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Abstract We summarize the recent results and current open problems in extended thermo-
dynamics (ET) of both dense and rarefied polyatomic gases. (i) We review, in particular,
extended thermodynamics with 14 independent fields (ET14), that is, the mass density, the
velocity, the temperature, the shear stress, the dynamic pressure, and the heat flux. (ii) We
explain that, in the case of rarefied polyatomic gases, molecular extended thermodynamics
with 14 independent fields (MET14) basing on the kinetic moment theory with the maxi-
mum entropy principle can be developed. ET14 and MET14 are fully consistent with each
other. (iii) We show that the ET13 theory of rarefied monatomic gases is derived from the
ET14 theory as a singular limit. (iv) We discuss briefly some typical applications of the ET14
theory. (v) We study the simple case of ET theory with 6 independent fields (ET6). (vi) The
METn theories (n > 14) are presented briefly. We analyze, in particular, the dependence of
the characteristic velocities for increasing number of moments.

Keywords Extended thermodynamics · Dense gas · Polyatomic gas · Kinetic theory ·
Singular limit · Symmetric hyperbolic systems · Characteristic velocity

1 Introduction

Non-equilibrium thermodynamics affords us the general theory for understanding nonequi-
librium phenomena observed ubiquitously in macroscopic physical systems. The theory
called thermodynamics of irreversible processes (TIP), in particular, is well known owing to
its systematic and comprehensive theoretical structure [1]. It is based on the local equilib-
rium assumption. The Navier-Stokes Fourier (NSF) theory for fluids [1, 2] is a typical theory
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of TIP. Its practical usefulness has been demonstrated repeatedly in various situations. From
a theoretical point of view, however, it has a serious problem, that is, the problem of infinite
speed of disturbances, which is sometimes called symbolically the paradox of heat conduc-
tion, due to the parabolic character of its basic equations with spatially non-local constitutive
equations [3].

To avoid the paradox, extended thermodynamics (ET) [4] basing on a hyperbolic sys-
tem of field equations was proposed. ET is applicable to highly nonequilibrium phenomena
with steep gradients in space and rapid changes in time being out of local equilibrium by
adopting dissipative fluxes as independent fields and the spatio-temporally local constitu-
tive equations. Such constitutive equations are severely restricted by imposing the universal
physical principles; Entropy principle, Causality, and Objectivity, details of which will be
shown in the next section.

In the early stage of ET, a theory for rarefied monatomic gases was developed in classical
and quantal frameworks [5] and in relativistic framework [6]. For example, the ET13 the-
ory of rarefied monatomic gases in non-relativistic context is a theory with 13 independent
fields; the mass density, the momentum density, the momentum flux, and the energy flux
[4, 5]. By the use of the proper constitutive equations compatible with the universal physical
principles, a closed system of field equations is obtained. The constitutive equations can be
explicitly determined by the equilibrium caloric and thermal equations of state. The NSF
theory comes out as a limiting case of ET [4] through carrying out the Maxwellian itera-
tion [7]. The closed system of field equations is perfectly consistent with the counterpart
system of the moments in the kinetic theory [8].

For more details, consult the reference by Müller and Ruggeri [4]. And an interesting
review of irreversible thermodynamics, elucidating different pathways to macroscopic equa-
tions, has recently been published by Müller and Weiss [9].

In the next stage, there appeared many studies of ET for rarefied polyatomic gases
[10–12] and also for dense gases [13–18] postulating a hierarchy structure—similar to the
structure of monatomic gases but with 14 densities, in which a fourth-rank tensorial density
appeared. However, in this hierarchy of governing equations, the flux in one equation did
not appear as a density in the next equation and, as a consequence of this generalization, the
constitutive equations could not be fully determined from the knowledge of the equilibrium
properties of gases. Moreover, when the Maxwellian iteration procedure is applied (i.e. in
the limit case in which the relaxation times are assumed to be negligible [7]), we naturally
expect to obtain the Navier-Stokes Fourier constitutive equations. However, as the fourth-
rank tensorial density has no straightforward counterpart in the Navier-Stokes Fourier limit,
the density and also the theory using it seem to be not well justified.

Recently an ET theory of dense gases that successfully overcomes the difficulty men-
tioned above has been developed [19]. Rarefied gases are regarded as a special case of dense
gases. This is an extended thermodynamic theory with 14 independent fields (ET14), that is,
the mass density, the velocity, the temperature, the shear stress, the dynamic pressure, and
the heat flux.

Furthermore, in the case of rarefied polyatomic gases, molecular extended thermody-
namics with 14 independent fields (MET14) basing on the kinetic moment theory with the
maximum entropy principle has been developed [20]. ET14 and MET14 are proved to be
fully consistent with each other.

The purpose of the present paper is to show the present status of art in extended thermo-
dynamics of dense and rarefied polyatomic gases by reviewing the recent results obtained.
Open problems remained are also pointed out.

For convenience we summarize some notations used throughout the paper:
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(a) A dot on a generic quantity ψ represents the material time derivative:

ψ̇ ≡ ∂ψ

∂t
+ vi

∂ψ

∂xi

,

where t is the time, xi is the position, and vi is the velocity. Summation on repeated
indices is assumed everywhere.

(b) Parentheses around a set of N indices represent the symmetrization, that is, the sum
over all N ! permutations of the indices divided by N !. For example,

a(ibj) = 1

2! (aibj + ajbi).

(c) Angular brackets denote the symmetric traceless part (i.e., deviatoric part). For example,

a〈ij 〉 = a(ij) − 1

3
akkδij ,

where akk is the trace of aij .

2 Extended Thermodynamics with 14 Independent Fields

We present now the macroscopic approach of ET14 theory of dense gases [19].

2.1 Independent Fields and Balance Equations

The ET14 theory of dense gases adopts the following 14 independent fields:

mass density: F (= ρ),

momentum density: Fi (= ρvi),

energy density: Gii,

momentum flux: Fij ,

energy flux: Gppi.

