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Abstract The purpose of this article is to introduce the reader to phenomena on time-
varying spatial domains and to highlight the differences from their counterpart on time-fixed
domains. We begin by discussing the origin of this class of problems in various physical
systems and applications, and then provide a general formulation from both Lagrangian and
Eulerian viewpoints with the goal of identifying a set of basic principles necessary for under-
standing new effects on time-dependent domains. The distinctive features of the dynamics
are illustrated with the help of two representative examples discussed in detail: (1) propa-
gation of longitudinal waves in a stretching rod, and (2) Eckhaus instability of a stretching
spatially periodic pattern. In view of the evolving character of the subject, we conclude with
a number of open questions.
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1 Introduction: Objectives and Outline

The goal of this paper is to introduce the reader to the vast subject of phenomena on time-
dependent spatial domains by highlighting the key foundational contributions. We begin
in Sect. 2 with a discussion of a number of representative physical examples from var-
ious fields, which will help us develop basic intuition about the behavior exhibited by
such systems, and then in Sect. 3 introduce the key mathematical elements uniting these
seemingly different physical examples, thereby providing basic theoretical foundation for
treating problems on time-dependent domains. Section 4 discusses in detail two illustrative
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problems—propagation of longitudinal waves in a stretching rod and Eckhaus instability
of a stretching spatially periodic pattern—which will deepen understanding of the key new
effects observed in problems on time-dependent domains.

While the discussion of concrete physical phenomena is postponed to the main body
of the paper, it is worthwhile to introduce an overview of the problems at hand and some
classifications. Although time-dependence of the spatial domain implies that the problem
is distributed in space and thus infinite-dimensional, there are some systems where a finite-
dimensional description suffices to capture the physics. This is the case for some problems
in fluid-structure interaction (Sect. 2.4) such as flutter, particles in a time-dependent poten-
tial well (Sect. 2.6), and control theory (Sect. 2.3). However, most of the systems studied,
ranging from fluid dynamics (Sect. 2.1) and astrophysics (Sect. 2.2) to pattern formation in
biology (Sect. 2.7) and solidification (Sect. 2.8), are indeed infinite-dimensional.

The standard classification of partial differential equations (PDEs) into parabolic, hy-
perbolic, and elliptic, offers an alternative, but unifying, view of these problems [118].
For example, parabolic PDEs include reaction-diffusion systems, solidification and crystal
growth, as well as Stefan and Skorokhod problems. Hyperbolic PDEs include wave prop-
agation, fluid-structure interaction, extensible beam dynamics, cavity resonators, and many
problems in fluid dynamics. In contrast, elliptic PDEs are mostly irrelevant since we are
concerned with time evolution. At the nonlinear level, among other evolution systems stud-
ied on time-dependent domains are the Navier-Stokes equations [39], Korteweg-de Vries
equation [10], nonlinear Schrödinger equation [11], and integrable evolution equations [40].

Finally, all these examples can be subdivided into two classes: in the first, the domain
size is prescribed and so plays the role of an external parameter; in the second, the domain
size is determined as part of the solution. Although many of these problems, like that due
to Stefan [109], have been formulated a long time ago, most are far from being solved and
require the development of new mathematical techniques in order to obtain better insight
into the physical mechanisms responsible for the often fascinating behavior they exhibit.

2 Key Physical Examples

In what follows, we discuss representative physical examples from various fields illustrating
different types of phenomena whose dynamics, including bifurcations and stability proper-
ties, depend strongly on the time variation of the spatial domain. As often happens, it is the
simplest possible example which provides us with the most physical insight and helps us to
develop intuition. The level of detail provided below assumes basic erudition on the reader’s
part in both physics and mathematics, while further details can be found in the cited liter-
ature. The following examples are organized by their dynamics type: examples from fluid
dynamics, astrophysics, control, fluid-structure interaction, wave equations, and quantum
mechanics deal with oscillatory or wave behavior, while examples on reaction-diffusion and
solidification systems are of diffusion type.

2.1 Fluid Dynamics

Fluid flows with a free or moving solid-fluid interface provide natural examples of systems
on time-dependent spatial domains, as exemplified by the drop splash problem leading to the
famous problem of crown formation—a pattern formed on an evolving rim (Fig. 1). Despite
recent progress in understanding the bifurcation picture behind this phenomenon from both
experimental [46, 59] and theoretical [55, 58] perspective, this problem remains unsolved
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Fig. 1 Crown formation in the
drop splash problem [59]

Fig. 2 A schematic diagram of a
drop in a Hele-Shaw cell

from a quantitative point of view. We therefore describe a number of simpler, representative
systems illustrating the behavior resulting from the time-dependence of the spatial domain.
For relevant function-analytic studies of the existence and regularity of solutions of the
equations of fluid dynamics we refer the reader to [48, 117] for the Euler equation and [12,
35, 79, 111] for the Navier-Stokes equation.

Hele-Shaw Cell with a Time-Dependent Gap [105] We consider a drop of viscous fluid
between two parallel plates one of which is being raised. This causes the drop to retract
resulting in a variant of the Saffman-Taylor instability [102], which can be described by a
version of Darcy’s law in two dimensions, where the divergence (mass conservation) con-
dition is modified to account for the lifting of the plate, cf. Fig. 2. The use of Darcy’s law
implies that the plate is neither being lifted fast enough to provoke any inertial effects nor
being lifted high enough to violate the assumption of a thin layer. The system of governing
equations reads

u = −b2(t)

12ν
∇p in Ω(t), (1a)

∇ · u = − ḃ(t)

b(t)
in Ω(t), (1b)

p = τκ on ∂Ω(t), (1c)

vn = −b2(t)

12ν

∂p

∂n
on ∂Ω(t). (1d)

Equation (1a), where u is the two-dimensional gap-averaged velocity, p the pressure, b(t)

the (prescribed) time-dependent gap width, and ν the fluid viscosity, represents Darcy’s law.
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Fig. 3 A schematic of a
spherical bubble in an infinite
liquid

Equation (1b) expresses conservation of volume for the fluid mass, and is a modification
of the usual two-dimensional divergence-free condition. We take the traditional Laplace-
Young boundary condition for the pressure (1c), where τ is the surface tension and κ is
the curvature of ∂Ω(t). Finally, in Eq. (1d) vn is the normal component of the boundary
velocity and n is the outward unit normal vector to ∂Ω(t). Condition (1d) thus requires that
the boundary ∂Ω(t) moves with the fluid.

To explore the effects of time-dependence in this system, consider the flow resulting from
perturbation of an exact solution in the form of an expanding or contracting 2D circular
drop of radius, R(t) = R(0)

√
b(0)/b(t). Infinitesimal radial perturbations of this state with

integer azimuthal wavenumber k ≥ 2, α(t, θ) = α̂(t) exp ikθ , obey a nonautonomous linear
equation that can be obtained from the system (1a)–(1d):

dα̂

dt
= σ(t, k)̂α, (2)

where σ(t, k) is the instantaneous growth rate given by [105]

σ(t, k) = k

2

ḃ

b
+ b2

R3
τ̃
(

k − k3
)

, k ≥ 2, (3)

and τ̃ is a suitably chosen nondimensionalized surface tension. One is tempted [105] to
conclude that the circular drop is stable provided σ(t, k) < 0, suggesting that a circular
drop is linearly stable at all scales if ḃ < 0, i.e., if the drop is expanding; note that since
the wavenumber k is necessarily an integer, only wavenumbers k ≥ 2 are relevant, because
infinitesimal perturbations with wavenumbers k = 0 and k = 1 correspond to deformations
that maintain the circular shape of the drop (which is displaced from the origin in the case
of k = 1). For these perturbations the surface tension drops out, and the growth rate (3)
is either zero or negative whenever ḃ < 0. In contrast, if the drop is contracting, Eq. (3)
suggests that it is linearly unstable for k <

√

1 + (ḃR3)/(2τ̃ b3). However, time-dependent
problems of this type require care [55]. First, depending on the function b(t), one may have
instability even when the time-frozen “eigenvalue” oscillates between positive and negative
values, since the time integral of σ(t, k) may nonetheless be positive (see the Appendix). If,
however, one is interested in the long-time behavior, i.e., stability of the zero solution to (2),
then one can apply standard theorems from theory of ordinary differential equations (ODEs)
[51] to conclude that the general solution to (2) cannot remain bounded for all times t ≥ a

if the integral
∫ ∞

a
σ (t, k)dt diverges. Second, the onset of the instability is delayed—a key

effect also discussed in the Appendix.

Spherical Bubble Dynamics [98] Let us consider the dynamics of a 3D bubble (Fig. 3)
when the inner and outer phases are both inviscid and in potential motion, i.e., there exists
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a velocity potential φ such that u = ∇φ. Choosing a velocity potential corresponding to a
disturbance which decays away from the interface in both the inward and outward directions,
one obtains

φ1 = (

R2Ṙ
)

/r + b1r
nYn, r < R, (4a)

φ2 = (

R2Ṙ
)

/r + b2Yn/rn+1, r > R, (4b)

where Yn is the spherical harmonic of degree n and the quantities b1,2 are determined from
the continuity of the velocity at the distorted interface rs = R + aYn with |a(t)| � R(t).
In the case where the surface tension can be neglected both inner and outer pressures are
equal as determined from Bernoulli’s equation, and the evolution of the amplitude a(t) ≡
(R0/R)3/2α can be found from a second order differential equation for α,

α̈ = σ(t)α, (5)

where for ρ1 � ρ2:

σ(t) = 3

4

Ṙ2

R2
− R̈

R

[

n + 1

2

]

. (6)

For second order nonautonomous ODEs of type (5) a standard theorem [8, 51] states that the
two independent solutions of (5) cannot be both bounded as t → ∞ if σ(t) > 0 for all t > 0.
In the present case one concludes that the bubble (drop) is necessarily unstable if R̈ < 0,
a result similar to the Rayleigh-Taylor instability [29], although instability is possible even
if R̈ > 0 provided it remains small enough so that σ(t) > 0 for all t > 0. The resulting
growing surface corrugations are ultimately responsible for the bubble disintegration. If,
however, σ(t) < 0 for all t , then the solutions of (5) are of oscillatory type, cf. [51].

