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Abstract Enumeration problems for the central configurations of the Newtonian n body
problem are hard for n > 3 in R

2 and n > 4 in R
3. These are problems in finding the num-

bers of classes of central configurations for all the masses in a parameter space of positive
dimensions. Many results are obtained generically. That is, rigorous proofs of the counting
problems only exists for parameters not at the bifurcation points. For the bifurcation points,
only numerical evidences are provided due to the complexity of the problems.

In this paper, we propose an algorithm that rigorously proves results on counting central
configurations for all masses in one dimensional parameter spaces. Especially, we provide
an approach to find all bifurcation points and count real roots at those points, known only
implicitly. A spatial restricted (4 + 1)-body problem and a planar (1 + 3)-body problem are
successfully applied by our method. All results except for the equal masses for the restricted
(4 + 1)-body problem are new and the results for the planar (1 + 3)-body problem are new
at the bifurcation points.

Keywords Central configurations · Bifurcations · Parametric polynomial systems ·
Symbolic computations

Mathematics Subject Classification (2010) 70F10 · 13P10 · 68W30

1 Introduction

Central configurations play an important role in the study of the Newtonian n-body problem.
Given a initial position of a central configuration in R

3 with zero initial velocity, the n

particles accelerate toward the center of mass in such a way that the configuration collapses
homothetically. If we have initial positions of a central configuration in R

2 and proper initial
velocities, each particle will traverse an elliptical orbit around the center of mass as in the
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Kepler problem and the configuration remains similar to the initial configuration throughout
the motion, varying only in size.

Finding all central configurations is challenging in the field of celestial mechanics. They
are completely known only for n = 2,3 and for configurations in R

1 and R
n−1 for all n. For

n = 2, every configuration of two bodies is central. Counting up to rotations and translations,
we obtain one central configuration. For n = 3, there are five central configurations. Three of
them are collinear configurations found by Euler and the others are the equilateral triangle
discovered by Lagrange. Considering n bodies in R

1, there are n!
2 central configurations

[18]. On the other hand, the only central configuration in R
n−1 is when the n bodies form a

regular simplex [23].
For n > 3, only limited results are known about central configurations in R

�, where
1 < � < n − 1. For n = 4, Hampton and Moeckel [16] proved the finiteness of central
configurations in R

2 for any choices of four positive masses. For n = 5 with generic
choices of masses, the finiteness of central configurations in R

2 was proved by Albouy
and Kaloshin [2], and the finiteness of central configurations in R

3 was proved by Hampton
and Jensen [15]. For n > 5, we do not even know if the number of central configurations is
finite. Smale’s 6-th problem in the list of his 18 mathematical problems for the 21 century
[24] asked if the number of central configurations in R

2 is finite for all n. It is still open for
n > 5.

Even in the cases of 4 bodies in R
2 and 5 bodies in R

3, we do not have exact counts for
the numbers of central configurations for all systems where finiteness are proved. Restricted
cases where some of the masses are zero and/or some of the non zero masses are equal
are among the few successful examples. There are two kinds of restricted cases for some
of the masses being zero. One is when only one of the masses equals to zero, called the
restricted (n + 1)-body problem. Another is when all but one of the masses approach zero
and considering the limiting central configurations. This is called the (1 +n)-body problem.

The restricted (2 + 1)-body problem is well studied and also has five central configu-
rations as in the 3-body problem. The number of central configurations of the restricted
(3 + 1)-body problem in R

2 is shown numerically to be 8,9 or 10 [1, 20, 22]. The results
are recently proved in [3, 4]. To our understanding, the paper in [4] is among the few deal-
ing with the counting problems where masses are also on the bifurcation curve. They prove
rigorously that, on the bifurcation curve, there are nine central configurations.

In this paper, we generalize the case of equal masses of the restricted (4 + 1)-body prob-
lem in R

3 and consider two special cases, where one mass parameter is involved. We use dif-
ferent approach to count the numbers of central configurations and obtain 3,4,5 and 2,3,4
for the zero mass on different lines of symmetry. In particular, the numbers of such central
configurations are four and three at the bifurcation points.

The cases of the (1 + n)-body problems are first considered by Maxwell when studying
the rings of Saturn. For such problems, we have one dominant mass, assuming 1, and n

small masses, μiε. Let ε → 0 and consider the limiting central configurations. Such central
configurations have the body of the dominant mass at the center of a circle in R

2 which
passes through the bodies of infinitesimal masses [9]. There are two central configurations
of the (1+2)-body problem, one is collinear and the other one is the equilateral triangle [10].

The (1 + 3)-body problem is studied in [5, 6]. In [5], the special cases of μ1 = μ2 are
considered. There numerical evidences shows the number of central configurations varies
from 5 to 7. In [6], the general cases are studied and generic results of 5 or 7 central config-
urations are proved, while cases on the bifurcation curve are still in lack of rigorous proofs.
It turns out that rigorous counts at two bifurcation points in the case of μ1 = μ2 are missing.
In this paper, we use our method to show that, in the special cases of μ1 = μ2, the number
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of central configurations are indeed 5,6, or 7. In particular, at two bifurcation points, the
numbers of central configurations are five and six.

In this paper, some computations involve Groebner basis and resultants, which are exact
symbolic computations. We use Mathematica 10, to perform such computations. We also
use Mathematica to count roots of integral polynomials of one variable by its implemented
command “CountRoots” that always give accurate answers as explained in [8]. Therefore,
all of our arguments in this paper are rigorous. In [26], we provide a link for Mathematica
notebooks containing results of our computations.

2 Two Restricted Problems and Main Results

The Newtonian n-body problem studies the dynamics of n particles with masses mi > 0 and
positions qi ∈R

d , moving according to the Newton’s laws of motion:

mj q̈j =
∑

i �=j

mimj (qi − qj )

‖qi − qj‖3
, 1 ≤ j ≤ n. (1)

Definition 1 A configuration (q1, . . . , qn) ∈R
dn \� is central if there exists λ < 0 such that

λ(qj − c) =
∑

i �=j

mi(qi − qj )

‖qi − qj‖3
, 1 ≤ j ≤ n, (2)

where c = 1
M

(m1q1 + · · · + mnqn), M = m1 + · · · + mn, and � = {qi = qj , i �= j}.

2.1 A Restricted (4 + 1)-Body Problem in R
3

Let five particles have masses m1, . . . ,m4 > 0 and m5 = 0. The four particles with positive
masses form a central configuration by themselves according to (2). Considering the central
configuration in R

3, we obtain a regular tetrahedron [23]. Fixing q1, . . . , q4 in R
3 such that

the length of the sides of the regular tetrahedron is 1 and assuming the total mass M = 1,
without lost of generality, we obtain λ = −1 in (2). The equation in (2) for the zero mass
become ∂xG = ∂yG = ∂zG = 0, where

G = 1

2
‖q5 − c‖2 + m1

‖q5 − q1‖ + m2

‖q5 − q2‖ + m3

‖q5 − q3‖ + m4

‖q5 − q4‖ .

By the identity,

‖q5 − c‖2 −
4∑

i=1

mi‖q5 − qi‖2 = ‖c‖2 −
4∑

i=1

mi‖qi‖2,

we change the coordinate of q5 to ri = ‖q5 − qi‖ for i = 1, . . . ,4. So, we obtain

G = 1

2

(
m1r

2
1 + m2r

2
2 + m3r

2
3 + m4r

2
4

) + m1

r1
+ m2

r2
+ m3

r3
+ m4

r4
+ C,

for some constant C depending on c. With new coordinates, we impose a restriction for the
mutual distances of five points in R

3 given by the Cayley–Menger determinant below [19].
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Therefore, we have the equation below for r1, r2, r3, r4.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1

1 0 1 1 1 r2
1

1 1 0 1 1 r2
2

1 1 1 0 1 r2
3

1 1 1 1 0 r2
4

1 r2
1 r2

2 r2
3 r2

4 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= F = 0.

Now we find the critical points of G restricted to F = 0. By the Lagrange multiplier
technique, we obtain the following equations for a multiplier ω.