(1)

Time evolution of the fields is governed by the balance equations:

∂F

∂t
+ ∂Fk

∂xk

= 0,

∂Fi

∂t
+ ∂Fik

∂xk

= 0,

∂Fij

∂t
+ ∂Fijk

∂xk

= Pij ,
∂Gii

∂t
+ ∂Giik

∂xk

= 0,

∂Gppi

∂t
+ ∂Gppik

∂xk

= Qppi,

(2)

where Fijk and Gppik are the fluxes of Fij and Gppi , respectively, and Pij and Qppi are
the productions with respect to Fij and Gppi , respectively. The balance equations of F,Fi

and Gii are, respectively, the conservation laws of mass, momentum and energy, therefore



530 T. Ruggeri, M. Sugiyama

their productions vanish. There are two parallel series in the balance equations; the one
starts from the balance equation with the mass density (F -hierarchy) and the other from
the balance equation with the energy density (G-hierarchy). In each series, the flux in one
equation becomes the density in the next equation. In the case of rarefied polyatomic gases,
this structure of the balance equations emerges naturally for the moments defined in the
kinetic theory [20–22].

We need the constitutive equations in order to obtain the closed system of field equations.
We assume that the constitutive quantities at one point and time depend on the independent
fields at that point and time. The restrictions imposed upon the constitutive equations come
from the universal physical principles [4]:

– Entropy principle: All solutions of the system of field equations must satisfy the entropy
balance with a non-negative entropy production Σ :

∂h

∂t
+ ∂hi

∂xi

= Σ � 0, (3)

where h is the entropy density and hi is the entropy flux, both of which are constitutive
quantities.

– Causality: This requires the concavity of the entropy density and guarantees the hyper-
bolicity of the system of field equations.1 This also ensures the well-posedness (local in
time) of a Cauchy problem and the finiteness of the propagation speeds of disturbances.

– Objectivity: The proper constitutive equations are independent of an observer. The mate-
rial frame indifference principle together with the requirement of the Galilean invariance
of balance laws constitute the objectivity principle (the principle of relativity).

Let us make clear the velocity dependence of the fields by the Galilean invariance. We
firstly decompose the fluxes into the convective and non-convective parts such that

Fi1···ink = Fi1···invk + Hi1···ink,

Gi1···ink = Gi1···invk + Ji1···ink,

hi = hvi + ϕi.

In particular, the quantities Fijk and Gppik are decomposed such that Fijk = Fij vk +Hijk and
Gppik = Gppivk + Jppik . Then we have the following assertion: As the entropy inequality
(3) should be invariant under the Galilean transformation [23], h and ϕi do not depend on
the velocity. Similarly, because of the Galilean invariance of the balance equations (2), the
velocity dependence of the quantities is expressed as

Gii = ρvivi + mii,

Fij = ρvivj + Mij ,

Gppi = ρvpvpvi + mppvi + 2Mpivp + mppi,

Hijk = 2v(iMj)k + Mijk,

Jppik = 3v(pvpMi)k + 2vpMpik + vimppk + mppik,

Qppi = Qi + 2vpPpi,

(4)

1The entropy density used in the mathematical community has usually opposite sign to the present one. As a
consequence, they speak about convexity instead of concavity.
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where mii , Mij , mppi , Mijk and mppik do not depend on the velocity, and the productions
Pij and Qi are also independent of the velocity.

From the conservation laws in (2), we can relate Mij ,mii and mppi to the following
conventional quantities:

stress: tij = −Mij = −(p + Π)δij + S〈ij 〉, (5)

specific internal energy : ε = 1

2ρ
mii, (6)

heat flux: qi = 1

2
mppi, (7)

where p is the pressure, Sij = −Πδij + S〈ij 〉 is the viscous stress, and Π = −Sii/3 is the
dynamic pressure.

2.2 Constitutive Equations

Through the well-established closure procedures in ET [4], the linear constitutive equations
with respect to non-equilibrium variables are given by [19]

Miik = 3Lqk,

M〈ij 〉k = Kq〈iδj 〉k,

mppik =
{
β1 +

[
h4

2h2

(
L − 1

ρ

(
∂p

∂T

)
ρ

(
∂ε

∂T

)−1

ρ

)
+ 2

(
ε + p

ρ

)]
Π

}
δik

−
(

h4

2h3
K + 2

(
ε + p

ρ

))
S〈ik〉,

(8)

where T is the temperature.2 The coefficients h2, h3, h4, L and K are the functions of ρ and
T given by

h2 = −5

6
Tp + ρT

2

(
∂p

∂ρ

)
T

+ T 2

2ρ

(
∂p

∂T

)2

ρ

(
∂ε

∂T

)−1

ρ

,

h3 = −Tp, h4 = 2T 2

(
ε + p

ρ

)(
∂p

∂T

)
ρ

− T 2

(
∂β1

∂T

)
ρ

,

L = 1

h4

[
β2 − 4h2

(
ε + p

ρ

)]
, K = 1

h4

[
β3 − 4h3

(
ε + p

ρ

)]
.

(9)

And the quantities β1, β2 and β3 satisfy the following relations:
(

∂β1

∂ρ

)
T

= 2

(
ε + p

ρ

)(
∂p

∂ρ

)
T

,

(
∂β2

∂ρ

)
T

= 5

6

(
∂β3

∂ρ

)
T

+ ∂

∂ρ

(
4

(
ε + p

ρ

)(
h2 − 5

6
h3

))
,

(
∂β3

∂ρ

)
T

= −4T

(
ε + 2

p

ρ

)(
∂p

∂ρ

)
T

,

2For the definition of the temperature T in nonequilibrium, see the reference [19].
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(
∂β2

∂T

)
ρ

= 2

3T
β2 + 10

9T
β3 + 5

3T
h4 − ρ

T

(
∂h4

∂ρ

)
T

(10)

− h2

[
8

3T

(
ε + p

ρ

)
− 4

ρ

(
∂p

∂T

)
ρ

]

+ 4

(
ε + p

ρ

)(
10

9
p +

(
∂h2

∂T

)
ρ

)
,

(
∂β3

∂T

)
ρ

= 2

T
β2 + 1

3T
β3 + 2

T
h4 − 8

(
ε + p

ρ

)(
p

3
+ h2

T

)
− 4T

(
ε + 2

p

ρ

)(
∂p

∂T

)
ρ

.

Then β1, β2 and β3 are determined explicitly by the integration of Eq. (10), where we assume
that the integration constants vanish. This assumption is consistent with the result from
the kinetic theory. We have the relation L = 5

6 K . By using the equilibrium thermal and
caloric equations of state (p = p̂(ρ,T ) and ε = ε̂(ρ, T )), we can derive uniquely the explicit
expressions of these coefficients.

