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Abstract We consider a mathematical model for cancer chemotherapy with a single agent
that distinguishes three levels of sensitivities calling the subpopulations ‘sensitive’, ‘par-
tially sensitive’ and ‘resistant’. We analyze the dynamic properties of the system under what
could be considered metronomic (continuous, low-dose, constant) chemotherapy and, more
generally, also consider the optimal control problem of minimizing the tumor burden over
a prescribed therapy interval. Interestingly, when several levels of chemotherapeutic sen-
sitivities are taken into account in the model, lower time-varying dose rates as they are
given by singular controls become a treatment option. This is only the case once a signif-
icant residuum of resistant cells has been created in a simpler 2-compartment model that
only considers sensitive and resistant cells. For heterogeneous tumor populations, a more
modulated approach that varies the dose rates of the drugs may be more beneficial than the
classical maximum tolerated dose approach pursued in medical practice.
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1 Introduction: Chemotherapy for Heterogeneous Tumor Populations

The prevailing paradigm in cancer chemotherapy is to give as much of the drug as possible
(MTD-maximum tolerated dose) immediately. The reason is that cancer is a widely symp-
tomless disease which, once finally detected, often is in an advanced stage where immediate
action is required. Then the aim simply is to be as toxic as possible to the cancerous cells. If
the tumor consists of a homogeneous agglomeration of chemotherapeutically sensitive cells,
simple mathematical models confirm such a strategy as optimal (e.g., see [5, 16, 18, 27–29]).
However, malignant cancer cell populations are genetically unstable and coupled with fast
proliferation rates, this leads to a great variety in the structure of the cells within one tumor—
the number of genetic errors present within one cancer cell can lie in the thousands [19].
Consequently, tumors often consist of heterogeneous agglomerations of subpopulations that
show widely varying sensitivities towards the actions of a particular chemotherapeutic agent
[7, 8]. In medicine, the Norton–Simon hypothesis postulates that tumors consist of faster
growing cells that are sensitive to chemotherapy and slower growing populations of cells
that, with time, become resistant to the chemotherapeutic agent (acquired drug resistance).
There may even exist small subpopulations of cells for which the specific activation mech-
anism of a chemotherapeutic agent does not work and which thus are not sensitive to the
treatment from the beginning (ab initio, intrinsic resistance). Given such a scenario, over
time, as the drugs kill sensitive tumor cells, resistant subpopulation of cancer cells may
emerge that will make an MTD-style therapy less and less effective [17, 18, 30]. Even if the
fraction of intrinsically resistant tumor cells is tiny and undetectable, after the sensitive cells
have been killed by the treatment, it may grow in time to become a fully developed tumor
of chemotherapeutically resistant cells leading to the failure of therapy, possibly only after
many years of seeing remission of the cancer.

The question how chemotherapeutic agents should be scheduled in the long run to opti-
mize their effects is a difficult one when the true system (patient) is considered and many
systemic aspects need to be taken into account to give a satisfactory answer. In fact, the
entire tumor microenvironment (consisting of the tumor vasculature that provides nutrients,
tumor immune system interactions and many other aspects such as fibroblast cells, extracel-
lular matrix, etc.) will need to be considered, all residing in healthy tissue and contributing
to the multifaceted nature of the disease [6]. Modern treatments therefore are increasingly
multi-targeted therapies that not only aim to kill cancer cells, but also include antiangio-
genic therapy, immunotherapy and other options. But even before these other components
are addressed, it is important to understand the influence that tumor heterogeneity has on the
structure of optimal protocols. Several mathematical models for developing drug resistance
have been put forward (e.g., see the monograph by Martin and Teo [20], the work by Swier-
niak and Smieja [30]) and analyzed mathematically. For simple 2-compartment models in
which only sensitive and resistant cell populations are distinguished, it can be shown that
as the resistant subpopulation becomes too large, a standard MTD approach will no longer
be optimal since the damage caused by high dose chemotherapy to healthy cells outweighs
the benefits of killing the cancer cells [17]. In a recent paper by Lavi, Greene, Gottesman
and Levy [9, 15], a mathematical model for multi-drug resistance in cancer has been pro-
posed that leads to the emergence of specific traits (or resistance levels) as a response to
cell density and mutations. It thus is interesting to consider models which include various
levels of chemotherapeutic sensitivities or drug resistance. In this paper, we consider such a
model for a single chemotherapeutic agent distinguishing three distinct levels. Just for sake
of terminology, we call the subpopulations ‘sensitive’, ‘partially sensitive’ and ‘resistant’.
We analyze the dynamic properties of the system under a continuous, low-dose and con-
stant drug administration. Recently, there have been a number of medical trials that explore
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such low dose administration of chemotherapy and the beneficial effects that it has under
the name of metronomic dosing [1, 2, 12–14, 23]. More generally, we also consider the op-
timal control problem of minimizing the tumor burden over a prescribed therapy interval.
Interestingly, as more levels of sensitivity are taken into account in the model, lower time-
varying dose rates like they are given by singular controls become a treatment option. This
is only the case once a significant residuum of resistant cells has been created in simpler
2-compartment models.