Shallow-Water Waves [18, 45] Water waves represent rich phenomena on time-varying
spatial domains. As an example, let us consider the (inviscid) shallow-water (long-wave)
system over variable depth h(x, y):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂η

∂x
= 0, (7a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂η

∂y
= 0, (7b)

∂η

∂t
+ ∂

∂x

[

(η + h)u
] + ∂

∂y

[

(η + h)v
] = 0, (7c)

where u and v are the velocity components in a Cartesian (x, y)-frame of reference and
η(t, x, y) represents surface elevation (Fig. 4). The first two equations describe linear mo-
mentum conservation in the x and y directions, respectively, while the last equation is a
consequence of mass conservation. Linearizing (7a)–(7c) about a fluid at rest, (η,u, v) =
(0,0,0), we arrive at a 2D wave equation for the surface displacement:

∂2η′

∂t2
= ∇ · [c2∇η′], (8)

where c = c(x, y) ≡ √
gh depends explicitly on the varying bottom topography h = h(x, y).

This is a good model for the propagation of a tsunami across the open ocean, with typical



128 E. Knobloch, R. Krechetnikov

Fig. 4 A schematic illustration
of the shallow-water system: both
the surface elevation η and the
depth h are measured from the
undisturbed surface; the
y-coordinate is orthogonal to the
page plane

depth h0 of order 4 km and tsunami wavelength ∼ 100 km, leading to the following esti-
mate of the group speed, cg ∼ √

gh0 = 200 m/s. The variation of the depth in the direction
of wave propagation can be seen as an example of a system with time-varying domain—
the depth changes as the wave propagates towards the shore. Close to the shore, the wave
compresses horizontally and its height increases. This process can be described within lin-
ear theory if the near-shore topography varies sufficiently slowly; in other cases the linear
approximation breaks down and a nonlinear description becomes necessary. Of course, in
situations involving rapid temporal changes in topography, such as those occurring during
earthquakes or landslides, one may also consider a time-dependent depth h(t, x, y).

2.2 Astrophysics

The Friedmann Model [42] This classical model describes the scaling of key (cold matter
and radiation) densities ρ in the Universe with its expansion factor, which is time-dependent.
To illustrate the main features of the model, let us write down the equations that govern the
evolution of the mean properties of the Universe. First of all, the co-moving separation, x,
which factors out the expansion of the Universe, is related to physical separation r through
r = a(t)x, where a(t) is the scale (expansion) factor of the Universe (equal to unity today)
and related to the redshift z by a = 1/(1 + z). On large scales, the Universe is expanding
with the relative velocity of two co-moving objects proportional to their physical separation
by u = H(t)r , with the factor H being the Hubble parameter. From the above relations it is
easy to show that H = ȧ/a. The Friedmann equations are derived from Einstein’s equations
and account for the evolution of H and ρ:

(

ȧ

a

)2

+ kc2

a2
= 8π

3
Gρ + Λc2

3
, (9a)

ä

a
= Ḣ + H 2 = −4πG

3

(

ρ + 3p

c2

)

+ Λc2

3
, (9b)

where k is the curvature, ρ the mass-energy density, p the pressure, Λ the cosmological con-
stant, and c the speed of light in vacuum. The first law of thermodynamics, dU + pdV = 0,
implies that

dρ

dt
+ 3H

(

ρ + p

c2

)

= 0, (10)

which can be easily integrated to show that the density for nonrelativistic (cold) matter,
ρm ∝ a−3, whereas for relativistic particles or radiation, ρr ∝ a−4.

In addition to the above effect of the Universe expansion (domain time-dependence) on
the densities, one can also use this model to show that these time-dependent but spatially
uniform densities may experience instabilities responsible for the large-scale structure of
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Fig. 5 Large-scale structure of
the Universe: evolution of the gas
density in the Bolshoi
cosmological simulation of the
evolution of the large-scale
structure of the Universe [47]

Fig. 6 Extensible flexible beam
with a simply supported movable
end

the Universe [94], as shown in Fig. 5, via the appearance of the Jeans instability [50], which
causes the collapse of interstellar gas clouds and subsequent star formation. This instability
occurs when the internal gas pressure is not strong enough to prevent gravitational collapse
of a region filled with matter. More generally, hydrodynamics in an expanding Universe
obeys nonautonomous Navier-Stokes equations depending on a(t), a fact that has a profound
influence on hydrodynamic stability and the properties of turbulence [54].

2.3 Control

Distributed systems with time-dependent spatial domains arise naturally in many physical
situations. Often, it is desirable to control [5, 89, 121] the dynamical behavior of such sys-
tems by varying their spatial domain. To illustrate the basic ideas, we give a simple concrete
example.

Vibration Control of an Extensible Flexible Beam [121] Figure 6 shows an extensible
flexible beam whose right end is supported on a movable base, while its left end is embedded
inside a bearing which permits extension and contraction of the beam. Neglecting the effect
of axial acceleration on the vibrations of the beam, the inplane bending motion of the beam
y = y(t, x) is described by

ρytt + (EIyxx)xx = 0, 0 < x < l(t), (11)

where ρ = ρ(x) denotes the mass of the beam per unit length, EI = EI (x) is the flexural
rigidity, and l(t) is the length of the beam at time t . The boundary conditions at the left end
are given by

y(t,0) = 0, yx(t,0) = 0, (12)

while those at the right end are

y
(

t, l(t)
) = 0, (EIyxx)x

(

t, l(t)
) = 0. (13)
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Fig. 7 Flutter: (a) degrees of freedom for flutter analysis, (b) the collapse of the Tacoma Narrows Bridge in
1940

The initial conditions at t = 0 are specified by

y(0, x) = y0(x), yt (0, x) = y1(x), x ∈ [

0, l(0)
]

. (14)

Assuming that extension or contraction of the beam is achieved by a linear actuator, the
beam’s length l = l(t) obeys

Ml̈(t) + νl̇(t) = fc(t), (15)

where M is the total effective mass of the beam and the actuator and ν is the friction coef-
ficient. From the applied point of view, it is of interest to find an appropriate control law fc

to move the beam from an initial length l(0) to a given desired length ld without inducing
excessive beam vibrations. The foregoing simple example illustrates a situation where the
spatial domain of a distributed system is time-dependent. Moreover, the control affects the
domain motion, which is governed by an ordinary differential equation (15). This class of
systems also includes large space structures with deployable elastic components [81].

2.4 Fluid-Structure Interaction

Fluid-structure interaction (FSI) problems [37] are common in nature, and include the
biomechanics of birds, fish, heart valves, arteries, etc. Understanding and accurate predic-
tion of FSI responses is also important to many engineered structures, such as bridges, tall
buildings, rotor blades, spars, sails, and membranes, in order to avoid potential aeroelas-
tic/hydroelastic instability issues [52, 100], or to improve performance by actively and/or
passively tailoring the structural morphology. Much of the early work on FSI problems fo-
cused on aerospace structures, where the effects of fluid damping and fluid inertia could be
approximated or ignored. We consider here the classical example of FSI—flutter.

Flutter The flutter phenomenon is the most-widely treated problem in aeroelasticity. This
is perhaps due to the violent nature of the instability, which makes predicting its occurrence
a necessity in aircraft as well as in bridge design. Analytical flutter analysis for design pur-
poses today is still performed by means of relatively simple analytical methods the most
important of which can be illustrated with the following equations of motion for the trans-
lational and torsional degrees of freedom, respectively, cf. Fig. 7(a):

mḧ + 2mζhωhḣ + mω2
hh = Fh(t), (16a)
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I α̈ + 2mζαωαα̇ + Iω2
αh = Fα(t). (16b)

Here the driving forces Fh and Fα for heave and pitch are governed by the aerodynamics of
the body and thus by the displacements of the section. A popular approach to flutter analysis
is due to Theodorsen [112], who investigated flutter of aircraft wings. Everyday exhibition
of flutter includes flag flapping [4].

As an interesting historical note, one should mention that the first hypothesis for the
failure of the Tacoma Narrows bridge (Fig. 7(b)) was resonance, because it was thought that
the Kármán vortex street frequency was the same as the torsional natural vibration frequency.
This proved to be incorrect as the actual failure was due to aeroelastic flutter [9].

2.5 Wave Equation and Oscillations

While a concrete example will be discussed in detail later, in Sect. 4.1, here we would like
to mention a few key works and results on the vast subject of wave equations on time-
dependent domains [41], which is of both practical and theoretical interest. From a practical
view point, a vibrating string being lengthened or shortened in the manner in which a violin-
ist produces vibrato, Fermi accelerators [36], and electromagnetic cavity resonators serve as
motivating examples. Of main theoretical interest is the construction of analytic solutions,
where key contributions are due to Balazs [6], who also introduced graphical methods of so-
lution. These methods were subsequently extended by many authors, e.g. [43, 63, 101, 106].
The main concern is the possible instability of solutions, i.e., unbounded energy growth.
For example, the work of Gonzalez [44] showed that energy remains bounded for the wave
equation with Dirichlet boundary conditions in a time-varying domain 0 < x < a(t) with
a(t) assumed to move slower than the wave speed. But, in general, instability may take place
as happens, for example, for the classical, periodically driven string [27]. As was shown by
Cooper [16], the energy growth of the solution caused by a periodically moving boundary
occurs because of the compression of the wave, and not by amplification as one would nat-
urally expect. The instability of the solutions of the wave equation can also be studied with
the help of spectral methods as illustrated with a simple example below.