The linear constitutive equations of the productions may be expressed as

P〈ij 〉 = − σ

2h3
S〈ij 〉, Pii = 3ζ

2h2
Π, Qi = τ

h4
qi, (11)

where σ , ζ and τ are positive functions of ρ and T .

2.3 Concavity of the Entropy Density and Causality

With the linear constitutive equations (8), the entropy density and the entropy flux are ex-
pressed as

h = hE + 1

4h2
Π2 + 1

4h3
S〈ij 〉S〈ij 〉 + 1

h4
qiqi, (12)

ϕk = 1

T
qk + 1

2h2

(
L − 1

ρ

(
∂p

∂T

)
ρ

(
∂ε

∂T

)−1

ρ

)
Πqk − K

2h3
qiS〈ik〉, (13)

where hE is the entropy density at a reference equilibrium state. The system (2) must be
symmetric hyperbolic so as to ensure the causality. This requirement corresponds to the
condition of the concavity of the entropy density [4, 24]. As the second differential of the
entropy density h near equilibrium is given by

d2h = d2hE + 1

4h2
(dΠ)2 + 1

4h3
dS〈ij 〉dS〈ij 〉 + 1

h4
dqidqi, (14)

the concavity condition is expressed by the following set of inequalities:

p > 0,

(
∂ε

∂T

)
ρ

> 0,

(
∂p

∂ρ

)
T

> 0, h2 < 0, h4 < 0. (15)

2.4 Closed System of Field Equations

By substituting the constitutive equations (8) into (2) with (4), the closed system of field
equations in terms of the material time derivative is given by [19]
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ρ̇ + ρ
∂vk

∂xk

= 0,

ρv̇i + ∂p

∂xi

+ ∂Π

∂xi

− ∂S〈ij 〉
∂xj

= 0,

ρ

(
∂ε

∂T

)
ρ

Ṫ +
[
p + Π − ρ2

(
∂ε

∂ρ

)
T

]
∂vk

∂xk

− ∂vi

∂xk

S〈ik〉 + ∂qk

∂xk

= 0,

Ṡ〈ij 〉 − 2p
∂v〈i
∂xj 〉

+ S〈ij 〉
∂vk

∂xk

− 2Π
∂v〈i
∂xj 〉

+ 2
∂v〈i
∂xk

S〈j 〉k〉

+ CS1
∂ρ

∂xk

q〈iδj 〉k + CS2
∂T

∂xk

q〈iδj 〉k + CS3
∂q〈i
∂xj 〉

= − 1

τS

S〈ij 〉,

Π̇ + (CΠ1 + CΠ2Π)
∂vk

∂xk

+ CΠ3
∂v〈i
∂xk〉

S〈ik〉 + CΠ4qk

∂ρ

∂xk

+ CΠ5qk

∂T

∂xk

+ CΠ6
∂qk

∂xk

= − 1

τΠ

Π,

q̇i + Cq1qi

∂vk

∂xk

+ Cq2qk

∂vk

∂xi

+ Cq3qk

∂vi

∂xk

+ Cq4
∂T

∂xi

+ Cq5
∂Π

∂xi

+ Cq6
∂S〈ik〉
∂xk

+ Π

[
Cq7

∂ρ

∂xi

+ Cq8
∂T

∂xi

− 1

ρ

∂Π

∂xi

+ 1

ρ

∂S〈ik〉
∂xk

]

− S〈ik〉
[
Cq9

∂ρ

∂xk

+ Cq10
∂T

∂xk

− 1

ρ

∂Π

∂xk

+ 1

ρ

∂S〈jk〉
∂xj

]
= − 1

τq

qi,

(16)

where the coefficients CSa (a = 1,2,3), CΠb (b = 1, . . . ,6) and Cqc (c = 1, . . . ,10), and
the relaxation times τS, τΠ, τq are the functions of ρ and T . By using the quantities h2, h3,
h4, L and K , these are expressed as

CS1 = −
(

∂K

∂ρ

)
T

, CS2 = −
(

∂K

∂T

)
ρ

, CS3 = −K,

CΠ1 = −2h2

T
, CΠ2 = 5

3
− 1

ρ

(
∂p

∂T

)
ρ

(
∂ε

∂T

)−1

ρ

,

CΠ3 = −2

3
+ 1

ρ

(
∂p

∂T

)
ρ

(
∂ε

∂T

)−1

ρ

,

CΠ4 = 5

6

(
∂K

∂ρ

)
T

, CΠ5 = 5

6

(
∂K

∂T

)
ρ

, CΠ6 = 5

6
K − 1

ρ

(
∂p

∂T

)
ρ

(
∂ε

∂T

)−1

ρ

,

Cq1 = 1 + K

2
, Cq2 = K

2
, Cq3 = 1 + K

2
, Cq4 = − h4

2T 2
,

Cq5 = h4

4h2

(
5

6
K − 1

ρ

(
∂p

∂T

)
ρ

(
∂ε

∂T

)−1

ρ

)
, Cq6 = − h4

4h3
K,

Cq7 =
(

∂ε

∂ρ

)
T

− p

ρ2
+

(
∂Cq5

∂ρ

)
T

, Cq8 =
(

∂ε

∂T

)
ρ

+
(

∂Cq5

∂T

)
ρ

,

Cq9 =
(

∂ε

∂ρ

)
T

− p

ρ2
−

(
∂Cq6

∂ρ

)
T

, Cq10 =
(

∂ε

∂T

)
ρ

−
(

∂Cq6

∂T

)
ρ

.

(17)
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And, for the relaxation times, we have

τS = −2h3

σ
, τΠ = −2h2

ζ
, τq = −2h4

τ
.