2 A 3-Compartment Mathematical Model for Tumor Heterogeneity

In this paper, we consider a mathematical model for heterogeneous tumor populations simi-
lar to the one considered in [11] that distinguishes between three distinct subpopulations. For
simplicity of terminology, we label them “sensitive”, S, “partially sensitive”, P , and “resis-
tant”, R, but the terminology is only meant to indicate that these populations have different
sensitivities towards a chemotherapeutic agent with S the highest and R the lowest. We as-
sume that these subpopulations grow at rates α1, α2 and α3, respectively. Generally, we do
not make assumptions on the order of the growth rates, but an ordering α1 > α2 > α3 would
be consistent with the “Norton–Simon hypothesis” according to which a tumor consists of
faster-growing populations of chemotherapeutically sensitive cells and slower-growing pop-
ulations of increasingly more resistant cells [21, 22]. We allow for transitions between the
compartments, i.e., we include the typical effects that sensitive cells become more resis-
tant through mutations, but we also allow for resensitizations which make cells less resis-
tant to the chemotherapeutic agent. This phenomenon is well-documented in the medical
literature, e.g., see [10, 26]. We denote the transition rates between the compartments by
using a Greek letter to denote the originating compartment and a Roman letter to denote
the receiving compartment. For example, σP denotes the transition rate from sensitive to
partially sensitive cells while πS denotes the reverse transition rates from partially sensitive
to sensitive cells. In this paper, these rates are assumed to be constant and positive. This cor-
responds to an ergodic structure in which all compartments are repeatedly visited by cells.
Cell kill by a chemotherapeutic agent is expressed by the standard linear log-kill hypothe-
sis: if we denote the concentration of the drug in the bloodstream by u, then the rate of cells
eliminated is given by ϕiu, i = 1,2,3, with the coefficients ϕ1, ϕ2 and ϕ3 representing the
effectiveness of the drug on the sensitive, partially sensitive and resistant subpopulations,
respectively. Thus ϕ1 > ϕ2 > ϕ3 ≥ 0. The case ϕ3 = 0 corresponds to the situation of a fully
resistant subpopulation R. As a matter of simplification of the model, we do not include the
standard pharmacokinetic model on the agent here and treat u as the control of the system
with maximum concentration given by umax. The controlled dynamics is then determined
by the inflows and outflows from the various compartments and is given by the following
3-dimensional linear system of equations:

Ṡ = (α1 − σP − σR − ϕ1u)S + πSP + ρSR, (1)

Ṗ = σP S + (α2 − πS − πR − ϕ2u)P + ρP R, (2)

Ṙ = σRS + πRP + (α3 − ρS − ρP − ϕ3u)R. (3)

Admissible controls are Lebesgue measurable functions with values in a compact interval
[0, umax], u : [0, T ] → [0, umax], t �→ u(t).
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Lemma 1 For any admissible control u, the solution to Eqs. (1)–(3) exists on the full inter-
val [0, T ] and all components are positive on (0, T ].

Proof The system (1)–(3) is a homogeneous linear system with coefficient matrix having
bounded Lebesgue measurable entries. Thus solutions exist over the full interval [0, T ].
Without loss of generality, we assume that the initial population size is positive so that
the solution is nontrivial. Even if one of the components vanishes at the initial time, it will
immediately become positive. For example, if R(0) = 0, then Ṙ(0) = σRS(0)+πRP (0) > 0
since at least one of P (0) or S(0) is positive. Thus there exists an interval (0, ε) with ε > 0
on which all components are positive. If one of the variables becomes zero at a later time, let
τ denote the minimum of all times for which one of the components S, P or R is zero. Then
τ > 0 and at least one of the other states is positive at time τ . But, as before, if, for example,
P (τ) = 0, then again Ṗ (τ ) = σP S(τ)+ρP R(τ) > 0. Contradiction. Hence all states remain
positive. �

2.1 Steady-State Behavior of the Relative Proportions

A discrete-time analogue of the model formulated above is a homogeneous Markov chain
with states S, P and R and positive transition probabilities between each pair of states.
Such a chain is ergodic and has a well-defined limiting stationary distribution for which
all probabilities to be in a particular state are positive. In this section, we show that the
dynamical systems version has the same steady-state behavior: the proportions of cells in
the respective compartments converge to a positive limit.

Let C denote the total number of cancer cells, C = S +P +R, and consider a continuous
administration of some chemotherapeutic agent at possibly a constant low dose u ≡ const.
The growth of the total population is then given by

Ċ = (α1 − ϕ1u)S + (α2 − ϕ2u)P + (α3 − ϕ3u)R.

