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Abstract In this paper we prove the well-posedness of the Prandtl boundary layer equations
on a periodic strip when the initial and the boundary data are not assigned to be compatible.

Keywords Boundary layer · Incompatible data · Analytic norm

1 Introduction

Prandtl’s equations describe the behavior of an incompressible flow near a boundary in
the zero viscosity limit. There is an extensive literature on boundary layer associated with
incompressible flows and the related question of the behavior of the Navier-Stokes solutions
in the vanishing viscosity limit (see for instance [2, 5, 6, 9, 12, 13, 16, 20, 25–28, 30–34, 37–
39, 42, 45]). We shall not survey the literature here, but emphasize that the boundary layer
problem associated with the NS equations is still open and that there is a need to develop
tools and methods to tackle it. There are not many well-posedness results, and in fact recent
results suggest that these equations could be ill-posed in certain Sobolev spaces [14, 19,
21, 23]. On the other hand it is known that, when the data are analytic with respect to the
tangential variable, Prandtl’s equations are well posed [7, 27, 29, 38]. However, so far, it has
always been assumed that the initial and boundary data, are compatible.

It is well known that, if the initial and boundary data assigned for a PDE do not obey an
infinite set of compatibility conditions, singularities will arise in the solution at the corners of
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the time-space domain [40, 41]. For dissipative equations, these singularities are known to be
short lived. The issue of compatibility between initial and boundary data has been therefore
receiving considerable attention, other than for it has an intrinsic theoretical interest also
because of its consequences on the numerical solutions of the corresponding PDEs [3, 10,
11, 15, 24].

In [8] it has been recently proved that the Prandtl equations on a 2D (or 3D) half space
are well posed, even when initial and boundary data are incompatible, under the assumption
of analyticity in the tangential variable. In this paper we shall consider a periodic domain in
the x-variable and introduce different real analytic norms. This result generalizes previously
proved theorems removing the compatibility hypothesis, and is also of interest for the two
reasons that follow.

First, in almost all the cases where the Prandtl equations have been investigated numeri-
cally, an incompatibility between initial and boundary data was present [17, 18, 44]. It was
left to the numerical scheme to handle the initial singularity but it was never proved that this
initial singularity and the following high gradients (in the normal direction) did not interact
with the tangential structure where viscosity is absent.

Second, it could be a step toward the analysis of the zero viscosity limit of Navier-Stokes
solutions for not well prepared initial data. This is a problem of relevant interest and has
been recently afforded for the linearized Navier-Stokes equations [22].

We shall be concerned with the Prandtl’s equations written as:

∂tu
P + uP ∂xu

P + vP ∂Y uP + ∂xp
E = ∂YY uP , (x,Y ) ∈ [0,2π] ×R

+, (1)

∂xu
P + ∂Y vP = 0, (2)

uP (x,Y = 0, t) = 0, (3)

uP (x,Y, t = 0) = u0(x,Y ), (4)

uP (x,Y → ∞, t) = U(x, t), (5)

vP (x,Y = 0, t) = 0, (6)

where the Euler matching datum U(x, t) and the pressure pE = pE(x, t) satisfy the
Bernoulli law:

∂tU + U∂xU + ∂xp
E |y=0 = 0. (7)

All the data will be assumed to be periodic in x, i.e.:

u0(0, Y ) = u0(2π,Y ) (8)

U(0, t) = U(2π, t) (9)

but, in general, initial and boundary data are not compatible, i.e., in general:

u0(x,Y = 0) �= 0 = uP (x,Y = 0, t = 0). (10)

2 Function Spaces and Main Result

In this section we shall introduce the function spaces where the well-posedness Theorem
will be proved.
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Definition 1 The space Hσ is the space of the 2π periodic real functions f (x) such that:

|f |σ ≡
∑

k∈Z

∣∣f̂ (k)
∣∣e|k|σ < ∞,

where f̂ (k) are the Fourier coefficients of f .

Following [27], we introduce the Y -weight given by:

ρ(Y ) = 〈Y 〉α, where α > 1/2 and 〈Y 〉 =
√

1 + Y 2.