By carrying out the Maxwellian iteration [4, 7], these are related to the shear viscosity μ,
the bulk viscosity ν, and the heat conductivity κ as follows:

μ = pτS, ν = −2h2

T
τΠ, κ = − h4

2T 2
τq . (18)

2.5 Classification of the ET Theory

As shown above, the thermal and caloric equations of state play an important role in the ET
theory. In general, the equations of state are expressed as

p = pideal(ρ, T ) + pφ(ρ,T ), ε = εideal(T ) + εφ(ρ,T ), (19)

where pideal and εideal are, respectively, the pressure and the specific internal energy in a rar-
efied gas limit. In a dense gas, the interaction between the molecules also contributes to both
the pressure and the specific internal energy, which are denoted by pφ and εφ . Furthermore,
εideal can be divided into two parts:

εideal = εtrans(T ) + εint(T ),

where εtrans and εint are the specific internal energies due to, respectively, the molecular
translational modes and the internal modes of a molecule such as rotational and vibrational
modes. Between p and ε, there is the Gibbs relation:(

∂ε

∂ρ

)
T

= 1

ρ2

(
p − T

(
∂p

∂T

)
ρ

)
. (20)

We have the following four disjoint cases (i)–(iv) [25]:

Case (i) Rarefied monatomic gases (pφ = 0, εint = 0, εφ = 0),
Case (ii) Rarefied polyatomic gases (pφ = 0, εint �= 0, εφ = 0),
Case (iii) Dense monatomic gases (pφ �= 0, εint = 0, εφ �= 0),
Case (iv) Dense polyatomic gases (pφ �= 0, εint �= 0, εφ �= 0).

Any gas belongs to one of the cases.
An advantage of this classification is that the effect of the internal modes of a molecule

on nonequilibrium phenomena in a gas can be analyzed clearly by comparing the results of
cases (i) and (ii) (or of cases (iii) and (iv)). In a similar way, the effect of the inter-molecular
potential, for example, can be analyzed by comparing the results of cases (i) and (iii) (or of
cases (ii) and (iv)). Case (i) has already been extensively studied [4], while cases (ii)–(iv)
are expected to be explored by the present ET theory of dense gases. There are many open
problems in these cases.

3 Rarefied Polyatomic Gases

The ET14 theory of dense gases is applicable to, as a particular case, rarefied polyatomic
gases with the thermal and caloric equations of state:

p = kB

m
ρT and ε = D

2

kB

m
T (D = 3 + f ) (21)
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where kB and m are the Boltzmann constant and the mass of a molecule, respectively. Here
D is related to the degrees of freedom of a molecule given by the sum of the space dimension
3 for the translational motion and the contribution from the internal degrees of freedom
f (≥ 0). For monatomic gases, D = 3.

The closed system of balance equations for rarefied polyatomic gases with the equations
of state (21) is explicitly expressed as follows, where, for simplicity, D is assumed to be
constant:

ρ̇ + ρ
∂vk

∂xk

= 0,

ρv̇i + ∂p

∂xi

+ ∂Π

∂xi

− ∂S〈ij 〉
∂xj

= 0,

D

2

kB

m
ρṪ + ∂qk

∂xk

+ (
(p + Π)δik − S〈ik〉

) ∂vi

∂xk

= 0,

Ṡ〈ij 〉 − 2p
∂v〈i
∂xj 〉

+ S〈ij 〉
∂vk

∂xk

− 2Π
∂v〈i
∂xj 〉

+ 2
∂v〈i
∂xk

S〈j 〉k〉 − 4

D + 2

∂q〈i
∂xj 〉

= − 1

τS

S〈ij 〉,

Π̇ + 2(D − 3)

3D
p

∂vk

∂xk

+ 5D − 6

3D
Π

∂vk

∂xk

− 2(D − 3)

3D

∂v〈i
∂xk〉

S〈ik〉 + 4(D − 3)

3D(D + 2)

∂qk

∂xk

= − 1

τΠ

Π,

q̇i + D + 4

D + 2
qi

∂vk

∂xk

+ 2

D + 2
qk

∂vk

∂xi

+ D + 4

D + 2
qk

∂vi

∂xk

− kB

m

T

ρ
(Πδki − S〈ki〉)

∂ρ

∂xk

+ D + 2

2

kB

m

(
(p + Π)δki − S〈ki〉

) ∂T

∂xk

+ 1

ρ

(
(p − Π)δki + S〈ki〉

)(∂Π

∂xk

− ∂S〈kl〉
∂xl

)
= − 1

τq

qi .

(22)

4 Molecular Extended Thermodynamics for Rarefied Polyatomic Gases

In the case of monatomic rarefied gases with 13 moments, the most important result is the
proof of the assertion that the same closure is obtained by using three different methods:
the Grad procedure, the extended thermodynamics based on the entropy principle, and the
closure obtained by the so-called Maximum Entropy Principle (MEP) that consists of the
determination of an approximated distribution function with the maximum entropy density
under the constraints of some prescribed moments.

Motivated by the similarity between ET and the moment equations derived from the
Boltzmann equation on one hand, and by Kogan’s observation that Grad’s distribution func-
tion maximizes the entropy [26] on the other, a maximum entropy principle was established
first by Dreyer [27]. In the first edition of the book of ET by Müller and Ruggeri [28],
this procedure was extended for any number of moments. Successively, a similar result was
given by Levermore [29]. The complete equivalence between the entropy principle and MEP
was proved subsequently by Boillat and Ruggeri [30].



536 T. Ruggeri, M. Sugiyama

The closure can be done also for a state far from equilibrium but, in general, some math-
ematical problems arise, that is, the problems concerning the convergence of the integrals
and the difficulty to give inversion between the Lagrange multipliers and the fields of the
density [30]. Therefore usually the closure is given in the neighborhood of an equilibrium
state. For the expansion up to higher order terms with respect to an equilibrium state, consult
the paper by Brini and Ruggeri [31].

As far as the kinetic counterpart of polyatomic gases is concerned, a crucial step to-
wards the development of a theory of rarefied polyatomic gases was made in the work by
Borgnakke and Larsen [32] in which the distribution function is assumed to depend on an
additional continuous variable I representing the internal energy of a molecule, thus allow-
ing to take into account the exchange of energy (other than translational) in binary collisions.
This model was initially used for Monte Carlo simulations of polyatomic gases, and later it
has been applied to the derivation of appropriate Boltzmann equation by Bourgat, Desvil-
lettes, Le Tallec and Perthame [33].

Recently Pavić, Ruggeri and Simić have proven [20], using the MEP, that the kinetic
model for rarefied polyatomic gases presented in [32] and [33] yields appropriate macro-
scopic balance laws in agreement with the ET14 theory, and presents a natural generaliza-
tion to polyatomic gases of the classical procedure of MEP for monatomic ones. In fact, the
two hierarchies of moment equations obtained with the distribution function presented in
[20] are consistent with the hierarchies presented in [19]. In particular, it has been shown
that the momentum-like hierarchy (or F -hierarchy) is related to the classical moments of the
distribution function, and the energy-like hierarchy (G-hierarchy) is related to the moments
with an additional continuous variable representing the internal energy of a molecule.