The Spectrum of a Hyperbolic Evolution Operator [17] Consider the boundary value prob-
lem for u(t, x) on Σ = {(t, x) : 0 < x < s(t)} ∈R

2:

utt − uxx = 0 in Σ, (17a)

u = 0 on ∂Σ. (17b)

If we consider the time T -map U which maps initial data {u(0), ut (0)} to the solution and its
derivative {u(T ),ut (T )} of the homogeneous wave equation in a domain with a T -periodic
boundary, e.g. s(t) = 1 + ε sinπt with period T = 2 and επ < 1 (so that |ṡ| < 1, a condition
required for the well-posedness of (17a)–(17b)), then the spectrum of U is the annulus

{

λ ∈C : 1√
a

≤ |λ| ≤ √
a

}

, (18)

where the two circles |λ| = √
a and |λ| = 1/

√
a represent continuous spectrum. If λ lies

in the open annulus between the circles, then U − λI has a closed range with infinite co-
dimension. Moreover, if the solution u is not identically zero, then

lim±∞ |t |−1 ln
(‖u(t)‖H 1 + ‖ut (t)‖L2

) = lna/4, (19)
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i.e., the “energy” (in these Sobolev norms) grows without bound. This example also il-
lustrates the fact that even though by a change of variables one can view this problem as
a nonautonomous problem on a fixed domain, the spectrum consisting of an annulus and
nonexistence of eigenvalues precludes application of standard Floquet theory. As shown by
Lopes [70], this occurs because the characteristics may converge as t → ∞.

A closely related problem, that of a vibrating extensible beam, was considered by Dickey
[26], Ball [7], Ferreira et al. [38] and others.

2.6 Quantum Mechanics

The behavior of particles in time-dependent potential wells is a subject that is closely related
to the properties of the wave equation on a time-dependent domain discussed above. Quan-
tum systems with an explicit time-dependent Hamiltonian have attracted much attention over
the past decades. In addition to their intrinsic mathematical importance, these systems con-
nect to several important physical problems such as quantum optics, Paul electromagnetic
traps for charged and neutral particles [93], Berry phase, and magnetic field lens. Of consid-
erable interest is the escape of particles from a time-dependent potential well [23]—in their
seminal work Büttiker and Landauer [15] considered tunneling through a time-modulated
barrier, and found that at high frequencies the particle passes through the time-averaged po-
tential inelastically, losing or gaining modulation quanta. In general, this problem belongs to
a class of questions about energy transfer in classical systems [64], i.e., whether a particle,
that can give up or absorb energy from the system, can be accelerated to unlimited energy
[36].

Schrödinger Equation on Time-Dependent Domains The time-dependent Schrödinger
equation

i�
∂ψ

∂t
= Hψ with H = − �

2

2m

∂2

∂x2
+ V (x), (20)

where the potential

V (x) =
{

0, x ∈ [0,L(t)]
∞, x /∈ [0,L(t)] (21)

describes the problem of a particle in a one-dimensional infinite square-well potential with
a moving wall. Following the idea of instantaneous energy eigenfunctions by Schiff [103],
Doescher and Rice [28] found an exact solution to this problem in the case when dL/dt =
const:

ψ(t, x) =
∑

n

anφn(t, x), (22)

where the φn(t, x) are time-dependent eigenfunctions given by

φn(t, x) = (2/L)1/2 exp

[

iαξ

(

x

L

)2

− in2π2 (1 − 1/ξ)

4α

]

sin
nπx

L(t)
, (23)

with α = L0(m/2�)dL/dt , ξ = L(t)/L0, L0 = L(0), and the expansion coefficients an re-
main constant as the wall moves. Note that the eigenfunctions φn(t, x) stay normalized as
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the wall moves and form a complete orthogonal set. As in the case of time-independent
eigenfunctions, the constants an are determined by the value of the wave function at t = 0:

an =
∫ L0

0
ψ∗

n (0, x)ψ(0, x)dx. (24)

The motivation for studying such systems comes from the question of transitions between
energy states when the system is “shaken”. After the work of Doescher and Rice [28], many
other authors extended their results. In particular, Makowski and Dembiński [77, 78] found
a solution for (21) using separation of variables valid for L3L̈ = const as well as for the case
where the bottom of the infinite square potential well is not at zero, but oscillates up and
down as in the Fermi-Ulam accelerator model [36] (i.e. a particle bouncing between two
impenetrable rigid walls one of which moves as a function of time):

V (t, x) = 1

2
mΩ2(t)x, Ω2(t) = Q sinωt

L(t)
ω2. (25)

This system exhibits chaotic behavior when L(t) is a periodic function of time [67], since
in contrast to autonomous one-degree-of-freedom systems nonautonomous one-degree-of-
freedom systems (sometimes called one and a half degrees of freedom systems because
the relevant phase space is three-dimensional) permit chaos as external forcing destroys the
conserved quantity given by the Hamiltonian.

To see the basic effect the moving wall has on the system, let us transform Eq. (20)
following the change of variables in [77, 83]:

y = x

L(t)
, ψ(t, y) =

√

2

L
exp

(

im

2�
LL̇y2

)

φ(t, y), τ (t) =
∫ t

0

ds

L2(s)
, (26)

which gives

i�
∂φ

∂τ
= − �

2

2m

∂2φ

∂x2
+

(

1

2
mL3L̈y2 + L2V

)

φ, (27)

i.e. the transformation introduces a time-dependent perturbation to the potential and thus
to the Hamiltonian [60], which makes the subject related to general studies of systems
with nonautonomous Hamiltonians, e.g. [15, 53, 108]. Existence of exact solutions was
later related to a certain invariance of the Schrödinger equation under scaling of the space
and time coordinates or, equivalently, the existence of time-dependent invariants [82]. For
the details of the classical perturbative treatment of the Schrödinger equation with time-
dependent perturbations, H = H0 +V (t), the reader is referred to Landau and Lifshitz [60].
The basic idea, however, is straightforward and supposes that the solution of the perturbed
Schrödinger equation can be constructed in the form ψ = ∑

k ak(t)ψ
(0)
k , where ψ

(0)
k are the

wavefunctions of the unperturbed Schrödinger equation. Substituting this representation in
the Schrödinger equation (20) and taking into account that ψ

(0)
k satisfy

i�
∂ψ

(0)
k

∂t
= H0ψ

(0)
k , (28)

we find

i�
∑

k

ψ
(0)
k

dak

dt
=

∑

k

akV ψ
(0)
k . (29)
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Next, projecting on ψ
(0)

k and integrating, we obtain a system of equations for ak(t):

i�
dam

dt
=

∑

k

Vmk(t)ak, Vmk(t) =
∫

ψ
(0)

k V ψ
(0)
k dx, (30)

the solution of which allows one to determine wavefunctions for the perturbed motion. One
must note that in general one cannot speak of perturbations of the energy eigenvalues be-
cause the energy is not conserved for time-dependent Hamiltonians. Below, we will elabo-
rate on several concrete examples of perturbed Hamiltonian systems in both classical and
quantum settings.

Development of perturbation methods for problems with moving walls has been pursued
in [25, 28, 96] and compared with exact treatment, revealing serious limitations of the ap-
proximate methods [96]. However, interesting results were obtained, for example, in the case
of asymptotic (long-time) behavior [25]. Besides systems with potential wells, whose width
changes in time, there is also work on moving potential wells, e.g. on conveyance of quan-
tum particles in such systems [80] and noise-activated escape from a sloshing potential well
[76]. Ratcheting, resulting in net motion, was found in a periodic array of potential wells
with spatially symmetric barriers pulsating periodically in time [99]. And, finally, there are
studies on the escape of noninteracting particles from the inside of an infinite potential box
which, in turn, contains a time-dependent potential well (i.e., a well within a well), e.g. [23,
65].

Classical and Quantum Time-Dependent Harmonic Oscillators Let us consider a system
with a Hamiltonian of the form

H = 1

2ε

[

p2 + Ω2(t)q2
]

, (31)

where q is a canonical coordinate, p is the conjugate momentum, Ω(t) is an arbitrary func-
tion of t , and ε is a positive real parameter. As originally established by Lewis [66], for this
time-dependent harmonic oscillator there is a class of exact invariants I of the form

I = 1

2

[

ρ−2q2 + (

ρp − ερ ′q
)2]

, (32)

where ρ is any function of t satisfying

ε2ρ ′′ + Ω2(t)ρ − ρ−3 = 0, (33)

and the prime denotes differentiation with respect to t . The quantity I is a time-dependent
invariant for quantum as well as classical systems. As shown by Lewis [66] the invariant
may be used to solve the time-dependent Schrödinger equation.

Transitions Induced by Time-Dependent Potentials As a simple model for vibrational ex-
citation induced by a compression pulse applied to a harmonic oscillator which increases its
force constant, let us consider the following time-dependent Hamiltonian

H(t) = p2

2m
+ 1

2
k(t)x2. (34)
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Fig. 8 Schema of a quadrupole ion trap with a particle of positive charge (center), surrounded by a cloud of
similarly charged particles. The electric field E is produced by a quadrupole generated by the endcaps 1 and
a ring electrode 2. Panels a and b show two states during an AC cycle

The compression pulse can be seen as a change in the potential well width, i.e., the domain
size in our terms. Taking out the harmonic oscillator part H0 of H(t) = H0 + V (t) by parti-
tioning the time-dependent force constant into two parts k(t) = k0 + δk(t) with k0 = mΩ2

and δk(t) = δk0 exp
(− (t−t0)2

2σ 2

)

, we can find the eigenstates of H0, H0|n〉 = En|n〉:

H0 = �Ω

(

a†a + 1

2

)

, En = �Ω

(

n + 1

2

)

. (35)

Using first-order perturbation theory [60] and calculating the wavefunction expansion am-
plitudes

bn(t) = − i

2�

∫ t

t0

Vn0(τ )eiωn0τ dτ , ωn0 = (En − E0)/� = nΩ, V0n = 〈

0|V (t)|n〉

,

we can determine the probability of finding the system in state |n〉 after applying the pertur-
bation to it in state |0〉: Pn = |bn|2. For example, for n = 2 we find

P2 = πδk2
0σ

2

2m2Ω2
e−4σ 2Ω2

, (36)

which indicates that significant transfer from the state |0〉 to |n〉 occurs when the compres-
sion pulse width is small compared with the vibration period, σ � Ω−1, i.e., the potential
is changing faster than the atoms can respond to the perturbation. In the opposite (adiabatic)
limit, σ � Ω−1, the perturbation is so slow that the system always remains in the state |0〉.