Definition 2 The space Hσ,α , with α > 0, is the space of the real functions f (x,Y ), 2π

periodic with respect to x, such that:

• ρ(Y )∂
j

Y f ∈ L∞(R+,Hσ ) when j ≤ 2;

the norm in Hσ,α is defined as:

|f |σ,α ≡
∑

j≤2

sup
Y∈R+

ρ(Y )
∣∣∂j

Y f (·, Y )
∣∣
σ
.

Definition 3 The space Hσ
β,T ,with β > 0, is the space of the functions f (x, t), 2π periodic

with respect to x, such that:

• ∂i
t f (x, t) ∈ Hσ−βt ∀0 ≤ t ≤ T < σ/β , where 0 ≤ i ≤ 1.

Moreover:

|f |σ,β,T ≡
∑

0≤i≤1

sup
0≤t≤T

∣∣∂i
t f (·, t)∣∣

σ−βt
< ∞.

Definition 4 The space Hσ,α
β,T is the space of the functions f (x,Y, t), 2π periodic with

respect to x, such that:

• f, ∂tf, ∂
j

Y f ∈ Hσ−βt,α , ∀0 ≤ t ≤ T , and j ≤ 2.

Moreover:

|f |σ,α,β,T ≡
∑

0≤j≤2

sup
0≤t≤T

∣∣∂j

Y f (·, ·, t)∣∣
σ−βt,α

+ sup
0≤t≤T

∣∣∂tf (·, ·, t)∣∣
σ−βt,α

< ∞.

Once we have introduced the functional spaces, we can state the main result of this pa-
per:

Theorem 1 (Main result) Suppose that the Euler datum U and the initial datum u0 satisfy
the following hypotheses:

(i) U satisfies the Bernoulli law Eq. (7);
(ii) U(x, t) ∈ Hσ0

β0,T0
;

(iii) u0(x,Y ) − U(x, t = 0) ∈ Hσ0,α .

Then there exist 0 < σ < σ0, β > β0 > 0 and 0 < T < T0 such that Prandtl equations
Eqs. (1)–(5) admit, in [0, T ], a unique solution uP . This solution can be written as:

uP (x,Y, t) = uS + uR, (11)
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where

1. uS is an initial layer corrector and has the following form:

uS = −2u0(x,Y = 0) erfc

(
Y

2
√

t

)
.

2. uR is the solution of the Prandtl equation with compatible data and with a source term
that keeps into account the interaction with uS ; uR can be decomposed as follows:

uR(x,Y, t) = ũ(x,Y, t) + U

where ũ ∈ Hσ,α
β,T .

Moreover the solution uP (x,Y, t), for t > 0, is analytic both in x and Y .

We now make some comments on the hypotheses we have imposed to the data.
Hypothesis (i) simply means that the datum U is consistent with the Euler equations,

and it is imposed on the Prandtl equations once the Euler solution is known. The physical
meaning is that the Prandtl solutions has to match, outside the boundary layer, the inviscid
Euler flow.

Hypothesis (ii) means that the Fourier spectrum of the Euler datum is exponentially de-
caying; this kind of analyticity requirement is typical for the Prandtl equations, see e.g. [7,
8, 27, 38], and it is needed to compensate for the lack of dissipation along the streamwise
direction x. Without this requirement (or without the monotonicity hypothesis à la Oleinik)
there are strong evidences that the Prandtl equations might be ill-posed, see the recent papers
[19, 21].

Hypothesis (iii) has two different meanings: first, it is a requirement of analyticity in the
streamwise variable x for the initial datum u0(x,Y ) (see the comments above concerning
the meaning of analyticity); second, it enforces the compatibility between the initial datum
and the Euler datum requiring the polynomial decay of their difference when Y → ∞. It
would be certainly interesting to analyze the case where there is incompatibility between
the Euler and the initial data: however, in this paper we shall be concerned only with the
incompatibility between the boundary and the initial data.

To prove the above theorem, we shall use a Cauchy-Kowalewski-type (Fixed Point) The-
orem in the abstract setup of weighted Banach spaces. The abstract form of the Cauchy-
Kowalewski Theorem has attracted the attention of many authors, among which Treves [43],
Nirenberg [35], Nishida [36], Caflisch [4], Asano [1], just to mention a few. Here we shall
use a version of the Abstract Cauchy-Kowalewski Theorem (ACK) whose proof is given in
[29].