∂ri G = ω∂ri F, ∀i = 1,2,3,4,

F = 0.
(3)

Eliminating ω and clearing the denominators, we obtain polynomial systems from (3).
For the case of equal masses, we have the following results [17, 21].

Proposition 1 When m1 = m2 = m3 = m4, there are 5 central configurations for the zero
mass locating at the line with ri = rj , and rk = r�, for distinct i < j, k < � in {1,2,3,4}.
There are 4 central configurations for the zero mass locating at the line with ri = rj = rk for
i < j < k in {1,2,3,4}. If the zero mass is not on any of the 7 lines of symmetry, there are
no central configurations.

To generalize the problem, we consider two special cases. The first case is when
m1 = m3 = k, m2 = m4 = 1

2 − k. In this case, we consider r1 = r3 = x and r2 = r4 = y

for simplicity. The second case is when m1 = m2 = m3 = k, m4 = 1 − 3k. In this case, we
consider r1 = r2 = r3 = x and r4 = y.

For the first case, we have the following system.

⎧
⎪⎨

⎪⎩

f1 = (1 − 2k)x3 − (2 − 4k)x5 + (2 − 4k)x3y2 − 2ky3

− 4kx2y3 − (1 − 4k)x3y3 + 2x5y3 + 4ky5 − 2x3y5,

f2 = 3 − 4x2 + 4x4 − 4y2 − 8x2y2 + 4y4.

(4)

Theorem 1 The system (4) has 3, 4, and 5 positive zeros in (0, α) ∪ ( 1
2 − α, 1

2 ), at k =
α, 1

2 − α, and in (α, 1
2 − α), respectively, where α is approximately 0.226696. Therefore, in

the restricted (4 + 1)-body problem in R
3, there are 3,4, or 5 central configurations for the

zero mass on the line of symmetry shown in Fig. 1 when m1 = m3, m2 = m4.

For the second case, we have the following system.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f3 = (1 − 3k)x3 − (1 − 3k)x5 + (1 − 3k)x3y2 − ky3

− 3kx2y3 − (1 − 4k)x3y3 + x5y3 + 3ky5 − x3y5,

f4 = 3 − 6x2 + 3x4 − 2y2 − 6x2y2 + 3y4,

f5 = −1 + (−1 + x2)z.

(5)
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Fig. 1 m1 = m3, m2 = m4

Fig. 2 m1 = m2 = m3

Note that in system (5), we impose an extra variable z and the equation f5 to remove
the singularities when x = 1, where the zero mass particle collides with the particle of mass
1 − 3k.

Theorem 2 The system (5) has 2, 3, and 4 zeros with positive x, y coordinates in (0, β),
at k = β , and in (β, 1

3 ), respectively, where β is approximately 0.246659. Therefore, in the
restricted (4+1)-body problem in R

3, there are 2,3, or 4 central configurations for the zero
mass on the line of symmetry shown in Fig. 2 when m1 = m2 = m3.

Remark 1 In Theorem 1, the number of central configurations 5 is obtained as in Proposi-
tion 1 by letting k = 1

4 . Similarly, in Theorem 2, the number of central configurations 4 is
obtained as in Proposition 1 by letting k = 1

4 .
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2.2 The (1 + 3)-Body Problem in R
2

Now, let qi = (xi, yi) ∈ R
2 and ri,j = ‖qi − qj‖ be the distance between particles i and j .

Let �i,j,k denote the oriented area of the triangle with vertices qi, qj , and qk . That is,

�i,j,k = 1

2

∣∣∣∣∣∣∣

xi yi 1

xj yj 1

xk yk 1

∣∣∣∣∣∣∣
.

We have the following characterization for non collinear central configurations [14].

Proposition 2 Let (q1, . . . , qn) ∈ R
2n \ � be a non collinear planar configuration. Then (2)

are satisfied if and only if

n∑

k=1,k �=i,j

mk�i,j,k

(
1

r3
ik

− 1

r3
jk

)
= 0, 1 ≤ i < j ≤ n.

Let (q1(ε), q2(ε), q3(ε), q4(ε)) be a central configuration of the planar 4-body problem,
with m1 = μ1ε,m2 = μ2ε,m3 = μ3ε,m4 = 1. If the limit of each qi(ε) exists as ε ap-
proaches zero such that none of the two limiting positions collide, we call the limiting con-
figuration a non-collision central configuration of the planar (1+3)-body problem. We have
the following well known results [9].

Proposition 3 All the central configurations of the planar (1 + n)-body problem lie on a
circle centered at the particle with positive mass.

To find the non-collision central configurations of the planar (1 + 3)-body problem, we
can apply Proposition 2 and let ε approaches zero. By Proposition 3 we can then use, without
lost of generality,

q1 =
(

1 − r2
3

1 + r2
3

,
2r3

1 + r2
3

)
, q2 =

(
1 − r2

4

1 + r2
4

,
2r4

1 + r2
4

)
, q3 = (−1,0), q4 = (0,0)

in the limiting equations. Here we consider μ1 = μ2 = 1 and μ3 = k > 0. Also, we im-
pose two more variables r1, r2 such that 1

r2
1

= 1 + r2
3 , and 1

r2
2

= 1 + r2
4 . Then, we obtain the

following system with four equations, four variables, and one parameter.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f6 = r1r
2
3 r4 − 8r1r

3
2 r2

3 r4 − 2r1r3r
2
4 + 16r1r

3
2 r3r

2
4 + r1r

3
4 − 8r1r

3
2 r3

4

+k(1 − 8r3
1 r3

2 r3
3 + r3r4 + 24r3

1 r3
2 r2

3 r4 − 8r3
1 r3

2 r4
3 r4 − 24r3

1 r3
2 r3r

2
4

+ 24r3
1 r3

2 r3
3 r2

4 + 8r3
1 r3

2 r3
4 − 24r3

1 r3
2 r2

3 r3
4 + 8r3

1 r3
2 r3r

4
4 ),

f7 = r2r3 − 8r3
1 r2r3 + r1r4 − 8r1r

3
2 r4,

f8 = 1 − r2
1 − r2

1 r2
3 ,

f9 = 1 − r2
2 − r2

2 r2
4 .

(6)

The geometric meanings of r3, r4 are the y-coordinates of the points of intersection be-
tween the y-axis and the line segments connecting q3 and q1, q2, respectively. Denote the



Counting Central Configurations at the Bifurcation Points 105

Fig. 3 The 1 + 3 body problem

intersection points by p1 and p2. Then r1 and r2 are the inverse of the lengths of the hy-
potenuse of the triangles p1q3q4 and p2q3q4, respectively. Figure 3 shows the geometry.
The goal here is to count the number of common zeros of the system (6) with 0 < r1, r2 < 1
and r3 > r4 without lost of generality. (Note that it is easy to see there are no common zeros
for r1 = 1 or r2 = 1 if 0 < k.)

Theorem 3 The system (6) has 5, 6, and 7 zeros with 0 < r1, r2 < 1 and r3 > r4 in (0, a) ∪
[b,∞), at s = a, and in (a, b), respectively, where a, b are approximately 0.89616 and
1.42385. Therefore, for the planar (1+3)-body problem with two equal infinitesimal masses,
there are 5,6, or 7 central configurations.

Remark 2 In [6], the number of central configurations 5 or 7 on (0,∞) \ {a, b} are proved
rigorously. As in [5], only numerical evidences are given for the numbers of central config-
urations at a and b.

3 Counting Algorithm

In this section, we present our method of counting real common zeros of a parametric poly-
nomial system F = {f1, . . . , fn}, where fi ∈ Q[k][x1, . . . , xn]. Here Q[k] is the domain of
the coefficients.

We define the specialization at a point r ∈ R. It is a ring homomorphism ϕr :
Q[k][x1, . . . , xn] → R[x1, . . . , xn] such that ϕa(f ) is the real polynomial after substituting
the parameter with the value r in f . We denote ϕr(f ) = f r and ϕr(F) = {f r |f ∈ F} = F r .