Mathematically, the analysis of the dynamics can always be reduced to the uncontrolled
system by setting α̂i = αi − ϕiu and we thus consider the case u ≡ 0. Note, however, once
this is done the growth relations between the compartments may change. For example, if the
drug is effective on the sensitive cells, this will generate a negative growth rate while a truly
resistant compartment will not be affected. Thus the rates α̂i can be negative and there may
be no order relation between these coefficients. Hence our analysis will be carried out for
arbitrary reals αi . Let x, y and z denote the proportions of the respective populations, i.e.,

x = S

C
, y = P

C
, and z = R

C
.

Since S, P and R satisfy linear differential equations, the quotients x, y and z obey Riccati
equations. Direct computations verify that

ẋ = (α1 − σP − σR)x + πSy + ρSz − x(α1x + α2y + α3z), (4)

ẏ = σP x + (α2 − πS − πR)y + ρP z − y(α1x + α2y + α3z), (5)

ż = σRx + πRy + (α3 − ρS − ρP )z − z(α1x + α2y + α3z). (6)

Our first aim is to establish that there exists a unique steady-state (x∗, y∗, z∗) for the
corresponding system. Let Σ denote the unit simplex in R

3, i.e.,

Σ = {
(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0, x + y + z = 1

}
.
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Theorem 1 The unit simplex Σ is positively invariant under the dynamics (4)–(6) and there
exists a unique, globally asymptotically stable equilibrium point (x∗, y∗, z∗) in Σ , i.e., for
any initial condition (x0, y0, z0) ∈ Σ , the corresponding trajectory converges to (x∗, y∗, z∗)
as t → ∞.

Corollary 1 If a chemotherapeutic agent is administered at a constant low dose u, then the
total tumor population asymptotically grows exponentially at rate

(α1 − ϕ1u)x∗ + (α2 − ϕ2u)y∗ + (α3 − ϕ3u)z∗.

Proof The total cancer population C satisfies

Ċ = (α1 − ϕ1u)S + (α2 − ϕ2u)P + (α3 − ϕ3u)R

= [
(α1 − ϕ1u)x + (α2 − ϕ2u)y + (α3 − ϕ3u)z

]
C

	 [
(α1 − ϕ1u)x∗ + (α2 − ϕ2u)y∗ + (α3 − ϕ3u)z∗

]
C.

Note that the limit (x∗, y∗, z∗) also is a function of the dose rate u. �

We divide the proof of the theorem into several lemmas.

Lemma 2 The unit simplex Σ is positively invariant under the dynamics (4)–(6).

Proof By definition we have that x + y + z ≡ 1 and setting z = 1 − x − y we consider the
unit-simplex as a subset of (x, y)-space in R

2. It suffices to show that all trajectories starting
at a point (x0, y0) in the boundary of Σ , ∂Σ , enter the interior of Σ . For x = 0 we have that
ẋ|x=0 = πSy +ρSz and since at least one of y or z must be positive, it follows that ẋ|x=0 > 0.
Analogously we have that

ẏ|y=0 = σP x + ρpz > 0 and ż|z=0 = σRx + πRy > 0.

Hence, whenever (x0, y0) ∈ ∂Σ , the vector field defining the dynamics points inside Σ . �

It thus follows (for example, from Poincaré–Bendixson theory) that there exists at least
one equilibrium point inside of Σ .

Lemma 3 The unit simplex Σ contains exactly one equilibrium point for the dynamical
system (4)–(6).

Proof Without loss of generality, we consider Eqs. (4) and (5) coupled with the relation
x + y + z ≡ 1. In order to simplify the notation a bit, we denote the relative growth rates
of the subpopulations by λs = α1 − σP − σR , λP = α2 − πS − πR and λR = α3 − ρS − ρP .
Using a blow-up in the variables of the form y = wx and z = vx with positive coefficients
v and w, it follows that x = 1

1+w+v
> 0 and (x, y, z) ∈ Σ for positive v and w. It therefore

suffices to show that there exists a unique positive solution (v,w) to the equations

0 = λS + πSw + ρSv − (α1 + α2w + α3v)x, (7)

0 = σP + λP w + ρP v − (α1 + α2w + α3v)wx. (8)
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Fig. 1 Existence of a unique
equilibrium point

Equating these two relations gives

λS + πSw + ρSv = (α1 + α2w + α3v)x = 1

w
(σP + λP w + ρP v)

which yields

πSw
2 + (λS − λP )w − σP = (ρP − ρSw)v. (9)

This relation defines v as a rational function of w of the form

v = v(w) = πSw
2 + (λS − λP )w − σP

(ρP − ρSw)
= Q(w)

L(w)

with L and Q the respective linear and quadratic polynomials. Since Q(0) < 0, Q has a
unique positive root which we denote by wq and it matters how it is located relative to the
root w� = ρP

ρS
> 0 of L. If wq 
= w�, then v(w) has a pole at w� and is positive and strictly

increasing from 0 to +∞ over the interval [wq,w�) if wq < w� while v(w) is positive and
strictly decreasing from +∞ to 0 over the interval (w�,wq ] if wq > w� (see Fig. 1). If the
zeros cancel, formally, the solution is given by v(w�) = +∞, but in this case Eq. (9) is
satisfied trivially.