Let {Xρ : 0 < ρ ≤ ρ0} be a Banach scale with norms | |ρ , such that Xρ′ ⊂ Xρ′′ and
| |ρ′′ ≤ | |ρ′ when ρ ′′ ≤ ρ ′ ≤ ρ0. In this Banach scale, for t in [0, T ], consider the equation:

u + F(t, u) = 0. (12)

The formal statement of the ACK Theorem can be found in [29]. Here we just mention
that the key point to ensure the existence of a solution to the problem (12) is the quasi-
contractiveness of the operator F , namely:

∣∣F
(
t, u1

) − F
(
t, u2

)∣∣
ρ′ ≤ C

∫ t

0
ds

( |u1 − u2|ρ(s)

ρ(s) − ρ ′ + |u1 − u2|ρ′√
t − s

)
(13)

when 0 < ρ ′ < ρ(s) < ρ0.
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3 Construction of the Solution

To prove Theorem 1, we set:

uP = uS + uR = uS + uD + w1, (14)

where we have further decomposed the regular part of the solution uR as

uR = uD + w1.

We shall now separately consider the different terms appearing on the right hand side of
(14).

Singular Solution The singular solution uS = (uS, vS) satisfies the following equations:

(∂t − ∂YY )uS = 0 (15)

uS(x,Y = 0, t) = −u0(x,Y = 0) (16)

uS(x,Y, t = 0) = 0 (17)

and

vS = −
∫ Y

0
∂xu

S
(
x,Y ′, t

)
dY ′. (18)

It absorbs the incompatibility between the initial and the boundary data. The explicit
expression of uS is given by:

uS = −2u0(x,Y = 0)√
πt

∫ ∞

Y

exp

(
− s2

4t

)
ds = −2u0(x,Y = 0) erfc

(
Y

2
√

t

)
. (19)

Notice that uS displays a corner singularity in (x,Y = 0, t = 0).

Regular Solution The regular solution uD = (uD, vD) satisfies the following equations:

∂tu
D + uD∂xu

D + vD∂Y uD + ∂xp
E = ∂YY uD (20)

∂xu
D + ∂Y vD = 0 (21)

uD(x,Y = 0, t) = u0(x,Y = 0) (22)

uD(x,Y, t = 0) = u0(x,Y ) (23)

uD(x,Y → ∞, t) = U(x, t) (24)

Notice that uD has initial data u0(x,Y ) and boundary data which are compatible.
Following the same procedure adopted in [29], one can recast Eqs. (20)–(24) in a suitable

form for the application of the Fixed Point Theorem, and verify that its hypothesis are sat-
isfied. The only difference is the way one has to estimate the x-derivative of uD appearing
on the left hand side of (20). The desired Cauchy estimate is obtained by means of the fol-
lowing Proposition, where the norm of the derivative of a function in Hσ ′′

can be bounded
in terms of the norm of the function itself in a smaller Banach space. Namely one has:
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Proposition 1 Let f ∈ Hσ ′′
. If σ ′ < σ ′′ then

|∂xf |σ ′ ≤ |f |σ ′′

σ ′′ − σ ′ . (25)

Proof

|∂xf |σ ′ =
∑

k∈Z
|k|∣∣f̂ (k)

∣∣e|k|σ ′

≤
∑

k∈Z
|k|(σ ′′ − σ ′)e−|k|(σ ′′−σ ′) |f̂ (k)|

σ ′′ − σ ′ e
|k|σ ′′ ≤ c

|f |σ ′′

σ ′′ − σ ′ ,

where the last inequality follows from the fact that, for x > 0, xe−x is bounded by a con-
stant. �

Analogous estimates can be proved in the spaces Hσ
β,T , Hσ,α and Hσ,α

β,T . Therefore one
can prove the following

Theorem 2 Suppose U ∈ Hσ0
β0,T and u0 − U ∈ Hσ0,α . Then there exist 0 < σ1 < σ0, β1 >

β0 > 0 and 0 < T1 < T such that Eqs. (20)–(24) admit a unique mild solution uD . This
solution can be written as:

uD(x,Y, t) = u(x,Y, t) + U, (26)

where u ∈ Hσ1,α

β1,T1
.