The enumeration problem of the system F is to count the number of common zeros
in X of F r for all r ∈ P . Here X = {x ∈ R

n| p1(x) > 0, . . . , p�(x) > 0}, where pj are
polynomials with integral coefficients and P is an open interval in R, called the parameter
space. (For example, if n = 2, p1 = x1, p2 = x2, and P = (0,∞), we are to count the
common zeros of the system in the first quadrant for all positive parameters.) To do so, we
proceed as the following.
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1. View F in Q[x1, . . . , xn, k] and compute the Groebner basis G of F with a block order.
2. View G in Q(k)[x1, . . . , xn], where Q(k) is the field of rational polynomials in k, and

compute the Hermite matrices Hj := H(F,Pj ) for all Pj , where Pj is any product of a
subset from {p1, . . . , p�}. There are 2� of them including of the product of no polynomials
P0 := 1.

3. From H0, we obtain all points a ∈ P where the number of real zeros of F may change.
Those points are zeros of a polynomial g, called the bifurcation polynomial, which is the
numerator of H0.

4. Call the zeros ai of g the bifurcation points and pick a rational sample point a ∈
(ai, ai+1). Use Hermite root counting theorem to count the number of zeros in X by
computing signatures of H(Fa,Pj ) for all j .

The number of zeros in X is a constant in (ai, ai+1) if pj �= 0 for all j at the com-
mon zeros. Therefore, generic results are obtained. Next, we focus on parameters at the
bifurcation points ai ’s. Let Hi

j := H(Fai ,Pj ) and d be the dimension of Hj .
5. For each ai and Hj , obtain the rank ri,j of Hi

j from the principal minors of Hj . For each
Hj , denote the leading principal minors of order t by Dj,t . It turns out D

ai

j,t = 0 for all
t > ri,j , if ri,j < d .

6. For each ai , we pick an interval (ai�, air ) containing it such that, for all j and t ≤ ri,j , if
Dj,t is not identically equal to zero, then there is no zeros in (ai�, air ) and there is only
one zero, ai , of Dj,t for all t > ri,j , if ri,j < d .

7. For each ai and Hj , compute the number of sign changes vi,j in the list {1,D
bi

j,1, . . . ,

D
bi

j,ri,j
}, where bi can be either ali or ari .

8. Obtain the signatures of Hi
j from vi,j and ri,j by the Jacobian theorem and compute the

number of common zeros in X of Fai again by Hermite root counting theorem.

Remark 3 By Hermite root counting theorem, we not only count the common zeros of Fai

in X = {x ∈ R
n| p1(x) > 0, . . . , p�(x) > 0}. We also obtain the numbers of common zeros

in any of the region { (−1)m1p1 > 0, . . . , (−1)m�p� > 0} among the 2� “quadrants”.

In the following two subsections, we present tools we used. Moreover, we focus on show-
ing that our counting method is rigorous.

3.1 Steps from (1) to (4): on Finding the Bifurcation Polynomial

Given any polynomial ring over Q, a finite set of polynomials in it, a total ordering on
monomials, we can symbolically manipulate the given set of polynomials and output the
Groebner basis, another finite set of polynomials, which has many good properties [11].
They generate the same ideal and hence share the same set of common zeros. For certain
orders on monomials, the Groebner base are much easier to solve than the original system.

Consider the quotient algebra A over the filed C of the ideal generated by the poly-
nomials, a Groebner basis can verify if the polynomial system has finitely many complex
common zeros by showing the dimension of A as a vector space over C is finite. In this case,
the dimension gives an upper bound to the number of zeros. Moreover, we can obtain a basis
of A and an algorithm to express any element in A with this basis. Therefore, it becomes
possible to compute the Hermite matrix that is used to count the number of real roots.

Definition 2 Let F = {f1, . . . , fn} ⊂ Q[x1, . . . , xn], I = 〈F〉, p ∈ Q[x1, . . . , xn] and A =
R[x1, . . . , xn]/I with a basis {b1, . . . , bm}, the Hermite matrix, denoted by H(F,p), is the
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m × m real symmetric matrix with entries Trace(L(pbibj )), where L(pbibj ) is the linear
map on A defined by the left multiplication with pbibj .

Hermite root counting method is given in the following proposition [7]. In [26], we pro-
vide a Mathematica notebook containing the implementation of our efficient algorithm out-
putting H(F,p) given F,p and a Groebner basis of F .

Proposition 4 Matrix rank of H(F,p) equals to the number of complex roots of F with
p �= 0. Signature of H(F,p) equals to the number of real roots with p > 0 minus the number
of real roots with p < 0.

If we are to count real roots in X = {x ∈ R
n| p1(x) > 0, . . . , p�(x) > 0}, where pj are

polynomials, we need to compute 2� Hermite matrices H(F,Pj ) for all Pj , where Pj is any
product of a subset from {p1, . . . , p�}, including of the product of elements in the empty set
P0 = 1. Then solving a linear system of 2� variables, we obtain the numbers of real roots in
all of the 2� regions { (−1)m1p1 > 0, . . . , (−1)m�p� > 0}.

In our situations, parameters are involved. Extra cares should be taken into consideration.
Given F = {f1, . . . , fn} ⊂ Q[k][x1, . . . , xn], a polynomial system with coefficients in the
domain Q[k]. The first goal is to compute a set of polynomials G in Q[k][x1, . . . , xn] such
that the specialization at any point r ∈ R, Gr is a Groebner basis for F r in R[x1, . . . , xn].
Here, we adopt the following proposition to achieve this goal for almost all r ∈ R [13].

Proposition 5 View F ⊂ Q[x1, . . . , xn, k], consider any total ordering where any monomial
involving one of the xi ’s is greater than all monomials in k, called a block order, and compute
a Groebner basis G = {g1, . . . , gs} of F with this order. Using the total ordering on the
variables x1, . . . , xn of the block order, we find the leading terms {h1, . . . , hs} ⊂ Q[k] of G
in Q[k][x1, . . . , xn]. If hr

i �= 0 for all i, then Gr is a Groebner basis of F r .

Next, we will compute H(F r , p) for all such r where hr
i �= 0 for all i. We use the fol-

lowing results whose proofs can be found in [25].

Proposition 6 View G obtained in Proposition 5 as a set in Q(k)[x1, . . . , xn] and consider
F in Q(k)[x1, . . . , xn]. Then G is a Groebner basis of F in Q(k)[x1, . . . , xn]. Hence, we can
compute the hermite matrix H(F,p) on the algebra A over the field Q(k). H(F,p) is a
symmetric matrix with entries in Q(k), whose denominators can only contain factors hi ’s in
Proposition 5. We have the specialization ϕr(H(F,p)) = H(F r , p) for all r where hr

i �= 0
for all i.

Then, we compute the bifurcation polynomial g of the system F . Theoretically, the bi-
furcation polynomial is defined as the polynomial containing the projection of the common
zeros of {F, J } in C[x1, . . . , xn, k], where J is the Jacobian determinant of F , into the
parameter space P in R. Those points of projection in the parameter space are called the bi-
furcation points. One approach to compute g is to compute a Groebner basis of {F, J } with
a certain order to eliminate the variables x1, . . . , xn. We will not use this method because the
computations of such Groebner basis usually require much more computer memories then
we have. Instead, we use the following method [25].

Proposition 7 Consider the hermite matrix H(F,p) in Q(k) obtained in Proposition 6
and p = 1. If the determinant of H(F,1) in Q(k) is not identically equal to zero. Then the
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zero set of the numerator g contains the bifurcation points. Therefore, we call such g the
bifurcation polynomial.

