
∫ t

−∞
e− ∫ t

s α(ξ)dξ

[
n∑

i=1

βi(s)φ
(
s − τ(s)

)
e−λi (s)φ(s−τ(s)) + h(s)

]

ds. (3.10)

By Lemma 3.2, it is easy to see that xφ(t) ∈ PAP(R,R). Let

Ω = {
x

∣
∣ x ∈ PAP(R,R), γ1 < x(t) < γ2, t ∈R

}
.

Clearly, Ω is closed subset of PAP(R,R). We define an operator on Ω as follows:

(Γ φ)(t) =
∫ t

−∞
e− ∫ t

s α(ξ)dξ

[
n∑

i=1

βi(s)φ
(
s − τ(s)

)
e−λi (s)φ(s−τ(s)) + h(s)

]

ds. (3.11)

Obviously, to prove that system (1.3) has an unique pseudo almost periodic solution, it
suffices to show that Γ has a fixed point in Ω .

We first prove that the operator Γ is a self-mapping from Ω to Ω . In fact, for any φ ∈ Ω ,
according to (3.11) and the fact supv≥0

v
ev = 1

e
, we get

(Γ φ)(t) =
∫ t

−∞
e− ∫ t

s α(ξ)dξ

[
n∑

i=1

βi(s)φ
(
s − τ(s)

)
e−λi (s)φ(s−τ(s)) + h(s)

]

ds

=
∫ t

−∞
e− ∫ t

s α(ξ)dξ

[
n∑

i=1

βi(s)

λi(s)
λi(s)φ

(
s − τ(s)

)
e−λi (s)φ(s−τ(s)) + h(s)

]

ds

≤
∫ t

−∞
e−α−(t−s)

[
1

e

n∑

i=1

βi(s)

λi(s)
+ h(s)

]

ds

≤
n∑

i=1

β+
i

λ−
i

1

eα− + h+

α− < γ2, ∀t ∈R. (3.12)

By (H2) we have

λ+
i φ(t) ≥ λ+

i

1

λ−
i

≥ 1, ∀t ∈ [t0 − τ+, t2).

In view of the fact min1≤v≤μ
v
ev = μ

eμ , we get

(Γ φ)(t) =
∫ t

−∞
e− ∫ t

s α(ξ)dξ

[
n∑

i=1

βi(s)φ
(
s − τ(s)

)
e−λi (s)φ(s−τ(s)) + h(s)

]

ds

=
∫ t

−∞
e− ∫ t

s α(ξ)dξ

[
n∑

i=1

βi(s)

λi(s)
λi(s)φ

(
s − τ(s)

)
e−λi (s)φ(s−τ(s)) + h(s)

]

ds

≥
∫ t

−∞
e− ∫ t

s α(ξ)dξ

[
n∑

i=1

βi(s)

λ+
i

λ+
i φ

(
s − τ(s)

)
e−λ+

i
φ(s−τ(s)) + h−

]

ds
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≥
∫ t

−∞
e− ∫ t

s α(ξ)dξ

[
n∑

i=1

βi(s)

λ+
i

λ+
i φ

(
s − τ(s)

)
e−λ+

i
φ(s−τ(s)) + h−

]

ds

≥ 1

α+

n∑

i=1

β−
i

λ+
i

γ2e
−λ+

i
γ2 + h−

α+ > γ1, ∀t ∈R. (3.13)

It follows from (3.12) and (3.13) that the mapping Γ is a self-mapping from Ω to Ω .
We now prove that the mapping Ω is a contraction mapping on Ω . In fact, for any

φ, φ̄ ∈ Ω , we have
∥
∥Γ (φ)(t) − Γ (φ̄)(t)

∥
∥ = sup

t∈R

∣
∣(Γ φ)(t) − (Γ φ̄)(t)

∣
∣

= sup
t∈R

∣
∣
∣
∣
∣

∫ t

−∞
e− ∫ t

s α(ξ)dξ

[
n∑

i=1

βi(s)
(
φ
(
s − τ(s)