As a consequence of the introduction of one additional parameter, velocity distribution
function f (t,x, ξ , I ) is defined on the extended domain [0,∞)×R

3 ×R
3 ×[0,∞). Its rate

of change is determined by the Boltzmann equation which has the same form as the one of
monatomic gases:

∂f

∂t
+ ξi

∂f

∂xi

= Q,

but the collision integral Q(f ) takes into account the influence of internal degrees of free-
dom through the collisional cross section. Collision invariants for this model form a 5-
vector:

ψ(ξ , I ) = m

(
1, ξi, |ξ |2 + 2

I

m

)T

, (23)

which leads to hydrodynamic variables in the form:

⎛
⎝ ρ

ρvi

ρv2 + 2ρε

⎞
⎠ =

∫
R3

∫ ∞

0
ψ(ξ , I )f (t,x, ξ , I )ϕ(I ) dI dξ . (24)

The structure of the weighting function ϕ(I) is determined such that it is possible to recover
the caloric equation of state for polyatomic gases. It can be shown that ϕ(I) = Iα leads to
an appropriate caloric equation in equilibrium (21) provided that

α = D − 5

2
. (25)
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The entropy is defined by the following relation:

h = −k

∫
R3

∫ ∞

0
f logf ϕ(I) dI dξ . (26)

Pavić, Ruggeri and Simić [20] firstly considered the Euler fluid with 5 moments and they
considered the maximum entropy principle expressed in terms of the following variational
problem: determine the velocity distribution function f (t,x, ξ, I ) such that h → max, being
subjected to the constraints (24). In this way they were able to determine the following
equilibrium distribution function which maximizes the entropy (26) with the constraints
(24):

fE = ρ

mq(T )

(
m

2πkT

)3/2

exp

{
− 1

kT

(
1

2
m|C|2 + I

)}
, (27)

where C = ξ − v is the peculiar velocity and

q(T ) =
∫ ∞

0
exp

(
− I

kT

)
ϕ(I) dI, (28)

that, in the case ϕ(I) = Iα , becomes

q(T ) = (kT )1+αΓ (1 + α)

where Γ is the gamma function.
The distribution (27) is the generalization of the classical Maxwellian equilibrium dis-

tribution in the case of polyatomic gases. It was derived in [32] and [34] by means of the
H -theorem.

Pavić, Ruggeri and Simić [20] secondly considered the case of 14 moments. This case is
completely in agreement with the binary hierarchy (2) with the moments:

⎛
⎜⎝

F

Fi1

Fi1i2

⎞
⎟⎠ =

∫
R3

∫ ∞

0
m

⎛
⎜⎝

1

ξi1

ξi1ξi2

⎞
⎟⎠f (t,x, ξ , I )ϕ(I ) dI dξ ,

(
Gpp

Gppk1

)
=

∫
R3

∫ ∞

0
m

( |ξ |2 + 2 I
m

(|ξ |2 + 2 I
m
)ξk1

)
f (t,x, ξ , I )ϕ(I ) dI dξ .

(29)

For the entropy defined by (26), the following variational problem, expressing the max-
imum entropy principle, can be formulated: determine the velocity distribution function
f (t,x,C, I ) such that h → max, being subjected to the constraints (29). The solution of the
problem is as follows.

Near the equilibrium state the velocity distribution function, which maximizes the en-
tropy (26) with the constraints (29) and the weighting function ϕ(I) = Iα , has the form:

f = fE

{
1 − ρ

p2
qiCi + ρ

p2

[
−S〈ij 〉 +

(
5

2
+ α

)
(1 + α)−1Πδij

]
CiCj

− 3

2(1 + α)

ρ

p2
Π

(
1

2
|C|2 + I

m

)
+

(
7

2
+ α

)−1
ρ2

p3
qi

(
1

2
|C|2 + I

m

)
Ci

}
, (30)

where fE is the equilibrium distribution (27) and q(T ) is the auxiliary function (28).
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The non-equilibrium distribution (30) reduces to the velocity distribution obtained by
Mallinger [36] for gases composed of diatomic molecules (α = 0), and, for any α > −1, the
closure gives exactly the same equations (22) obtained before by using the entropy principle.

Therefore also in the case of rarefied polyatomic gases the 3 different procedures: En-
tropy Principle, Maximum Entropy Principle and Kinetic Grad method give, as in the
monatomic gases, the same field equations! Of course the Molecular Extended Thermo-
dynamics in principle has the advantage that if we know the collisional operator Q(f ) we
can have explicit expressions for the relaxation times that appear in the production terms in
(22): a simple example is presented in [20]. On this subject see also [35].

5 ET13 of Rarefied Monatomic Gases as the Singular Limit of ET14 of Rarefied
Polyatomic Gases

We show that rarefied monatomic gases, where there no dynamic pressure exists, can be
identified as a singular limit of rarefied polyatomic gases. We confine our discussion within
the singular limit from ET14 of rarefied polyatomic gases to ET13 of rarefied monatomic
gases [37]. General analysis with arbitrary number of independent fields will soon be re-
ported elsewhere.

Let us discuss the limiting process in the system (22) from polyatomic to monatomic
rarefied gases when we let D approach 3 from above, where D is assumed to be a continuous
variable. The limit is singular in the sense that the system for rarefied polyatomic gases with
14 independent fields need to converge to the system with only 13 independent fields for
rarefied monatomic gases.

The singularity can be seen also by the inequalities required for the symmetric hyper-
bolicity in equilibrium (15). This requirement is always satisfied in the ET13 theory of
monatomic gases, while, in the present ET14 theory, it is expressed by the inequality D > 3.
The condition is obviously satisfied only for polyatomic gases with D > 3, and the case of
monatomic gases with D = 3 is not admissible. Therefore only the limit of D toward 3 from
above is meaningful.

In the present case, by using the Maxwellian iteration [4, 7], the relaxation times τS, τΠ

and τq are, respectively, related to the shear viscosity μ, the bulk viscosity ν and the heat
conductivity κ :

μ = pτS, ν = 2(D − 3)

3D
pτΠ, κ = D + 2

2

p2

ρT
τq. (31)

We observe that the bulk viscosity vanishes when D → 3 as is consistent in monatomic
gases.