The Interaction Part It is straightforward to verify that the interaction part w = (w1,w2)

satisfies the following equations [8]:

w1 = F(t,w1) (27)

where:

F(t,w1) = E2L(w1) + E3N(w1) + E3G, (28)

L(w1) = −2
[
w1∂x

(
uS + uD

)]
, (29)

N(w1) = −
[
w1

∫ Y

0
∂xw1dY ′ + (

uS + uD
)∫ Y

0
∂xw1dY ′

]

+ w1

∫ Y

0
∂x

(
uS + uD

)
dY ′, (30)

G = −(
uDvS + uSvD + uSvS

)
, (31)

and E2 and E3 are inverse heat operators. E2 satisfies the following heat equation with zero
initial and boundary data:

(∂t − ∂YY )E2f = f

E2f |t=0 = 0 (32)
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γE2f = 0,

and E3f ≡ E2∂yf , for those functions f (x,Y, t) such that f (x,Y = 0, t) = 0. The explicit
expressions of E2 and E3 are given in [8].

On w1 one imposes the following boundary and initial data:

w1(x,Y = 0, t) = 0 (33)

w1(x,Y, t = 0) = 0 (34)

w1(x,Y → ∞, t) = 0. (35)

Moreover, using the incompressibility condition, one has:

w2(x,Y, t) = −
∫ Y

0
dY ′ ∂xw1

(
x,Y ′, t

)
. (36)

We shall prove the well-posedness of the above Initial Boundary Value Problem for w1,
namely we shall prove the following:

Theorem 3 Suppose U ∈ Hσ0
β0,T and ū0 ≡ u0 − Ut=0 ∈ Hσ0,α . Then there exist 0 < ρ1 < ρ0,

β1 > β0 > 0 and 0 < T1 < T such that Eqs. (27)–(35) admit a unique solution w1 ∈ Hσ1,α

β1,T1
.

The following estimate holds:

|w1|σ1,α,β1,T1 ≤ c
(|u0|σ0,α + |U |σ0,β0,T

)
. (37)

The remaining part of this section will therefore be devoted to prove that the operator
F(t,w1), as defined by (28), satisfies the hypothesis of the ACK Theorem.

The first step consists in showing that F(t,0) can be bounded by the initial data of the
Prandtl equation and the boundary data of the outer Euler flow. This involves the estimate
of the following three terms: |E3(u

DvS)|σ1,α,β1,T1 , |E3(u
SvD)|σ1,α,β1,T1 , |E3(u

SvS)|σ1,α,β1,T1 .
The ideas underlying the three estimates are quite similar, we shall therefore give here

only the estimate of E3(u
SvS). In what follows we shall denote by χ(Y ) a monotone

bounded function going to zero linearly fast as Y → 0 and we shall moreover set:

K
(
Y,Y ′, t, s

) = Y − Y ′

t − s

e−(Y−Y ′)2/4(t−s)

[4π(t − s)]1/2
+ Y + Y ′

t − s

e−(Y+Y ′)2/4(t−s)

[4π(t − s)]1/2
. (38)

One therefore has:

∣∣E3

(
uSvS

)∣∣
σ ′,α

= 4 sup
Y≥0

〈Y 〉α
∑

k∈Z
e|k|σ ′

∣∣∣∣
∫ t

0
ds

∫ ∞

0
dY K

(
Y,Y ′, t, s

)
û0(k)kû0(k)

×
∫ ∞

Y ′
dY

′′ e− Y
′′2

4s√
πs

∫ Y ′

0
dY

′′′
∫ ∞

Y
′′′

e− τ2
4s√

πs
dτ

∣∣∣∣

≤ c
|u0|σ ′′,β1,T1

σ ′′ − σ ′ sup
Y≥0

〈Y 〉α
∣∣∣∣
∫ t

0
ds

∫ ∞

0
dY ′K

(
Y,Y ′, t, s

)e− Y ′2
4s√

πs
χ

(
Y ′)

∣∣∣∣
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≤ c
|u0|σ ′′,β1,T1

σ ′′ − σ ′ sup
Y≥0

sup
0≤t≤T1

∫ t

0

ds√
t − s

×
(∫ ∞

− Y√
4(t−s)

dηη e−η2 +
∫ ∞

Y√
4(t−s)

dη η e−η2
)

≤ c
|u0|σ ′′,β1,T1

σ ′′ − σ ′ ≤ c|u0|σ ′′,β0,T

where, in passing from the second to the third row we have used Proposition 1 to estimate
the term which involve the x-derivative and the fact that

∫ Y

0
dY ′

∫ ∞

Y ′
dσ

e− σ2
4t√

4πt
≤ ψ(Y ).