Chirped Frequency Excitation A chirped frequency ωp is an excitation frequency that
varies with time, typically linearly. Recent years have seen increasing use of chirped fre-
quencies in a number of applications, ranging from plasma physics [33] and quantum state
measurement [85] to the recent successful trapping of antihydrogen atoms [2], cf. Fig. 8.
When a nonlinear physical system such as a particle trapped in a potential or a nonlinear
pendulum is perturbed by a force with a chirped frequency, the natural frequency of the sys-
tem can lock to ωp . In this case the driving frequency “drags” the natural frequency with it,
i.e., the amplitude of the oscillation of the system adjusts itself in such a way that resonance
is maintained. This locking occurs abruptly above a critical amplitude of the perturbation
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in a phenomenon known as autoresonance [32, 86]. In a soft system, i.e., a system whose
natural frequency decreases with oscillation amplitude, a downward sweep of the driving
frequency ωp decreases the oscillation frequency and hence increases its amplitude. Con-
versely, in a hard system an upward sweep of the driving frequency is required to increase
its amplitude. This behavior persists in the presence of damping [34]. The success of this
technique suggests that similar behavior may be present in problems described by PDEs
instead of ODEs, i.e., in pattern-forming systems. To illustrate the effect of a chirped fre-
quency compared with that of a standard resonance, consider the following driven linear
oscillator model

ẍ + γ ẋ + ω2
0x = sin (ωf t), (37)

where γ is a damping coefficient, ω0 is the natural frequency without damping, and ωf is a
forcing frequency. The standard resonance occurs when the forcing frequency ωf is constant

and equal to ωn =
√

ω2
0 − γ 2/4 and leads to oscillations with maximum amplitude

A ∼ 1

ωn

(

1 + γ 2

8

)

. (38)

If, however, the forcing frequency varies slowly in time, ωf (t) = ωf 0 + εt with |ε| � 1,
then as shown in [92] the resonance occurs at the jump frequency

ωj � ωf 0 + ωn

2
and is reached at tj = 1 − ωf 0

2ε
, (39)

i.e., at the midfrequency between the initial frequency ωf 0 and the natural frequency ωn,
and the maximum amplitude at this chirped resonance scales as A ∼ ε−1/2 with the ramp
speed ε. This highlights the difference from the static driving frequency problem: resonance
phenomena occur prior to the slowly varying frequency reaching its critical value in the
corresponding static-frequency problem.

2.7 Reaction-Diffusion Systems

There is a large number of biological processes involving time-dependent domains, namely
the formation of patterns and shapes in biology (morphogenesis) [19, 84, 88, 119]. The
latter phenomena include mammalian coat patterns, seashell pigmentation patterns and skin
patterns on tropical fish, as well as various symmetry-breaking events: branching processes
in plants, initiation of single or multiple new organs in animals, and solid tumor growth.
As suggested by Turing [114], pattern formation in biology can be modeled by a system
of reacting and diffusing chemicals (morphogens) that interact to produce stable patterns of
morphogen concentrations c(x, t) as described by the reaction-diffusion model ct = D ·�c+
f (c), where D is a matrix of diffusion coefficients and f is a reaction term. Such models are
known to be able to capture complex evolving patterns arising from a competition between
reactions that create spikes in the concentration of the product and diffusion that smooths out
its gradient. Recent interest has focused on incorporating other biologically relevant features
such as domain growth, shape, and curvature into models of this type [19, 88].

Morphogenesis [19, 20, 73, 74, 91, 114, 115] Let us consider the nonautonomous
reaction-diffusion system [19]

∂c

∂t
= 1

γ
D

∂2c

∂x2
+ R(c), x ∈ [0,1] (40)
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Fig. 9 The
wavenumber-doubling sequence:
space–time evolution of the
activator concentration profile
[19]

with zero flux boundary conditions and initial condition c(0, x), and suppose that the di-
mensionless scaling parameter γ evolves according to dγ /dt = h(t) with γ (0) = γ0. Then
for a suitable h(t) the concentration c(t, x) can exhibit self-similar wavenumber-doubling
in space (Fig. 9). To see this we assume that γ (t) is a monotonically increasing function
so that we can eliminate t in favor of γ ; then at γ = γ ∗ the solution has some spatial pro-
file c(γ ∗, x). At any point in the wavenumber-doubling sequence, in particular at γ = γ ∗, a
pattern of twice the wavenumber may be constructed by applying the tent map

p2(x) =
{

2x, 0 ≤ x ≤ 1
2 ,

2 − 2x, 1
2 ≤ x ≤ 1.

(41)

We define q2(γ, x) such that q2(γ
′, x) ≡ c(γ ′,p2(x)), which satisfies the evolution equation

h
(

γ ′)∂q2

∂γ ′ = 1

4γ ′ D
∂2q2

∂x2
+ R(q2). (42)

Returning to the original equation, c(4γ ′, x) is governed by

1

4
h
(

4γ ′) ∂c

∂γ ′ = 1

4γ ′ D
∂2c

∂x2
+ R(c). (43)

Now c(4γ ′, x) and q2(γ
′, x) satisfy the same equation if

h
(

4γ ′) = 4h
(

γ ′), (44)

i.e., γ (t) ∝ e2αt or equivalently L(t) = L0e
αt , for some α > 0, where L(t) is the domain

size. In this (special) case every cell splits simultaneously and in an identical fashion, cf.
Fig. 9.

2.8 Solidification

Mullins-Sekerka Instability [61] As another example of a parabolic system, let us consider
the key interfacial instability driving pattern formation during solidification, cf. Fig. 10. The
following simple analysis applies to both thermal and chemical models, so we consider a
dimensionless diffusing field u. Denoting the diffusion constants in the liquid and solid by
D and D′, respectively, the continuity condition reads

vn = D
[

β(∇u)solid − (∇u)liquid
] · n, (45)



138 E. Knobloch, R. Krechetnikov

Fig. 10 Examples of the Mullins-Sekerka instability [61]: (a) schematic, (b) snow flake, (c) succinonitrile

where the left-hand side is the rate vn (the velocity directed in the normal direction n to the
interface) at which, say, heat is generated at the interface and the right-hand side is the rate
at which this heat flows into the bulk phases on either side of the interface. Introducing the
capillary length d0 and the interfacial curvature κ , the Gibbs-Thomson condition [24] can
be written as

uinterface = −d0κ, (46)

which accounts for the variations in chemical potential across a curved interface and, in
particular, a reduction of the melting temperature for small particles—this is opposed to
assuming that the temperature at the interface must be exactly the bulk melting temperature
as in the Stefan problem to be discussed below. In the frame of reference moving in the z

direction at the interface velocity v, the steady-state diffusion equation has the form

∇2u + 2

l

∂u

∂z
= 0, (47)

where l is the diffusion length, l = 2D/v (in the solid, l = 2D′/v). The interface is placed
at z = 0. The solution of (47) and the continuity condition (45) is

u0 = exp

(

−2z

l

)

− 1 (liquid, z ≥ 0), (48a)

u′
0 = 0 (solid, z ≤ 0). (48b)

Next, we introduce a perturbation of the steady-state interface ζ(x, t) =̂ζk exp (ik · x + ωkt),
where k is a two-dimensional wavevector perpendicular to n and ωk is the amplification rate,
and the corresponding perturbations u′ to the field u0:

u = exp

(

−2z

l

)

− 1 + ûk exp (ik · x − qz + ωkt) (liquid, z ≥ 0), (49a)

u′ = û′
k exp

(

ik · x + q ′z + ωkt
)

(solid, z ≤ 0). (49b)

Linearizing (45)–(47), we determine the dispersion relation

ωk � kv

[

1 − 1

2
(1 + β)d0lk

2

]

, (50)
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consisting of two parts: a positive, destabilizing term, which is proportional to the velocity,
and a negative, stabilizing term, which contains surface tension. The wavenumber ks at
which ωk vanishes, i.e., the neutral stability point, sets a pattern-formation length scale for
the problem λs ≡ 2π/ks � 2π

√
ld0(1 + β)/2.

It is interesting to mention that a famous application of the Mullins-Sekerka theory is to
the familiar surface instability of icicles, though not so long time ago it was realized that the
underlying physical mechanisms are different [90].

Stefan Problem [109] The original Stefan problem treats the formation of ice in the polar
seas [109]. In fact, Stefan compared his mathematical results with measurements performed
during polar expeditions to find the North-West passage [120].

Let us consider the second model described by Stefan [109], in which the unsteady trans-
port of heat in ice is taken into account. In the ice layer the temperature difference between
the freezing temperature and that of the ice satisfies the following partial differential equa-
tion

∂u

∂t
= K

cσ

∂2u

∂x2
, 0 < x < h(t), t > 0, (51)

where h(t) is the layer depth and h(0) = 0. At the air-ice interface the temperature is a given
function of t , i.e., u(t,0) = f (t), whereas at the ice-water interface the temperature is equal
to the temperature of freezing, i.e., u(t, h(t)) = 0. The boundary condition at the ice-water
interface x = h(t) follows from heat balance:

λσ
dh

dt
= −K

∂u

∂x
, t > 0. (52)

When f (t) = α the solution to (51), (52) is

h(t) = 2μ

√

Kt

cσ
, u(t, x) = α

∫ μ

x/2
√

Kt
c σ

e−z2
dz/

∫ μ

0
e−z2

dz, (53)

where μ is the solution of the transcendental equation μeμ2 ∫ μ

0 e−z2
dz = αc/(2λ).