)
e−λi (s)φ(s−τ(s))

− φ̄
(
s − τ(s)

)
e−λi (s)φ̄(s−τ(s))

)
]

ds

∣
∣
∣
∣
∣

= sup
t∈R

∣
∣
∣
∣
∣

∫ t

−∞
e− ∫ t

s α(ξ)dξ

[
n∑

i=1

βi(s)

λi(s)

(
λi(s)φ

(
s − τ(s)

)
e−λi (s)φ(s−τ(s))

− λi(s)φ̄
(
s − τ(s)

)
e−λi (s)φ̄(s−τ(s))

)
]

ds

∣
∣
∣
∣
∣
. (3.14)

Since supv≥1 | 1−v
ev | = 1

e2 , then we have
∣
∣
∣
∣
u

eu
− v

ev

∣
∣
∣
∣ =

∣
∣
∣
∣
1 − (u + χ∗(v − u))

eu+χ∗(v−u)

∣
∣
∣
∣|u − v| ≤ 1

e2
|u − v|, (3.15)

where u,v ∈ [1,+∞),0 < χ∗ < 1. In view of (H2), we get

λi(s)φ
(
t − τ(t)

) ≥ λi(s)γ1 ≥ λi(s)
1

λ−
i

≥ 1, ∀t ∈R. (3.16)

According (3.14)–(3.16) and (H1), we have

∥
∥Γ (φ)(t) − Γ (φ̄)(t)

∥
∥ = sup

t∈R

∣
∣
∣
∣
∣

∫ t

−∞
e− ∫ t

s α(ξ)dξ

[
n∑

i=1

βi(s)
1

e2

∣
∣φ

(
s − τ(s)

) − φ̄
(
s − τ(s)

)∣
∣

]

ds

∣
∣
∣
∣
∣

≤ sup
t∈R

∣
∣
∣
∣
∣

∫ t

−∞
e− ∫ t

s α(ξ)dξ

[
n∑

i=1

βi(s)
1

e2

]

ds
∥
∥φ − φ̄

∥
∥

∣
∣
∣
∣
∣

≤ 1

e2α−

n∑

i=1

β+
i ‖φ − φ̄‖. (3.17)

By (H3), we know that Γ is a contraction mapping. Thus, applying the Banach fixed point
theorem, Γ has an unique fixed point. The proof of Theorem 3.1 is complete. �

4 Convergence and Exponential Convergence of Pseudo Almost Periodic
Solution

In this section, we will obtain the convergence and exponential convergence of pseudo al-
most periodic solution of system (1.3).
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Theorem 4.1 If (H1)–(H4) are satisfied, then all the solutions of system (1.3) in the region
Ω converge to its unique pseudo almost periodic solution.

Proof Let u(t) be any solution of system (1.3) and u∗(t) be a pseudo almost periodic solu-
tion of system (1.3). We define a Lyapunov function as follows:

V1(t) = ∣
∣u(t) − u∗(t)

∣
∣ + 1

e2

n∑

i=1

β+
i

1

1 − τ0

∫ t

t−τ(t)

∣
∣u(s) − u∗(x)

∣
∣ds (4.1)

Calculating the upper right derivative of V1(t) along the solutions of system (1.3), we have

D+V1(t) = sgn
{
u(t) − u∗(t)

}
{

−α(t)
(
u(t) − u∗(t)

)

+
n∑

i=1

βi(t)
[
u
(
t − τ(t)

)
e−λi (t)u(t−τ(t)) − u∗(t − τ(t)

)
e−λi (t)u

∗(t−τ(t))
]
}

+ 1

e2

n∑

i=1

β+
i

1

1 − τ0

∣
∣u(t) − u∗(t)

∣
∣

− 1

e2

n∑

i=1

β+
i

1 − τ̇ (t)

1 − τ0

∣
∣u

(
t − τ(t)