Equation (7) is equivalent to

0 = (λS + πSw + ρSv)(1 + w + v) − (α1 + α2w + α3v)

which gives

0 = πSw
2 + (πS + ρS)wv + ρSv

2

+ [
λS − (α2 − πS)

]
w + [

λP − (α3 − ρS)
]
v − (σP + σR).

Using the relation (9), this reduces to

ρSv
2 + (λS − λR)v − σR = (πR − πSv)w. (10)
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Table 1 Summary of the
location of the poles and roots of
the rational functions defined by
Eqs. (9) and (10)

< 0 = 0 > 0

A wq > w� wq = w� wq < w�

B vq > v� vq = v� vq < v�

This equation is the analogue to (9) and symmetrically defines w as a rational function of v

in the form

w = w(v) = ρSv
2 + (λS − λR)v − σR

(πR − πSv)
= Q̃(v)

L̃(v)
.

As above, the quadratic polynomial has a unique positive root which we denote by vq and
it matters how it is located relative to the root v� = πR

πS
> 0 of L̃. If vq 
= v�, then w(v) has

a pole at v� and w(v) is positive and strictly increasing from 0 to +∞ over the interval
[vq, v�) if vq < v� while w(v) is positive and strictly decreasing from +∞ to 0 over the
interval (v�, vq] if vq > v� (see Fig. 1). If the zeros cancel, Eq. (10) again is trivially satisfied
in the form 0 = 0.

The relative location of the zeros is determined by the two quantities

A = πSρ
2
P + (λS − λP )ρP ρS − σP ρ2

S

and

B = ρSπ
2
R + (λS − λR)πSπR − σRπ2

S

and is summarized in Table 1.
In each case, there exists a unique positive solution (v̄, w̄) to Eqs. (9) and (10). For

example, if A and B are both positive, then the function v(w) is only positive over the
interval (wq,w�) and it is strictly increasing from 0 to +∞. At the same time, the function
w(v) is only positive over the interval (vq, v�) and is strictly increasing from 0 to +∞. The
inverse branch therefore is defined on all of (0,∞) and the values increase from vq to v�.
Thus there exists a unique intersection of these two curves and we have that v̄ ∈ (vq, v�) and
w̄ ∈ (wq,w�). Analogous reasoning gives the existence of a unique positive solution (v̄, w̄)

whenever A and B are nonzero. If one of them is zero, the argument is slightly different.
For sake of specificity, suppose A = 0. In this case, w̄ = w� = ρP

ρS
is a solution to Eq. (9)

and the solution v̄ to Eq. (10) is the unique intersection of this line with the graph of the
inverse branch of the function w(v) (whose range is the interval (0,∞)) if B 
= 0 or v̄ = πR

πS

if B = 0 as well. The underlying geometry is illustrated qualitatively in Fig. 1. For the case
(A,B) = (0,0) the equilibrium point is explicitly given by (v̄, w̄) = (

πR

πS
,

ρP

ρS
) and generally

the equilibrium point will be quite close to this value. �

Theorem 1 then follows from the fact that the system (4)–(6) does not have periodic
orbits. This, however, is a more difficult and lengthy technical argument and we only in-
dicate the reasoning. Unfortunately, Bendixson’s criterion does not always work here. The
divergence of the vector field F that defines the ẋ and ẏ dynamics is given by

divF = α1 + α2 + α3 − 3(α1x + α2y + α3z) − (σP + σR + πS + πR + ρS + ρP )

and will always be negative for at least one vertex. But the maximum, also attained
at a vertex, may be positive and thus a different argument is required. It follows from
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Fig. 2 In each figure, the equilibrium point (x∗, y∗, z∗) is marked by a red dot and the blue curves are the
trajectories of the system (4)–(5) starting at the vertices of the unit simplex Σ . Also shown is the line where
the divergence if the vector field vanishes (Color figure online)

index theory that any periodic orbit γ must contain the equilibrium point (x∗, y∗) in
the region encircled by γ . Hence, if there exists a trajectory (x(t;x0, y0), y(t;x0, y0))

that starts at a point (x0, y0) ∈ ∂Σ and in the limit t → ∞ converges to (x∗, y∗), then
no periodic orbits can exist. (The periodic orbit would need to intersect this trajec-
tory contradicting uniqueness of solutions.) This is indeed the case (cf., the figures
above) and can be verified through a more elaborate analysis of the geometric shape
of the curves ẋ = 0 and ẏ = 0. Essentially, either these curves bound at least one
sub-region of Σ with the property that all trajectories flow out of this region while
trajectories cannot enter it or the Poincaré return map to these curves has no fixed
points.