3.2 Steps from (5) to (8): on Counting at the Bifurcation Points

Assume the bifurcation polynomial g has real zeros {a1, . . . , aw} in the parameter space P .
We will also use the Hermite root counting method to count the number of common zeros
of Fai in X . Since ai ’s are only know implicitly, we can not compute ϕai (H(F,p)) nor
H(Fai , p) directly to obtain the signatures. However, as long as ai is not a zero for any
of the hj ’s in Proposition 5, we have ϕai (H(F,p)) = H(Fai , p) by Proposition 6. In fact,
ϕr(H(F,p)) = H(F r , p) in a small closed interval [a�i, ari] containing ai . We will pick
such interval that is small enough for us to obtain the signatures of ϕai (H(F,p)). The
critical tool is the Jacobian theorem in the following [12].

Proposition 8 Let H be a d × d real symmetric matrix and Di for i = 1, . . . , d be the
leading principal minors of H of order i. That is, Di is the determinant of the sub matrix
Hi of H , where Hi

s,t = Hs,t for 1 ≤ s, t ≤ i. Assume H has rank r .

1. If Di �= 0 for all i ≤ r , then the signature of H is r − 2v, where v is the number of
variation of sign in the sequence 1,D1, . . . ,Dr .

2. If in the sequence 1,D1, . . . ,Dr �= 0, there are zeros but not three in succession, then
the signature of H can be determined by r − 2v omitting the zero Dk if Dk−1Dk+1 �= 0
and, in the cases of Dk = Dk+1 = 0, setting the number of variation in the sequence
Dk−1,Dk,Dk+1,Dk+2 to be 1 if Dk+2Dk−1 < 0 and to be 2 if Dk+2Dk−1 > 0.

3. If there are three consecutive zeros in D1, . . . ,Dr−1, then the signs of the non zero Dk’s
do not determined the signature.

4. If Dr = 0, the signs of the non zero Dk’s do not determined the signature.

According to the Jacobian theorem, we only consider cases when H(F,p) does not have
more than two consecutive zero polynomials in the sequence of its leading principal mi-
nors. Also, in applying the Jacobian theorem, it is critical to find the rank first. We list the
following facts about ranks.

Definition 3 Let H be a d × d real matrix. A minor of order i ≤ d is the determinant of
the i × i sub matrix M of H , where Ms,t = Hs,t for s, t ∈ {1, . . . , d}. The largest among the
orders of the non-zero minors generated by H is the rank.

From the definition, it is easy to see the following facts. We omit the proofs.

Proposition 9 Let H be a d × d real symmetric matrix and Di for i = 1, . . . , d be the
leading principal minors of H of order i. Let Md−1 be the matrix of order d − 1, where
Md−1

s,t = Hs,t for s, t ∈ {1, . . . , d −2, d}. Let Md−1 denote the determinant of Md−1. We have
the following.

1. If Dd �= 0, then the rank of H is d .
2. If Dd = 0, Dd−1 �= 0, then the rank of H is d − 1.
3. If Dd = Dd−1 = Md−1 = 0, Dd−2 �= 0, then the rank of H is d − 2.

Now, we return to the goal of computing the signature of ϕai (H(F,p)), where ai a
zero of the bifurcation polynomial g and is not a zero for any of the hj ’s in Proposition 5.
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Using Proposition 9, we obtain the ranks for the Hermite matrices considered in this paper
involving the parameter k. It remains to compute the numbers of variation of sign in the
sequences of leading principal minors.

Suppose the rank is r , D
ai
r �= 0, and there are no three or more consecutive zero polyno-

mials in D1, . . . ,Dr−1. A small interval [ai�, air ] containing ai can be found easily satisfying
that there is no zeros for the non zero Dk’s for all k = 1, . . . , r −1 in [ai�, air ]. Then the sign
of the non zero D

ai

k agrees with that of D
ai�

k or D
air

k .

3.3 Challenging Parts and Other Remarks

Remark 4 To apply our approach, F need to meet some requirements.

1. In step (1), the Groebner basis G in Q[x1, . . . , xn, k] should be computable.
2. In step (3), determinant of H(F,1) in Q(k) is not identically equal to zero.
3. For steps (5) to (8), the Hj ’s having entries Q(k) and defined in the step (2) can not have

three or more consecutive zero polynomials in the sequences of their leading principal
minors up to the order of rank. And the leading principal minors of the order of rank are
not zero polynomials.

4. For steps (5) to (8), ai , a zero of the bifurcation polynomial g, is not a zero for any of
the hj ’s in Proposition 5.

In fact, any zero of a hj in the parameter space should be handle differently, for in
Proposition 7, which is proved by Proposition 6 in [25], did not consider such points. It
is even possible to obtain bifurcation points from them.

Remark 5 The orders on monomials can be determined by a matrix with row wi’s. Given
two monomials x1,x2 with exponent vectors α and β , we have x1 > x2 if w1 · α > w1 · β . If
w1 · α = w1 · β , we compare w2 · α with w2 · β . Repeat the procedure until we find which
one is larger. In this paper, we use the following matrix for variables x1, . . . , xn, k.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1 0

1 1 · · · 1 0 0

...
...

. . .
...

...
...

1 1 · · · 0 0 0

1 0 · · · 0 0 0

0 0 · · · 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is a block order. Its restriction on xj ’s is the order determined by the upper left n × n

block called the graded reverse lexicographical order (or grevlex order). According to [11],
for some operations, the grevlex ordering is the most efficient for computation. Therefore,
we use this order as one of the block.

Remark 6 In step (6), we use the implemented command “CountRoots” of Mathematica 10
to count roots of integral polynomials of one variable. This command is based on [8]. In
the introduction of this paper, the authors commented that “Unlike numerical methods the
algorithm will always terminate with correct results.”

Remark 7 In our work, we simply use the command “Det” of Mathematica to compute
leading principal minors in one variable. For system (6), the order of H is 104 and we need
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to compute 104 × 8 leading principal minors. It took us almost three months to have them
all computed. The results are provided in [26].

4 The (4 + 1)-Body Problem

4.1 Counting Zeros for System (4)

The following results give a whole picture of the numbers of zeros in each quadrant when
the parameters are in (0, 1

2 ). So, Theorem 1 is proved.

Proposition 10 For system (4), we obtain the bifurcation polynomial g4 in the Appendix.
There are 4 zeros of g4 in (0, 1

2 ). The neighbour points in the step (6) of our method are
given in the Table 1. The ranks and sign variations of the neighbour and the bifurcation
points are given in Table 2. Finally, the numbers of real roots in four quadrants for those
points are given in Table 3.

Proof We have F = {f1, f2} ⊂ Q[x, y, k]. Using the block order in Remark 5, we obtain
G = {g1, g2, g3, g4} with leading coefficients {4,4,4,16} ⊂ Q[k]. Using G, we find a ba-
sis {1, y, y2, y3, y4, y5, y6, y7, y8, x, xy, xy2, xy3, xy4, xy5, xy6, x2, x2y, x2y2, x2y3, x2y4,

x2y5, x2y6, x3, x3y, x3y2, x3y3, x3y4} for the algebra A = Q(k)[x, y]/〈F〉. So, the dimen-
sion of A is 28 and there are at most 28 complex zeros for all k.

Computing four Hermite matrices, H0 = H(F,1),H1 = H(F, x),H2 = H(F, y),H3 =
H(F, xy) with G, we find the determinant of H(F,1) is not identically equal to zero. So, we
obtain the bifurcation polynomial g4 from the numerator. Using “CountRoots”, we isolate
four real roots a1, a2, a3, a4 of g4 in (0, 1

2 ).
Computing 28 × 4 leading principals minors, we find a1, a2, a3, a4 are also roots of the

numerator of the determinants of H1,H2,H3. And, all the leading principals minors of order
27 do not have a1, a2, a3, a4 as their zeros. Therefore, by Proposition 9, Hi

j has rank ri,j = 27
for all i, j .

Choosing neighbour points of ai ’s as in Table 1, we use “CountRoots” to verify the
requirements in the step (6) in Sect. 3. Therefore, the numbers vi,j of variation of signs in
the step (7) are obtained in Table 2.

Finally, using Table 2 to obtain signatures, and solving linear systems in four variables,
we obtain Table 3. For example, in Table 2 at k = a1, r1,j = 27, v1,0 = 10, v1,1 = 13, v1,2 =
12, v1,3 = 13, signatures, r1,j − 2v1,j , are 7,1,3,1.