) − u∗(t − τ(t)
)∣
∣

= sgn
{
u(t) − u∗(t)

}
{

−α(t)
(
u(t) − u∗(t)

)

+
n∑

i=1

βi(t)

λi(t)

[
λi(t)u

(
t − τ(t)

)
e−λi (t)u(t−τ(t))

− λi(t)u
∗(t − τ(t)

)
e−λi (t)u

∗(t−τ(t))
]
}

+ 1

e2

n∑

i=1

β+
i

1

1 − τ0

∣
∣u(t) − u∗(t)

∣
∣

− 1

e2

n∑

i=1

β+
i

1 − τ̇ (t)

1 − τ0

∣
∣u

(
t − τ(t)

) − u∗(t − τ(t)
)∣
∣

≤ −α−∣
∣u(t) − u∗(t)

∣
∣ + 1

e2

n∑

i=1

β+
i

∣
∣u

(
t − τ(t)

) − u∗(t − τ(t)
)∣
∣

+ 1

e2

n∑

i=1

β+
i

1

1 − τ0

∣
∣u(t) − u∗(t)

∣
∣

− 1

e2

n∑

i=1

β+
i

1

1 − τ0

∣
∣u

(
t − τ(t)

) − u∗(t − τ(t)
)∣
∣

≤ −α−∣
∣u(t) − u∗(t)

∣
∣ + 1

e2

n∑

i=1

β+
i

∣
∣u

(
t − τ(t)

) − u∗(t − τ(t)
)∣
∣

+ 1

e2

n∑

i=1

β+
i

1

1 − τ0

∣
∣u(t) − u∗(t)

∣
∣ − 1

e2

n∑

i=1

β+
i

∣
∣u

(
t − τ(t)

) − u∗(t − τ(t)
)∣
∣
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= −
(

α− − 1

e2

n∑

i=1

β+
i

1

1 − τ0

)
∣
∣u(t) − u∗(t)

∣
∣, t > t0. (4.2)

It follows from (H4) and (4.2) that there exists a constant ν1 > 0 such that

D+V1(t) ≤ −ν1

∣
∣u(t) − u∗(t)

∣
∣, t > t0. (4.3)

Integrating on both sides of (4.3) from t0 to t leads to

V1(t) + ν1

∫ t

t0

∣
∣u(t) − u∗(t)

∣
∣ds < V1(t0) < +∞, t > t0, (4.4)

then
∫ t

t0

∣
∣u(t) − u∗(t)

∣
∣ds < +∞, t > t0, (4.5)

which implies |u(t)−u∗(t)| ∈ L1(t0,+∞). From Lemma 3.1, we know that u(t), u∗(t) and
their derivatives are bounded on [t0,+∞). Thus |u(t) − u∗(t)| is uniformly continuous on
[t0,+∞). Applying Lemma 2.7, we have

lim
t→+∞

∣
∣u(t) − u∗(t)

∣
∣ = 0. (4.6)

This completes the proof of Theorem 4.1. �

Theorem 4.2 If (H1)–(H5) are satisfied, then all the solutions of system (1.3) in the region
Ω exponentially converge to its unique pseudo almost periodic solution.

Proof Similar to the proof of Theorem 4.1, we know that system (1.3) has an unique pseudo
almost periodic solution. Define a continuous functions Θ(�) as follows:

Θ(�) = α− − � − 1

e2

n∑

i=1

β+
i − 1

e2

n∑

i=1

β+
i

1

1 − τ0
e�τ+

, � ≥ 0. (4.7)

Then

Θ(0) = α− − 1

e2

n∑

i=1

β+
i − 1

e2

n∑

i=1

β+
i

1

1 − τ0
> 0. (4.8)

In view of the continuity of Θ(�), we can choose a sufficiently small positive constant ε

such that

Θ(�) = α− − � − 1

e2

n∑

i=1

β+
i − 1

e2

n∑

i=1

β+
i

1

1 − τ0
e�τ+

> 0 (4.9)