Overall, for any initial condition (x0, y0) ∈ Σ , the corresponding ω-limit set Ω(x0, y0),
the set of all accumulation points of the trajectory as t → ∞, is nonempty and, by Poincaré’s
theorem, since there are no periodic orbits, it must contain at least one equilibrium point. The
fact that there is a unique equilibrium point also precludes the existence of homoclinic orbits
and thus Ω(x0, y0) = {(x∗, y∗)}. Hence every trajectory converges to the unique equilibrium
point.

In Figs. 2 and 3 we show some samples of trajectories of the system (4)–(5) starting at the
vertices of Σ . Note that all trajectories converge to the equilibrium thus precluding periodic
orbits. We also graph the line where divF = 0 in green and it can be seen that it may change
sign on Σ .
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Fig. 3 In each figure, the equilibrium point (x∗, y∗, z∗) is marked by a red dot and the blue curves are the
trajectories of the system (4)–(5) starting at the vertices of the unit simplex Σ . Also shown is the line where
the divergence if the vector field vanishes (Color figure online)

In all four diagrams in Fig. 2 we have chosen the transit rates equal to σP = 4, σR = 2,
πS = 1, πR = 2, ρS = 0.5 and ρP = 0.25. In diagram (a) (top, left), the growth rates
for the respective compartments are α1 = 10, α2 = 5 and α3 = 2 while these rates are
α1 = −3, α2 = −1 and α3 = 2 in diagram (b) (top, right). The numbers are just for il-
lustration, but scenario (a) could be considered an uncontrolled system with the sensitive
cells the most strongly proliferating ones and the resistant population the slowest grow-
ing subpopulation. Diagram (b) then would be typical of a system with constant rate
chemotherapy that kills sensitive and partially sensitive cells, and in effect generates a
negative growth rate for these subpopulations, while it is assumed that the resistant sub-
population R is fully resistant. Note how the equilibrium point shifts towards the ori-
gin which implies a strong dominance of the resistant subpopulation R. The approximate
growth rates α̂1x∗ + α̂2y∗ + α̂3z∗ for the two cases are given by 5.6525 for scenario (a) and
by 1.5320 for scenario (b). Thus, while the chemotherapy is able to reduce the growth,
it cannot eliminate it. The reason is that in case (b) we have z∗ = 0.8765 and coupled
with α̂3 = 2, this positive growth rate cannot be overcome by the decline in the other
populations. It is only when one assumes that the agent can also reduce the growth rate
of the resistant population that one sees lower overall growth rates. But since z∗ → 1 as
the effectiveness of the drug on the sensitive and resistant population becomes very high
(x∗ → 0 and y∗ → 0), it is clear that the net growth rate α̂3 of the resistant subpopula-
tion becomes the determining factor. It is only when this rate becomes so small that it
can be overcome by the decrease in the sensitive and resistant populations that the over-
all growth rate can be made negative. For example, this happens for α1 = −10, α2 = −3
and α3 = 0.5 in which case (x∗, y∗, z∗) = (0.0322,0.0598,0.9080) and the overall growth
rate is −0.0472. The corresponding diagram is shown in scenario (d) (bottom, right). Sce-
nario (c) (bottom, left) still shows an intermediate case for α1 = −5.5, α2 = −3 and α3 = 0.5
when the overall growth rate of the total population is zero, i.e., the status quo is main-
tained.

Figure 3 still shows two cases when the transition rates are much smaller given by
σP = 0.2, σR = 0.01, πS = 0.02, πR = 0.05, ρS = 0.01 and ρP = 0.03. Figure 3(a) on
the left illustrates a typical initial scenario with a large portion of sensitive and partially
sensitive cells that get eliminated with treatment with the balance shifting towards a domi-
nance of resistant cells shown in Fig. 3(b). The overall growth rate in this case again remains
positive.
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3 Chemotherapy as an Optimal Control Problem

In the previous section, we only considered constant administration of chemo-therapy at
low doses, for example like it would be given in a metronomic dosing. Here we now more
generally consider the optimal control problem to minimize the tumor burden over a fixed
therapy interval [0, T ] through administration of chemotherapy. Once the dose rates are no
longer small, it becomes imperative to limit the toxicity of treatment. Under the standard
log-kill hypothesis, the damage done to cells is proportional to the concentration of drugs
given and thus the integral

∫ T

0 u(t)dt , which can be interpreted as the total dose of drugs
given over the interval [0, T ], becomes a measure for the toxic side effects of treatment.
In the approach taken in this paper we include the toxicity of treatment as a soft constraint
and include this integral in the objective as a term to be minimized and then consider the
following optimal control problem:

[OC] For a fixed therapy horizon [0, T ], minimize the objective

J (u) = rN(T ) +
∫ T

0
qN(t) + u(t)dt

= r1S(T ) + r2P (T ) + r3R(T )

+
∫ T

0
q1S(t) + q2P (t) + q3R(t) + u(t)dt → min (11)

over all Lebesgue-measurable functions u : [0, T ] → [0, umax] subject to the dynamics
(1)–(3).