Let s1, s2, s3, s4 denote the number of real roots (x, y) with the signs (+,+), (+,−),
(−,+), (−,−), respectively. We get

7 = s1 + s2 + s3 + s4,

1 = s1 + s2 − s3 − s4,

3 = s1 − s2 + s3 − s4,

1 = s1 − s2 − s3 + s4.

Therefore, we obtain (s1, s2, s3, s4) = (3,1,2,1) as in Table 3. Note that, for all k, x = 0 or
y = 0 are not zeros. Therefore, the number of roots at each quadrants is a constant in each
(ai, ai+1) interval. So, Table 3 give the numbers of roots in each quadrant of the system (4)
for all parameters in (0, 1

2 ). �
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Table 1 Neighbors of the zeros
of g4 in (0, 1

2 )
i ai� air

1 2.0712182 2.0712183

2 2.2669649 2.2669650

3 2.7330350 2.7330351

4 2.9287817 2.9287818

Table 2 Ranks and sign
variations for the system (4) r, v +,+ +,− −,+ −,−

a1� 28,10 28,14 28,12 28,14

a1 27,10 27,13 27,12 27,13

a1r 28,11 28,13 28,13 28,13

a2� 28,11 28,13 28,13 28,13

a2 27,10 27,12 27,12 27,12

a2r 28,10 28,12 28,12 28,12

a3� 28,10 28,12 28,12 28,12

a3 27,10 27,12 27,12 27,12

a3r 28,11 28,13 28,13 28,13

a4� 28,11 28,13 28,13 28,13

a4 27,10 27,12 27,13 27,13

a4r 28,10 28,12 28,14 28,14

Table 3 Numbers of zeros of the
system (4) k +,+ +,− −,+ −,−

a1� 3 1 3 1

a1 3 1 2 1

a1r 3 1 1 1

a2� 3 1 1 1

a2 4 1 1 1

a2r 5 1 1 1

a3� 5 1 1 1

a3 4 1 1 1

a3r 3 1 1 1

a4� 3 1 1 1

a4 3 2 1 1

a4r 3 3 1 1

4.2 Counting Zeros for System (5)

The following results give a whole picture of the numbers of zeros when the parameters are
in (0, 1

3 ). So, Theorem 2 is proved.

Proposition 11 For system (5), we obtain the bifurcation polynomial g5 in the Appendix.
There are 3 zeros of g5 in (0, 1

3 ). The neighbour points in the step (6) of our method are
given in the Table 4. The ranks and sign variations of the neighbour and the bifurcation
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Table 4 Neighbors of the zeros
of g5 in (0, 1

3 )
i ai� air

1 2.3551745 2.3551746

2 2.4665893 2.4665894

3 2.4860582 2.4860583

Table 5 Ranks and sign
variations for the system (5) r, v +,+ +,− −,+ −,−

a1� 24,10 24,12 24,10 24,12

a1 23,9 23,11 23,10 23,12

a1r 24,9 24,11 24,11 24,13

a2� 24,9 24,11 24,11 24,13

a2 23,8 23,10 23,10 23,12

a2r 24,8 24,10 24,10 24,12

a3� 24,8 24,10 24,10 24,12

a3 23,7 23,10 23,10 23,11

a3r 24,7 24,11 24,11 24,11

Table 6 Numbers of zeros of the
system (5) k +,+ +,− −,+ −,−

a1� 2 0 2 0

a1 2 1 2 0

a1r 2 2 2 0

a2� 2 2 2 0

a2 3 2 2 0

a2r 4 2 2 0

a3� 4 2 2 0

a3 4 2 2 1

a3r 4 2 2 2

points are given in Table 5. Finally, the numbers of real roots in four quadrants for those
points are given in Table 6.

Proof Now F = {f3, f4, f5} ⊂ Q[x, y, z, k]. Using the block order in Remark 5, we obtain
G = {g1, . . . , g14}, where the non constant leading coefficients in Q[k] are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h2 = 9k2(−1 + 3k)(−6193005856 + 34523341224k − 88164313884k2

+ 179027640450k3 − 296194349727k4 + 292634913915k5

− 135093148569k6 + 22052144295k7),

h5 = c5k,

h9 = c9(−1 + 3k)3(−485 − 162k + 243k2),

h10 = c10(−1 + 3k)2,

h11 = c11(−1 + 3k),



Counting Central Configurations at the Bifurcation Points 113

for some integers c5, c9, c10, c11. There is no zeros in (0, 1
3 ) for all hj ’s above.

Using G, we find a basis {1, z, z2, z3, z4, y, yz, yz2, yz3, y2, y2z, y2z2, y3, x, xz, xz2, xz3,

xy, xyz, xyz2, xy2, x2, x2y, x3} for the algebra A =Q(k)[x, y, z]/〈F〉. So, the dimension of
A is 24 and there are at most 24 complex zeros for all k.

Computing four Hermite matrices, H0 = H(F,1),H1 = H(F, x),H2 = H(F, y),H3 =
H(F, xy) with G, we find the determinant of H(F,1) is not identically equal to zero. So, we
obtain the bifurcation polynomial g5 from the numerator. Using “CountRoots”, we isolate
three real roots a1, a2, a3 of g5 in (0, 1

3 ).
Computing 24 × 4 leading principals minors, we find a1, a2, a3 are also roots of the

numerator of the determinants of H1,H2,H3. And, all the leading principals minors of order
23 do not have a1, a2, a3 as their zeros. Therefore, by Proposition 9, Hi

j has rank ri,j = 23
for all i, j .

Choosing neighbour points of ai ’s as in Table 4, we use “CountRoots” to verify the
requirements in the step (6) in Sect. 3. Therefore, the numbers vi,j of variation of signs in
the step (7) are obtained in Table 5.

Finally, using Table 5 to obtain signatures, and solving linear systems in four variables,
we obtain Table 6. Note also, for all k, x = 0 or y = 0 are not zeros. Therefore, the number of
roots at each quadrants is a constant in each (ai, ai+1) interval. So, Table 6 give the numbers
of roots in each quadrant of the system (5) for all parameters in (0, 1

3 ). �

5 The (1 + 3)-Body Problem

5.1 Counting Zeros for System (6)

The following results give a whole picture of the numbers of zeros for positive parameters.
So, Theorem 3 is proved.

Proposition 12 For system (6), we obtain the bifurcation polynomial g6 in the Appendix.
There are 11 zeros of g6 in (0,∞). For a2 to a10, our method is applied. The neighbour
points in the step (6) are given in the Table 7. The ranks and sign variations of the neighbour
and the bifurcation points are given in Table 8. Finally, the numbers of real roots in the eight
orthants for those points are given in Table 9.

For a1, it is a zero for some hj in as remarked in Sect. 3.3. Our method does not apply.
We will show it is not a bifurcation point. That is, the number of real zeros is a constant in
the neighbourhood of this point, which is given from the results for a2�.

For a11 = 10, it is again a zero for some hj . We can just substitute k with 10 to obtain a
system in Q. We can use Hermite root counting theorem directly for this system to obtain the
numbers of zeros. It is also recorded in Table 9. Same approached is applied to the sample
point 100 on the right hand side of a11.

Note there is a extra bifurcation point that is not obtain form g6 in our method. That is
when k = 4. This point of bifurcation explains why the numbers of zeros are not the same
for k = a9,r and k = a10�. It is again a zero for some hj in as remarked in Sect. 3.3. We can
again substitute k with 4 to obtain a system in Q and count roots directly. The results are
also recorded in Table 9.

Proof Now F = {f6, f7, f8, f9} ⊂ Q[r1, r2, r3, r4, k]. Using the block order in Remark 5,
we obtain G = {g1, . . . , g59}. Non constant factors in the leading coefficients that contain
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positive zeros are k − 4, k − 10,−312 + 1896k + 530k2 + 588k3 + 101k4 + 31k5 + k6.
They have zeros 4,10, and approximately 0.156489. These three points will be considered
separately.