Let u(t) be any solution and u∗(t) be a pseudo almost periodic solution of (1.3). Define a
Lyapunov function as follows:

V2(t) = ∣
∣u(t) − u∗(t)

∣
∣eεt + 1

e2

n∑

i=1

β+
i

1

1 − τ0

∫ t

t−τ(t)

∣
∣u(s) − u∗(x)

∣
∣eε(s+τ+)ds. (4.10)

Calculating the upper right derivative of V2(t) along the solutions of system (1.3), we have
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D+V2(t) = εeεt
∣
∣u(t) − u∗(t)

∣
∣ + eεtsgn

{
u(t) − u∗(t)

}
{

−α(t)
(
u(t) − u∗(t)

)

+
n∑

i=1

βi(t)
[
u
(
t − τ(t)

)
e−λi (t)u(t−τ(t)) − u∗(t − τ(t)

)
e−λi (t)u

∗(t−τ(t))
]
}

+ 1

e2

n∑

i=1

β+
i

1

1 − τ0
eε(t+τ+)

∣
∣u(t) − u∗(t)

∣
∣ − 1

e2

n∑

i=1

β+
i

1 − τ̇ (t)

1 − τ0
eε(t−τ(t)+τ+)

× ∣
∣u

(
t − τ(t)

) − u∗(t − τ(t)
)∣
∣

= εeεt
∣
∣u(t) − u∗(t)

∣
∣ + eεtsgn

{
u(t) − u∗(t)

}
{

−α(t)
(
u(t) − u∗(t)

)

+
n∑

i=1

βi(t)

λi(t)

[
λi(t)u

(
t − τ(t)

)
e−λi (t)u(t−τ(t))

− λi(t)u
∗(t − τ(t)

)
e−λi (t)u

∗(t−τ(t))
]
}

+ 1

e2

n∑

i=1

β+
i

1

1 − τ0
eε(t+τ+)

∣
∣u(t) − u∗(t)

∣
∣

− 1

e2

n∑

i=1

β+
i

1 − τ̇ (t)

1 − τ0
eε(t−τ(t)+τ+)

∣
∣u

(
t − τ(t)

) − u∗(t − τ(t)
)∣
∣

≤ εeεt
∣
∣u(t) − u∗(t)

∣
∣ − α−eεt

∣
∣u(t) − u∗(t)

∣
∣

+ 1

e2

n∑

i=1

β+
i eεt

∣
∣u

(
t − τ(t)

) − u∗(t − τ(t)
)∣
∣

+ 1

e2

n∑

i=1

β+
i

1

1 − τ0
eε(t+τ+)

∣
∣u(t) − u∗(t)

∣
∣

− 1

e2

n∑

i=1

β+
i eεt

∣
∣u

(
t − τ(t)

) − u∗(t − τ(t)
)∣
∣

= −eεt

(

α− − ε − 1

e2

n∑

i=1

β+
i − 1

e2

n∑

i=1

β+
i

1

1 − τ0
eετ+

)
∣
∣u(t) − u∗(t)

∣
∣

< 0, t > t0. (4.11)

By (4.10) and (4.11), we have

∣
∣u(t) − u∗(t)

∣
∣ ≤ V2(t0)e

−εt . (4.12)

Thus we can conclude that all the pseudo almost periodic solutions of (1.3) convergence
exponentially to its unique pseudo almost periodic solution. The proof of Theorem 4.2 is
completed. �
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5 An Example and Computer Simulations

In this section, we will give an example to illustrate the feasibility and effectiveness of our
main results obtained in previous sections. Considering the following Nicholson’s blowflies
model with a harvesting term

ẋ(t) = −α(t)x(t) +
2∑

i=1

βi(t)x
(
t − τ(t)