In the objective, we denote the state of the system by N , N = (S,P,R)T , written as a
column vector, and the coefficients r = (r1, r2, r3) and q = (q1, q2, q3) are positive weights
which we write as row vectors. Thus the inner product rN(T ) is a weighted average of all
tumor cells at the end of the therapy horizon and the integral of qN(t), t ∈ [0, T ], takes a
weighted average over the therapy interval. This term is included in order to prevent solu-
tions to rise to unacceptably high levels during the therapy interval. Including the integral
over the concentration,

∫ T

0 u(t)dt , in the minimization forces a compromise between the
objectives of minimizing the tumor burden and limiting toxicity of treatment. Without loss
of generality we normalize this weight to be 1. Generally these parameters (r and q) are
variables of choice and may be calibrated to obtain a desired response of the system.

We write the dynamics (1)–(3) more compactly in matrix form as

Ṅ = (A + uB)N (12)

with the matrices A and B given by

A =
⎛

⎝
α1 − σP − σR πS ρS

σP α2 − πS − πR ρP

σR πR α3 − ρS − ρP

⎞

⎠

and

B =
⎛

⎝
−ϕ1 0 0

0 −ϕ2 0
0 0 −ϕ3

⎞

⎠ .
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3.1 Necessary Conditions for Optimality

First order necessary conditions for optimality for the optimal control problem [OC] are
given by the Pontryagin maximum principle [24] (for some recent references about op-
timal control, see [3, 4, 25]). If u∗ : [0, T ] → [0, umax] is an optimal control with corre-
sponding trajectory N∗, then there exist a constant λ0 ≥ 0 and multipliers λ = (λ1, λ2, λ3) :
[0, T ] → (R3)∗ (written as a row vector), the so-called adjoint variable, such that the fol-
lowing conditions are satisfied:

(a) (nontriviality of the multipliers) (λ0, λ(t)) 
= 0 for all t ∈ [0, T ];
(b) (adjoint equations and transversality conditions) defining the Hamiltonian function H

as

H = H(λ0, λ,N,u) = λ0(qN + u) + λ(A + uB)N, (13)

the multiplier λ satisfies the following linear differential equation:

λ̇ = −∂H

∂N
= −λ0q − λ(A + u∗B), λ(T ) = λ0r, (14)

(c) (minimum condition) for almost every time t ∈ [0, T ] the optimal control u∗(t), mini-
mizes the Hamiltonian H pointwise over the control set [0, umax] along (λ0, λ(t),N∗(t),
u∗(t)), i.e.,

H
(
λ0, λ(t),N∗(t), u∗(t)

) = min
0≤u≤umax

H
(
λ0, λ(t),N∗(t), u

)
, (15)

and this minimum value is constant over the interval [0, T ],
H

(
λ0, λ(t),N∗(t), u∗(t)

) = const. (16)

A controlled trajectory (N,u) for which there exist multipliers λ0 and λ such that these
conditions are satisfied is called an extremal and the triple (N,u, (λ0, λ)) is an extremal lift.
If the multiplier λ0 vanishes, the extremal is called abnormal while it is called normal if λ0

is positive. In the latter case, by dividing the other multipliers by λ0, it is always possible to
normalize λ0 = 1. It is easy to see that all extremals for problem [OC] are normal: If λ0 = 0,
then λ(t) satisfies a homogeneous time-varying linear differential equation which vanishes
at the terminal condition. Hence it vanishes identically contradicting the nontriviality of the
multipliers. We henceforth normalize the multiplier λ0 to be λ0 = 1 and drop it from our
notation.

Lemma 4 The multipliers λi , i = 1,2,3 are positive over the interval [0, T ].

Proof In coordinates, the multipliers λi satisfy the equations

λ̇1 = −∂H

∂S
= −q1 − λ1(α1 − σP − σR − ϕ1u) − λ2σP − λ3σR, λ1(T ) = r1,

λ̇2 = −∂H

∂P
= −q2 − λ1πS − λ2(α2 − πS − πR − ϕ2u) − λ3πR, λ2(T ) = r2,

λ̇3 = −∂H

∂R
= −q3 − λ1ρS − λ2ρP − λ3(α3 − ρS − ρP − ϕ3u), λ3(T ) = r3.



202 U. Ledzewicz et al.

At the terminal time T all values are positive. Suppose there exists a time when at least one
of the multipliers is negative and let

τ = max
{
t ≤ T : λ1(t)λ2(t)λ3(t) = 0

}
< T.