Using G, we find a basis for the algebra A = Q(k)[r1, r2, r3, r4]/〈F〉. They are
{1, r4, r2

4 , r3
4 , r4

4 , r5
4 , r6

4 , r3, r3r4, r3r
2
4 , r3r

3
4 , r3r

4
4 , r3r

5
4 , r2

3 , r2
3 r4, r

2
3 r2

4 , r2
3 r3

4 , r3
3 , r3

3 r4, r
3
3 r2

4 , r4
3 ,

r4
3 r4, r5

3 , r2, r2r4, r2r
2
4 , r2r

3
4 , r2r

4
4 , r2r

5
4 , r2r3, r2r3r4, r2r3r

2
4 , r2r3r

3
4 , r2r

2
3 , r2r

2
3 r4, r2r

2
3 r2

4 , r2r
3
3 ,

r2r
3
3 r4, r

2
2 , r2

2 r4, r2
2 r3, r2

2 r3r4, r
2
2 r2

3 , r2
2 r2

3 r4, r
2
2 r3

3 , r3
2 , r3

2 r4, r
3
2 r3, r

3
2 r3r4, r

3
2 r2

3 , r4
2 , r4

2 r4, r
4
2 r3, r

5
2 ,

r1, r1r4, r1r
2
4 , r1r

3
4 , r1r

4
4 , r1r3, r1r3r4, r1r3r

2
4 , r1r3r

3
4 , r1r

2
3 , r1r

2
3 r4, r1r

2
3 r2

4 , r1r2, r1r2r4, r1r2r
2
4 ,

r1r2r3, r1r2r3r4, r1r2r3r
2
4 , r1r2r

2
3 , r1r2r

2
3 r4, r1r

2
2 , r1r

2
2 r4, r1r

2
2 r3, r1r

2
2 r3r4, r1r

2
2 r2

3 , r1r
3
2 , r1r

3
2 r4,

r2
1 , r2

1 r4, r2
1 r2

4 , r2
1 r3

4 , r2
1 r3, r2

1 r3r4, r2
1 r3r

2
4 , r2

1 r2, r2
1 r2r4, r

2
1 r2r

2
4 , r2

1 r2r3, r
2
1 r2r3r4, r

2
1 r2

2 , r2
1 r2

2 r4,

r2
1 r2

2 r3, r
2
1 r3

2 , r3
1 , r3

1 r4, r
3
1 r2

4 , r3
1 r3, r

3
1 r3r4, r

3
1 r2, r

3
1 r2r4}. Therefore, the dimension of A is 104

and there are at most 104 complex zeros for all 0 < k �= 0.156489 . . . ,4,10.
For this system, we are interest in common zeros with 0 < r1, r2 < 1 and r3 > r4. There-

fore, we need to compute 23 Hermite matrices, Hj = H(F,Pj )’s, where Pj is a product of
any subset from {p1 = 1

4 − (r1 − 1
2 )2,p2 = 1

4 − (r2 − 1
2 )2,p3 = r3 − r4}, including of P0 = 1.

We find the determinant of H0 is not identically equal to zero. So, we obtain the bifur-
cation polynomial g6 from the numerator. Using “CountRoots”, we isolate eleven real roots
a1, . . . , a11 of g6 in (0, 1

3 ). Here, a1 = 0.156489 . . . and a11 = 10 are the two zeros of some
leading terms of G mentioned above. So, we use our method in Sect. 3 to count zeros only
at a2, . . . , a10.

We separate zeros into three groups. The first group is {a4, a8, a10}. They are zeros of g6

of multiplicity 1. The second group is {a2, a3, a5, a6}. They are zeros of multiplicity 2. The
third group is {a7, a9}. They are zeros of multiplicity 3.

We find all ai ’s are zeros of the determinants of Hj for all j . Let Dj,w be the leading
principal minors of Hj of order w and Mj,103 be the principal minor of Hj of order 103 as
the definition of Md−1 in Proposition 9 form H .

For all ai ’s in the first group, Di
j,103 �= 0 for all j . Therefore, by Proposition 9, ranks

ri,j = 103 for i = 4,8,10 and all j . For all ai ’s in the second and third groups, Di
j,103 =

Mi
j,103 = 0 for all j , and Di

j,102 �= 0 for all j . Therefore, by Proposition 9, ranks ri,j = 102
for i = 2,3,5,6,7,9 and all j .

Choosing neighbour points of ai ’s as in Table 7, we use “CountRoots” to verify the
requirements in the step (6) in Sect. 3. Therefore, the numbers vi,j of variation of signs in
the step (7) are obtained in Table 8. Finally, using Table 8 to obtain signatures, and solving
linear systems in eight variables, we obtain Table 9. Note also, for all k > 0, zeros of p1,p2

or p3 are not common zeros for F . The number of common zeros at each orthant is a constant
in each (ai, ai+1) interval for all i = 1, . . . ,10.

The number of zeros at 4 and 10 and a sample point 100 > 10 are obtained by ap-
plying Hermite root counting theorem for systems in Q[r1, r2, r3, r4]. For the point a1 =
0.156489 . . . , which is a zero of −312 + 1896k + 530k2 + 588k3 + 101k4 + 31k5 + k6, we
will show that is it not a real bifurcation point. Therefore, the number of zeros at that point
and in the interval (0, a1] agree with that at a2�.

Denote the resultant of f,g with respect to the variable x by Res(f, g, x). Here are
our computations. Project common zeros of F ⊂ Q[r1, r2, r3, r4, k] into the r1, r3, r4 space
by computing f10 = Res(f6, f9, r2), f11 = Res(f7, f9, r2), f12 = Res(f8, f9, r2)

1
2 . Project

common zeros of {f10, f11, f12} ⊂ Q[r1, r3, r4, k] into the r3, r4 space by computing f13 =
Res(f10, f12, r1), f14f

2
15 = Res(f11, f12, r1).

Project common zeros of {f13, f14} ⊂ Q[r3, r4, k] into the r4 space by computing
Res(f13, f14, r3) = c(1 + r2

4 )f16f17f18f19. Also, project common zeros of {f13, f15} ⊂
Q[r3, r4, k] into the r4 space by computing Res(f13, f15, r3) = f20f21.
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Table 7 Neighbors of 10 zeros of g6 in (0,∞)

i ai� air

1 0.1564894479987466889600194 0.1564894479987466889600195

2 0.2055692659990572862276624 0.2055692659990572862276625

3 0.6791080539220485318202205 0.6791080539220485318202206

4 0.8961616399532140351980856 0.8961616399532140351980857

5 0.9939202640321302550753646 0.9939202640321302550753647

6 1.007282504406251354457414 1.007282504406251354457415

7 1.060647425842961855948559 1.060647425842961855948560

8 1.250637523363571101259966 1.250637523363571101259967

9 1.423851342176174559644926 1.423851342176174559644927

10 4.00001429220011941250039210564680 4.00001429220011941250039210564681

Table 8 Ranks and sign variations for the system (6)