The Stefan problem stimulated many interesting studies. Beginning with Petrovskii’s pa-
per [95], a significant attention has been on boundary value problems for parabolic equations
in non-cylindrical domains (i.e., time-dependent spatial domains as usually referred to in the
context of parabolic systems) with a singular point, at which the boundary surface is tan-
gent to the hyperplane perpendicular to the t -axis (notice that the initial condition for the
domain size in the Stefan problem is h(0) = 0). For example, in problems described by the
heat equation in domains in R

n with an insulated rapidly moving boundary, heat will tend
to collect at the boundary and the temperature will rise, while the medium will cause that
energy to diffuse away from the boundary and thus lower the temperature. One of the in-
teresting facts is that if the boundary moves fast enough, namely if h(t) ∼ (T − t)−1/2 for
t ∼ T , singularities can develop in the solution such that the boundary point will contain a
positive amount of heat in the distribution (generalized function) sense, and form a so-called
“heat atom”. The resulting heating can be analyzed using the theory of reflecting Brownian
motion, cf. [13, 14, 68, 107], known in probability theory as the Skorokhod problem for
stochastic differential equations with a reflecting boundary condition [107].
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3 Mathematical Formulation

3.1 General Setting: Evolution of Conserved Quantities on Time-Dependent Domains

It is natural to start with a general evolution equation on a time-independent domain:

∂c

∂t
= Lxc + N(c), N(0) = 0, (54)

where c is a quantity originating from some conservation law, e.g. concentration, Lx is a
constant coefficient time-independent differential operator in the spatial variable x (in the
case of a reaction-diffusion system Lx = D∇2), and N(c) is a general nonlinear differential
operator, which may originate from the nonlinear part of the reaction term. However, in
many cases equations of this type are usually the result of the application of a conservation
law [19, 110]. In the case of a general time-dependent domain Ωt , the time derivative is

d

dt

∫

Ωt

c(t,x)dx =
∫

Ωt

[

∂c(t,x)

∂t
+ ∇ · (uc)

]

dx, (55)

after application of the Reynolds transport theorem, implying that the correct form of the
evolution equation is

∂c

∂t
+ ∇ · (uc) = Lxc + N(c), N(0) = 0, (56)

where u(t,x) is the velocity of the domain point at (t,x). Thus the evolution of the quantity
c is considered on a time-deforming domain Ωt , which could be thought of as a ‘substrate’:
examples include reaction-diffusion on growing skin, crown-spike structure on a growing
circular rim in the drop splash problem, waves in a stretching rod, etc. The growth of the
domain Ωt introduces an advection term, u ·∇c, corresponding to elementary volumes mov-
ing with the flow u(t,x), and a dilution term, c∇ · u, due to local volume change. Note that
u(t,x) is characterized by a magnitude as well as a lengthscale and timescale on which it
operates—these are to be determined in the process of deduction. Note that the Reynolds the-
orem (55) applies only to problems defined on domains of the same dimension as the space
in which they are embedded; if one considers evolution of a quantity on a line embedded in
2D or 3D or evolution on a 2D surface embedded in 3D, there is an additional term related
to the deformation of that surface [97, 104] as will be illustrated in Example 3 of Sect. 3.2.

In 1D, the time rate of change of the quantity c(t, x) can be analyzed with the help of the
Leibnitz rule:

d

dt

∫ β(t)

α(t)

c(t, x)dx =
∫ β(t)

α(t)

∂c

∂t
dx + c(t, β)β̇(t) − c(t, α)α̇(t)

=
∫ β(t)

α(t)

∂c

∂t
dx + c(t, β)u|x=β − c(t, α)u|x=α =

∫ β(t)

α(t)

(

∂c

∂t
+ ∂(uc)

∂t

)

dx,

leading to the same result as (56).

3.2 On the Flow u(t,x) from the Lagrangian and Eulerian Viewpoints

Let us adopt Lagrangian (material) coordinates (t, a) for the time-dependent motion of a
cross-section labeled by a at t = 0 and displaced by H(t, a) for t > 0, cf. Fig. 11. The
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Fig. 11 Domain stretching
illustrated using a rod with (t, a)

as the Lagrangian variables and
(t, x) as the Eulerian variables;
H(t, a) is the displacement of a
cross-section labeled by the
Lagrangian variable a for t > 0

Eulerian variables (t, x) are given by

x = X(t, a), X(0, a) = a, (57)

via the displacement H(t, a) = X(t, a) − a, so that H(0, a) = 0. The velocity of the cross-
section labeled by a in the Lagrangian variables is

U(t, a) = ∂X

∂t
. (58)

The corresponding Eulerian variables are determined after inversion of x = X(t, a), i.e.,
first finding a = a(t, x), so that the velocity and the displacement are given by

u(t, x) = U
(

t, a(t, x)
)

, h(t, x) = H
(

t, a(t, x)
)

. (59)

It is important to keep in mind that the label a is defined on a fixed interval, e.g. 0 ≤ a ≤ l0,
while x is, in general, defined on the stretched time-dependent interval, X(t,0) ≤ x ≤
X(t, l0).

Consider a general function F(t, a) in Lagrangian coordinates with its Eulerian counter-
part f (t, x) = f (t,X(t, a)) = F(t, a(t, x)). Differentiating both sides with respect to time t ,
we find

df

dt
= ∂f

∂t
+ ∂f

∂x

∂X

∂t
= ∂f

∂t
+ U(t, a)

∂f

∂x
= ∂f

∂t
+ u(t, x)

∂f

∂x
, (60)

where we took into account that U(t, a) = u(t, x). As a consequence, for f (t, x) = h(t, x)

the Eulerian velocity u(t, x) is the material derivative of h(t, x), i.e., u(t, x) = dh/dt , and
not ∂h/∂t ; thus u(t, x) = ht/(1 −hx). A nice example [49] to test all the above properties is
x = a(1 + 2t)/(1 + t), which allows one to calculate the relevant quantities explicitly, i.e.,
a(t, x), h(t, x), etc. The above discussion readily generalizes to the vector case.

Example 1 (Isotropic Growth) In one spatial dimension, X(t, a) = aξ(t) with ξ(t) a dimen-
sionless scale factor satisfying ξ(0) = 1 and a ∈ [−L0/2,L0/2], implying that

u(t, x) = aξ̇ = x
ξ̇

ξ
, (61)

i.e., there is a stationary point x = 0 away from which the domain is stretching with
L(t) = L0ξ(t) being the total domain length and maximum stretch velocity at the domain
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boundaries x = ±L(t)/2 being u = ±L0ξ̇ /2 = ±L̇/2. A physical example would be an
elastic stretched by pulling both ends with the same velocity, but in opposite directions.
In general, of course, this kind of stretching is not necessarily linear in x, but depends on
the elastic properties of the domain. In any event, for the flow (61) we have the material
derivative

∂c

∂t
+ ∂

∂x
(uc) = ∂c

∂t
+ ξ̇

ξ
x

∂c

∂x
+ ξ̇

ξ
c (62)

i.e., both advection and dilution are present, though the advection term can be removed by
transforming back to the Lagrangian coordinate, x → a = x/ξ(t), as in [19, 116]. One may
ask when does this type of advective flow become a function of time only, i.e., u = u(x)?
Equation (61) shows that this is the case when the domain grows exponentially, ξ ∼ eαt .
Hence, while the class of isotropically growing domains corresponds to u(t, x) = f (t)x with
f (t) = ξ̇ /ξ = L̇/L, exponentially (and isotropically) growing domains belong to an impor-
tant subclass, characterized by f (t) = const. Pattern formation on exponentially growing
domains was studied numerically in several articles [19, 72, 74, 115].

Example 2 (Translation-Invariant Systems) In the above example the point x = 0 is spe-
cial since the advection velocity vanishes there. Thus problems with isotropic stretch break
translation invariance (as does the presence of the boundaries at x = ±L(t)/2). Translation-
invariant systems are different since all their spatial locations are equivalent. In such systems
the (Eulerian) advection velocity u must be independent of the (Eulerian) spatial coordinate,
and so u ≡ 0 everywhere. In this case only homogeneous stretching remains, and any two
points in the domain move apart with a Lagrangian velocity proportional to their separation
similar to the expansion of the Universe in the Friedmann model, cf. Sect. 2.2. In this con-
text it is helpful to think in terms of points on the surface of an expanding ring or balloon.
For example, in the crown formation problem [55, 59], shown in Fig. 1, the system is posed
on a one-dimensional domain with periodic boundary conditions. Because of translation
invariance (modulo the period) there is no preferred location and so u ≡ 0 everywhere.

Example 3 (Reaction-Diffusion Equation on a Uniformly Growing Ring) The discussion
given thus far relates the presence of dilution to an Eulerian advection velocity u. As in-
dicated in the preceding example this velocity vanishes in a translation invariant system,
suggesting that in such systems dilution is absent as well. This is not necessarily the case,
however.

Consider the scalar reaction-diffusion equation on an expanding ring of radius R(t) as
in the crown formation problem. We may use polar coordinates and a two-dimensional ad-
vection velocity u = (u(r, t),0) to obtain the Eulerian equation for the evolution of the
concentration c = c(t, θ) per unit length concentrated at r = R(t):

∂c

∂t
+ ∇ · (uc) = ∇2c + s(c), (63)

or, equivalently,

∂c

∂t
+ c

r

∂

∂r
(ru) = 1

r2

∂2c

∂θ2
+ s(c). (64)

For perimeter length L(t) = 2πR(t), we have u = Ṙ and hence

∂c

∂t
+ Ṙ

r
c = 1

r2

∂2c

∂θ2
+ s(c). (65)
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The reaction-diffusion equation along the ring of radius r = R is therefore

∂c

∂t
+ Ṙ

R
c = 1

R2

∂2c

∂θ2
+ s(c). (66)

Since the physical coordinate is x = Rθ , the required Eulerian equation satisfied by c is

∂c

∂t
+ L̇

L
c = ∂2c

∂x2
+ s(c), −L

2
≤ x <

L

2
, (67)

and dilution is present even though Eulerian advection along the ring is absent.
Therefore, in the crown problem, illustrated in Fig. 1, we also expect to see a dilution

effect, although it competes with the (mass) source term s. In the simplest case one may
suppose that the mass is supplied from the fluid bulk at a rate that balances the dilution effect,
allowing the crown to develop on top of this balanced state [55]. In any case, experiments
suggest that the crown instability occurs on a faster time scale than that on which the dilution
and source terms affect the base state [59].