This simply is the “first” time (counting backward) when one of the multipliers becomes
zero. If j denotes an index such that λj (τ ) = 0, it then follows from the differential equations
that λ̇j (τ ) ≤ −qj < 0. But then λj (t) must be negative for t > τ close to τ . Contradiction.
Hence all multipliers remain positive. �

The minimum of the Hamiltonian H over the control set [0, umax] is attained at one of
the boundary points u = 0 or u = umax whenever the function

Φ(t) = 1 + λ(t)BN∗(t), (17)

the so-called switching function, does not vanish and optimal controls satisfy

u∗(t) =
{

0 if Φ(t) > 0,

umax if Φ(t) < 0.
(18)

But optimal controls can also take values in the interior of the control set if the switch-
ing function vanishes identically over some open interval. Such controls are called singular
while controls that take values in the extreme points of the interval are called bang–bang
controls. Note that whenever Φ(τ) = 0 and Φ̇(τ ) 
= 0, then the optimal control switches
between umax and 0 depending on the sign of Φ̇(τ ). Hence the name bang–bang controls.
If the control is singular over an open interval I , then (modulo some degenerate nongeneric
situations) the control u explicitly occurs for the first time only in an even numbered deriva-
tive of the switching function. If this is the 2k-th derivative, then it is a necessary condition
for optimality, the so-called generalized Legendre–Clebsch condition [3, 25], that

(−1)k ∂

∂u

d2k

dt2k

∂H

∂u

(
λ(t),N∗(t), u∗(t)

) = (−1)k ∂

∂u
Φ(2k)(t) ≥ 0. (19)

If strict inequality holds in this equation, we say the singular control is of intrinsic order k

and the strengthened Legendre–Clebsch condition is satisfied. This often is an indication
of local optimality properties of the singular control. Typically, optimal controls consist
of concatenations of bang and singular structures that need to be determined through an
analysis of the properties of the switching functions.

3.2 Singular Controls

If an optimal control is singular over an open interval I , then λ(t)BN∗(t) ≡ −1 on I . The
following simple formula, which follows from a direct calculation, allows us to organize the
derivatives of the switching function in a structured manner.

Proposition 1 Suppose M is a constant matrix and let Ψ (t) = λ(t)MN(t) where N is a
solution to the dynamics (12) for the control u and λ is a solution of the corresponding
adjoint equation (14). Then

Ψ̇ (t) = λ(t)[A + uB,M]N(t) − qMN(t), (20)

with [X,Y ] = YX − XY denoting the commutator of the matrices X and Y .
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We have chosen the sign of the commutators of the matrices to be consistent with the
definition of the Lie bracket [X,Y ] of the linear vector fields X(N) = XN and Y (N) = YN .

If the switching function Φ vanishes identically over an interval I , we thus have that

Φ̇(t) = λ(t)
[
A + u∗(t)B,B

]
N∗(t) − qBN∗(t)

= {
λ(t)[A,B] − qB

}
N∗(t) = 0, (21)

Φ̈(t) = λ(t)
[
A + u∗(t)B, [A,B]]N∗(t) − q[A,B]N∗(t) − qB

(
A + u∗(t)B

)
N∗(t)

= {(
λ(t)

[
A, [A,B]] − q[A,B] − qBA

)

+ u∗(t)
(
λ(t)

[
B, [A,B]] − qB2

)}
N∗(t) = 0, (22)

with the iterated brackets denoting successive Lie brackets (or commutators) of the matrices
A and B . For the model under consideration we have that

BA = −
⎛

⎝
ϕ1νS ϕ1πS ϕ1ρS

ϕ2σP ϕ2νP ϕ2ρP

ϕ3σR ϕ3πR ϕ3νR

⎞

⎠ , B2 =
⎛

⎝
ϕ2

1 0 0
0 ϕ2

2 0
0 0 ϕ2

3

⎞

⎠ , (23)

[A,B] =
⎛

⎝
0 (ϕ2 − ϕ1)πS (ϕ3 − ϕ1)ρS

(ϕ1 − ϕ2)σP 0 (ϕ3 − ϕ2)ρP

(ϕ1 − ϕ3)σR (ϕ2 − ϕ3)πR 0

⎞

⎠ , (24)

[
B, [A,B]] = −

⎛

⎝
0 (ϕ2 − ϕ1)

2πS (ϕ3 − ϕ1)
2ρS

(ϕ1 − ϕ2)
2σP 0 (ϕ3 − ϕ2)

2ρP

(ϕ1 − ϕ3)
2σR (ϕ2 − ϕ3)

2πR 0

⎞

⎠ , (25)

and [A, [A,B]] is a 3 × 3-matrix with full and lengthy entries. The diagonal terms of [A,B]
and [B, [A,B]] vanish since B is a diagonal matrix which commutes with the diagonal part
of whatever matrix the bracket is taken with. The coefficient multiplying the control u in the
second derivative of the switching function is given by

∂

∂u

d2

dt2

∂H

∂u

(
λ(t),N∗(t), u∗(t)

) = {
λ(t)

[
B, [A,B]] − qB2

}
N∗(t).

The matrix [B, [A,B]] has all nonpositive entries and it follows from Lemmas 1 and 4 that
all entries of the state N∗ and the multiplier λ are positive. Hence

λ(t)
[
B, [A,B]]N∗(t) ≤ 0.