Let us take the limit D → 3 of the system (22), that is, the limit from polyatomic to
monatomic rarefied gases. Then we immediately notice that the limit of the system exists,
but it still has 14 equations. However, we also notice the following three points (I)–(III):

(I) The limit of the equation for Π , (22)5, is given by

Π̇ = −
(

1

τΠ

+ ∂vk

∂xk

)
Π, ←→

(
Π

ρ

)•
= − 1

τΠ

Π

ρ
. (32)

This is the first-order quasi-linear partial differential equation with respect to the dynamic
pressure Π .
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As the limit case is the case of monatomic gases, the initial condition for (32) must be
compatible with monatomic gases. We therefore should impose the following initial condi-
tion:

Π(0,x) = 0. (33)

Then, by assuming the uniqueness of the solution, the only possible solution of Eq. (32)
under the initial condition (33) is given by

Π(t,x) = 0 ∀t > 0. (34)

Therefore the dynamic pressure in monatomic gases vanishes identically for any time once
we impose the initial condition (33).

(II) If we insert the solution (34) into the remaining equations in (22) with D → 3, we
confirm that the resulting equations are the same as the ones of ET13 for rarefied monatomic
gases. This means that the solution of the limiting system with 14 equations is essentially
equivalent to the solution of ET13 of monatomic gases.

(III) The violation of the symmetric hyperbolicity condition (D > 3) disappears because
this inequality comes out from the non-vanishing dynamic pressure. Therefore the condition
for the symmetric hyperbolicity is the same as the one in the ET13 theory, which is always
satisfied in equilibrium.

To sum up, we may conclude that the ET14 theory is applicable also to rarefied
monatomic gases if we impose the initial or boundary condition of zero dynamic pressure.
In the reference [37], two illustrative numerical results in the process of the singular limit,
that is, the linear waves and the shock waves are shown in order to grasp the asymptotic
behavior of the physical quantities, in particular, of the dynamic pressure.

6 Applications of the ET14 Theory

Applications of the ET14 theory to specific problems have been made. In this section we
review briefly some of them.

6.1 Stationary Heat Conduction in a Polyatomic Gas at Rest

The study of heat conduction in a gas has been important to clarify the features of extended
thermodynamics. For example, stationary heat conduction in a monatomic gas at rest con-
fined in a cylinder and a sphere was studied [38]. It was shown that the singularities of
the temperature on the axis of the cylinder and at the center of the sphere predicted by the
classical NSF theory, which are, of course, unphysical, can be removed by using the ET13
theory.

Recently stationary heat conduction in both rarefied and dense polyatomic gases at rest
confined between two infinite parallel plates, two coaxial cylinders, and two concentric
spheres has been studied by using the ET14 theory. The analytical results obtained were
compared with those derived from the NSF theory with particular attention to the role of the
dynamical pressure. The non-NSF behaviors in the temperature profile have been observed.
And the polyatomic effects on the heat conduction have been elucidated. For these details,
see the reference [39, 40].
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6.2 Dispersion Relation for Sound in Rarefied Diatomic Gases

The dispersion relation for sound in rarefied diatomic gases; hydrogen, deuterium and hy-
drogen deuteride gases basing on the ET14 theory was recently studied in detail [41]. The
relation was compared with those obtained in experiments and by the NSF theory. As is ex-
pected, the applicable frequency-range of the ET theory was shown to be much wider than
that of the NSF theory. The values of the bulk viscosity and the relaxation times involved in
nonequilibrium processes were evaluated. It was found that the relaxation time related to the
dynamic pressure has a possibility to become much larger than the other relaxation times
related to the shear stress and the heat flux. The isotope effects on sound propagation were
also clarified. For details of these results, see the references [41, 42].

The analysis was made in the temperature range where the rotational modes in a molecule
play an important role. The ET theory can be applied to many other rarefied polyatomic
gases in a wider temperature range where the rotational and/or vibrational modes in a
molecule play a role. Comprehensive study of this subject must be a promising future work.

The study was confined within the sound in some rarefied diatomic gases because suitable
experimental data are scarce and are mainly restricted to rarefied gases. The study of the
dispersion relation for sound in dense gases with and without internal degrees of freedom
is, therefore, remained as another future work to be made.

6.3 Analysis of Light Scattering

Experiments of light scattering in a gas afford us with precise information about the ir-
reversible process in a gas out of local equilibrium. The analyses of light scattering in
monatomic gases on the basis of the ET theory were already made in detail [4, 43]. It was
shown that the ET theory can describe the experimental data on light scattering very well if
the number of the independent fields is appropriately large.

The analysis of the light scattering in polyatomic gases by using the ET theory is, how-
ever, quite primitive. At present the study by the ET14 theory has just begun. The prelimi-
nary results obtained until now indicate that the ET theory is quite promising [44]. We hope
we will soon report its details elsewhere.

6.4 Shock Wave Structure in a Rarefied Polyatomic Gas

The shock wave structure in a rarefied polyatomic gas is, under some conditions, quite dif-
ferent from the shock wave structure in a rarefied monatomic gas due to the presence of the
microscopic internal modes in a polyatomic molecule such as the rotational and vibrational
modes [45, 46]. For examples: (1) The shock wave thickness in a rarefied monatomic gas is
of the order of the mean free path. On the other hand, owing to the slow relaxation process
involving the internal modes, the thickness of a shock wave in a rarefied polyatomic gas is
several orders larger than the mean free path. (2) As the Mach number increases from unity,
the profile of the shock wave structure in a polyatomic rarefied gas changes from the nearly
symmetric profile (Type A) to the asymmetric profile (Type B), and then changes further to
the profile composed of thin and thick layers (Type C) [47–52]. Schematic profiles of the
mass density are shown in Fig. 1. Such change of the shock wave profile with the Mach
number cannot be observed in a monatomic gas.

In order to explain the shock wave structure in a rarefied polyatomic gas, there have
been two well-known approaches. One was proposed by Bethe and Teller [53] and the other
is proposed by Gilbarg and Paolucci [54]. Although the Bethe-Teller theory can describe
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Fig. 1 Schematic representation of three types of the shock wave structure in a rarefied polyatomic gas,
where ρ and x are the mass density and the position, respectively. As the Mach number increases from unity,
the profile of the shock wave structure changes from Type A to Type B, and then to Type C that consists of
the thin layer Δ and the thick layer Ψ

qualitatively the shock wave structure of Type C, its theoretical basis is not clear enough.
The Gilbarg-Paolucci theory, on the other hand, cannot explain asymmetric shock wave
structure (Type B) nor thin layer (Type C).