r, v +,+,+ +,+,− +,−,+ +,−,− −,+,+ −,+,− −,−,+ −,−,−

a2� 104,43 104,48 104,48 104,52 104,51 104,51 104,51 104,52

a2 102,42 102,47 102,47 102,51 102,50 102,50 102,50 102,51

a2r 104,43 104,48 104,48 104,52 104,51 104,51 104,51 104,52

a3� 104,43 104,48 104,48 104,52 104,51 104,51 104,51 104,52

a3 102,43 102,47 102,47 102,52 102,49 102,50 102,50 102,50

a3r 104,45 104,48 104,48 104,54 104,49 104,51 104,51 104,50

a4� 104,45 104,48 104,48 104,54 104,49 104,51 104,51 104,50

a4 103,44 103,47 103,47 103,53 103,48 103,50 103,50 103,49

a4r 104,44 104,47 104,47 104,53 104,48 104,50 104,50 104,49

a5� 104,44 104,47 104,47 104,53 104,48 104,50 104,50 104,49

a5 102,42 102,46 102,46 102,53 102,48 102,49 102,49 102,47

a5r 104,42 104,47 104,47 104,55 104,50 104,50 104,50 104,47

a6� 104,42 104,47 104,47 104,55 104,50 104,50 104,50 104,47

a6 102,42 102,46 102,46 102,53 102,48 102,49 102,49 102,47

a6r 104,44 104,47 104,47 104,53 104,48 104,50 104,50 104,49

a7� 104,44 104,47 104,47 104,53 104,48 104,50 104,50 104,49

a7 102,44 102,47 102,47 102,51 102,48 102,48 102,48 102,47

a7r 104,45 104,48 104,48 104,52 104,49 104,49 104,49 104,48

a8� 104,45 104,48 104,48 104,52 104,49 104,49 104,49 104,48

a8 103,44 103,48 103,48 103,51 103,48 103,49 103,49 103,47

a8r 104,44 104,49 104,49 104,51 104,48 104,50 104,50 104,47

a9� 104,44 104,49 104,49 104,51 104,48 104,50 104,50 104,47

a9 102,44 102,49 102,49 102,51 102,48 102,50 102,50 102,47

a9r 104,45 104,50 104,50 104,52 104,49 104,51 104,51 104,48

a10� 104,44 104,50 104,50 104,52 104,48 104,52 104,52 104,48

a10 103,44 103,50 103,50 103,51 103,48 103,51 103,51 103,47

a10r 104,45 104,51 104,51 104,51 104,49 104,51 104,51 104,47
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Table 9 Numbers of zeros of the system (6)

k +,+,+ +,+,− +,−,+ +,−,− −,+,+ −,+,− −,−,+ −,−,−

a2� 5 4 2 2 2 2 0 1

a2 5 4 2 2 2 2 0 1

a2r 5 4 2 2 2 2 0 1

a3� 5 4 2 2 2 2 0 1

a3 5 4 1 2 1 2 0 1

a3r 5 4 0 2 0 2 0 1

a4� 5 4 0 2 0 2 0 1

a4 6 4 0 2 0 2 0 1

a4r 7 4 0 2 0 2 0 1

a5� 7 4 0 2 0 2 0 1

a5 7 4 0 3 0 3 0 1

a5r 7 4 0 4 0 4 0 1

a6� 7 4 0 4 0 4 0 1

a6 7 4 0 3 0 3 0 1

a6r 7 4 0 2 0 2 0 1

a7� 7 4 0 2 0 2 0 1

a7 7 2 0 2 0 2 0 1

a7r 7 2 0 2 0 2 0 1

a8� 7 2 0 2 0 2 0 1

a8 7 2 0 2 0 2 1 1

a8r 7 2 0 2 0 2 2 1

a9� 7 2 0 2 0 2 2 1

a9 5 2 0 2 0 2 2 1

a9r 5 2 0 2 0 2 2 1

4 5 2 0 2 0 2 2 1

a10� 5 3 0 2 0 2 3 1

a10 5 2 0 2 0 2 3 1

a10r 5 1 0 2 0 2 3 1

10 5 1 0 2 0 2 3 1

100 5 1 0 2 0 2 3 1

If there is a k such that the Jacobian of F with respect to r1, r2, r3, r4 is zero at the
common zero, than the projection onto the r4 space must be a zero of multiplicity greater
than one [25]. Therefore, at least one of the polynomial from f16, . . . , f21 has such zero of
multiplicity greater than one. Let fi+6 = Res(fi,

dfi

dr4
, r4), for i = 16, . . . ,21.

Finally, we find that Res(fi,−312 + 1896k + 530k2 + 588k3 + 101k4 + 31k5 + k6) �= 0,
for all i = 22, . . . ,27. So, any zero of −312 + 1896k + 530k2 + 588k3 + 101k4 + 31k5 + k6

is not a bifurcation point. �
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Appendix

g4 = 14348907k8(−1 + 2k)8(−209131272894456944593144423783511499 + 12110628365621863141752595158626784528k

−321833043687522840731801104763386910592k2 + 5282816045452154761864610890773283600512k3

−62321870899214934024101752875083881832064k4 + 599525084805566810091138278319212884859904k5

−5089568434708560545391461340982194650038272k6 + 36166744134658030710388619684062815617212416k7

−173682271713691426508982988802998229113860096k8 + 194571006705401622461750893770741265329291264k9

+4361256499184399605996203588453710463202492416k10 − 36421637749003467158373200672552890309715951616k11

+124882780920217517416458592876205800627856474112k12 + 29686057623670734992158867195772201771747770368k13

−2466456064067386957557900544447489158933808939008k14 + 13381022051799846243452346385896117243126868869120k15

−41374670022892701550349904115844068890901605253120k16 + 80753323917919406241244407109506118710185454206976k17

−83736644329390615981846331514643026939784938389504k18 − 30007914497106340313051523250403681924098155347968k19

+272731526235208997199716801978606751657411295051776k20 − 474893308685999304513566831791186612587185504780288k21

+377936791496790041531539287484101936517848003248128k22 + 45725571810491945129380762018308178031630427881472k23

−461651770005669715931369926596333817388529501601792k24 + 531482425572495898790826588549220379127061961244672k25

−303978834654331499546743054391553714615507518226432k26 + 69287711932141399434591769259304063291764502429696k27

+27556767991099841456412079571314810360028677013504k28 − 36931239344498259899134718751866345172519622803456k29

+25570057182062646531889634545006726676623579414528k30 − 13171219513113041503585322296508115743622003949568k31

+4161404052216203236353315247932243607000751013888k32 − 187806263065237241933283988669334605412687675392k33

−519880180214264903494000068173159853087738822656k34 + 269442833171764114875905064559700228009694855168k35

−68433198701898044709157961856663742108338749440k36 + 6459589270291605471908946749983035900473376768k37

+2491259031666340925404431775738992043235475456k38 − 975758706756982810145782951238978471618150400k39

+97575870675698281014578295123897847161815040k40 ).

g5 = 1000301832637713093336811104632832k14 (−6193005856 + 34523341224k − 88164313884k2 + 179027640450k3 − 296194349727k4 + 292634913915k5

−135093148569k6 + 22052144295k7 )2(7290000000000 − 437400000000000k + 10671484725000000k2 − 91123902855000000k3 + 643286524024321875k4

−22708959618399581250k5 + 500801355667529080875k6 − 6197850032153476113900k7 + 54882543612603736731564k8 − 421146331287143356032660k9

+2954546557428780047159658k10 − 17648630788414956041955708k11 + 83771969920609859108071258k12 − 306975451272810787413804180k13

+857391208251519414055109752k14 − 1794120238816087989509616300k15 + 2726191394983375066395449239k16 − 2838574971479705566887774018k17

+1728344797213312641067462323k18 − 37350374248580151836867904k19 − 1300031429522116294856107152k20 + 1983441863951450533463609376k21

−2053166141818806972470118720k22 + 1531280866164945026551289856k23 − 694191759631599704931041472k24 + 1583068252243304132527104k25

+286525215697323461069387520k26 − 258835251578200089068123136k27 + 133514108743669727266861056k28 − 40315836246102348631824384k29

+5280932874361714728127488k30 ).

g6 = (−10 + k)2(−312 + 1896k + 530k2 + 588k3 + 101k4 + 31k5 + k6)2(2963399638413312 + 23142740033323008k + 72951703384555008k2

+111198530932125696k3 + 57853164006793584k4 − 74362983171264576k5 − 150432849004786240k6 − 90543746418355752k7 + 13327925036628816k8

+44887125905050176k9 + 20891973423983679k10 )3(−8438743501575408 + 2678966190976320k + 345472406710968960k2 + 400296455761238280k3

−11384652544065195120k4 + 12123699015371647968k5 + 119990316536124348321k6 − 159500845521348320736k7 − 1771852062223329593868k8

+9249906747903520991616k9 − 25608023464518181047260k10 + 53192685061230729315840k11 − 87060482984162666161152k12