It is worthwhile to compare Eq. (67) with that obtained in the case of isotropic Eulerian
stretch velocity u = L̇(t)x/L(t) on a domain [−L/2,L/2] with (say) Neumann boundary
conditions. From (56), (61) we have

∂c

∂t
+ L̇

L
x

∂c

∂x
+ L̇

L
c = ∂2c

∂x2 + s(c), −L

2
≤ x <

L

2
, (68)

an equation that superficially resembles (67), in the sense that the dilution terms (L̇/L)c are
the same. However, this statement is misleading since the origin of the dilution term is now
the isotropic Eulerian stretch and not the fact that c is a density with conserved total mass.

3.3 Nonconserved Systems

Not all physical systems lead to conserved dynamics. Consider, for example, gravity-
capillary waves on the surface of a slowly draining tank of water. The frequency ω and
(horizontal) wavenumber k of the (inviscid) waves are related by the dispersion relation
ω2 = gk tanhhk, where h is the liquid depth and g is the acceleration due to gravity. As h

varies with time, the oscillation frequency will drift (since the wavenumber is fixed by the
Neumann boundary conditions imposed on the lateral walls—this spatial quantization comes
from the fact that problems with the Neumann boundary conditions can be embedded into
ones with periodic boundary conditions on domains of twice the size modulo translation).
Conversely, if the waves are excited by parametric forcing, their frequency will be fixed, but
the wavenumber will vary (abruptly) with time. In a finite domain this time-dependence will
generate a sequence of jumps in the wavenumber very similar to the phase slips discussed
in Sect. 4.2. Since the (horizontal) domain is unstretched, advection and dilution effects are
absent from the equations describing this class of problems.

In the more realistic viscous setting the above picture will change because the required
non-Neumann boundary conditions no longer fix a wavenumber [21], thereby allowing a
continuous evolution of the solution in time.

4 Dynamics

To deepen our understanding of the key new effects observed in problems on time-dependent
domains compared with those on time-independent domains, we now discuss in detail two



144 E. Knobloch, R. Krechetnikov

representative physical examples: propagation of waves in extensible bodies and the evolu-
tion of spatially periodic patterns. This will also help set the stage for open questions in this
evolving area of research.

4.1 Longitudinal Waves in a Stretching Rod

Consider propagation of longitudinal waves in a rod which is being stretched, cf. Fig. 11. In
what follows we reveal two key effects: (1) if the rod ends are pulled in opposite directions
with the same velocity α(t) proportional to time, then the wavelength of the longitudinal
waves propagating in the rod due to an initial ‘kick’ (not deflection, but velocity) grows
in proportion to α, and (2) if α̈ �= 0, then long waves are excited in the rod even without
an initial ‘kick’, i.e., when the rod is not subject to an initial displacement and velocity
perturbation.

4.1.1 Analysis in Lagrangian Variables

Suppose that the rod cross-sections (Lagrangian coordinates) are labeled by a ∈ [0, l0] and
that the left and right ends of the rod are pulled with the same velocity, but in opposite
directions, so that the corresponding displacements H(t, a) are

a = 0 : H(t,0) = −α(t), (69a)

a = l0 : H(t, l0) = α(t), (69b)

where α(0) = 0. In Lagrangian variables the linear elasticity (momentum) equation reads

R0
∂2H

∂t2
= E

∂2H

∂a2
, (70a)

t = 0 : H(0, a) = 0, Ht (0, a) = ψ(a), (70b)

where E is Young’s modulus, ψ(0) = ψ(l0) = 0 (the compatibility of initial and boundary
conditions is necessary for the existence of a classical solution) and R0 = R(0, a) is the
initial density distribution in Lagrangian variables; density at later times is determined by
R(t, a) = R0(a)/(1 + Ha) with Ha = ∂H/∂a. Representing H(t, a) in the form H(t, a) =
˜H(t, a) + κ(a)α(t) with κ(a) = −1 + (2/l0)a, we arrive at the following boundary-initial
value problem:

R0
∂2

˜H

∂t2
= E

∂2
˜H

∂a2
− R0κ(a)α̈, (71a)

t = 0 : ˜H(0,0) = 0, ˜Ht(0, a) = ˜ψ(a), (71b)

a = 0 : ˜H(0, t) = 0, (71c)

a = l0 : ˜H(l0, t) = 0. (71d)

In the case α ∝ t the resulting solution is

˜H(t, a) =
∞

∑

n=1

˜ψn

ωn

sinωnt sin
√

λna, (72)
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where ωn = πcn
l0

, λn = (

πn
l0

)2
, c = √

E/R0 and ˜ψn = 2
l0

∫ l0
0

˜ψ(ξ) sin
√

λnξdξ . To under-

stand this solution in Eulerian variables, notice that x = X(t, a) = H(t, a) + a = ˜H(t, a) +
κ(a)α(t) + a, which needs to be inverted to get a(t, x) so that the displacement reads
h(t, x) = H(t, a(t, x)). In general, this inversion is not possible analytically, but for small
˜H one obtains h(t, x) = H(t, a(t, x)), with a defined by

x =
(

−1 + 2

l0
a

)

α(t) + a ⇒ a = x + α(t)

1 + 2
l0
α(t)

. (73)

For α(t) � l0 we obtain a � l0
2 [ x

α(t)
+ 1]. Hence the wave frequencies ωn are unaffected

by the stretching (ωn is independent of α(t)), but the wavelength of the waves grows in
proportion to α(t).

If α is not a linear function of time, the problem (71a)–(71d) admits a nontrivial solution
even without a ‘kick’, i.e., when ˜ψ = 0. These waves are driven by the acceleration of the
boundaries and given by

˜H(t, a) =
∫ t

0

∫ l0

0
G(t − τ, a, b)f (τ, b)dbdτ , (74)

where f (t, a) = −κ(a)α̈(t) and the Green’s function

G(t − τ, a, b) =
∞

∑

n=1

2

πnc
sin

πna

l0
sin

πnb

l0
sinωn(t − τ), c = √

E/R0. (75)

4.1.2 Analysis in Eulerian Variables

The conclusion reached above that the wavelength of the waves grows in proportion to
α(t) can also be reached from an Eulerian analysis, although it is more complicated as the
resulting elasticity equations, namely the continuity and momentum equations

∂ρ

∂t
+ ∂

∂x
(uρ) = 0, (76a)

ρ

(

∂u

∂t
+ u

∂u

∂x

)

= ∂τ

∂x
, (76b)

respectively, are nonlinear, which illustrates the difference between the Lagrangian and Eu-
lerian approaches. Here u = ht/(1−hx) and the stress τ = Ehx/(1−hx). Only in the linear
approximation, i.e., when h(t, x) is small, one can use the linear wave equation resulting
from (76a)–(76b),

ρ0htt = Ehxx, (77a)

x = −α(t) : h = −α(t), (77b)

x = l0 + α(t) : h = α(t), (77c)

t = 0 : h = 0, ht = φ(x). (77d)

Assuming that α(t) evolves on a slower time scale and making the transformation (t, x) →
(τ = t, ξ = (x + α)/(1 + 2α/l0)), h =˜h + (−1 + 2ξ/ l0)α(t), we arrive at

ρ0˜hττ = E
(

1 + 2α
l0

)2
˜hξξ , (78a)
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ξ = 0 : ˜h = 0, (78b)

ξ = l0 : ˜h = 0, (78c)

the solution of which for α � l0 also demonstrates wavelength stretching at the rate α(t)

since ξ � l0
2 (1 + x/α).

4.2 Pattern Formation: Eckhaus Instability

A central question concerning pattern formation in systems on time-dependent domains is
how the domain deformation affects periodic structures. This question is somewhat anal-
ogous to the question of how the quasistatic variation of a bifurcation parameter affects
the properties of a periodic structure on time-independent domains [30]. The key insight is
provided by the Eckhaus instability whereby the system can respond to a stretching (con-
tracting) domain by inserting (annihilating) a wavelength. To understand how this occurs
we consider the Ginzburg-Landau equation (GLE) for a complex order parameter A on both
time-independent and time-varying domains.

4.2.1 Time-Independent Domain

We begin with a review of the Eckhaus instability on a finite fixed length domain [30] and
consider the supercritical Ginzburg-Landau equation,

∂tA = μA + ∂2
xA − |A|2A, (79)

which governs the formation of steady patterns in a wide variety of systems [22]. Here
t ≡ ε 2̃t and x ≡ εx̃ with |ε| � 1 are slow temporal and spatial scales, i.e., the complex
amplitude A(t, x) describes the slow spatial modulation of the basic periodic state u(̃t, x̃),

u(̃t, x̃) = εA
(

ε 2̃t, εx̃
)

eiqcx̃ + εA
(

ε 2̃t, εx̃
)

e−iqcx̃ + h.o.t., (80)

where qc is the (critical) wavenumber at the pattern-forming instability, the tildes indicate
the original (fast) variables, and A stands for the complex conjugate of A. If the domain is
infinite, qc is an arbitrary real number; if, however, the domain is of finite length L (in the
slow coordinate x), then qc is given in units of 2πε/L and is an integer for spatially periodic
systems.

In general, if the state with wavenumber qc is stable so are the states with nearby
wavenumbers. These are described by a periodic amplitude function,

AQ(x) = aQeiQx. (81)

Solutions of this type exist provided |aQ|2 = μ − Q2 > 0; the latter inequality defines the
region of existence of these so-called phase-winding solutions in the (μ,Q) plane. The
solutions are shown in Fig. 12(a) and correspond to periodic patterns with (unscaled) spatial
wavenumber qc ± εQ; they appear via a supercritical pitchfork bifurcation at μQ = Q2

meaning that as μ increases past μ = 0 the trivial state is destabilized and patterns with Q

in the range (0,
√

μ) are created. If the domain is finite, the wavenumber Q is also an integer
in units of 2π/L.