The proof of the estimates of the terms

∣∣∂Y E3
(
uSvS

)∣∣
σ ′,α,

∣∣∂YY E3
(
uSvS

)∣∣
σ ′,α and

∣∣∂tE3
(
uSvS

)∣∣
σ ′,α

proceeds along the same lines of the analogous estimates in [8], namely letting the deriva-
tives act on the kernel of the operator E3 and using the regularizing properties of the inte-
gration in time to control the term going as 1/

√
t − s. This proves that F(t,0) is bounded

in Hσ1,α

β1,T1
.

To prove the well-posedness of Eq. (27) for w1, we are left to prove the almost contrac-
tiveness property of the operator F , in the form given by (13).

We have to estimate the operators E2L(w1) and E3N(w1).
Of the two terms appearing in E2L(w1), the most difficult is E2(w1∂xu

S), owing to the
presence of the singular term uS . We shall give its estimate in the space Hσ ′,α . In particular
we shall just show the estimate of the term |∂YY E2(w1∂xu

S)|ρ′,α . Let us use the following
notation for the heat kernel:

E
(
Y,Y ′, t − s

) = e−(Y−Y ′)2/4(t−s)

[4π(t − s)]1/2
− e−(Y+Y ′)2/4(t−s)

[4π(t − s)]1/2
.

One then has:

∣∣∂YY E2

(
w1∂xu

S
)∣∣

σ ′,α

= 2 sup
Y≥0

〈Y 〉α
∑

k∈Z
e|k|σ

∣∣∣∣
∫ t

0
ds

∫ ∞

0
dY ′∂Y ′Y ′E

(
Y,Y ′, t − s

)

× ŵ1

(
k,Y ′, s

)
kû0(k)

∫ ∞

Y ′
dρ

e− ρ2
4s√

πs

∣∣∣∣

≤ c sup
Y≥0

〈Y 〉α
∑

k∈Z
e|k|σ

∣∣∣∣
∫ t

0
ds

∫ ∞

0
dY ′∂Y ′E

(
Y,Y ′, t − s

)

× ∂Y ′ŵ1

(
k,Y ′, s

)
kû0(k)

∫ ∞

Y ′
dρ

e− ρ2
4s√

πs

∣∣∣∣

+ c sup
Y≥0

〈Y 〉α
∑

k∈Z
e|k|σ

∣∣∣∣
∫ t

0
ds

∫ ∞

0
dY ′∂Y ′E

(
Y,Y ′, t − s

)
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× ŵ1

(
k,Y ′, s

)
kû0(k)

e− Y ′2
4s√

πs

∣∣∣∣

≤ c sup
Y≥0

〈Y 〉α
∫ t

0
ds

∫ ∞

0
dY ′∣∣∂Y ′ E

(
Y,Y ′, t − s

)∣∣

× ∣∣∂Y ′ŵ1

(·, Y ′, s
)
∂xû0(·)

∣∣
σ ′

∫ ∞

Y ′
dρ

e− ρ2
4s√

πs

+ sup
Y≥0

〈Y 〉α
∑

k∈Z
e|k|σ

∣∣∣∣
∫ t

0
ds

∫ ∞

0
dY ′∂Y ′ E

(
Y,Y ′, t − s

)

× Y ′−1ŵ1

(
k,Y ′, s

)
∂xû0(k)Y ′ e

− Y ′2
4s√

πs

∣∣∣∣

≤ c

∫ t

0
ds

|∂Y w1|σ ′,α√
t − s

+ c

∫ t

0
ds

|w1|ρ′′,α√
t − s

≤ c

∫ t

0
ds

|w1|ρ′′,α√
t − s

.

In the above estimate we have used the fact that w1(x,Y = 0, t) = 0 so that Y −1w1(x,Y, t)

can be bounded in terms of the norm of ∂Y w1. This has allowed to get an extra Y that we
used to compensate the singularity of ∂YY uS .

The estimate of the term |∂tE2(w1∂xu
S)|σ ′,α is obtained analogously to what has been

done in [8].
This concludes the proof of the almost contractiveness of the operator F(t,w1) in

Eq. (27) and the proof of Theorem 3 is achieved.
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