+105029467560226902200832k13 − 90330266881601149980672k14 + 54441252684647804362752k15 − 3597828247551090484224k16

−50207178662075239133184k17 + 45101390498475214934016k18 + 2898856085837444554752k19 − 11491835434562035187712k20

+544400220773632720896k22 )(130826199714027687546065564006018101914573913451569359994533161147196600096890290176

+6379334690817350097484339882960120779072556541638429744495331286415681833295983673344k

+143343436290907434190236021879697713112605548862658775303662260908808778086044764471296k2

+1925971468600100640078529726392319981686684029582601342104648453967347669944533862318080k3

+16429902038782606583966068303176355643061275650052560033878736641831321770977372649505024k4

+79818441780782785298622655114118418614152880689308033436557543804575226170277636842717184k5

+11861556659920223788540462451206599915743797275844984659267609794402598580893349608768000k6

−3326425877717349404890766114854188474912014861300004392474168258124949363371872228243945472k7

−29810408973203405650504903643812092463921474518251682329413306945917906711732246082125358848k8
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−137766675196343189652470538532985423408703481491672330048478847419017900194019901136583450624k9

−221132170868715922837450062532672166778701316102052890154980626384120653744791062068949029056k10

+1807663668476843379787247448654704281223072364906507467853970901734633584037194483383449411584k11

+17210516363703688109410764981931187566113319520547741849634865036725432133642018859904797599616k12

+76453250500788007077602612456964514915210305030229523300641479285800042789091039931251226507392k13

+171826074945197597439477944345955886878696447327774201742732925591358550636049577372250627146816k14

−187799799219729462130480345019905757098329529988354011206691518378527904690248560149070734150912k15

−3506935540755201516061628765671398979334892397630228474731645666802791305163082628957931630620928k16

−16685981007862080222261942014908814524889083182754418387932967366610605254027552236687716057516160k17

−46741539140815536453664256883776051478980280491609165478123328651577225431704752392429668464103648k18

−61791521559184706472527367904713974509060889517035425682666785763021907402125508683791314157012224k19

+131249601858955428013626830456690535318883698534523207989005957351159703116814171185594919788454000k20

+1068544560710046898111443181163038729656721629680505566453439569887009100129604384121851588603022464k21

+3463079992414460988274354308988673334223003901096743582305383724385402690601787822817732797861546441k22

+6419822113434879250282302315521108299434239825846597981042573749810170217477256298287696571335421600k23

+1979519903939803893438172353625722285226670911874921540140986628363321908317603740148445491021677176k24

−34683376930038393458953245095561876552348902973219361538733201261128603393761859204472584541895138972k25

−154087104607807508146279666033043838233560701359289712190153578642306380570193723790622660606190028364k26

−427455243182638450672140169260207191723922410340555485500167115355466526596877319824129201909624857024k27

−923089682323392891666047074140958455517108052382898305706194205345481921257734025646023101855683462418k28

−1708972993943732388803634206263203439555789464315773328360019952062724292775643178118739178779929839696k29

−3011990205852923110945308260891356867708147389086770527692074955503309130927194170373066970226410019726k30

−5678934487344602279227963368062517721546353608634445744656987743819749786276387550890061336279696102364k31

−11815279314924989958518720012276790070346076895949444644113895058705170425027501349046603253701891281152k32

−24801774380754131156491823684222603099127511055198039944478179594317357994308496365195196441449729521496k33

−47168261827276459298454261797663378900778492070840713684305556059277688132995070307373076527936197929299k34

−75093411932431688760387739140737443441255559997177462428517787642799225677995702550689867686646689044176k35

−90735490170765155437366044777137870223414013922975351374908498666176348567238357739348175822928477777300k36

−57849476055832003614944342766728571184345788180763119952952913029256133284610070847957480209575804762128k37

+70880080173819969063467196699223343380987603661719313659638637345083086195282278990831134960221594135595k38

+329406620455910920455686252427003454970930641454827294708462044642744244351737699877097388732685595848392k39

+702602033267609853865934083513335793819190112296049924813989635004024334123484721444302942726842203139792k40

+1099355110516326873784820219647587814489461157592058650684255106276781585915891508539939751252834522838396k41

+1360267765310901248406493563365479530444515456076185510570653832713615208384957283039844063779330806071530k42

+1312679038581120838812399205562631748751311121093903681353731167035087853084980808751544651121280365610480k43

+856425206002602118369511459413241543702348442377962504559503612316575451706497918417802644392316745079506k44

+36202229725222209897870509764907554989756506518674102892227680007033063422832296752613334065047564720416k45

−946839103974113378797000648703545303571428530555410279939368539264263076489821725642429989436746737392464k46

−1802233567414672516966550805472280866222380869926731160045983498527266251669107588719838398980164400794052k47

−2267969979723143318867523216896052151550388575255975020412037502920019855688847925523445213287333679308040k48

−2218801712794043701393753065026915691317666044553362193996205842708962228706503765542477961145186583426768k49

−1709661473064309759056994753023021253296580645808905363468689485278463305033741264062312174280290326456929k50

−936781256404498758173082528974828953598912621525992091190348088876666258693337608190909410469912078373792k51

−144425744928496866602683403003905622920055257849593784349483201075750640540286142719812979895725867575656k52

+470972067971017621267656262451844221395791326419647036421835335501596126938170576271471792576057499620064k53

+816029153634114312705424072613077541028051456221260430734985492367887742789301731465998419154074331962671k54

+901398241862998730216566206136105470383762126179825653452080672348867333156706062519647113136518089668240k55

+803997923185930692496647021544550619030769736154446720922427781266229831154361437656218405394908377769368k56

+618699993454747560183153212395875363653989069105303181572673005133501803388817511305201261981862448965788k57
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+422452078464695555474554030742372799830333707469014341405339017232288497504444011172744561925087742514496k58

+259611314168884006788277847769604371584536041946756686790189045071201455112557236836100998698597973483168k59

+144711522136417430545461503606109880498634371338735959612384211753269240781296504523147401998388531985906k60

+73479169050130646151453725878188996814286295581744971021938636684228002715931683620190937389017126091120k61

+34055509281654745349183438734975572063260564581942378515054237850639368481616365580386334352784313467002k62

+14413329056702784347876012650085728773229504993902823506324224926423511343914366808885183512047100312028k63

+5565928139449973907459771580680131070217469889200147395135209213229722441637881976739774535781989837936k64

+1957325191797168552171033574826019996992995134519519803260725250424720928804594113485493671220288854824k65

+624916837615036060334268602937054130436711615253594348218854326481988693802745891893972282030387564027k66

+180383969458627961202989383265868774365499162274931933515735551185358671783002693213520904214192018800k67

+46817949116451900797748670248298961704611767473584313537835991741717254695275449730282109053029547852k68

+10849875318994151603032797323948467554024140287730197036749234364809086774742896450246169431629221552k69

+2225221508950651459592654266022542551525792485857827235132999395189877944485800821244395576606621885k70

+399333836316577577906961899511206835549858229188976348726535631026857736989583546786091985945900680k71

+61796521467123963355105984078485972861372383293338624242889260861139163023969503929397554019685408k72

+8089022711223645600529464708861676042153179708190779666179924655790669763003713977485678758757892k73

+872542331281041329790157302889074619752457775630885310148043768798640392163509372031654114995970k74

+74745328394994581611779939844485006064910130668357818169305194856380178617038980552481143084848k75

+4811350227207088047657661135034745075604151309575889046968705504827542728514813286504294378254k76

+212942275657411544202473275950082965976660220469767880277522625858544001198392584154640557888k77

+5581022912242884171446108084587147924257178666593492361474466389316172301566873799443094596k78

+76335623138985695233552036225597533902650187236945887492566357639490967096736389365202500k79

+1550152988085496822992578379085646470777530030706561536010310454161996471356618527375000k80

+6912431250445102740059121031244811763320553535207182169998113383153814101007000000000k81

+119088766094523880809538001718084393280753588166996644685873362375280914043759765625k82 )2 .
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