)
e−λi (t)x(t−τ(t)) + h(t), (5.1)

where

α(t) = 6

e2
+ ∣

∣sin
√

3t
∣
∣, β1(t) = 0.1 + 0.2 cos2 t + 0.2

∣
∣sin

√
5t

∣
∣,

τ (t) = 0.5 + 0.5| sin t |,
β2(t) = 0.1 + 0.2 sin2 t + 0.2| cos

√
3t |, λ1(t) = 6 + cos2 t + sin2

√
3t,

λ2(t) = 6 + sin2 t + cos2
√

5t, h(t) = e2

14

(

0.5 sin2 t + 0.5 cos2
√

5t + 1

1 + t2

)

.

Then

α+ = 6

e2
+ 1, α− = 6

e2
, β+

1 = β+
2 = 0.5, β−

1 = β−
2 = 0.1,

λ+
1 = λ+

2 = 8, λ−
1 = λ−

2 = λ− = 6, h+ = 2e2

14
, h− = e2

14
, τ+ = 1.

Choose τ0 = 0.9, γ1 = 0.7, γ2 = 3.1. Hence,

(H1) 0 ≤ τ(t) ≤ 1 = τ+, 0 ≤ τ̇ (t) ≤ 0.9 = τ0 < 1,

(H2)

γ1 < γ2,

2∑

i=1

β+
i

λ−
i

1

α−e
+ h+

α− = 0.1

6
× e

6
× 2 + e2

6
× 2e2

6
≈ 3.0483 < 3.1 = γ2,

1

α+

2∑

i=1

β−
i γ2e

−λ+
i

γ2 + h−

α+ = 1
6
e2 + 1

(
0.5 × 3.1 × e−8×3.1

) × 2 +
e2

6
6
e2 + 1

≈ 0.6796 > 0.7 = γ1 ≥ 1

6
= 1

λ− ,

(H3)
1

e2α−

2∑

i=1

β+
i = 1

e2 × 6
e2

(0.5 + 0.5) = 1

6
< 1,

(H4) α− − 1

e2

n∑

i=1

β+
i

1

1 − τ0
= 6

e2
− 1

e2
× 10 = − 4

e2
< 1,

(H5) α− − 1

e2

n∑

i=1

β+
i − 1

e2

n∑

i=1

β+
i

1

1 − τ0
= 6

e2
− 1

e2
− 1

e2
= 4

e2
> 0.

Then all the conditions in Theorem 3.1, Theorem 4.1 and Theorem 4.2 are fulfilled, then
system (5.1) has an unique positive pseudo almost periodic solution

u∗(t) ∈ Ω = {
u

∣
∣ u ∈ PAP(R,R), 0.7 < u(t) < 3.1, ∀t ∈R

}
.
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Fig. 1 The Numerical solution
of system (5.1)

Moreover, if

ϕ ∈ C0 = {
ϕ

∣
∣ ϕ ∈ C, 0.7 < ϕ(t) < 3.1, ∀t ∈ [−1,0]},

then u∗(t; t0, ϕ) locally converges (exponentially) to u∗(t) as t → +∞. The results are il-
lustrated in Fig. 1.

6 Conclusions

In this paper, an Nicholson’s blowflies model with time-varying delays and a harvesting term
is investigated. Applying the fixed point theorem, the properties of pseudo almost periodic
function, inequality analysis technique and constructing appropriate Lyapunov functionals,
we have established some new sufficient conditions to ensure the existence and conver-
gence and exponential convergence of pseudo almost periodic solution for the Nicholson’s
blowflies model. All the conditions are expressed in simple algebraic methods which are
very easily checked in practice. We support the theoretical findings by an example with its
computer simulations. Here we would like to point out that there are a lot of work which
deal with the dynamics of equilibrium point, periodic solution and almost periodic solution
of Nicholson’s blowflies model in recent years. But there are few results on the pseudo al-
most periodic behavior of model (1.3), which implies that the obtained results in this present
paper are essentially new and complement and extend the previously known studies to some
extent.
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