Linear stability of the pattern AQ is studied by writing A(t, x) = AQ(x)+A′(t, x), lead-
ing to the linearized version of Eq. (79),

∂tA
′ = μA′ + ∂2

xA′ − [

2|AQ|2A′ + A2
QA

′]
. (82)
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Fig. 12 A phase slip event: (a) the periodic order parameter A, (b) phase slip event at t = t∗, x = 0

With the perturbation represented as

A′(t, x) = eiQx
[

ak+(t)eikx + ak−(t)e−ikx
]

for k �= 0, (83)

this gives us two equations for the amplitudes ak± of the harmonics ei(Q±k)x :

dak+
dt

= (

μ − (Q + k)2
)

ak+ − a2
Q(2ak+ + ak−), (84a)

dak−
dt

= (

μ − (Q − k)2
)

ak− − a2
Q(2ak− + ak+), (84b)

where we used the fact that aQ may be taken to be real, so that |aQ|2 = a2
Q. The associated

eigenvalues are given by λk± = −(μ − Q2) − k2 ± √

(2Qk)2 + (μ − Q2)2, where λk− is
always negative and λ+ crosses zero when

μ = μQk ≡ 3Q2 − 1

2
k2, k �= 0. (85)

At μ = μQk a secondary pitchfork bifurcation occurs from the branch of states AQ, cf.
Fig. 13(b). In the case k = 0, the solution is sought in the form A′(t, x) = a0(t)e

iQx , which
yields the eigenvalue λ0 = −2(μ − Q2); since λ0 < 0 for μ > Q2, this eigenvalue is re-
sponsible for the creation of AQ from the trivial state. The pattern described by AQ is stable
when all the eigenvalues, λ0 and λk±, are negative, which yields the classical Eckhaus curve
(E) shown in Fig. 13(a) in the case of an infinite domain:

μ∞ = max
k>0

(

3Q2 − 1

2
k2

)

= 3Q2, (86)

as can also be seen from the leading eigenvalue expanded for small k:

λk+ = 3Q2 − μ

μ − Q2
k2 + h.o.t. (87)

It follows that as μ increases past successive values μQk
, the solution AQ is stabilized

against A′ as λk+ decreases through zero. Thus in the case of an infinite domain, L = ∞:

– the fastest growing wavenumber kmax → 0 as Q → √
μ∞/3;

– the spatially periodic (base) state (81) exists for Q2 < μ;
– the base state (81) of (79) is stable in the region 3Q2 < μ and unstable in the region

Q2 < μ < 3Q2;
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Fig. 13 On the Eckhaus stability [113]. (a) The trivial state A = 0 loses stability along the solid curve (N),
μQ = Q2; the dashed curve (E) defined by μ∞ = 3Q2 represents the stability boundary on an infinite
domain; the dotted curves represent loci of the Eckhaus instability on a finite periodic domain—the case k = 1
corresponds to the finite-domain Eckhaus boundary above which the pattern AQ is stable. (b) Branches with
wavenumbers Qj = j are created at successive pitchfork bifurcations (solid dots) as μ increases through the

values Q2
j

. All but the first branch are initially unstable, but each j = 1, . . . branch acquires stability at a

secondary Eckhaus bifurcation (open circles) at μQk = 3Q2 − 1
2 k2. Solid (dashed) curves indicate stable

(unstable) portions of the trivial and primary branches

– in addition, the Eckhaus bifurcation is subcritical [113], meaning that the spatially modu-
lated wavetrain created by the instability lies inside the curve E and is therefore unstable.

These conclusions are represented graphically in Fig. 13(a). To interpret the Eckhaus insta-
bility one may also think in terms of a single wavenumber Q:

– at a given positive μ, there is a range of possible Q’s, Q2 < μ;
– suppose we fix a solution AQ with a particular Q in this range and increase μ—initially

the solution lies between the (N) and (E) curves and so is unstable;
– once μ reaches 3Q2, the solution AQ acquires stability w.r.t. all perturbations with

wavenumbers Q ± k, cf. (87).

In the unstable region bounded by the curves E and N in Fig. 13(a), the perturbations ak+,
ak− grow exponentially and quickly become nonlinear. This growth drives the amplitude A

locally to zero, cf. Fig. 12(b); at such locations the phase of the solution is undefined, as
can be seen from the explicitly constructed solution at the phase-slip, cf. Eq. (89) below,
allowing the phase to jump by ±2π [31, 57, 62].

Thus phase slips are associated with the appearance of zeros in the solution of a nonlinear
parabolic PDE (79), a process studied in [3, 31]. As established by Eckmann et al. [31], if
one starts from the generic (in appropriate topology) initial condition ‘just before’ the phase
slip,

A(0, x) = 1

2
ax2 + ibx − ad ≡ A0(x), (88)

where a > 0 and d(a, b) > 0 is sufficiently small, i.e., the initial condition has a nonzero
slope b and small curvature a as can be observed in Fig. 12(b), then at leading order a
phase slip occurs at time t∗ = d and location x∗ = 0. This result is proved using well-known
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regularity properties of parabolic equations and thus looking for a solution in the form

A(t, x) = A0(x) + ct, (89)

where c proves to be equal to a. In addition to this local theory, one can also prove a global
result, namely that when one starts the system in an unstable state a phase slip inevitably
results [31].

On the other hand, in the case of a finite domain, L < ∞, one has

μfinite = max
k=1,2,...

(

3Q2 − 1

2
k2

)

= 3Q2 − 1

2
= μ∞ − 1

2
, (90)

a result independent of the actual size of the domain [57, 113] as experimentally observed by
Ahlers et al. [1]. Here, keeping in mind (80), we took into account that the periodic pattern
AQ permitted on finite domains must satisfy ε−1qc + Q ∈ Z in units of 2π/L; potentially
unstable eigenvectors ak must also fit in the domain, so that k must satisfy ε−1qc + Q +
k ∈ Z, i.e., k must be a (positive) integer too. Besides the finiteness of the domain, the
boundary conditions have a significant effect on both the existence of periodic patterns and
the perturbations since they limit the class of possible solutions as shown for a semi-infinite
domain in [56].

For the details on how phase-slips occur dynamically, we refer the reader to [57, 62]. On
a time-independent periodic domain the GLE (79) may be stated in the variational form

∂A

∂τ
= − δF

δA∗ , F =
∫ L0/2

−L0/2

(∣

∣

∣

∣

∂A

∂ξ

∣

∣

∣

∣

2

− μ|A|2 + 1

2
|A|4

)

dξ, (91)

where F plays the role of a free energy or Lyapunov functional. On examining the land-
scape of F one can see that stable time-independent spatially periodic solutions of (79) with
different wavenumbers (81) must correspond to local minima of F and thus have basins
of attraction separated by saddle-points of F , which in turn occur at the points where the
second variation of F is indefinite.

4.2.2 Time-Dependent Domain

Evidently, if the domain length L evolves on a timescale slower than the modulation
timescale t in (79), then the above analysis for the time-independent domain applies, i.e.,
no differences are expected. Indeed, it does not matter whether (79) is analyzed in the orig-
inal spatial variable x or after rescaling it via x → Lx̂—the results stay the same since the
exponent

eikx = eîkx̂ , ̂k = Lk, (92)

stays ‘invariant’ after such a transformation. If, on the other hand, the domain size evolves
on the modulation timescale, L = L(t), we may write x → L(t)x to eliminate the time-
dependence of the domain, obtaining

∂tA = μA + 1

L2(t)
∂2

xA − |A|2A, (93)

where x is now a Lagrangian (fixed domain) variable. This new form (93) of the GLE applies
to translation-invariant systems as explained in [55], i.e., when the dilution and convection
effects discussed in Sect. 3.1 are absent.
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Equation (93) has elementary solutions of the form

AQ(t, x) = aQ(t)eiQx, (94)

where Q is time-independent and the amplitude aQ(t) can again be taken real and satisfies
the equation

ȧQ =
[

μ − Q2

L2(t)

]

aQ − a3
Q. (95)

The solution (94) represents the base state in which the wavelength 2πL(t)/Q in the un-
scaled (Eulerian) variables is being stretched commensurably with the domain size. Note
that base states of the form (94) with time-dependent Q(t), i.e., with Eulerian wavelength
2πL(t)/Q(t) whose time-dependence differs from that of L(t), do not exist. Perturbations
(83) of the state (94) evolve according to

dak+
dt

=
[

μ − (Q + k)2

L2(t)

]

ak+ − a2
Q(t)(2ak+ + ak−), (96a)

dak−
dt

=
[

μ − (Q − k)2

L2(t)

]

ak− − a2
Q(t)(2ak− + ak+). (96b)

The key differences between these equations and (84a)–(84b) for the time-independent do-
main case are (a) the scaling of the perturbation wavenumbers Q ± k with the domain size
L(t), which destabilizes periodic states by shifting their wavenumber into the instability re-
gion, i.e., the domain size plays the role of a time-dependent bifurcation parameter, and (b)
the time-dependent amplitude of the base state solution aQ(t) and hence the presence of the
time-dependent factor a2

Q in the coupling of a±k , which contributes to bifurcation delay.
In contrast to the time-independent domain case (84a)–(84b), the system (95), (96a)–

(96b) is not amenable to spectral analysis. Other methods, such as energy and various types
of estimates or inequality analysis, are therefore needed to obtain analytical insight (besides
numerical investigation of sample problems). However, it should be mentioned that an alter-
native approach, based on a nonlinear diffusion equation for the phase φ, is also available
[55]. In general, one can view the system (95), (96a)–(96b) either on short timescales, when
transient phenomena such as bifurcation delays matter, or over long times that are necessary
for understanding instabilities. For example, in the case L(t) → const as t → ∞, one can
perform a spectral analysis of (95), (96a)–(96b); more interesting cases correspond to either
L(t) → ∞ or L(t) → 0 as t → ∞—in the first case (stretching domain) one can easily
show that the perturbation amplitude saturates at a constant value, while in the second case
(shrinking domain) the base state will grow as R(t) ∼ tα for L(t) ∼ t−α , 0 < α < 1, while
the perturbation amplitude grows exponentially.