Recently it was shown that the ET14 theory can describe the shock wave structure of
all Types A to C in a rarefied polyatomic gas [55, 56]. In other words the ET14 theory has
overcome the difficulties encountered in the previous two approaches. This new approach
indicates clearly the usefulness of the ET theory for the analysis of shock wave phenomena.
For details of the recent results, see the references cited just above.

6.5 Fluctuating Hydrodynamics

The theory of fluctuating hydrodynamics based on extended thermodynamics has also been
developed recently [57, 58]. The celebrated Landau-Lifshitz theory of hydrodynamic fluc-
tuations [2, 59] is included in this theory as a special case.

Nowadays the Landau-Lifshitz theory attracts much attention, especially, as the basic
theory for microflows and nanoflows, which may play an important role, for example, in
the fields of nano-technology and molecular biology. As mentioned above the applicabil-
ity range of the ET theory of fluctuating hydrodynamics is wider than that of the Landau-
Lifshitz theory, it is highly expected that the ET theory will play an important role in the
fields of nano-technology, molecular biology, and so on.

7 ET6—The Particular Simple Case of ET of Dense Gases

As seen in the preceding sections, a typical theory in ET of dense gases is the ET14 theory.
This theory is particularly important because it is a natural extension of the Navier-Stokes
Fourier (NSF) theory. In the ET14 theory, there exist 3 relaxation times τS , τΠ , and τq

that characterize the relaxation of the shear stress, the dynamic pressure, and the heat flux,
respectively. The relaxation times depend on the mass density and the temperature, and their
values are usually comparable with each other.

It was shown, however, by studying the dispersion relation of linear harmonic waves
[41] and the shock wave structure [55, 60] that, in an appropriate temperature range of some
polyatomic gases such as a hydrogen gas or a carbon dioxide gas, the relaxation time τΠ is
several orders larger than the other two relaxation times τS and τq . In such a situation, the
dynamic pressure relaxes very slowly compared with the relaxation of the shear stress and
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the heat flux. And the effect of the shear stress and the heat flux on the relaxation process is
negligibly small.

In order to focus our attention on such slow relaxation phenomena, a simplified version
of the ET14 theory, that is, an ET theory with 6 independent fields of the mass density, the
velocity, the temperature, and the dynamic pressure (ET6) has been proposed [21, 61]. The
system of field equations is given by

ρ̇ + ρ
∂vk

∂xk

= 0,

ρv̇i + ∂(p + Π)

∂xi

= 0,

ρ

(
∂ε

∂T

)
ρ

Ṫ +
[
p + Π − ρ2

(
∂ε

∂ρ

)
T

]
∂vk

∂xk

= 0,

Π̇ + (a1 + a2Π)
∂vk

∂xk

= − 1

τΠ

Π.

(35)

The coefficients a1 and a2 are given by

a1 = ρ

[
5

3

p

ρ
−

(
∂p

∂ρ

)
s

]
, a2 = 5

3
− 1

ρT

(
∂p

∂s

)
ρ

,

where s is the specific entropy in equilibrium.
The entropy balance law holds with the entropy density h and the entropy flux hk being

given by

h = ρs − 1

2T a1
Π2, hk = hvk, (36)

where ρs is the entropy density in equilibrium. From Eq. (36)1, the concavity condition of
the entropy density (or symmetric hyperbolic condition [4]) at an equilibrium state is given
by

cv =
(

∂ε

∂T

)
ρ

> 0, 0 <

(
∂p

∂ρ

)
s

<
5

3

p

ρ
,

where cv is the specific heat at constant volume.
It was shown [21] that the ET6 theory can be regarded as an extension of the well-known

Meixner theory of relaxation phenomena [62, 63]. The ET6 theory can also describe the
shock wave structure in a rarefied polyatomic gases [60]. Indeed, it is the ET6 theory that
can be regarded as a consistent and unified extension of the Bethe-Teller theory for the
shock wave structure. ET6 is the principal sub-system of ET14 in the sense of Boillat and
Ruggeri [64].

Another point worth mentioning is that the same conclusion of the singular limit ex-
plained in Sect. 5 is also true for the ET6 theory [61]. That is, rarefied monatomic gases
can be identified as a singular limit of rarefied polyatomic gases. This case is particularly
interesting because, in the limit D → 3, the system of ET6, which is a hyperbolic dissipa-
tive system of equations, approaches the Euler system with 5 fields that is a conservative
hyperbolic system.

Because of the simplicity of the ET6 theory, thorough mathematical studies of its hyper-
bolic system of equations seem to be quite interesting as future works.
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8 Molecular Extended Thermodynamics of Rarefied Polyatomic Gases with Many
Moments

We study the case of a generic number of moments. We can proceed in the same way as for
14 fields (29).

8.1 Binary Hierarchy of Moments

We can define a binary hierarchy of moments as follows [20, 22]: By introducing the mo-
ments

FA =
∫
R3

∫ ∞

0
mf cAIα dIdc, FiA =

∫
R3

∫ ∞

0
mf cicAIα dIdc,

PA =
∫
R3

∫ ∞

0
mQ(f )cAIα dIdc,

(37)

and the additional moments [20]

GllA′ =
∫
R3

∫ ∞

0
mf

(
c2 + 2I

m

)
cA′Iα dIdc,

GillA′ =
∫
R3

∫ ∞

0
mf

(
c2 + 2I

m

)
cicA′Iα dIdc,

QllA′ =
∫
R3

∫ ∞

0
mQ(f )

(
c2 + 2I

m

)
cA′Iα dIdc,

(38)

it is possible to build two hierarchies of moments that, after truncation, read as follows
(“(N,M)-system”):

∂tFA + ∂iFiA = PA, ∂tGllA′ + ∂iGlliA′ = QllA′ ,

(0 ≤ A ≤ N) (0 ≤ A′ ≤ M
)
.