Furthermore,

qB2N∗(t) = q1ϕ
2
1S∗(t) + q2ϕ

2
2P∗(t) + q3ϕ

2
3R∗(t) > 0

so that

− ∂

∂u

d2

dt2

∂H

∂u

(
λ(t),N∗(t), u∗(t)

)
> 0.

Thus we have the following result:

Proposition 2 Singular controls are of order 1 and the strengthened Legendre–Clebsch
condition for minimality is satisfied.
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Solving Eq. (22) for the control gives the following formula for the singular control

using(t) = {λ(t)[A, [A,B]] − q[A,B] − qBA}N∗(t)
{−λ(t)[B, [A,B]] + qB2}N∗(t)

. (26)

Note that, dividing both numerator and denominator by C(t), the singular control formally
depends only on the proportions x, y and z, not on the actual states S, P and R. However,
dependence on the states comes in indirectly through the multipliers. In order to be admis-
sible, the values need to lie in the control set [0, umax]. It follows from the strengthened
Legendre–Clebsch condition that the denominator is positive. In the numerator, all terms in
the vector −qBA are positive. There exist coefficients in the matrices [A, [A,B]] and the
vector −q[A,B] that are negative, but just a few. Thus generally, and this is what we have
seen consistently in numerical computations, the values of the expression (26) are positive
and thus admissible for suitable upper bounds umax.

Analyzing optimal concatenations between bang and singular controls is difficult and
this analysis has not yet been carried out. However, it is not difficult to give some numerical
samples of singular controls and corresponding trajectories. Along a singular arc, the multi-
plier λ satisfies Φ(t) = 1 + λ(t)BN∗(t) ≡ 0 and Φ̇(t) = {λ(t)[A,B] − qB}N∗(t) ≡ 0. It is
determined by these conditions up to one degree of freedom. In principle, singular controls
are possible everywhere in the state space and we give an example of an extremal controlled
trajectory for which the control is given by the maximum dose rate for an initial interval
[0, τb] and then is singular over the remaining period [τb, T ]. Ignoring the terminal value,
we simply determine a value for λ(τb) so that Φ(τb) = Φ̇(τb) = 0 and then integrate the
combined flow of the system dynamics and adjoint equation corresponding to the singular
control forward in time until time T . As long as the multipliers λi(t), i = 1,2,3 remain
positive for t ∈ [0, T ], we end up with singular extremals for the optimal control problem
[OC] with penalty terms ri = λi(T ). More generally, if these values are specified a priori,
the corresponding two-point boundary value problem needs to be solved. Here we only seek
to give an illustration of the singular control and its flow and thus follow the simpler initial
value problem approach.

Figure 4 shows an example of such a structure for the growth rates α1 = 1, α2 = 0.5
and α3 = 0.1, transition rates σP = 0.05, σR = 0.01, πS = 0.03, πR = 0.01, ρS = 0.01 and
ρP = 0.03, and pharmacodynamic coefficients ϕ1 = 1.5, ϕ2 = 1 and ϕ3 = 0.1; the maximum
dose rate was normalized to umax = 1 and all the weights qi in the objective were chosen
equal to 0.01. The initial interval with maximum dose has length τb = 5 and the therapy
horizon is T = 28. We have normalized the total cancer volume at the initial time to be
C(0) = 1 and then have taken as initial condition the corresponding steady-state of the pro-
portions, i.e., S0 = x∗ = 0.8954, P0 = y∗ = 0.0933 and R0 = z∗ = 0.0112. Figure 4(a) (top)
shows the graph of the corresponding control and Fig. 4(b) (middle) shows the graphs of the
corresponding states. The value of the singular control using(t) increases slightly over the
interval [5,28]. The multipliers over the singular interval are shown in part (c) (bottom) and
remain positive. It then follows from Lemma 4 that they are positive on the initial interval
as well.

4 Conclusion

We considered a compartmental model for chemotherapy of heterogeneous tumor popula-
tions distinguishing three levels of sensitivity with interchanges between the compartments
(developing drug resistance and resensitization) possible. For the problem of minimizing an
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Fig. 4 Control, states and
multipliers for a bang-singular
controlled extremal
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average of the total tumor burden over the therapy horizon we have shown that singular con-
trols, which correspond to continuous time chemotherapy at lower than maximum doses, are
a viable option in the sense that the strengthened Legendre–Clebsch condition for optimality
is always satisfied. With the emergence of various chemotherapeutic sensitivities, the stan-
dard maximum tolerated dose (MTD) approach to chemotherapy may thus not necessarily
be the best possible option to pursue. While this seems to be clear, and has been confirmed
earlier in mathematical models if a sizable resistant subpopulation exists, our results seem to
point to this feature simply because of the varying sensitivities of the subpopulations which,
in fact, all could still be chemotherapeutically sensitive.
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