We can compute the bifurcation delay from the equations for the amplitude and phase of
the solution A(t, x) = R(t, x)eiΦ(t,x) of (93),

Rt = μR + 1

L2(t)

(

Rxx − RΦ2
x

) − R3, (97a)

Φt = 1

L2(t)

(

Φxx + 2
RxΦx

R

)

, (97b)

on the assumption that R and Φ evolve on the yet longer timescale T = ε2t ≡ ε 4̃t and on the
yet larger spatial scale X = εx ≡ ε2x̃, with L(t) evolving on the timescale T as well [55]. In
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particular, we examine the behavior of the perturbations r(T ,X), φ(T ,X) of the base state
R = aQ(t), Φ = Qx:

A(t, x;T ,X) = aQ(t)
[

1 + εr(T ,X)
]

ei(Qx+φ(T ,X)). (98)

To solve the equations for r , φ, we write r = r0 + εr1 + · · · and find that at leading order
the r equation yields r0 = −QφX/L2a2

Q—with this result the φ equation reduces to a time-
dependent diffusion equation for the phase perturbation φ:

φT = 1

L2

(

1 − 2Q2

L2a2
Q

)

φXX, (99)

where a2
Q(t) ≡ a2

Q(T ) = μ−Q2/L2(T ) as determined asymptotically from (95) on the long
timescale T . Writing φ = ∑

bk(T )eikX we see that the amplitude bk of a perturbation with
wavenumber k satisfies

b′
k = − 1

L2

(

1 − 2Q2

L2a2
Q

)

k2bk = − 1

L2

(

μ − 3Q2

L2

μ − Q2

L2

)

k2bk, (100)

which is of the form (102) and thus exhibits bifurcation delay as described in the Appendix.
In fact, one may compute the exact phase-slip delay compared to the time-independent do-
main case following the Appendix.

The above results imply that as the domain length L increases the instantaneous wave-
length 2πL/Q of the periodic wavetrain will be pushed into the Eckhaus-unstable regime:
at the Eckhaus instability the phase diffusion coefficient in (99) becomes negative. How-
ever, because of the bifurcation delay mentioned above the resulting phase slip will also be
delayed, allowing the wavelength of the periodic state to stretch beyond that permitted by
a time-independent analysis. A stationary state results when the delay becomes comparable
to the stretching timescale—this is the condition that determines the wavenumber Q(T ) at
which the phase slips can keep up with the changing wavelength.

To contrast the phase slip process in the time-dependent domain system (95), (96a)–(96b)
with that in the time-independent domain case, one can also follow the local approach of
[31] to show that the phase slip occurs at the time t∗ defined by

∫ t∗

0

dτ

L2(τ )
= d, (101)

provided that one starts from the same initial conditions as in (88) and looks for a solution
in the form A(t, x) = A0(x) + f (t), implying that f (t) = a

∫ t∗
0 L−2(τ )dτ . As one can see

from (101) by taking L(t) = L(0) + l(t) with l(t) = stα , α > 0, domain growth (s > 0)
leads to a delay in the phase slip, while domain shrinkage (s < 0) brings the phase slip event
closer compared to the time-independent domain case, t∗ = d . Note that due to translation
invariance of the system the phase slip can be supposed to take place at the origin, x = 0.
The global problem for the time-dependent domain case remains open.

Extensions of the nonlinear theory of the Eckhaus instability [57, 62] to time-dependent
domains is not straightforward as can be seen from the variational formulation (91) of (79).
Namely, in the time-dependent domain case, the functional F becomes explicitly time-
dependent and therefore the saddle-points of F are no longer stationary, which in turn
makes the basins of attraction of solutions with different wavenumbers (number of cells)
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time-dependent as well. The resulting difficulties are similar to those encountered in time-
dependent perturbation theory in quantum mechanics and, more generally, in the theory of
nonautonomous Hamiltonian theory discussed in Sect. 2.6.

5 Discussion: Key Challenges

The examples highlighted in this article point to the need for developing a set of theoretical
tools necessary for understanding and quantifying various aspects of the rich dynamics ex-
hibited in systems on time-dependent domains. Many of the key challenges center around
pattern formation, and require one to understand both bifurcations and the mechanisms re-
sponsible for the formation and evolution of spatial structures. Advances in bifurcation the-
ory should be able to tackle nonautonomous infinite-dimensional systems, where effects
of both time-dependent domain size and time-dependent base state are present, as exem-
plified by the system (95), (96a)–(96b). Such a theory would allow one to determine the
time-dependent saturated state resulting from dynamic bifurcation and delayed onset of in-
stability. In addition to the dynamic character of the bifurcations brought about by the time-
dependence of the domain size, the precise role of the conditions imposed on the boundaries
requires further elucidation.

While certain progress in analyzing pattern formation on time-dependent domains has
been made for translationally invariant systems [55], the advection and dilution effects dis-
cussed in Sect. 3 represent new challenges for understanding dynamics and instabilities
in various systems, including those of reaction-diffusion type. Numerical simulations of
stretching patterns in systems with propagating fronts and a preferred lengthscale reveal
that, in addition to the delay in the phase slip generation, the phase slips have a preferred
location [71] and do not take place uniformly throughout the pattern (in contrast to the ex-
ample in Sect. 2.7). This location may or may not be in the center of the pattern, and may
be selected by inhomogeneities in the amplitude of the pattern imposed by lateral boundary
conditions. As observed in a number of examples, standard spectral analysis applicable to
autonomous systems on time-fixed domains fails on time-dependent domains and therefore
new approaches need to be developed, e.g. based on energy and other types of estimates to
get bounds on the base state and perturbation growth. These would find wide applicability
as can be seen from the variety of physical systems discussed in Sect. 2. And, of course, a
good way to appreciate the universality of the instability phenomena in these different sys-
tems is to derive near-critical equations analogous to the Ginzburg-Landau equation in the
time-independent domain case. These developments will contribute to the understanding of
pattern formation in systems on time-dependent domains and, in particular, of the Eckhaus
instability.

Besides these core questions pertinent to pattern formation, one may anticipate new ques-
tions dictated by the relevant physics, such as resonance phenomena that occur when the
timescale of the domain deformation is comparable to the natural timescale of the problem
at hand, or the effect of noise and inhomogeneities in triggering instabilities. For example,
noise may affect both the location and timing of the Eckhaus instability because the instabil-
ity is subcritical and the resulting super-exponential growth acts as a strong noise amplifier.
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Appendix: Bifurcation Delay

Non-autonomous instability problems such as the ones described in Sect. 2 are often charac-
terized by bifurcation delay phenomena. To understand the origin of this delay it is helpful
[75] to consider a linear equation of nonautonomous type (2)

du

dt
= a(t)u, u(0) = u0 > 0, (102)

where a is a sufficiently smooth function, which changes sign at some ‘turning point’ time
t∗ > 0 with a(t) < 0 on t ∈ (0, t∗) and a(t) > 0 on t ∈ (t∗,∞). The solution to (102) shown
in Fig. 14(a),

u(t) = u0 exp

(∫ t

0
a(s)ds

)

, (103)

implies that an initial condition u0 decays over the time interval 0 < t < t∗ and then grows,
so that at some time texit > t∗ the exponent

∫ t

0 a(t)dt vanishes and for t > texit it grows. The
time texit, defined by the equality

∫ texit
0 a(s)ds = 0, then implies that for t > texit the solution

escapes (exits) from a ball of radius u0 around u = 0 defined by the initial condition; the
two times, texit and t∗, characterizing the instability onset, do not depend on the value of u0.
Because texit > t∗, one usually speaks of a bifurcation delay. Hence the time at which the
solution is repelled from the equilibrium u = 0 is given by texit, a time greater than t∗ at which
the equilibrium loses its stability should a(t) be considered as a fixed (time-independent)
parameter.

Note that while the growth is determined by the condition u̇(t) > 0 leading to a(t) > 0
as follows from (103), this is not a necessary condition. Indeed, as can be seen from the case
a(t) = 1 + c sin t with |c| > 1, the solution u(t) = u(0)et−c cos t grows despite the fact that
a(t) oscillates periodically between fixed positive and negative values.

A more interesting example of a bifurcation delay occurs in the context of a supercritical
Hopf bifurcation [69, 87] described (in polar coordinates) by θ̇ = 1, u̇ = u[a(t)−u2], ȧ = ε

with |ε| � 1, where the dynamics is infinitesimally slow with respect to the bifurcation
parameter a(t) from some initial negative value a0 of a(t) until it reaches a positive critical
value at texit � −a0/ε when the system abruptly begins to oscillate with a large amplitude,
cf. Fig. 14(b).

Fig. 14 Examples of bifurcation delay: (a) the solution (103) of (102) with a(t) = t − 1, (b) the Hopf
bifurcation [69]
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25. Dembiński, S.T., Makowski, A.J., Peptowski, P.: Asymptotic behaviour of a particle in a uniformly
expanding potential well. J. Phys. A, Math. Gen. 28, 1449–1458 (1995)

26. Dickey, R.W.: Dynamic stability of equilibrium states of the extensible beam. Proc. Am. Math. Soc.
41, 94–102 (1973)

27. Dittrich, J., Duclos, P., Šeba, P.: Instability in a classical periodically driven string. Phys. Rev. E 49,
3535–3538 (1994)

28. Doescher, S.W., Rice, M.H.: Infinite square-well potential with a moving wall. Am. J. Phys. 37, 1246–
1249 (1969)

29. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (2004)
30. Eckhaus, W.: Studies in Non-linear Stability Theory. Springer, New York (1965)



Problems on Time-Varying Domains 155

31. Eckmann, J.P., Gallay, T., Wayne, C.E.: Phase slips and the Eckhaus instability. Nonlinearity 8, 943–
961 (1995)

32. Fajans, J., Friedland, L.: Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and
other nonlinear oscillators. Am. J. Phys. 69, 1096–1102 (2001)

33. Fajans, J., Gilson, E., Friedland, L.: Autoresonant (nonstationary) excitation of the diocotron mode in
non-neutral plasmas. Phys. Rev. Lett. 82, 4444–4447 (1999)

34. Fajans, J., Gilson, E., Friedland, L.: The effect of damping on autoresonant (nonstationary) excitation.
Phys. Plasmas 8, 423–427 (2001)
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