(39)

The following multi-index notations are introduced for the sake of compactness:

FA =
{

F for A = 0
Fi1···iA for 1 ≤ A ≤ N

, FiA =
{

Fi for A = 0
Fi i1···iA for 1 ≤ A ≤ N

,

PA =
⎧⎨
⎩

0 for A = 0
0 for A = 1
Pi1···iA for 2 ≤ A ≤ N (with Pll = 0)

,

GllA′ =
{

Gll for A′ = 0
Glli1···iA′ for 1 ≤ A′ ≤ M

, GlliA′ =
{

Glli for A′ = 0
Gllii1···iA′ for 1 ≤ A′ ≤ M

,

QllA′ =
{

0 for A′ = 0
Qlli1···iA′ for 1 ≤ A′ ≤ M

,

and

cA =
{

1 for A = 0
ci1 · · · ciA for 1 ≤ A ≤ N

,
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where the indices i and i1 ≤ i2 ≤ · · · ≤ iA assume the values 1,2,3. The truncation order
N of the F -hierarchy (momentum-like hierarchy) and M order of the G-hierarchy (energy-
like hierarchy) are a priori independent of each other. It is worth noting that the first and
second equations of the F -hierarchy represent the conservation of mass and momentum,
respectively (P ≡ 0,Pi ≡ 0), while the first equation of the G-hierarchy represents the con-
servation of energy (Qll ≡ 0), and in each of the two hierarchies the flux in one equation
appears as the density in the following equation—a feature in common with the single hier-
archy of monatomic gases.

We note that the Euler 5 moments system is a particular case of (39) with N = 1, M = 0,
and the 14 moments case (2) is a particular case of (39) with N = 2, M = 1.

The variational problem from which the distribution function f(N,M) is obtained is con-
nected to the functional:

L(N,M)(f ) = −k

∫
R3

∫ ∞

0
f logf Iα dIdc + u′

A

(
FA − m

∫
R3

∫ ∞

0
cAf Iα dIdc

)

+ v′
A′

(
GllA′ − m

∫
R3

∫ ∞

0

(
c2 + 2I

m

)
cA′f IαdIdc

)
,

where u′
A and v′

A′ are the Lagrange multipliers. The distribution function f(N,M) which max-
imizes the functional L(N,M) is given by [22]:

f(N,M) = exp

(
−1 − m

k
χ(N,M)

)
, χ(N,M) = u′

AcA +
(

c2 + 2I

m

)
v′

A′cA′ . (40)

By inserting (40) into (37)1 and (38)1, the Lagrange multipliers u′
A and v′

A′ are evaluated
in terms of the densities FA and GllA′ . By using the distribution function expressed by the
densities, the constitutive functions which close the truncated fluxes and productions in (37)
and (38) with respect to the densities are obtained.

Then, the system (39) may be rewritten as follows:
(

J 0
AB J 1

AB ′

J 1
A′B J 2

A′B ′

)
∂t

(
u′

B

v′
B ′

)
+

(
J 0

iAB J 1
iAB ′

J 1
iA′B J 2

iA′B ′

)
∂i

(
u′

B

v′
B ′

)
=

(
PA

QllA′

)
, (41)

where

J 0
AB = −m2

k

∫
R3

∫ ∞

0
f cAcBIα dIdc,

J 1
AB ′ = −m2

k

∫
R3

∫ ∞

0
f cAcB ′

(
c2 + 2I

m

)
Iα dIdc,

J 2
A′B ′ = −m2

k

∫
R3

∫ ∞

0
f cA′cB ′

(
c2 + 2I

m

)2

Iα dIdc.

(42)

It has been proved that the truncation indices N and M of the two hierarchies are, in reality,
not independent because of the physical reasons; Galilean invariance of field equations and
the fact that the characteristic velocities depend on the degrees of freedom of the particles.
And we have arrived at the conclusion that the relation M = N − 1 should be satisfied [22].
Moreover it has also been proved that, for any generic number of moments, the closure
procedures of EP and MEP are equivalent to each other.

The system (41) is symmetric hyperbolic according with the general theory of systems
of balance laws with a concave entropy density (see [30, 64–66]).
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8.2 Characteristic Velocities

The characteristic velocities λ
(k)

(N,M) of the system (41) in the direction of propagation having
unit vector n ≡ (ni) are the roots of the characteristic polynomial T(N,M):

T(N,M) = det

[(
J 0

iAB J 1
iAB ′

J 1
iA′B J 2

iA′B ′

)
ni − λ(N,M)

(
J 0

AB J 1
AB ′

J 1
A′B J 2

A′B ′

)]
= 0.

In particular, the wave speeds for disturbances propagating in an equilibrium state are the
solutions of the characteristic polynomial T E

(N,M):

T E
(N,M) = det

[(
J

0|E
iAB J

1|E
iAB ′

J
1|E
iA′B J

2|E
iA′B ′

)
ni − λE

(N,M)

(
J

0|E
AB J

1|E
AB ′

J
1|E
A′B J

2|E
A′B ′

)]
= 0,

where the superscript “E” denotes that all the quantities are evaluated by using the local
equilibrium distribution function f E given by (27).

In a recent paper by Arima, Mentrelli and Ruggeri [22], they have shown that it is possible
to compare the characteristic velocities for a polyatomic gas and a monatomic one for any
index of truncation. In particular, using the convexity arguments and the sub-characteristic
conditions for principal subsystems, they have proven that the lower bound estimate for
the equilibrium maximum characteristic velocity (in sound speed unity) established for
monatomic gases by Boillat and Ruggeri [30]:

λmax
(N)

c0
≥

√
6

5

(
N − 1

2

) (
c0 =

√
5

3

k

m
T

)
(43)

is universal and independent of the degrees of freedom of a molecule. Therefore, also in the
case of polyatomic gases, the maximum characteristic velocity is unbounded when N → ∞.

9 Summary

We have explained the present status of ET of dense gases by reviewing the recent results.
Many open problems remained have also been pointed out. It is obvious that this research
field is still at infancy and that many things are remained to be studied further.

Lastly we make two remarks here. As is pointed out in the preceding sections, the con-
cavity of entropy density and the related stability problem at D = 3 is not yet completely
solved. In order to include the case of monatomic dense gases into the validity range of the
ET6, ET14 or ETn theory, we should generalize the system of field equations. One possible
way in this direction will soon be reported elsewhere.

In connection with this remark, it should be emphasized that the present ET theory of
dense gases is valid up to moderately dense gases [19]. If we want to analyze nonequilib-
rium properties in more dense gases, we will encounter the same stability problem men-
tioned above. We should generalize the system of field equations. This is, we believe, a
fundamentally important problem worthy of the next study.

Another challenge will be to construct the relativistic counterpart of dense and rarefied
polyatomic gas theory.
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